
Elasticsearch

#elasticsear

ch

Table of Contents

About 1

Chapter 1: Getting started with Elasticsearch 2

Remarks 2

Versions 2

Examples 3

Installing Elasticsearch on Ubuntu 14.04 3

Prerequisites 3

Download and Install package 3

Running as a service on Linux: 4

Installing Elasticsearch on Windows 4

Prerequisites 4

Run from batch file 5

Run as a Windows service 5

Indexing and retrieving a document 6

Indexing documents 6

Indexing without an ID 7

Retrieving documents 8

Basic Search Parameters with examples: 10

Installing Elasticsearch and Kibana on CentOS 7 12

Chapter 2: Aggregations 15

Syntax 15

Examples 15

Avg aggregation 15

Cardinality Aggregation 15

Extended Stats Aggregation 16

Chapter 3: Analyzers 18

Remarks 18

Examples 18

Mapping 18

Multi-fields 18

Analyzers 19

Ignore case analyzer 20

Chapter 4: Cluster 21

Remarks 21

Examples 22

Human readable, tabular Cluster Health with headers 22

Human readable, tabular Cluster Health without headers 22

Human readable, tabular Cluster Health with selected headers 22

JSON-based Cluster Health 24

Chapter 5: Curl Commands 25

Syntax 25

Examples 25

Curl Command for counting number of documents in the cluster 25

Retrieve a document by Id 26

Create an Index 26

List all indices 26

Delete an Index 26

List all documents in a index 27

Chapter 6: Difference Between Indices and Types 28

Remarks 28

All About Types 28

Common Questions 30

Exceptions to the Rule 30

Examples 31

Explicitly creating an Index with a Type 31

Dynamically creating an Index with a Type 32

Chapter 7: Difference Between Relational Databases and Elasticsearch 35

Introduction 35

Examples 35

Terminology Difference 35

Usecases where Relational Databases are not suitable 36

Chapter 8: Elasticsearch Configuration 40

Remarks 40

Where are the settings? 40

What type of settings exist? 41

How can I apply settings? 42

Examples 42

Static Elasticsearch Settings 43

Persistent Dynamic Cluster Settings 43

Transient Dynamic Cluster Settings 44

Index Settings 45

Dynamic Index Settings for Multiple Indices at the same time 45

Chapter 9: Learning Elasticsearch with kibana 47

Introduction 47

Examples 47

Explore your Cluster using Kibana 47

Modify your elasticsearch data 48

Chapter 10: Python Interface 50

Parameters 50

Examples 50

Indexing a Document (ie. Adding an sample) 50

Connection to a cluster 51

Creating an empty index and setting the mapping 51

Partial Update and Update by query 52

Chapter 11: Search API 53

Introduction 53

Examples 53

Routing 53

Search using request body 53

Multi search 53

URI search, and Highlighting 54

Credits 55

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: elasticsearch

It is an unofficial and free Elasticsearch ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Elasticsearch.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/elasticsearch
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Elasticsearch

Remarks

Elasticsearch is an advanced open source search server based on Lucene and written in Java.

It provides distributed full and partial text, query-based and geolocation-based search functionality
accessible through an HTTP REST API.

Versions

Version Release Date

5.2.1 2017-02-14

5.2.0 2017-01-31

5.1.2 2017-01-12

5.1.1 2016-12-08

5.0.2 2016-11-29

5.0.1 2016-11-15

5.0.0 2016-10-26

2.4.0 2016-08-31

2.3.0 2016-03-30

2.2.0 2016-02-02

2.1.0 2015-11-24

2.0.0 2015-10-28

1.7.0 2015-07-16

1.6.0 2015-06-09

1.5.0 2015-03-06

1.4.0 2014-11-05

1.3.0 2014-07-23

1.2.0 2014-05-22

https://riptutorial.com/ 2

Version Release Date

1.1.0 2014-03-25

1.0.0 2014-02-14

Examples

Installing Elasticsearch on Ubuntu 14.04

Prerequisites

In order to run Elasticsearch, a Java Runtime Environment (JRE) is required on the machine.
Elasticsearch requires Java 7 or higher and recommends Oracle JDK version 1.8.0_73.

Install Oracle Java 8

sudo add-apt-repository -y ppa:webupd8team/java
sudo apt-get update
echo "oracle-java8-installer shared/accepted-oracle-license-v1-1 select true" | sudo debconf-
set-selections
sudo apt-get install -y oracle-java8-installer

Check Java Version

java -version

Download and Install package

Using Binaries

Download the latest stable version of Elasticsearch here.1.
Unzip the file & Run2.

Linux:

$ bin/elasticsearch

Using apt-get

An alternative to downloading elasticsearch from the website is installing it, using apt-get.

wget -qO - https://packages.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
echo "deb https://packages.elastic.co/elasticsearch/2.x/debian stable main" | sudo tee -a
/etc/apt/sources.list.d/elasticsearch-2.x.list
sudo apt-get update && sudo apt-get install elasticsearch

https://riptutorial.com/ 3

https://www.elastic.co/downloads/elasticsearch

sudo /etc/init.d/elasticsearch start

Installing elasticsearch version 5.x

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -
sudo apt-get install apt-transport-https
echo "deb https://artifacts.elastic.co/packages/5.x/apt stable main" | sudo tee -a
/etc/apt/sources.list.d/elastic-5.x.list
sudo apt-get update && sudo apt-get install elasticsearch

Running as a service on Linux:

After Installing the above doesn't start itself. so we need to start it as a service. How to start or
stop Elasticsearch depends on whether your system uses SysV init or systemd. you can check it
with the following command.

ps -p 1

If your distribution is using SysV init, then you will need to run:

sudo update-rc.d elasticsearch defaults 95 10
sudo /etc/init.d/elasticsearch start

Otherwise if your distribution is using systemd:

sudo /bin/systemctl daemon-reload
sudo /bin/systemctl enable elasticsearch.service

Run the CURL command from your browser or a REST client, to check if Elasticsearch has been
installed correctly.

curl -X GET http://localhost:9200/

Installing Elasticsearch on Windows

Prerequisites

The Windows version of Elasticsearch can be obtained from this link:
https://www.elastic.co/downloads/elasticsearch. The latest stable release is always at the top.

As we are installing on Windows, we need the .ZIP archive. Click the link in the Downloads: section
and save the file to your computer.

This version of elastic is "portable", meaning you don't need to run an installer to use the program.
Unzip the contents of the file to a location you can easily remember. For demonstration we'll

https://riptutorial.com/ 4

https://www.elastic.co/downloads/elasticsearch

assume you unzipped everything to C:\elasticsearch.

Note that the archive contains a folder named elasticsearch-<version> by default, you can either
extract that folder to C:\ and rename it to elasticsearch or create C:\elasticsearch yourself, then
unzip only the contents of the folder in the archive to there.

Because Elasticsearch is written in Java, it needs the Java Runtime Environment to function. So
before running the server, check if Java is available by opening a command prompt and typing:

java -version

You should get a response that looks like this:

java version "1.8.0_91"
Java(TM) SE Runtime Environment (build 1.8.0_91-b14)
Java HotSpot(TM) Client VM (build 25.91-b14, mixed mode)

If you see the following instead

'java' is not recognized as an internal or external command, operable program or batch
file.

Java is not installed on your system or is not configured properly. You can follow this tutorial to
(re)install Java. Also, make sure that these environment variables are set to similar values:

Variable Value

JAVA_HOME C:\Program Files\Java\jre

PATH …;C:\Program Files\Java\jre

If you don't yet know how to inspect these variables consult this tutorial.

Run from batch file

With Java installed, open the bin folder. It can be found directly within the folder you unzipped
everything to, so it should be under c:\elasticsearch\bin. Within this folder is a file called
elasticsearch.bat which can be used to start Elasticsearch in a command window. This means
that information logged by the process will be visible in the command prompt window. To stop the
server, press CTRLC or simply close the window.

Run as a Windows service

Ideally you don't want to have an extra window you can't get rid of during development, and for
this reason, Elasticsearch can be configured to run as a service.

https://riptutorial.com/ 5

https://java.com/en/download/help/windows_manual_download.xml
https://www.java.com/en/download/help/path.xml

Before we could install Elasticsearch as a service we need to add a line to the file
C:\elasticsearch\config\jvm.options:

The service installer requires that the thread stack size setting be configured in
jvm.options before you install the service. On 32-bit Windows, you should add -Xss320k
[…] and on 64-bit Windows you should add -Xss1m to the jvm.options file. [source]

Once you made that change, open a command prompt and navigate to the bin directory by
running the following command:

C:\Users\user> cd c:\elasticsearch\bin

Service management is handled by elasticsearch-service.bat. In older versions this file might
simply be called service.bat. To see all available arguments, run it without any:

C:\elasticsearch\bin> elasticsearch-service.bat

Usage: elasticsearch-service.bat install|remove|start|stop|manager [SERVICE_ID]

The output also tells us that there's an optional SERVICE_ID argument, but we can ignore it for now.
To install the service, simply run:

C:\elasticsearch\bin> elasticsearch-service.bat install

After installing the service, you can start and stop it with the respective arguments. To start the
service, run

C:\elasticsearch\bin> elasticsearch-service.bat start

and to stop it, run

C:\elasticsearch\bin> elasticsearch-service.bat stop

If you prefer a GUI to manage the service instead, you can use the following command:

C:\elasticsearch\bin> elasticsearch-service.bat manager

This will open the Elastic Service Manager, which allows you to customize some service-related
settings as well as stop/start the service using the buttons found at the bottom of the first tab.

