
electron

#electron

Table of Contents

About 1

Chapter 1: Getting started with electron 2

Remarks 2

What is Electron? 2

Apps built on Electron 2

Versions 2

Examples 3

Installation of Electron 3

Dependencies 3

How to install it? 3

Hello World! 3

Setup 3

The Main Process 4

HTML Template & Renderer Process 4

Running the App 5

With electron-prebuilt installed Globally 5

Method 2 - Without electron-prebuilt installed Globally 5

Chapter 2: Electron-tray-app 7

Examples 7

Electron Tray App 7

Chapter 3: electron-winstaller 8

Introduction 8

Syntax 8

Parameters 8

Examples 9

Build JS 9

Chapter 4: Main and renderer process. 10

Remarks 10

Examples 10

Asynchronous IPC communication 10

Remote module RMI 11

Synchronous IPC communication 11

Chapter 5: Packaging an electron app 13

Introduction 13

Syntax 13

Parameters 13

Examples 13

Installing electron-packager 13

Packaging from CLI 14

Packaging from script 14

Making npm scripts to automate Electron packaging 14

Chapter 6: Remote function - use Electron functions in JavaScript 16

Introduction 16

Syntax 16

Examples 16

Using remote by setting the progress bar 16

Using remote by setting window to fullscreen 16

Chapter 7: Using bootstrap in electron 17

Introduction 17

Examples 17

Linking Electron with Bootstrap 17

Chapter 8: Using nedb in electron 18

Examples 18

Installation of nedb 18

Connecting electron app with Nedb 18

Insert Data in nedb 18

Search in nedb 18

Delete in nedb 19

Credits 20

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: electron

It is an unofficial and free electron ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official electron.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/electron
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with electron

Remarks

What is Electron?

Electron is an open-source framework, which is used to create desktop applications using HTML
, CSS and JavaScript. In the inside, it works thanks to Chromium and Node.js.

Its original creator, GitHub, works with a wide community of developers to maintain the project,
which can be found here.

One of the main perks of using Electron is that, since it's based in web technologies, it's cross
platform, allowing to deploy applications for Linux, MacOS and Windows, with the same code.

It also features native elements such as menus and notifications, as well as useful developing
tools for debugging and crash reporting.

Apps built on Electron

Some examples of applications that use this framework, are:

Atom•
Slack for Desktop•
Visual Studio Code•
GitBook•
Curse•
Wordpress for Desktop•

... and many others.

Versions

Version Remarks Release Date

1.0.0 2016-05-09

1.0.1 2016-05-11

1.0.2 2016-05-13

1.1.0 2016-05-13

1.1.1 2016-05-20

https://riptutorial.com/ 2

http://www.riptutorial.com/topic/217
http://www.riptutorial.com/topic/293
http://www.riptutorial.com/topic/185
http://www.riptutorial.com/topic/340
https://github.com
https://github.com/electron/electron
https://atom.io
https://slack.com/downloads
https://code.visualstudio.com
https://www.gitbook.com
https://www.curse.com
https://apps.wordpress.com/desktop
http://electron.atom.io/apps
https://github.com/electron/electron/releases/tag/v1.0.0
https://github.com/electron/electron/releases/tag/v1.0.1
https://github.com/electron/electron/releases/tag/v1.0.2
https://github.com/electron/electron/releases/tag/v1.1.0
https://github.com/electron/electron/releases/tag/v1.1.1

Version Remarks Release Date

1.1.2 2016-05-24

1.1.3 2016-05-25

1.2.0 2016-05-26

1.2.1 2016-06-01

1.2.2 2016-06-08

1.2.3
There are more between this and
1.4.7, but there were too many
to list out

2016-06-16

1.4.7 Lastest version as of 19th Nov 2016 2016-11-19

1.6.11 2017-05-25

1.7.3 Lastest Version as of 19th Jun 2017 2017-06-19

Examples

Installation of Electron

Dependencies

To install electron you must first install Node.js, which comes with npm.

How to install it?

Use npm:

Install the `electron` command globally in your $PATH
npm install electron -g

OR

Install as a development dependency
npm install electron --save-dev

Hello World!

