
Elm Language

#elm



Table of Contents

About 1

Chapter 1: Getting started with Elm Language 2

Remarks 2

Versions 2

Examples 2

Installation 2

Using the installer 2

Using npm 3

Using homebrew 3

Switch between versions with elm-use 3

Further reading 3

Hello World 3

Editors 4

Atom 4

Light Table 4

Sublime Text 4

Vim 4

Emacs 4

IntelliJ IDEA 4

Brackets 4

VS Code 4

Initialize and build 5

Initialization 5

Building the project 5

Style Guide and elm-format 5

Embedding into HTML 6

Embed into the body tag 6

Embed into a Div (or other DOM node) 7



Embed as a Web worker (no UI) 7

REPL 8

Local Build Server (Elm Reactor) 10

Chapter 2: Backend Integration 11

Examples 11

Basic elm Http.post json request to node.js express server 11

Chapter 3: Collecting Data: Tuples, Records and Dictionaries 14

Examples 14

Tuples 14

Accessing values 14

Pattern matching 14

Remarks on Tuples 14

Dictionaries 14

Accessing values 15

Updating values 15

Records 16

Accessing values 16

Extending Types 16

Updating values 17

Chapter 4: Custom JSON Decoders 19

Introduction 19

Examples 19

Decoding into union type 19

Chapter 5: Debugging 20

Syntax 20

Remarks 20

Examples 20

Logging a value without interrupting computations 20

Piping a Debug.log 20

Time-traveling debugger 21

Debug.Crash 21



Chapter 6: Functions and Partial Application 23

Syntax 23

Examples 23

Overview 23

Lambda expressions 24

Local variables 24

Partial Application 25

Strict and delayed evaluation 26

Infix operators and infix notation 27

Chapter 7: Json.Decode 28

Remarks 28

Examples 28

Decoding a list 28

Pre-decode a field and decode the rest depending on that decoded value 28

Decoding JSON from Rust enum 29

Decoding a list of records 30

Decode a Date 31

Decode a List of Objects Containing Lists of Objects 32

Chapter 8: Lists and Iteration 34

Remarks 34

Examples 34

Creating a list by range 34

Creating a list 34

Getting elements 35

Transforming every element of a list 36

Filtering a list 36

Pattern Matching on a list 37

Getting nth element from the list 37

Reducing a list to a single value 38

Creating a list by repeating a value 39

Sorting a list 40

Sorting a list with custom comparator 40



Reversing a list 40

Sorting a list in descending order 41

Sorting a list by a derived value 41

Chapter 9: Making complex update functions with ccapndave/elm-update-extra 42

Introduction 42

Examples 42

Message which call a list of messages 42

Chaining messages with andThen 42

Chapter 10: Pattern Matching 44

Examples 44

Function arguments 44

Single type deconstructed argument 44

Chapter 11: Ports (JS interop) 45

Syntax 45

Remarks 45

Examples 45

Overview 45

Note 45

Outgoing 45

Elm side 45

JavaScript side 46

Note 46

Incoming 46

Elm side 46

JavaScript side 47

Note 47

Immediate outgoing message on start-up in 0.17.0 47

Get started 48

Chapter 12: Subscriptions 50

Remarks 50

Examples 50



Basic subscription to Time.every event with 'unsubscribe' 50

Chapter 13: The Elm Architecture 52

Introduction 52

Examples 52

Beginner program 52

Example 52

Program 53

Example 53

Program with Flags 55

One way parent-child communication 56

Example 56

Message tagging with Html.App.map 57

Chapter 14: Types, Type Variables, and Type Constructors 59

Remarks 59

Examples 59

Comparable data types 59

Type Signatures 59

Basic Types 60

Type Variables 61

Type Aliases 62

Improving Type-Safety Using New Types 63

Constructing Types 65

The Never type 65

Special Type Variables 66

Credits 68



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: elm-language

It is an unofficial and free Elm Language ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official Elm Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/elm-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with Elm Language

Remarks

[Elm][1] is a friendly functional programming language compiling to JavaScript. Elm focuses on 
browser-based GUIs, single-page applications.

Users usually praise it for:

No runtime exceptions.•
Best compiler errors ever•
The ease of refactoring.•
Expressive type system•
The Elm Architecture, which Redux is inspired by.•

Versions

Version Release Date

0.18.0 2016-11-14

0.17.1 2016-06-27

0.17 2016-05-10

0.16 2015-11-19

0.15.1 2015-06-30

0.15 2015-04-20

Examples

Installation

To start development with Elm, you need to install a set of tools called elm-platform.

It includes: elm-make, elm-reactor, elm-repl and elm-package.

All of these tools are available through CLI, in other words you can use them from your terminal.