Indexing and retrieving a document

Elasticsearch is accessed through a HTTP REST API, typically using the cURL library. The
messages between the search server and the client (your or your application) are sent in the form
of JSON strings. By default, Elasticsearch runs on port 9200.

In the examples below, ?pretty is added to tell Elasticsearch to prettify the JSON response. When
using these endpoints within an application you needn't add this query parameter.

https://riptutorial.com/ 6

https://www.elastic.co/guide/en/elasticsearch/reference/current/windows.html#windows-service

Indexing documents

If we intend to update information within an index later, it's a good idea to assign unique IDs to the
documents we index. To add a document to the index named megacorp, with type employee and ID 1
run:

curl -XPUT "http://localhost:9200/megacorp/employee/1?pretty" -d'
{
 "first_name" : "John",
 "last_name" : "Smith",
 "age" : 25,
 "about" : "I love to go rock climbing",
 "interests": ["sports", "music"]
}'

Response:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_version": 1,
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 },
 "created": true
}

The index is created if it does not exist when we send the PUT call.

Indexing without an ID

POST /megacorp/employee?pretty
{
 "first_name" : "Jane",
 "last_name" : "Smith",
 "age" : 32,
 "about" : "I like to collect rock albums",
 "interests": ["music"]
}

Response:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "AVYg2mBJYy9ijdngfeGa",
 "_version": 1,
 "_shards": {

https://riptutorial.com/ 7

 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "created": true
}

Retrieving documents

curl -XGET "http://localhost:9200/megacorp/employee/1?pretty"

Response:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_version": 1,
 "found": true,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": [
 "sports",
 "music"
]
 }
}

Fetch 10 documents from the megacorp index with the type employee:

curl -XGET "http://localhost:9200/megacorp/employee/_search?pretty"

Response:

{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1,
 "hits": [
 {
 "_index": "megacorp",
 "_type": "employee",

https://riptutorial.com/ 8

 "_id": "1",
 "_score": 1,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": [
 "sports",
 "music"
]
 }
 },
 {
 "_index": "megacorp",
 "_type": "employee",
 "_id": "AVYg2mBJYy9ijdngfeGa",
 "_score": 1,
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": [
 "music"
]
 }
 }
]
 }
}

Simple search using the match query, which looks for exact matches in the field provided:

curl -XGET "http://localhost:9200/megacorp/employee/_search" -d'
{
 "query" : {
 "match" : {
 "last_name" : "Smith"
 }
 }
}'

Response:

{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 0.6931472,
 "hits": [
 {

https://riptutorial.com/ 9

 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_score": 0.6931472,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": [
 "sports",
 "music"
]
 }
 }
]
 }
}

Basic Search Parameters with examples:

By default, the full indexed document is returned as part of all searches. This is referred to as the
source (_source field in the search hits). If we don’t want the entire source document returned, we
have the ability to request only a few fields from within source to be returned, or we can set
_source to false to omit the field entirely.

This example shows how to return two fields, account_number and balance (inside of _source), from
the search:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": { "match_all": {} },
 "_source": ["account_number", "balance"]
}'

Note that the above example simply reduces the information returned in the _source field. It will still
only return one field named _source but only the fields account_number and balance will be included.

If you come from a SQL background, the above is somewhat similar in concept to the SQL query

SELECT account_number, balance FROM bank;

Now let’s move on to the query part. Previously, we’ve seen how the match_all query is used to
match all documents. Let’s now introduce a new query called the match query, which can be
thought of as a basic fielded search query (i.e. a search done against a specific field or set of
fields).

This example returns the account with the account_number set to 20:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": { "match": { "account_number": 20 } }

https://riptutorial.com/ 10

}'

This example returns all accounts containing the term "mill" in the address:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": { "match": { "address": "mill" } }
}'

This example returns all accounts containing the term "mill" or "lane" in the address:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": { "match": { "address": "mill lane" } }
}'

This example is a variant of match (match_phrase) that splits the query into terms and only returns
documents that contain all terms in the address in the same positions relative to each other[1].

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": { "match_phrase": { "address": "mill lane" } }
}'

Let’s now introduce the bool(ean) query. The bool query allows us to compose smaller queries into
bigger queries using boolean logic.

This example composes two match queries and returns all accounts containing "mill" and "lane" in
the address:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": {
 "bool": {
 "must": [
 { "match": { "address": "mill" } },
 { "match": { "address": "lane" } }
]
 }
 }
}'

In the above example, the bool must clause specifies all the queries that must be true for a
document to be considered a match.

In contrast, this example composes two match queries and returns all accounts containing "mill" or
"lane" in the address:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": {
 "bool": {

https://riptutorial.com/ 11

https://www.elastic.co/guide/en/elasticsearch/guide/current/phrase-matching.html#phrase-matching

 "should": [
 { "match": { "address": "mill" } },
 { "match": { "address": "lane" } }
]
 }
 }
}'

In the above example, the bool should clause specifies a list of queries either of which must be true
for a document to be considered a match.

This example composes two match queries and returns all accounts that contain neither "mill" nor
"lane" in the address:

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": {
 "bool": {
 "must_not": [
 { "match": { "address": "mill" } },
 { "match": { "address": "lane" } }
]
 }
 }
}'

In the above example, the bool must_not clause specifies a list of queries none of which must be
true for a document to be considered a match.

We can combine must, should, and must_not clauses simultaneously inside a bool query.
Furthermore, we can compose bool queries inside any of these bool clauses to mimic any
complex multi-level boolean logic.

This example returns all accounts that belong to people who are exactly 40 years old and don’t
live in Washington (WA for short):

curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
 "query": {
 "bool": {
 "must": [
 { "match": { "age": "40" } }
],
 "must_not": [
 { "match": { "state": "WA" } }
]
 }
 }
}'

Installing Elasticsearch and Kibana on CentOS 7

In order to run Elasticsearch, a Java Runtime Environment (JRE) is required on the machine.
Elasticsearch requires Java 7 or higher and recommends Oracle JDK version 1.8.0_73.

https://riptutorial.com/ 12

So, be sure if you have Java in your system. If not, then follow the procedure:

Install wget with yum
yum -y install wget

Download the rpm jre-8u60-linux-x64.rpm for 64 bit
wget --no-cookies --no-check-certificate --header "Cookie:
gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-securebackup-cookie"
"http://download.oracle.com/otn-pub/java/jdk/8u60-b27/jre-8u60-linux-x64.rpm"

Download the rpm jre-8u101-linux-i586.rpm for 32 bit
wget --no-cookies --no-check-certificate --header "Cookie:
gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-securebackup-cookie"
"http://download.oracle.com/otn-pub/java/jdk/8u101-b13/jre-8u101-linux-i586.rpm"

Install jre-.*.rpm
rpm -ivh jre-.*.rpm

Java should be installed by now in your centOS system. You can check it with:

java -version

Download & install elasticsearch

Download elasticsearch-2.3.5.rpm
wget
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/rpm/elasticsearch/2.3.5/elasticsearch-
2.3.5.rpm

Install elasticsearch-.*.rpm
rpm -ivh elasticsearch-.*.rpm

Running elasticsearch as a systemd service on startup

sudo systemctl daemon-reload
sudo systemctl enable elasticsearch
sudo systemctl start elasticsearch

check the current status to ensure everything is okay.
systemctl status elasticsearch

Installing Kibana

First import GPG-key on rpm

sudo rpm --import http://packages.elastic.co/GPG-KEY-elasticsearch

Then create a local repository kibana.repo

sudo vi /etc/yum.repos.d/kibana.repo

And Add the following content:

https://riptutorial.com/ 13

[kibana-4.4]
name=Kibana repository for 4.4.x packages
baseurl=http://packages.elastic.co/kibana/4.4/centos
gpgcheck=1
gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch
enabled=1

Now install the kibana by following command:

yum -y install kibana

Start it with:

systemctl start kibana

Check status with:

systemctl status kibana

You may run it as a startup service.

systemctl enable kibana

Read Getting started with Elasticsearch online:
https://riptutorial.com/elasticsearch/topic/941/getting-started-with-elasticsearch

https://riptutorial.com/ 14

https://riptutorial.com/elasticsearch/topic/941/getting-started-with-elasticsearch

Chapter 2: Aggregations

Syntax

"aggregations" : { -"<aggregation_name>" : { -"<aggregation_type>" : { -<aggregation_body>
-} -[,"meta" : { [<meta_data_body>] }]? -[,"aggregations" : { [<sub_aggregation>]+ }]? -} -
[,"<aggregation_name_2>" : { ... }]* -}

•

Examples

Avg aggregation

This is a single value metrics aggregation that calculates the average of the numeric values that
are extracted from the aggregated documents.