Setup

https://riptutorial.com/ 3

https://github.com/electron/electron/releases/tag/v1.1.2
https://github.com/electron/electron/releases/tag/v1.1.3
https://github.com/electron/electron/releases/tag/v1.2.0
https://github.com/electron/electron/releases/tag/v1.2.1
https://github.com/electron/electron/releases/tag/v1.2.2
https://github.com/electron/electron/releases/tag/v1.2.3
https://github.com/electron/electron/releases/tag/v1.4.7
https://github.com/electron/electron/releases/tag/v1.6.11
https://github.com/electron/electron/releases/tag/v1.7.3
http://nodejs.org
http://npmjs.org
http://www.riptutorial.com/topic/2061

An Electron project structure usually looks like this:

hello-world-app/
├── package.json
├── index.js
└── index.html

Now let's create the files and initialize our package.json.

$ mkdir hello-world-app && cd hello-world-app
$ touch index.js
$ touch index.html
$ npm init

Note: If the main parameter is not specified in package.json, Electron will use index.js as the default
entry point.

The Main Process

In Electron, the process that runs package.json’s main script is called the main process. Here we
can display a GUI by creating BrowserWindow instances.

Add the following to index.js:

const { app, BrowserWindow } = require('electron')

// Global reference to the window object
let win

// This method will be called when Electron has finished
// initialization and is ready to create browser windows
app.on('ready', function(){
 // Create the window
 win = new BrowserWindow({width: 800, height: 600})

 // Open and load index.html to the window
 win.loadURL('file://' + __dirname + '/index.html')

 // Emitted when the window is closed.
 win.on('closed', () => {
 // Dereference the window object
 win = null
 });
})

// Quit the app if all windows are closed
app.on('window-all-closed', () => {
 app.quit()
})

HTML Template & Renderer Process

https://riptutorial.com/ 4

Next we create the GUI for the app. Electron uses web pages as its GUI, each running in their own
process called the renderer process.

Add the following code to index.html:

<!DOCTYPE html>
<html>
<head>
 <title>Hello World</title>
</head>
<body>
 <h1>Hello World!</h1>
</body>
</html>

Running the App

There are multiple ways to run an Electron App.

With electron-prebuilt installed Globally

First, make sure you have electron-prebuilt installed.

Now we can test the app using this command:

$ electron .

Method 2 - Without electron-prebuilt installed Globally

First, we'll have to enter your app's folder (the folder where package.json is).

There, open up a Terminal/Command Prompt window and type npm install to install the necessary
into that app's folder.

Afterwards, key in npm start to run the app. Keep in mind that your package.json still has to specify
a 'start' script.

If everything worked correctly, you should see something like this:

https://riptutorial.com/ 5

http://www.riptutorial.com/electron/example/17426/installation-of-electron
http://www.riptutorial.com/electron/example/17426/installation-of-electron

Congratulations! You've successfully created your first Electron app.

Read Getting started with electron online: https://riptutorial.com/electron/topic/4934/getting-
started-with-electron

https://riptutorial.com/ 6

https://i.stack.imgur.com/5Pl2v.png
https://riptutorial.com/electron/topic/4934/getting-started-with-electron
https://riptutorial.com/electron/topic/4934/getting-started-with-electron

Chapter 2: Electron-tray-app

Examples

Electron Tray App

Adding a icon to your tray-bar

let tray = null;
let mainWindow = null;
let user = null;

app.on('ready', () => {
 /**
 * Tray related code.
 */
 const iconName = 'icon.png';
 const iconPath = path.join(__dirname, iconName);
 tray = new Tray(iconPath);
 tray.setToolTip('AMP Notifier App');
 const contextMenu = Menu.buildFromTemplate([{
 label: 'Quit',
 click: destroyApp
 }]);
 tray.setContextMenu(contextMenu);

 tray.on('click', () => {
 app.quit();
 });
});

Read Electron-tray-app online: https://riptutorial.com/electron/topic/8160/electron-tray-app

https://riptutorial.com/ 7

https://riptutorial.com/electron/topic/8160/electron-tray-app

Chapter 3: electron-winstaller

Introduction

NPM module that builds Windows installers for Electron apps. It will help to create single EXE for
Electron windows application