POST /index/_search?
{
 "aggs" : {
 "avd_value" : { "avg" : { "field" : "name_of_field" } }
 }
}

The above aggregation computes the average grade over all documents. The aggregation type is
avg and the field setting defines the numeric field of the documents the average will be computed
on. The above will return the following:

{
 ...
 "aggregations": {
 "avg_value": {
 "value": 75.0
 }
 }
}

The name of the aggregation (avg_grade above) also serves as the key by which the aggregation
result can be retrieved from the returned response.

Cardinality Aggregation

A single-value metrics aggregation that calculates an approximate count of distinct values. Values
can be extracted either from specific fields in the document or generated by a script.

POST /index/_search?size=0
{
 "aggs" : {
 "type_count" : {
 "cardinality" : {

https://riptutorial.com/ 15

 "field" : "type"
 }
 }
 }
}

Response:

{
 ...
 "aggregations" : {
 "type_count" : {
 "value" : 3
 }
 }
}

Extended Stats Aggregation

A multi-value metrics aggregation that computes stats over numeric values extracted from the
aggregated documents. These values can be extracted either from specific numeric fields in the
documents, or be generated by a provided script.

The extended_stats aggregations is an extended version of the stats aggregation, where
additional metrics are added such as sum_of_squares, variance, std_deviation and
std_deviation_bounds.

{
 "aggs" : {
 "stats_values" : { "extended_stats" : { "field" : "field_name" } }
 }
}

Sample output:

{
 ...

 "aggregations": {
 "stats_values": {
 "count": 9,
 "min": 72,
 "max": 99,
 "avg": 86,
 "sum": 774,
 "sum_of_squares": 67028,
 "variance": 51.55555555555556,
 "std_deviation": 7.180219742846005,
 "std_deviation_bounds": {
 "upper": 100.36043948569201,
 "lower": 71.63956051430799
 }
 }
 }
}

https://riptutorial.com/ 16

Read Aggregations online: https://riptutorial.com/elasticsearch/topic/10745/aggregations

https://riptutorial.com/ 17

https://riptutorial.com/elasticsearch/topic/10745/aggregations

Chapter 3: Analyzers

Remarks

Analyzers take the text from a string field and generate tokens that will be used when querying.

An Analyzer operates in a sequence:

CharFilters (Zero or more)•
Tokenizer (One)•
TokenFilters (Zero or more)•

The analyzer may be applied to mappings so that when fields are indexed, it is done on a per
token basis rather than on the string as a whole. When querying, the input string will also be run
through the Analyzer. Therefore, if you normalize text in the Analyzer, it will always match even if
the query contains a non-normalized string.

Examples

Mapping

An Analyzer can be applied to a mapping by using "analyzer", by default the "standard" Analyzer
is used. Alternatively, if you do not wish to have any analyzer used (because tokenizing or
normalization would not be useful) you may specify "index":"not_analyzed"

PUT my_index
{
 "mappings": {
 "user": {
 "properties": {
 "name": {
 "type": "string"
 "analyzer": "my_user_name_analyzer"
 },
 "id": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
}

Multi-fields

Sometimes it maybe useful to have multiple distinct indexes of a field with different Analyzers. You
can use the multi-fields capability to do so.

PUT my_index

https://riptutorial.com/ 18

{
 "mappings": {
 "user": {
 "properties": {
 "name": {
 "type": "string"
 "analyzer": "standard",
 "fields": {
 "special": {
 "type": "string",
 "analyzer": "my_user_name_analyzer"
 },
 "unanalyzed": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
 }
 }
}

When querying, instead of simply using "user.name" (which in this case would still use the stanard
Analyzer) you can use "user.name.special" or "user.name.unanalyzed". Note that the document
will remain unchanged, this only affects indexing.

Analyzers

Analysis in elasticsearch comes into context when you are willing to analyze the data in your
index.

Analyzers allow us to perform following:

Abbreviations•
Stemming•
Typo Handling•

We will be looking at each of them now.

Abbreviations:

Using analyzers, we can tell elasticsearch how to treat abbreviations in our data i.e. dr =>
Doctor so whenever we search for doctor keyword in our index, elasticsearch will also return
the results which have dr mentioned in them.

1.

Stemming:

Using stemming in analyzers allows us to use base words for modified verbs like

Word Modifications

require requirement,required

2.

https://riptutorial.com/ 19

Typo Handling:

Analyzers also provide typo handling as while querying if we are searching for particular
word say 'resurrection', then elasticsearch will return the results in which typos are
present.i.e. it will treat typos like resurection,ressurection as same and will retun the result.

Word Modifications

resurrection resurection,ressurection

3.

Analyzers in Elasticsearch

Standard1.

Simple2.

Whitespace3.

Stop4.

Keyword5.

Pattern6.

Language7.

Snowball8.

Ignore case analyzer

Sometimes, we may need to ignore the case of our query, with respect to the match in the
document. An analyzer can be used in this case to ignore the case while searching. Each field will
have to contain this analyzer in it's property, in order to work:

"settings": {
 "analysis": {
 "analyzer": {
 "case_insensitive": {
 "tokenizer": "keyword",
 "filter": ["lowercase"]
 }
 }
 }
 }

Read Analyzers online: https://riptutorial.com/elasticsearch/topic/6232/analyzers

https://riptutorial.com/ 20

https://riptutorial.com/elasticsearch/topic/6232/analyzers

Chapter 4: Cluster

Remarks

Cluster Health provides a lot of information about the cluster, such as the number of shards that
are allocated ("active") as well as how many are unassigned and relocating. In addition, it provides
the current number of nodes and data nodes in the cluster, which can allow you to poll for missing
nodes (e.g., if you expect it to be 15, but it only shows 14, then you are missing a node).

For someone that knows about Elasticsearch, "assigned" and "unassigned" shards can help them
to track down issues.

The most common field checked from Cluster Health is the status, which can be in one of three
states:

red•
yellow•
green•

The colors each mean one -- and only one -- very simple thing:

Red indicates that you are missing at least one primary shard.
A missing primary shard means that an index cannot be used to write (index) new data
in most cases.

Technically, you can still index to any primary shards that are available in that
index, but practically it means that you cannot because you do not generally
control what shard receives any given document.

○

Searching is still possible against a red cluster, but it means that you will get
partial results if any index you search is missing shards.

○

•

In normal circumstances, it just means that the primary shard is being allocated (
initializing_shards).

•

If a node just left the cluster (e.g., because the machine running it lost power), then it
makes sense that you will be missing some primary shards temporarily.

Any replica shard for that primary shard will be promoted to be the primary shard
in this scenario.

○

•

1.

Yellow indicates that all primary shards are active, but at least one replica shard is missing.
A missing replica only impacts indexing if consistency settings require it to impact
indexing.

By default, there is only one replica for any primary and indexing can happen with
a single missing replica.

○

•

In normal circumstances, it just means that the replica shard is being allocated (
initializing_shards).

•

A one node cluster with replicas enabled will always be yellow at best. It can be red if a
primary shard is not yet assigned.

If you only have a single node, then it makes sense to disable replicas because
you are not expecting any. Then it can be green.

○

•

2.

https://riptutorial.com/ 21

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html#index-consistency

Green indicates that all shards are active.
The only shard activity allowed for a green cluster is relocating_shards.•
New indices, and therefore new shards, will cause the cluster to go from red to yellow
to green, as each shard is allocated (primary first, making it yellow, then replicas if
possible, making it green).

In Elasticsearch 5.x and later, new indices will not make your cluster red unless it
takes them too long to allocate.

○

•

3.

Examples

Human readable, tabular Cluster Health with headers

Example uses basic HTTP syntax. Any <#> in the example should be removed when copying it.

You can use the _cat APIs to get a human readable, tabular output for various reasons.

GET /_cat/health?v <1>

The ?v is optional, but it implies that you want "verbose" output.1.

_cat/health has existed since Elasticsearch 1.x, but here is an example of its output from
Elasticsearch 5.x:

With verbose output:

epoch timestamp cluster status node.total node.data shards pri relo init unassign
pending_tasks max_task_wait_time active_shards_percent
1469302011 15:26:51 elasticsearch yellow 1 1 45 45 0 0 44
0 - 50.6%

Human readable, tabular Cluster Health without headers

Example uses basic HTTP syntax. Any <#> in the example should be removed when copying it.

You can use the _cat APIs to get a human readable, tabular output for various reasons.

GET /_cat/health <1>

_cat/health has existed since Elasticsearch 1.x, but here is an example of its output from
Elasticsearch 5.x:

Without verbose output:

1469302245 15:30:45 elasticsearch yellow 1 1 45 45 0 0 44 0 - 50.6%

Human readable, tabular Cluster Health with selected headers

https://riptutorial.com/ 22

Example uses basic HTTP syntax. Any <#> in the example should be removed when copying it.

Like most _cat APIs in Elasticsearch, the API selectively responds with a default set of fields.
However, other fields exist from the API if you want them:

GET /_cat/health?help <1>

?help causes the API to return the fields (and short names) as well as a brief description.1.