Syntax

Install Globally•
npm install -g electron-winstaller•
Install Locally•
npm install --save-dev electron-winstaller•

Parameters

Config Name Description

appDirectory
The authors value for the nuget package metadata. Defaults to the
author field from your app's package.json file when unspecified.

owners
The owners value for the nuget package metadata. Defaults to the
authors field when unspecified.

exe
The name of your app's main .exe file. This uses the name field in your
app's package.json file with an added .exe extension when unspecified.

description
The description value for the nuget package metadata. Defaults to the
description field from your app's package.json file when unspecified.

version
The version value for the nuget package metadata. Defaults to the
version field from your app's package.json file when unspecified.

title
The title value for the nuget package metadata. Defaults to the
productName field and then the name field from your app's
package.json file when unspecified.

name
Windows Application Model ID (appId). Defaults to the name field in
your app's package.json file.

certificateFile The path to an Authenticode Code Signing Certificate

certificatePassword The password to decrypt the certificate given in certificateFile

signWithParams
Params to pass to signtool. Overrides certificateFile and
certificatePassword.

https://riptutorial.com/ 8

Config Name Description

iconUrl
A URL to an ICO file to use as the application icon (displayed in Control
Panel > Programs and Features). Defaults to the Atom icon.

setupIcon The ICO file to use as the icon for the generated Setup.exe

setupExe The name to use for the generated Setup.exe file

setupMsi The name to use for the generated Setup.msi file

noMsi Should Squirrel.Windows create an MSI installer?

remoteReleases
A URL to your existing updates. If given, these will be downloaded to
create delta updates

remoteToken Authentication token for remote updates

Examples

Build JS

Here Is basic build file to build executable from electron windows app.

var electronInstaller = require('electron-winstaller');
var resultPromise = electronInstaller.createWindowsInstaller({
 appDirectory: 'Your_electron_application_path',
 authors: 'Author Name',
 description: "Description"
});

resultPromise.then(() => console.log("Build Success!"), (e) => console.log(`No dice:
${e.message}`));

Read electron-winstaller online: https://riptutorial.com/electron/topic/9492/electron-winstaller

https://riptutorial.com/ 9

https://riptutorial.com/electron/topic/9492/electron-winstaller

Chapter 4: Main and renderer process.

Remarks

Process that runs package.json’s main script is called the main process. The main process
creates web pages by creating BrowserWindow instances. Each web page in Electron runs in its own
process, which is called the renderer process. The main process manages all web pages and
their corresponding renderer processes. Each renderer process is isolated and only cares about
the web page running in it.

Examples

Asynchronous IPC communication

Main process source code index.js:

const {app, BrowserWindow, ipcMain} = require('electron')
let win = null

app.on('ready', () => {
 win = new BrowserWindow()
 win.loadURL(`file://${__dirname}/index.html`)
 win.webContents.openDevTools()
 win.on('closed', () => {
 win = null
 })
 win.webContents.on('did-finish-load', () => {
 win.webContents.send('asyncChannelToRenderer', 'hello')
 })
})

ipcMain.on('asyncChannelToMain', (event, arg) => {
 console.log(arg + ' from renderer')
 if (arg === 'hello') {
 event.sender.send('asyncChannelToRenderer', 'world')
 }
})

Renderer process in index.html:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World IPC</title>
 <script>
 require('electron').ipcRenderer.on('asyncChannelToRenderer', (event, arg) => {
 console.log(arg + ' from main')
 if (arg === 'hello') {
 event.sender.send('asyncChannelToMain', 'world')
 }
 })
 </script>

https://riptutorial.com/ 10

 </head>
 <body>
 <button onclick="require('electron').ipcRenderer.send('asyncChannelToMain',
'hello')">click me</button>
 </body>
</html>