_cat/health has existed since Elasticsearch 1.x, but here is an example of its output from
Elasticsearch 5.x:

Fields available as-of this example's creation date:

epoch | t,time | seconds since 1970-01-01
00:00:00
timestamp | ts,hms,hhmmss | time in HH:MM:SS

cluster | cl | cluster name

status | st | health status

node.total | nt,nodeTotal | total number of nodes

node.data | nd,nodeData | number of nodes that can
store data
shards | t,sh,shards.total,shardsTotal | total number of shards

pri | p,shards.primary,shardsPrimary | number of primary shards

relo | r,shards.relocating,shardsRelocating | number of relocating nodes

init | i,shards.initializing,shardsInitializing | number of initializing
nodes
unassign | u,shards.unassigned,shardsUnassigned | number of unassigned shards

pending_tasks | pt,pendingTasks | number of pending tasks

max_task_wait_time | mtwt,maxTaskWaitTime | wait time of longest task
pending
active_shards_percent | asp,activeShardsPercent | active number of shards in
percent

You can then use this to print only those fields:

GET /_cat/health?h=timestamp,cl,status&v <1>

h=... defines the list of fields that you want returned.1.
v (verbose) defines that you want it to print the headers.2.

The output from an instance of Elasticsearch 5.x:

timestamp cl status
15:38:00 elasticsearch yellow

https://riptutorial.com/ 23

JSON-based Cluster Health

Example uses basic HTTP syntax. Any <#> in the example should be removed when copying it.

The _cat APIs are often convenient for humans to get at-a-glance details about the cluster. But
you frequently want consistently parseable output to use with software. In general, the JSON APIs
are meant for this purpose.

GET /_cluster/health

_cluster/health has existed since Elasticsearch 1.x, but here is an example of its output from
Elasticsearch 5.x:

{
 "cluster_name": "elasticsearch",
 "status": "yellow",
 "timed_out": false,
 "number_of_nodes": 1,
 "number_of_data_nodes": 1,
 "active_primary_shards": 45,
 "active_shards": 45,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 44,
 "delayed_unassigned_shards": 0,
 "number_of_pending_tasks": 0,
 "number_of_in_flight_fetch": 0,
 "task_max_waiting_in_queue_millis": 0,
 "active_shards_percent_as_number": 50.56179775280899
}

Read Cluster online: https://riptutorial.com/elasticsearch/topic/2069/cluster

https://riptutorial.com/ 24

https://riptutorial.com/elasticsearch/topic/2069/cluster

Chapter 5: Curl Commands

Syntax

curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d
'<BODY>'

•

Where:•

VERB: The appropriate HTTP method or verb: GET, POST, PUT, HEAD, or DELETE•

PROTOCOL: Either http or https (if you have an https proxy in front of Elasticsearch.)•

HOST: The hostname of any node in your Elasticsearch cluster, or localhost for a node on
your local machine.

•

PORT: The port running the Elasticsearch HTTP service, which defaults to 9200.•

PATH: API Endpoint (for example _count will return the number of documents in the cluster).
Path may contain multiple components, such as _cluster/stats or _nodes/stats/jvm

•

QUERY_STRING: Any optional query-string parameters (for example ?pretty will pretty-print
the JSON response to make it easier to read.)

•

BODY: A JSON-encoded request body (if the request needs one.)•

Reference: Talking to Elasticsearch : Elasticsearch Docs•

Examples

Curl Command for counting number of documents in the cluster

curl -XGET 'http://www.example.com:9200/myIndexName/_count?pretty'

Output:

{
 "count" : 90,
 "_shards" : {
 "total" : 6,
 "successful" : 6,
 "failed" : 0
 }
}

The index has 90 documents within it.

Reference Link: Here

https://riptutorial.com/ 25

https://www.elastic.co/guide/en/elasticsearch/guide/current/_talking_to_elasticsearch.html#_talking_to_elasticsearch
https://www.elastic.co/guide/en/elasticsearch/guide/current/_talking_to_elasticsearch.html#_talking_to_elasticsearch

Retrieve a document by Id

curl -XGET 'http://www.example.com:9200/myIndexName/myTypeName/1'

Output:

{
 "_index" : "myIndexName",
 "_type" : "myTypeName",
 "_id" : "1",
 "_version" : 1,
 "found": true,
 "_source" : {
 "user" : "mrunal",
 "postDate" : "2016-07-25T15:48:12",
 "message" : "This is test document!"
 }
}

Reference Link: Here

Create an Index

curl -XPUT 'www.example.com:9200/myIndexName?pretty'

Output:

{
 "acknowledged" : true
}

Reference Link: Here

List all indices

curl 'www.example.com:9200/_cat/indices?v'

output:

health status index pri rep docs.count docs.deleted store.size pri.store.size
green open logstash-2016.07.21 5 1 4760 0 4.8mb 2.4mb
green open logstash-2016.07.20 5 1 7232 0 7.5mb 3.7mb
green open logstash-2016.07.22 5 1 93528 0 103.6mb 52mb
green open logstash-2016.07.25 5 1 20683 0 41.5mb 21.1mb

Reference Link: Here

Delete an Index

https://riptutorial.com/ 26

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-get.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_create_an_index.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_list_all_indexes.html

curl -XDELETE 'http://www.example.com:9200/myIndexName?pretty'

output:

{
 "acknowledged" : true
}

Reference Link: Here

List all documents in a index

curl -XGET http://www.example.com:9200/myIndexName/_search?pretty=true&q=*:*

This uses the Search API and will return all the entries under index myIndexName.

Reference Link: Here

Read Curl Commands online: https://riptutorial.com/elasticsearch/topic/3703/curl-commands

https://riptutorial.com/ 27

https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_delete_an_index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html
https://riptutorial.com/elasticsearch/topic/3703/curl-commands

Chapter 6: Difference Between Indices and
Types

Remarks

It's easy to see types like a table in an SQL database, where the index is the SQL database.
However, that is not a good way to approach types.

All About Types

In fact, types are literally just a metadata field added to each document by Elasticsearch: _type.
The examples above created two types: my_type and my_other_type. That means that each
document associated with the types has an extra field automatically defined like "_type": "my_type"
; this is indexed with the document, thus making it a searchable or filterable field, but it does not
impact the raw document itself, so your application does not need to worry about it.

All types live in the same index, and therefore in the same collective shards of the index. Even at
the disk level, they live in the same files. The only separation that creating a second type provides
is a logical one. Every type, whether it's unique or not, needs to exist in the mappings and all of
those mappings must exist in your cluster state. This eats up memory and, if each type is being
updated dynamically, it eats up performance as the mappings change.

As such, it is a best practice to define only a single type unless you actually need other types. It is
common to see scenarios where multiple types are desirable. For example, imagine you had a car
index. It may be useful to you to break it down with multiple types:

bmw•
chevy•
honda•
mazda•
mercedes•
nissan•
rangerover•
toyota•
...•

This way you can search for all cars or limit it by manufacturer on demand. The difference
between those two searches are as simple as:

GET /cars/_search

and

GET /cars/bmw/_search

https://riptutorial.com/ 28

What is not obvious to new users of Elasticsearch is that the second form is a specialization of the
first form. It literally gets rewritten to:

GET /cars/_search
{
 "query": {
 "bool": {
 "filter": [
 {
 "term" : {
 "_type": "bmw"
 }
 }
]
 }
 }
}

It simply filters out any document that was not indexed with a _type field whose value was bmw.
Since every document is indexed with its type as the _type field, this serves as a pretty simple
filter. If an actual search had been provided in either example, then the filter would be added to the
full search as appropriate.

As such, if the types are identical, it's much better to supply a single type (e.g., manufacturer in this
example) and effectively ignore it. Then, within each document, explicitly supply a field called make
or whatever name you prefer and manually filter on it whenever you want to limit to it. This will
reduce the size of your mappings to 1/n where n is the number of separate types. It does add
another field to each document, at the benefit of an otherwise simplified mapping.

In Elasticsearch 1.x and 2.x, such a field should be defined as

PUT /cars
{
 "manufacturer": { <1>
 "properties": {
 "make": { <2>
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
}

The name is arbitrary.1.
The name is arbitrary and it could match the type name if you wanted it too.2.

In Elasticsearch 5.x, the above will still work (it's deprecated), but the better way is to use:

PUT /cars
{
 "manufacturer": { <1>
 "properties": {
 "make": { <2>
 "type": "keyword"

https://riptutorial.com/ 29

 }
 }
 }
}

The name is arbitrary.1.
The name is arbitrary and it could match the type name if you wanted it too.2.

Types should be used sparingly within your indices because it bloats the index mappings, usually
without much benefit. You must have at least one, but there is nothing that says you must have
more than one.

Common Questions

What if I have two (or more) types that are mostly identical, but which have a few unique
fields per type?

•

At the index level, there is no difference between one type being used with a few fields that are
sparsely used and between multiple types that share a bunch of non-sparse fields with a few not
shared (meaning the other type never even uses the field(s)).

Said differently: a sparsely used field is sparse across the index regardless of types. The sparsity
does not benefit -- or really hurt -- the index just because it is defined in a separate type.

You should just combine these types and add a separate type field.

Why do separate types need to define fields in the exact same way?•

Because each field is really only defined once at the Lucene level, regardless of how many types
there are. The fact that types exist at all is a feature of Elasticsearch and it is only a logical
separation.

Can I define separate types with the same field defined differently?•

No. If you manage to find a way to do so in ES 2.x or later, then you should open up a bug report.
As noted in the previous question, Lucene sees them all as a single field, so there is no way to
make this work appropriately.

ES 1.x left this as an implicit requirement, which allowed users to create conditions where one
shard's mappings in an index actually differed from another shard in the same index. This was
effectively a race condition and it could lead to unexpected issues.

Exceptions to the Rule

Parent/child documents require separate types to be used within the same index.
The parent lives in one type.○

The child lives in a separate type (but each child lives in the same shard as its parent).○

•

Extremely niche use cases where creating tons of indices is undesirable and the impact of •

https://riptutorial.com/ 30

https://github.com/elastic/elasticsearch/issues

sparse fields is preferable to the alternative.
For example, the Elasticsearch monitoring plugin, Marvel (1.x and 2.x) or X-Pack
Monitoring (5.x+), monitors Elasticsearch itself for changes in the cluster, nodes,
indices, specific indices (the index level), and even shards. It could create 5+ indices
each day to isolate those documents that have unique mappings or it could go against
best practices to reduce cluster load by sharing an index (note: the number of defined
mappings is effectively the same, but the number of created indices is reduced from n
to 1).

○

This is an advanced scenario, but you must consider the shared field definitions across
types!

○

Examples

Explicitly creating an Index with a Type

Example uses basic HTTP, which translate easily to cURL and other HTTP applications. They also
match the Sense syntax, which will be renamed to Console in Kibana 5.0.

Note: The example inserts <#> to help draw attention to parts. Those should be removed if you
copy it!

PUT /my_index <1>
{
 "mappings": {
 "my_type": { <2>
 "properties": {
 "field1": {
 "type": "long"
 },
 "field2": {
 "type": "integer"
 },
 "object1": {
 "type": "object",
 "properties": {
 "field1" : {
 "type": "float"
 }
 }
 }
 }
 }
 },
 "my_other_type": {
 "properties": {
 "field1": {
 "type": "long" <3>
 },
 "field3": { <4>
 "type": "double"
 }
 }
 }
}

https://riptutorial.com/ 31

https://www.elastic.co/guide/en/sense/current/installing.html

This is creating the index using the create index endpoint.1.
This is creating the type.2.
Shared fields in types within the same index must share the same definition! ES 1.x did not
strictly enforce this behavior, but it was an implicit requirement. ES 2.x and above strictly
enforce this behavior.

3.

Unique fields across types are okay.4.

Indexes (or indices) contain types. Types are a convenient mechanism for separating documents,
but they require you to define -- either dynamically/automatically or explicitly -- a mapping for each
type that you use. If you define 15 types in an index, then you have 15 unique mappings.

See the remarks for more details about this concept and why you may or may not want to use
types.

Dynamically creating an Index with a Type

Example uses basic HTTP, which translate easily to cURL and other HTTP applications. They also
match the Sense syntax, which will be renamed to Console in Kibana 5.0.

Note: The example inserts <#> to help draw attention to parts. Those should be removed if you
copy it!

DELETE /my_index <1>

PUT /my_index/my_type/abc123 <2>
{
 "field1" : 1234, <3>
 "field2" : 456,
 "object1" : {
 "field1" : 7.8 <4>
 }
}

In case it already exists (because of an earlier example), delete the index.1.
Index a document into the index, my_index, with the type, my_type, and the ID abc123 (could be
numeric, but it is always a string).

By default, dynamic index creation is enabled by simply indexing a document. This is
great for development environments, but it is not necessarily good for production
environments.

•

2.

This field is an integer number, so the first time it is seen it must be mapped. Elasticsearch
always assumes the widest type for any incoming type, so this would be mapped as a long
rather than an integer or a short (both of which could contain 1234 and 456).

3.

The same is true for this field as well. It will be mapped as a double instead of a float as you
might want.

4.

This dynamically created index and type roughly match the mapping defined in the first example.
However, it's critical to understand how <3> and <4> impact the automatically defined mappings.

You could follow this by adding yet another type dynamically to the same index:

https://riptutorial.com/ 32

https://www.elastic.co/guide/en/sense/current/installing.html

PUT /my_index/my_other_type/abc123 <1>
{
 "field1": 91, <2>
 "field3": 4.567
}

The type is the only difference from the above document. The ID is the same and that's
okay! It has no relationship to the other abc123 other than that it happens to be in the same
index.

1.

field1 already exists in the index, so it must be the same type of field as defined in the other
types. Submitting a value that was a string or not an integer would fail (e.g., "field1": "this
is some text" or "field1": 123.0).

2.

This would dynamically create the mappings for my_other_type within the same index, my_index.

Note: It is always faster to define mappings upfront rather than having Elasticsearch dynamically
perform it at index time.

The end result of indexing both documents would be similar to the first example, but the field types
would be different and therefore slightly wasteful:

GET /my_index/_mappings <1>
{
 "mappings": {
 "my_type": { <2>
 "properties": {
 "field1": {
 "type": "long"
 },
 "field2": {
 "type": "long" <3>
 },
 "object1": {
 "type": "object",
 "properties": {
 "field1" : {
 "type": "double" <4>
 }
 }
 }
 }
 }
 },
 "my_other_type": { <5>
 "properties": {
 "field1": {
 "type": "long"
 },
 "field3": {
 "type": "double"
 }
 }
 }
}

This uses the _mappings endpoint to get the mappings from the index that we created.1.

https://riptutorial.com/ 33

We dynamically created my_type in the first step of this example.2.
field2 is now a long instead of an integer because we did not define it upfront. This may
prove to be wasteful in disk storage.

3.

object1.field1 is now a double for the same reason as #3 with the same ramifications as #3.
Technically, a long can be compressed in a lot of cases. However, a double cannot be
compressed due to it being a floating point number.

•
4.

We also dynamically created my_other_type in the second step of this example. Its mapping
happens to be the same because we were already using long and double.

Remember that field1 must match the definition from my_type (and it does).•
field3 is unique to this type, so it has no such restriction.•

5.

Read Difference Between Indices and Types online:
https://riptutorial.com/elasticsearch/topic/3412/difference-between-indices-and-types

https://riptutorial.com/ 34

https://riptutorial.com/elasticsearch/topic/3412/difference-between-indices-and-types

Chapter 7: Difference Between Relational
Databases and Elasticsearch

Introduction

This is for the readers who come from relational background and want to learn elasticsearch. This
topic shows the use cases for which Relational databases are not a suitable option.

Examples

Terminology Difference

Relational Database Elasticsearch

Database Index

Table Type

Row/Record Document

Column Name field

Above table roughly draws an analogy between basic elements of relational database and
elasticsearch.

Setup

Considering Following structure in a relational database:

create databse test;

use test;

create table product;

create table product (name varchar, id int PRIMARY KEY);

insert into product (id,name) VALUES (1,'Shirt');

insert into product (id,name) VALUES (2,'Red Shirt');

select * from product;

name | id
----------+----
Shirt | 1
Red Shirt | 2

https://riptutorial.com/ 35

Elasticsearch Equivalent:

POST test/product
{
 "id" : 1,
 "name" : "Shirt"
}

POST test/product
{
 "id" : 2,
 "name" : "Red Shirt"
}

GET test/product/_search

"hits": [
 { ==============
 "_index": "test", ===> index |
 "_type": "product", ===>type |
 "_id": "AVzglFomaus3G2tXc6sB", |
 "_score": 1, |
 "_source": { |===> document
 "id": 2, ===>field |
 "name": "Red Shirt" ===>field |
 } |
 }, ==============
 {
 "_index": "test",
 "_type": "product",
 "_id": "AVzglD12aus3G2tXc6sA",
 "_score": 1,
 "_source": {
 "id": 1,
 "name": "Shirt"
 }
 }
]

Usecases where Relational Databases are not suitable

Essence of searching lies in its order. Everyone wants search results to be shown in such a
way that best suited results are shown on top. Relational database do not have such
capability. Elasticsearch on the other hand shows results on the basis of relevancy by
default.

Setup

Same as used in previous example.

Problem Statement

Suppose user wants to search for shirts but he is interested in red colored shirts. In that
case, results containing red and shirts keyword should come on top. Then results for other
shirts should be shown after them.

•

https://riptutorial.com/ 36

Solution Using Relational Database Query

select * from product where name like '%Red%' or name like '%Shirt%';

Output

name | id
-----------+----
Shirt | 1
Red Shirt | 2

Elasticsearch Solution

POST test/product/_search
{
 "query": {
 "match": {
 "name": "Red Shirt"
 }
 }
}

Output

"hits": [
 {
 "_index": "test",
 "_type": "product",
 "_id": "AVzglFomaus3G2tXc6sB",
 "_score": 1.2422675, ===> Notice this
 "_source": {
 "id": 2,
 "name": "Red Shirt"
 }
 },
 {
 "_index": "test",
 "_type": "product",
 "_id": "AVzglD12aus3G2tXc6sA",
 "_score": 0.25427115, ===> Notice this
 "_source": {
 "id": 1,
 "name": "Shirt"
 }
 }
]

Conclusion

As we can see above Relational Database has returned results in some random order, while
Elasticsearch returns results in decreasing order of _score which is calculated on the basis of
relevancy.