Remote module RMI

The remote module allows simple RMI (remote method invocation) of main process objects from
renderer process. First create the main process in index.js

const {app, BrowserWindow} = require('electron')
let win = null

app.on('ready', () => {
 win = new BrowserWindow()
 win.loadURL(`file://${__dirname}/index.html`)
 win.on('closed', () => {
 win = null
 })
})

and then remote process index.html

<!DOCTYPE html>
<html>
 <head>
 <script>
 const {BrowserWindow, app} = require('electron').remote
 </script>
 </head>
 <body>
 <button onclick= "let win = new BrowserWindow();
win.loadURL(`file://${__dirname}/index.html`)">new window</button>
 <button onclick= "app.quit()">quit</button>
 </body>
</html>

Synchronous IPC communication

Create index.js as

const {app, BrowserWindow, ipcMain} = require('electron')
let win = null

app.on('ready', () => {
 win = new BrowserWindow()
 win.loadURL(`file://${__dirname}/index.html`)
 win.webContents.openDevTools()
 win.on('closed', () => {
 win = null
 })
})

https://riptutorial.com/ 11

ipcMain.on('syncChannelToMain', (event, arg) => {
 console.log(arg + ' from renderer')
 event.returnValue = 'world'
})

and renderer process index.html as

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World IPC</title>
 </head>
 <body>
 <button onclick="console.log(require('electron').ipcRenderer.sendSync('syncChannelToMain',
'world') + ' from main')">click me</button>
 </body>
</html>

Read Main and renderer process. online: https://riptutorial.com/electron/topic/5432/main-and-
renderer-process-

https://riptutorial.com/ 12

https://riptutorial.com/electron/topic/5432/main-and-renderer-process-
https://riptutorial.com/electron/topic/5432/main-and-renderer-process-

Chapter 5: Packaging an electron app

Introduction

When ready for distribution, your electron app can be packaged into an executable file.

Electron applications can be packaged to run on Windows (32/64 bit), OSX (macOS) and Linux
(x86/x86_64).

To package your code, use the npm package 'electron-packager\

https://github.com/electron-userland/electron-packager

Syntax

$ electron-packager•
sourcedir•
appname•
--platform=platform•
--arch=arch•
[optional flags...]•

Parameters

Parameter Details

sourcedir The directory of your electron application files

appname The name of your application

platform
The platform you want to compile your code for. Omitting this will compile for the
host OS

arch
The system architecture you want to compile your code for. Omitting this will
compile for the host arch

Examples

Installing electron-packager

for use in npm scripts
npm install electron-packager --save-dev

for use from cli
npm install electron-packager -g

https://riptutorial.com/ 13

https://github.com/electron-userland/electron-packager

Packaging from CLI

electron-packager C:/my-app MyApp

Packaging from script

var packager = require('electron-packager');

packager({
 dir: '/',
}, function(err, path){
 if(err) throw err;
 // Application has been packaged
});

Making npm scripts to automate Electron packaging

A convenient way to package your application is to write the scripts in your packages.json file and
run them with the npm run command

{
 "name": "AppName",
 "productName": "AppName",
 "version": "0.1.1",
 "main": "main.js",
 "devDependencies": {
 "electron": "^1.6.6",
 "electron-packager": "^8.7.0"
 },
 "scripts": {
 "package-mac": "electron-packager . --overwrite --platform=darwin --arch=x64 --
icon=images/icon.png --prune=true --out=release-builds",
 "package-win": "electron-packager . --overwrite --platform=win32 --arch=ia32 --
icon=images/icon.png --prune=true --out=release-builds",
 "package-linux" : "electron-packager . --overwrite --platform=linux --arch=x64 --
icon=images/icon.png --prune=true --out=release-builds"
 }
}

And to run them you just write:

npm run package-mac
npm run package-win
npm run package-linux

A breakdown of the command flags is:

electron-packager . // this runs the packager in the current folder
--overwrite // overwrite any previous build
--platform=darwin // platform for which the binaries should be created
--arch=x64 // the OS architecture
--icon=images/icon.png // the icon for the app executable
--prune=true // this does not copy your dev-dependencies that appear in your

https://riptutorial.com/ 14

packages.json
--out=release-builds // the name of the folder were the binaries will be outputed

Before, running the scripts change the devDependencies to dependencies as electron-packager
cannot bundle the packages in the devDependencies into the app. In packager.json, change the
word (if it's there or if packages are installed using --save-dev in npm install) devDependencies to
only dependencies.

Read Packaging an electron app online: https://riptutorial.com/electron/topic/8945/packaging-an-
electron-app

https://riptutorial.com/ 15

https://riptutorial.com/electron/topic/8945/packaging-an-electron-app
https://riptutorial.com/electron/topic/8945/packaging-an-electron-app

Chapter 6: Remote function - use Electron
functions in JavaScript

Introduction

If you have to change some things in renderer.js or main.js but you want to do the changes in
index.html, you can use the remote function. It lets you access all the electron functions you need!

Syntax

use remote like require("electron"):

main.js: const electron = require("electron");

index.html: const electron = require("electron").remote;

○

•

Examples

Using remote by setting the progress bar

const { remote } = require("electron"); // <- The Node.js require() function is
 // added to JavaScript by electron

function setProgress(p) { // p = number from 0 to 1
 const currentWindow = remote.getCurrentWindow();
 currentWindow.setProgressBar(p);
}

Using remote by setting window to fullscreen

const { remote } = require("electron"); // <- The Node.js require() function is
 // added to JavaScript by electron

function fullscreen(f) { // p = false or true
 const currentWindow = remote.getCurrentWindow();
 currentWindow.maximize();
}

Read Remote function - use Electron functions in JavaScript online:
https://riptutorial.com/electron/topic/8719/remote-function---use-electron-functions-in-javascript

https://riptutorial.com/ 16

https://riptutorial.com/electron/topic/8719/remote-function---use-electron-functions-in-javascript

Chapter 7: Using bootstrap in electron

Introduction

One of the best front-end frameworks in the web world in twitter bootstrap. As electron is relies on
web browser, we can easily use bootstrap with electron in order to use the power of bootstrap in
our electron framework. The latest version of bootstrap as of today is 3.3.7 and bootstrap 4 is still
in alpha phase.

Examples

Linking Electron with Bootstrap

In order to use bootstrap, there are 2 cases.

The electron app is connected to internet1.
The electron app is not connected to internet2.

For electron apps that are connected to internet, we can just make use of CDN links for bootstrap
and include that in our html files.

The problem comes when we have to take it to offline version where the app is not connected to
the net. In that case,

Download bootstrap from Bootstrap1.
Unzip the folder into the electron app2.
In the bootstrap directory, there are css and javascript files.3.
For better understanding, move the bootstrap css files into the CSS folder (All the styling
files will be in this folder) and bootstrap js files to JS folder (All the Javascript files will be in
this folder)

4.

In your html files , link the html files using the following code5.

<link rel="stylesheet" href="path_to_the_offline_bootstrap_css_file">
<script scr="path_to_the_offline_bootstrap_js_file"></script>

In this way you can start using twitter bootstrap in electron framework.

Read Using bootstrap in electron online: https://riptutorial.com/electron/topic/10897/using-
bootstrap-in-electron

https://riptutorial.com/ 17

http://getbootstrap.com/
https://riptutorial.com/electron/topic/10897/using-bootstrap-in-electron
https://riptutorial.com/electron/topic/10897/using-bootstrap-in-electron

Chapter 8: Using nedb in electron

Examples

Installation of nedb

It's very easy to install nedb.

npm install nedb --save # Put latest version in your package.json

For bower loving people,

bower install nedb

Connecting electron app with Nedb

While building electron apps, usually the backend is in separate folder (js files) and front end is in
a separate folder (html files). In the backend, in order to use the database, we have to include the
nedb package with the require statement as follows.

var Datastore = require('nedb'),db = new Datastore({ filename: 'data.db', autoload: true });

Keep in mind that the loading of the database file is an asynchronous task.

Insert Data in nedb

Basically, in order to insert records to nedb, the data is stored in the form of json with the key
being the column names and the value for those names will be the values for that record.

var rec = { name: 'bigbounty',age:16};

db.insert(rec, function (err, newrec) { // Callback is optional
 // newrec is the newly inserted document, including its _id
 // newrec has no key called notToBeSaved since its value was undefined
});

Be careful with all the operations of database, as they are asynchronous.

Note ** : If _id is not there in the json data that you are inserting then automatically ,it will be
created for you by nedb.