We tend to make mistakes while entering search string. There are cases when user enters •

https://riptutorial.com/ 37

an incorrect search parameter. Relational Databases won't handle such cases. Elasticsearch
to the rescue.

Setup

Same as used in previous example.

Problem Statement

Suppose user wants to search for shirts but he enters an incorrect word shrt by mistake.
User still expects to see the results of shirt.

Solution Using Relational Database Query

select * from product where name like '%shrt%';

Output

No results found

Elasticsearch Solution

POST /test/product/_search

 {
 "query": {
 "match": {
 "name": {
 "query": "shrt",
 "fuzziness": 2,
 "prefix_length": 0
 }
 }
 }
 }

Output

 "hits": [
 {
 "_index": "test",
 "_type": "product",
 "_id": "AVzglD12aus3G2tXc6sA",
 "_score": 1,
 "_source": {
 "id": 1,
 "name": "Shirt"
 }
 },
 {
 "_index": "test",
 "_type": "product",
 "_id": "AVzglFomaus3G2tXc6sB",
 "_score": 0.8784157,
 "_source": {

https://riptutorial.com/ 38

 "id": 2,
 "name": "Red Shirt"
 }
 }
]

Conclusion

As we can see above relational database has returned no results for an incorrect word
searched, while Elasticsearch using its special fuzzy query returns results.

Read Difference Between Relational Databases and Elasticsearch online:
https://riptutorial.com/elasticsearch/topic/10632/difference-between-relational-databases-and-
elasticsearch

https://riptutorial.com/ 39

https://riptutorial.com/elasticsearch/topic/10632/difference-between-relational-databases-and-elasticsearch
https://riptutorial.com/elasticsearch/topic/10632/difference-between-relational-databases-and-elasticsearch

Chapter 8: Elasticsearch Configuration

Remarks

Elasticsearch comes with a set of defaults that provide a good out of the box experience for
development. The implicit statement there is that it is not necessarily great for production, which
must be tailored for your own needs and therefore cannot be predicted.

The default settings make it easy to download and run multiple nodes on the same machine
without any configuration changes.

Where are the settings?

Inside each installation of Elasticsearch is a config/elasticsearch.yml. That is where the following
settings live:

cluster.name
The name of the cluster that the node is joining. All nodes in the same cluster must
share the same name.

○

Currently defaults to elasticsearch.○

•

node.*
node.name

If not supplied, a random name will be generated each time the node starts. This
can be fun, but it is not good for production environments.

○

Names do not have to be unique, but they should be unique.○

○

node.master
A boolean setting. When true, it means that the node is an eligible master node
and it can be the elected master node.

○

Defaults to true, meaning every node is an eligible master node.○

○

node.data
A boolean setting. When true, it means that the node stores data and handles
search activity.

○

Defaults to true.○

○

•

path.*
path.data

The location that files are written for the node. All nodes use this directory to
store metadata, but data nodes will also use it to store/index documents.

○

Defaults to ./data.
This means that data will be created for you as a peer directory to config
inside of the Elasticsearch directory.

○

○

○

path.logs
The location that log files are written.○

Defaults to ./logs.○

○

•

network.*

network.host

Defaults to _local_, which is effectively localhost.○

○

•

https://riptutorial.com/ 40

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-configuration.html

This means that, by default, nodes cannot be communicated with from
outside of the current machine!

○

network.bind_host

Potentially an array, this tells Elasticsearch what addresses of the current
machine to bind sockets too.

It is this list that enables machines from outside of the machine (e.g., other
nodes in the cluster) to talk to this node.

○

○

Defaults to network.host.○

○

network.publish_host

A singular host that is used to advertise to other nodes how to best communicate
with this node.

When supplying an array to network.bind_host, this should be the one host
that is intended to be used for inter-node communication.

○

○

Defaults to network.host`.○

○

discovery.zen.*
discovery.zen.minimum_master_nodes

Defines quorum for master election. This must be set using this equation: (M / 2)
+ 1 where M is the number of eligible master nodes (nodes using node.master:
true implicitly or explicitly).

○

Defaults to 1, which only is valid for a single node cluster!○

○

discovery.zen.ping.unicast.hosts
The mechanism for joining this node to the rest of a cluster.○

This should list eligible master nodes so that a node can find the rest of the
cluster.

○

The value that should be used here is the network.publish_host of those other
nodes.

○

Defaults to localhost, which means it only looks on the local machine for a cluster
to join.

○

○

•

What type of settings exist?

Elasticsearch provides three different types of settings:

Cluster-wide settings
These are settings that apply to everything in the cluster, such as all nodes or all
indices.

○

•

Node settings
These are settings that apply to just the current node.○

•

Index settings
These are settings that apply to just the index.○

•

Depending on the setting, it can be:

Changed dynamically at runtime•
Changed following a restart (close / open) of the index•

https://riptutorial.com/ 41

Some index-level settings do not require the index to be closed and reopened, but
might require the index to be forceably re-merged for the setting to apply.

The compression level of an index is an example of this type of setting. It can be
changed dynamically, but only new segments take advantage of the change. So
if an index will not change, then it never takes advantage of the change unless
you force the index to recreate its segments.

○

○

Changed following a restart of the node•
Changed following a restart of the cluster•
Never changed•

Always check the documentation for your version of Elasticsearch for what you can or cannot do
with a setting.

How can I apply settings?

You can set settings a few ways, some of which are not suggested:

Command Line Arguments•

In Elasticsearch 1.x and 2.x, you can submit most settings as Java System Properties prefixed
with es.:

$ bin/elasticsearch -Des.cluster.name=my_cluster -Des.node.name=`hostname`

In Elasticsearch 5.x, this changes to avoid using Java System Properties, instead using a custom
argument type with -E taking the place of -Des.:

$ bin/elasticsearch -Ecluster.name=my_cluster -Enode.name=`hostname`

This approach to applying settings works great when using tools like Puppet, Chef, or Ansible to
start and stop the cluster. However it works very poorly when doing it manually.

YAML settings
Shown in examples○

•

Dynamic settings
Shown in examples○

•

The order that settings are applied are in the order of most dynamic:

Transient settings1.
Persistent settings2.
Command line settings3.
YAML (static) settings4.

If the setting is set twice, once at any of those levels, then the highest level takes effect.

Examples

https://riptutorial.com/ 42

Static Elasticsearch Settings

Elasticsearch uses a YAML (Yet Another Markup Language) configuration file that can be found
inside the default Elasticsearch directory (RPM and DEB installs change this location amongst
other things).

You can set basic settings in config/elasticsearch.yml:

Change the cluster name. All nodes in the same cluster must use the same name!
cluster.name: my_cluster_name

Set the node's name using the hostname, which is an environment variable!
This is a convenient way to uniquely set it per machine without having to make
a unique configuration file per node.
node.name: ${HOSTNAME}

ALL nodes should set this setting, regardless of node type
path.data: /path/to/store/data

This is a both a master and data node (defaults)
node.master: true
node.data: true

This tells Elasticsearch to bind all sockets to only be available
at localhost (default)
network.host: _local_

Persistent Dynamic Cluster Settings

If you need to apply a setting dynamically after the cluster has already started, and it can actually
be set dynamically, then you can set it using _cluster/settings API.

Persistent settings are one of the two type of cluster-wide settings that can be applied. A
persistent setting will survive a full cluster restart.

Note: Not all settings can be applied dynamically. For example, the cluster's name cannot be
renamed dynamically. Most node-level settings cannot be set dynamically either (because they
cannot be targeted individually).

This is not the API to use to set index-level settings. You can tell that setting is an index level
setting because it should start with index.. Settings whose name are in the form of indices. are
cluster-wide settings because they apply to all indices.

POST /_cluster/settings
{
 "persistent": {
 "cluster.routing.allocation.enable": "none"
 }
}

Warning: In Elasticsearch 1.x and 2.x, you cannot unset a persistent setting.

Fortunately, this has been improved in Elasticsearch 5.x and you can now remove a setting by

https://riptutorial.com/ 43

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-dir-layout.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-dir-layout.html

setting it to null:

POST /_cluster/settings
{
 "persistent": {
 "cluster.routing.allocation.enable": null
 }
}

An unset setting will return to its default, or any value defined at a lower priority level (e.g.,
command line settings).

Transient Dynamic Cluster Settings

If you need to apply a setting dynamically after the cluster has already started, and it can actually
be set dynamically, then you can set it using _cluster/settings API.

Transient settings are one of the two type of cluster-wide settings that can be applied. A transient
setting will not survive a full cluster restart.

Note: Not all settings can be applied dynamically. For example, the cluster's name cannot be
renamed dynamically. Most node-level settings cannot be set dynamically either (because they
cannot be targeted individually).

This is not the API to use to set index-level settings. You can tell that setting is an index level
setting because it should start with index.. Settings whose name are in the form of indices. are
cluster-wide settings because they apply to all indices.

POST /_cluster/settings
{
 "transient": {
 "cluster.routing.allocation.enable": "none"
 }
}

Warning: In Elasticsearch 1.x and 2.x, you cannot unset a transient settings without a full cluster
restart.

Fortunately, this has been improved in Elasticsearch 5.x and you can now remove a setting by
setting it to null:

POST /_cluster/settings
{
 "transient": {
 "cluster.routing.allocation.enable": null
 }
}

An unset setting will return to its default, or any value defined at a lower priority level (e.g.,
persistent settings).

https://riptutorial.com/ 44

Index Settings

Index settings are those settings that apply to a single index. Such settings will start with index..
The exception to that rule is number_of_shards and number_of_replicas, which also exist in the form
of index.number_of_shards and index.number_of_replicas.

As the name suggests, index-level settings apply to a single index. Some settings must be applied
at creation time because they cannot be changed dynamically, such as the index.number_of_shards
setting, which controls the number of primary shards for the index.

PUT /my_index
{
 "settings": {
 "index.number_of_shards": 1,
 "index.number_of_replicas": 1
 }
}

or, in a more concise format, you can combine key prefixes at each .:

PUT /my_index
{
 "settings": {
 "index": {
 "number_of_shards": 1,
 "number_of_replicas": 1
 }
 }
}

The above examples will create an index with the supplied settings. You can dynamically change
settings per-index by using the index _settings endpoint. For example, here we dynamically
change the slowlog settings for only the warn level:

PUT /my_index/_settings
{
 "index": {
 "indexing.slowlog.threshold.index.warn": "1s",
 "search.slowlog.threshold": {
 "fetch.warn": "500ms",
 "query.warn": "2s"
 }
 }
}

Warning: Elasticsearch 1.x and 2.x did not very strictly validate index-level setting names. If you
had a typo, or simply made up a setting, then it would blindly accept it, but otherwise ignore it.
Elasticsearch 5.x strictly validates setting names and it will reject any attempt to apply index
settings with an unknown setting(s) (due to typo or missing plugin). Both statements apply to
dynamically changing index settings and at creation time.

Dynamic Index Settings for Multiple Indices at the same time

https://riptutorial.com/ 45

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-slowlog.html

You can apply the same change shown in the Index Settings example to all existing indices with
one request, or even a subset of them:

PUT /*/_settings
{
 "index": {
 "indexing.slowlog.threshold.index.warn": "1s",
 "search.slowlog.threshold": {
 "fetch.warn": "500ms",
 "query.warn": "2s"
 }
 }
}

or

PUT /_all/_settings
{
 "index": {
 "indexing.slowlog.threshold.index.warn": "1s",
 "search.slowlog.threshold": {
 "fetch.warn": "500ms",
 "query.warn": "2s"
 }
 }
}

or

PUT /_settings
{
 "index": {
 "indexing.slowlog.threshold.index.warn": "1s",
 "search.slowlog.threshold": {
 "fetch.warn": "500ms",
 "query.warn": "2s"
 }
 }
}

If you prefer to more selectively do it as well, then you can select multiple without supply all:

PUT /logstash-*,my_other_index,some-other-*/_settings
{
 "index": {
 "indexing.slowlog.threshold.index.warn": "1s",
 "search.slowlog.threshold": {
 "fetch.warn": "500ms",
 "query.warn": "2s"
 }
 }
}

Read Elasticsearch Configuration online:
https://riptutorial.com/elasticsearch/topic/3411/elasticsearch-configuration

https://riptutorial.com/ 46

https://riptutorial.com/elasticsearch/topic/3411/elasticsearch-configuration

Chapter 9: Learning Elasticsearch with
kibana

Introduction

Kibana is front end data visualization tool for elasticsearch. for installing kibana refer to the kibana
documentation. For running kibana on localhost go to https://localhost:5601 and go to kibana
console.

Examples

Explore your Cluster using Kibana

The command syntax will be of the following type:

<REST Verb> /<Index>/<Type>/<ID>

Execute the following command to explore elasticsearch cluster through Kibana Console.

For checking the cluster health•

GET /_cat/health?v

For listing all the indices•

GET /_cat/indices?v

For creating an index with name car•

 PUT /car?pretty

For indexing the document with name car of external type using id 1•

PUT /car/external/1?pretty
{
 "name": "Tata Nexon"
}

the response of above query will be :

{
 "_index": "car",
 "_type": "external",
 "_id": "1",
 "_version": 1,

https://riptutorial.com/ 47

https://localhost:5601

 "result": "created",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 },
 "created": true
}

retrieving the above document can be done using:•

GET /car/external/1?pretty

For deleting an index•

DELETE /car?pretty

Modify your elasticsearch data

Elasticsearch provides data manipulation & data searching capabilities in almost real time. under
this example, we have update, delete & batch processing operations.

Updating the same document. Suppose we have already indexed a document on
/car/external/1 . Then running the command for indexing the data replaces the previous
document.

•

PUT /car/external/1?pretty
{
 "name": "Tata Nexa"
}

previous car document at id 1 with name "Tata Nexon" will be updated with new name "Tata
Nexa"

indexing the data with explicit Id•

POST /car/external?pretty
{
 "name": "Jane Doe"
}

for indexing the document without an Id we use POST verb instead of PUT verb. if we
don't provide an Id, elasticsearch will generate a random ID and then use it to index the
document.

Updating the previous document at an Id partially.•

POST /car/external/1/_update?pretty
{
 "doc": { "name": "Tata Nex" }
}

https://riptutorial.com/ 48

updating the document with additional information•

POST /car/external/1/_update?pretty
{
 "doc": { "name": "Tata Nexon", "price": 1000000 }
}

updating the document using simple scripts.•

POST /car/external/1/_update?pretty
{
 "script" : "ctx._source.price += 50000"
}

ctx._source refers to the current source document that is about to be updated. Above
script provides only one script to be updated at the same time.

Deleting the document•

DELETE /car/external/1?pretty

Note: deleting a whole index is more efficient than deleting all documents by using
Delete by Query API

Batch Processing

Apart from indexing updating & deleting the document, elasticsearch also provides provides the
ability to perform any of the above operations in batches using the _bulk API.

for updating multiple documents using _bulk API•

POST /car/external/_bulk?pretty
{"index":{"_id":"1"}}
{"name": "Tata Nexon" }
{"index":{"_id":"2"}}
{"name": "Tata Nano" }

for updating & deleting the documents using _bulk API•

POST /car/external/_bulk?pretty
{"update":{"_id":"1"}}
{"doc": { "name": "Tata Nano" } }
{"delete":{"_id":"2"}}

If an operation fails, bulk API doesn't stop. It executes all the operations & finally
returns report for all the operations.

Read Learning Elasticsearch with kibana online:
https://riptutorial.com/elasticsearch/topic/10058/learning-elasticsearch-with-kibana

https://riptutorial.com/ 49

https://riptutorial.com/elasticsearch/topic/10058/learning-elasticsearch-with-kibana

Chapter 10: Python Interface

Parameters

Parameter Details

hosts
Array of hosts in the form of object containing keys host and port.
Default host is 'localhost' and port is 9200. A sample entry looks
like [{"host": "ip of es server", "port": 9200}]

sniff_on_start
Boolean if you want the client to sniff nodes on startup, sniffing
means getting list of nodes in elasticsearch cluster

sniff_on_connection_fail
Boolean for triggering sniffing if connection fails when client is
active

sniffer_timeout time difference in seconds between each sniff

sniff_timeout time for a single request of sniffing in seconds

retry_on_timeout
Booelan for if client should timeout trigger contacting a different
elasticsearch node or just throw error

http_auth Basic http authentication can be provided here in the form of
username:password

Examples

Indexing a Document (ie. Adding an sample)

Install the necessary Python Library via:

$ pip install elasticsearch

Connect to Elasticsearch, Create a Document (e.g. data entry) and "Index" the document using
Elasticsearch.

from datetime import datetime
from elasticsearch import Elasticsearch

Connect to Elasticsearch using default options (localhost:9200)
es = Elasticsearch()

Define a simple Dictionary object that we'll index to make a document in ES
doc = {
 'author': 'kimchy',
 'text': 'Elasticsearch: cool. bonsai cool.',

https://riptutorial.com/ 50

 'timestamp': datetime.now(),
}

Write a document
res = es.index(index="test-index", doc_type='tweet', id=1, body=doc)
print(res['created'])

Fetch the document
res = es.get(index="test-index", doc_type='tweet', id=1)
print(res['_source'])

Refresh the specified index (or indices) to guarantee that the document
is searchable (avoid race conditions with near realtime search)
es.indices.refresh(index="test-index")

Search for the document
res = es.search(index="test-index", body={"query": {"match_all": {}}})
print("Got %d Hits:" % res['hits']['total'])

Show each "hit" or search response (max of 10 by default)
for hit in res['hits']['hits']:
 print("%(timestamp)s %(author)s: %(text)s" % hit["_source"])

Connection to a cluster

es = Elasticsearch(hosts=hosts, sniff_on_start=True, sniff_on_connection_fail=True,
sniffer_timeout=60, sniff_timeout=10, retry_on_timeout=True)

Creating an empty index and setting the mapping

In this example, we create an empty index (we index no documents in it) by defining its mapping.