Search in nedb

In order to search for records in nedb, again we need to just pass the json containing the search
criteria as a parameter to the find function of db object.

https://riptutorial.com/ 18

db.find({ name: 'bigbounty' }, function (err, docs) {
 // docs is an array containing documents that have name as bigbounty
 // If no document is found, docs is equal to []
});

In order to find only one document, as in we use limit in mysql, it's easy in nedb.

db.findOne({ name: 'bigbounty' }, function (err, doc) {
 // doc is only one document that has name as bigbounty
 // If no document is found, docs is equal to []
});

Delete in nedb

In order to remove documents in nedb, it's very easy. We just have to use remove function of db
object.

db.remove({ name: 'bigbounty' }, function (err, numremoved) { // numremoved is the number of
documents that are removed. });

Read Using nedb in electron online: https://riptutorial.com/electron/topic/10906/using-nedb-in-
electron

https://riptutorial.com/ 19

https://riptutorial.com/electron/topic/10906/using-nedb-in-electron
https://riptutorial.com/electron/topic/10906/using-nedb-in-electron

Credits

S.
No

Chapters Contributors

1
Getting started with
electron

Alphonsus, Community, Eslam Mahmoud, Florian Hämmerle,
Hewbot, J F, Piero Divasto, SimplyCodin, Theo, vintproykt,
Vishal

2 Electron-tray-app Anavar Bharmal, nmnsud

3 electron-winstaller Krupesh Kotecha

4
Main and renderer
process.

mrkovec

5
Packaging an
electron app

bigbounty, Dan Johnson, VladNeacsu

6

Remote function -
use Electron
functions in
JavaScript

B. Colin Tim, Florian Hämmerle

7
Using bootstrap in
electron

bigbounty

8
Using nedb in
electron

bigbounty

https://riptutorial.com/ 20

https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1526073/eslam-mahmoud
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/5744659/hewbot
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1714910/piero-divasto
https://riptutorial.com/contributor/8179850/simplycodin
https://riptutorial.com/contributor/5719584/theo
https://riptutorial.com/contributor/2396907/vintproykt
https://riptutorial.com/contributor/2284240/vishal
https://riptutorial.com/contributor/2885934/anavar-bharmal
https://riptutorial.com/contributor/5692251/nmnsud
https://riptutorial.com/contributor/4944490/krupesh-kotecha
https://riptutorial.com/contributor/4628371/mrkovec
https://riptutorial.com/contributor/6849682/bigbounty
https://riptutorial.com/contributor/2719424/dan-johnson
https://riptutorial.com/contributor/2039855/vladneacsu
https://riptutorial.com/contributor/6912121/b--colin-tim
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/6849682/bigbounty
https://riptutorial.com/contributor/6849682/bigbounty

	About
	Chapter 1: Getting started with electron
	Remarks

	What is Electron?
	Apps built on Electron
	Versions
	Examples
	Installation of Electron

	Dependencies
	How to install it?
	Hello World!

	Setup
	The Main Process
	HTML Template & Renderer Process
	Running the App
	With electron-prebuilt installed Globally
	Method 2 - Without electron-prebuilt installed Globally

	Chapter 2: Electron-tray-app
	Examples
	Electron Tray App

	Chapter 3: electron-winstaller
	Introduction
	Syntax
	Parameters
	Examples
	Build JS

	Chapter 4: Main and renderer process.
	Remarks
	Examples
	Asynchronous IPC communication
	Remote module RMI
	Synchronous IPC communication

	Chapter 5: Packaging an electron app
	Introduction
	Syntax
	Parameters
	Examples
	Installing electron-packager
	Packaging from CLI
	Packaging from script
	Making npm scripts to automate Electron packaging

	Chapter 6: Remote function - use Electron functions in JavaScript
	Introduction
	Syntax
	Examples
	Using remote by setting the progress bar
	Using remote by setting window to fullscreen

	Chapter 7: Using bootstrap in electron
	Introduction
	Examples
	Linking Electron with Bootstrap

	Chapter 8: Using nedb in electron
	Examples
	Installation of nedb
	Connecting electron app with Nedb
	Insert Data in nedb
	Search in nedb
	Delete in nedb

	Credits