First, we create an ElasticSearch instance and we then define the mapping of our choice. Next, we
check if the index exists and if not, we create it by specifying the index and body parameters that
contain the index name and the body of the mapping, respectively.

from elasticsearch import Elasticsearch

create an ElasticSearch instance
es = Elasticsearch()
name the index
index_name = "my_index"
define the mapping
mapping = {
 "mappings": {
 "my_type": {
 "properties": {
 "foo": {'type': 'text'},
 "bar": {'type': 'keyword'}
 }
 }
 }
 }

create an empty index with the defined mapping - no documents added
if not es.indices.exists(index_name):

https://riptutorial.com/ 51

 res = es.indices.create(
 index=index_name,
 body=mapping
)
 # check the response of the request
 print(res)
 # check the result of the mapping on the index
 print(es.indices.get_mapping(index_name))

Partial Update and Update by query

Partial Update: Used when a partial document update is needed to be done, i.e. in the following
example the field name of the document with id doc_id is going to be updated to 'John'. Note that if
the field is missing, it will just be added to the document.

doc = {
 "doc": {
 "name": "John"
 }
}
es.update(index='index_name',
 doc_type='doc_name',
 id='doc_id',
 body=doc)

Update by query: Used when is needed to update documents that satisfy a condition, i.e. in the
following example we update the age of the documents whose name field matches 'John'.

q = {
 "script": {
 "inline": "ctx._source.age=23",
 "lang": "painless"
 },
 "query": {
 "match": {
 "name": "John"
 }
 }
}

es.update_by_query(body=q,
 doc_type='doc_name',
 index='index_name')

Read Python Interface online: https://riptutorial.com/elasticsearch/topic/2068/python-interface

https://riptutorial.com/ 52

https://riptutorial.com/elasticsearch/topic/2068/python-interface

Chapter 11: Search API

Introduction

The search API allows you to execute a search query and get back search hits that match the
query. The query can either be provided using a simple query string as a parameter, or using a
request body.

Examples

Routing

When executing a search, it will be broadcast to all the index/indices shards (round robin between
replicas). Which shards will be searched on can be controlled by providing the routing parameter.
For example, when indexing tweets, the routing value can be the user name:

curl -XPOST 'localhost:9200/twitter/tweet?routing=kimchy&pretty' -d'
{
 "user" : "kimchy",
 "postDate" : "2009-11-15T14:12:12",
 "message" : "trying out Elasticsearch"
}'

Search using request body

Searches can also be done on elasticsearch using a search DSL.The query element within the
search request body allows to define a query using the Query DSL.

GET /my_index/type/_search
{
 "query" : {
 "term" : { "field_to_search" : "search_item" }
 }
}

Multi search

The multi_search option allows us to search for a query in multiple fields at once.

GET /_search
{
 "query": {
 "multi_match" : {
 "query": "text to search",
 "fields": ["field_1", "field_2"]
 }
 }
}

https://riptutorial.com/ 53

We can also boost the score of certain fields using the boost operator(^), and use wild cards in the
field name (*)

GET /_search
 {
 "query": {
 "multi_match" : {
 "query": "text to search",
 "fields": ["field_1^2", "field_2*"]
 }
 }
 }

URI search, and Highlighting

A search request can be executed purely using a URI by providing request parameters. Not all
search options are exposed when executing a search using this mode, but it can be handy for
quick "curl tests".

GET Index/type/_search?q=field:value

Another useful feature provided is highlighting the match hits in the documents.

GET /_search
{
 "query" : {
 "match": { "field": "value" }
 },
 "highlight" : {
 "fields" : {
 "content" : {}
 }
 }
}

In the above case, the particular field will be highlighted for each search hit

Read Search API online: https://riptutorial.com/elasticsearch/topic/8625/search-api

https://riptutorial.com/ 54

https://riptutorial.com/elasticsearch/topic/8625/search-api

Credits

S.
No

Chapters Contributors

1
Getting started with
Elasticsearch

Ahsanul Haque, Berto, Community, DJanssens, Dulguun, igo,
KartikKannapur, manishrw, mightyteja, noscreenname, Onur,
rafa.ferreira, RustyBuckets, sarvajeetsuman, SeinopSys,
Shivkumar Mallesappa, Stephan-v, Suhas K, Sumit Kumar,
Trilarion

2 Aggregations Sid1199

3 Analyzers Bhushan Gadekar, Sid1199, Thomas

4 Cluster Gerardo Rochín, pickypg

5 Curl Commands Fawix, Mrunal Pagnis, Mrunal Pagnis

6
Difference Between
Indices and Types

pickypg

7

Difference Between
Relational
Databases and
Elasticsearch

Richa

8
Elasticsearch
Configuration

pickypg

9
Learning
Elasticsearch with
kibana

sarvajeetsuman

10 Python Interface
aidan.plenert.macdonald, christinabo, KartikKannapur, pickypg,
Sumit Kumar

11 Search API aerokite, Sid1199

https://riptutorial.com/ 55

https://riptutorial.com/contributor/5019169/ahsanul-haque
https://riptutorial.com/contributor/284499/berto
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2526441/djanssens
https://riptutorial.com/contributor/7285157/dulguun
https://riptutorial.com/contributor/1795220/igo
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/4927688/manishrw
https://riptutorial.com/contributor/3238940/mightyteja
https://riptutorial.com/contributor/1989695/noscreenname
https://riptutorial.com/contributor/3133545/onur
https://riptutorial.com/contributor/114308/rafa-ferreira
https://riptutorial.com/contributor/1714599/rustybuckets
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/4522512/shivkumar-mallesappa
https://riptutorial.com/contributor/2294225/stephan-v
https://riptutorial.com/contributor/3655268/suhas-k
https://riptutorial.com/contributor/4453633/sumit-kumar
https://riptutorial.com/contributor/1536976/trilarion
https://riptutorial.com/contributor/6527742/sid1199
https://riptutorial.com/contributor/4460894/bhushan-gadekar
https://riptutorial.com/contributor/6527742/sid1199
https://riptutorial.com/contributor/3220458/thomas
https://riptutorial.com/contributor/4236531/gerardo-rochin
https://riptutorial.com/contributor/706724/pickypg
https://riptutorial.com/contributor/706840/fawix
https://riptutorial.com/contributor/5387134/mrunal-pagnis
https://riptutorial.com/contributor/6473001/mrunal-pagnis
https://riptutorial.com/contributor/706724/pickypg
https://riptutorial.com/contributor/4188368/richa
https://riptutorial.com/contributor/706724/pickypg
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/3002273/aidan-plenert-macdonald
https://riptutorial.com/contributor/2710302/christinabo
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/706724/pickypg
https://riptutorial.com/contributor/4453633/sumit-kumar
https://riptutorial.com/contributor/1924666/aerokite
https://riptutorial.com/contributor/6527742/sid1199

	About
	Chapter 1: Getting started with Elasticsearch
	Remarks
	Versions
	Examples
	Installing Elasticsearch on Ubuntu 14.04

	Prerequisites
	Download and Install package
	Running as a service on Linux:
	Installing Elasticsearch on Windows

	Prerequisites
	Run from batch file
	Run as a Windows service
	Indexing and retrieving a document

	Indexing documents
	Indexing without an ID

	Retrieving documents
	Basic Search Parameters with examples:
	Installing Elasticsearch and Kibana on CentOS 7

	Chapter 2: Aggregations
	Syntax
	Examples
	Avg aggregation
	Cardinality Aggregation
	Extended Stats Aggregation

	Chapter 3: Analyzers
	Remarks
	Examples
	Mapping
	Multi-fields
	Analyzers
	Ignore case analyzer

	Chapter 4: Cluster
	Remarks
	Examples
	Human readable, tabular Cluster Health with headers
	Human readable, tabular Cluster Health without headers
	Human readable, tabular Cluster Health with selected headers
	JSON-based Cluster Health

	Chapter 5: Curl Commands
	Syntax
	Examples
	Curl Command for counting number of documents in the cluster
	Retrieve a document by Id
	Create an Index
	List all indices
	Delete an Index
	List all documents in a index

	Chapter 6: Difference Between Indices and Types
	Remarks
	All About Types
	Common Questions
	Exceptions to the Rule
	Examples
	Explicitly creating an Index with a Type
	Dynamically creating an Index with a Type

	Chapter 7: Difference Between Relational Databases and Elasticsearch
	Introduction
	Examples
	Terminology Difference
	Usecases where Relational Databases are not suitable

	Chapter 8: Elasticsearch Configuration
	Remarks
	Where are the settings?
	What type of settings exist?
	How can I apply settings?
	Examples
	Static Elasticsearch Settings
	Persistent Dynamic Cluster Settings
	Transient Dynamic Cluster Settings
	Index Settings
	Dynamic Index Settings for Multiple Indices at the same time

	Chapter 9: Learning Elasticsearch with kibana
	Introduction
	Examples
	Explore your Cluster using Kibana
	Modify your elasticsearch data

	Chapter 10: Python Interface
	Parameters
	Examples
	Indexing a Document (ie. Adding an sample)
	Connection to a cluster
	Creating an empty index and setting the mapping
	Partial Update and Update by query

	Chapter 11: Search API
	Introduction
	Examples
	Routing
	Search using request body
	Multi search
	URI search, and Highlighting

	Credits