Pick one of the following methods to install Elm:

Using the installer

https://riptutorial.com/ 2

http://elm-lang.org/blog/compiler-errors-for-humans
http://blog.jenkster.com/2016/06/how-elm-slays-a-ui-antipattern.html
http://guide.elm-lang.org/architecture/
http://elm-lang.org/blog/the-perfect-bug-report
https://gist.github.com/evancz/d5f418f42827262ece857aa8ff6458c6
http://elm-lang.org/blog/farewell-to-frp
http://elm-lang.org/blog/compilers-as-assistants
http://elm-lang.org/blog/compiler-errors-for-humans
http://elm-lang.org/blog/announce/0.15
https://github.com/elm-lang/elm-platform
https://github.com/elm-lang/elm-make
https://github.com/elm-lang/elm-reactor
https://github.com/elm-lang/elm-repl
https://github.com/elm-lang/elm-package


Download the installer from the official website and follow the installation wizard.

Using npm

You can use Node Package Manager to install Elm platform.

Global installation:

$ npm install elm -g

Local installation:

$ npm install elm

Locally installed Elm platform tools are accessible via:

$ ./node_modules/.bin/elm-repl  # launch elm-repl from local node_modules/

Using homebrew

$ brew install elm

Switch between versions with elm-use

Install elm-use

$ npm install -g elm-use

Switch to an older or newer elm version

$ elm-use 0.18  // or whatever version you want to use

Further reading

Learn how to Initialize and build your first project.

Hello World

See how to compile this code in Initialize and build

import Html 

https://riptutorial.com/ 3

http://elm-lang.org/install
https://www.npmjs.com/
http://www.riptutorial.com/elm/example/7220/initialize-and-build
http://www.riptutorial.com/elm/example/7220/initialize-and-build


 
main = Html.text "Hello World!"

Editors

Atom

https://atom.io/packages/language-elm•
https://atom.io/packages/elmjutsu•

Light Table

https://github.com/rundis/elm-light•

Sublime Text

https://packagecontrol.io/packages/Elm%20Language%20Support•

Vim

https://github.com/ElmCast/elm-vim•

Emacs

https://github.com/jcollard/elm-mode•

IntelliJ IDEA

https://plugins.jetbrains.com/plugin/8192•

Brackets

https://github.com/tommot348/elm-brackets•

VS Code

https://marketplace.visualstudio.com/items?itemName=sbrink.elm•

https://riptutorial.com/ 4

https://atom.io/packages/language-elm
https://atom.io/packages/elmjutsu
https://github.com/rundis/elm-light
https://packagecontrol.io/packages/Elm%20Language%20Support
https://github.com/ElmCast/elm-vim
https://github.com/jcollard/elm-mode
https://plugins.jetbrains.com/plugin/8192
https://github.com/tommot348/elm-brackets
https://marketplace.visualstudio.com/items?itemName=sbrink.elm


Initialize and build

You should have Elm platform installed on your computer, the following tutorial is written with the 
assumption, that you are familiar with terminal.

Initialization

Create a folder and navigate to it with your terminal:

$ mkdir elm-app 
$ cd elm-app/

Initialize Elm project and install core dependencies:

$ elm-package install -y

elm-package.json and elm-stuff folder should appear in your project.

Create the entry point for your application Main.elm and paste Hello World example in to it.

Building the project

To build your first project, run:

$ elm-make Main.elm

This will produce index.html with the Main.elm file (and all dependencies) compiled into JavaScript 
and inlined into the HTML. Try and open it in your browser!

If this fails with the error I cannot find module 'Html'. it means that you are not using the latest 
version of Elm. You can solve the problem either by upgrading Elm and redoing the first step, or 
with the following command:

$ elm-package install elm-lang/html -y

In case you have your own index.html file (eg. when working with ports), you can also compile 
your Elm files to a JavaScript file:

$ elm-make Main.elm --output=elm.js

More info in the example Embedding into HTML.

Style Guide and elm-format

The official style guide is located on the homepage and generally goes for:

https://riptutorial.com/ 5

http://www.riptutorial.com/elm/example/3906/hello-world
http://www.riptutorial.com/elm/example/13029/embedding-into-html
http://elm-lang.org/docs/style-guide


readability (instead of compactness)•
ease of modification•
clean diffs•

This means that, for example, this:

homeDirectory : String 
homeDirectory = 
  "/root/files" 
 
 
evaluate : Boolean -> Bool 
evaluate boolean = 
  case boolean of 
    Literal bool -> 
        bool 
 
    Not b -> 
        not (evaluate b) 
 
    And b b' -> 
        evaluate b && evaluate b' 
 
    Or b b' -> 
        evaluate b || evaluate b'

is considered better than:

homeDirectory = "/root/files" 
 
eval boolean = case boolean of 
    Literal bool -> bool 
    Not b        -> not (eval b) 
    And b b'     -> eval b && eval b' 
    Or b b'      -> eval b || eval b'

0.16

The tool elm-format helps by formatting your source code for you automatically (typically on 
save), in a similar vein to Go language's gofmt. Again, the underlying value is having one 
consistent style and saving arguments and flamewars about various issues like tabs vs. spaces 
or indentation length.

You can install elm-format following the instructions on the Github repo. Then configure your editor 
to format the Elm files automatically or run elm-format FILE_OR_DIR --yes manually.

Embedding into HTML

There are three possibilities to insert Elm code into a existing HTML page.

Embed into the body tag

https://riptutorial.com/ 6

https://github.com/avh4/elm-format
https://golang.org/cmd/gofmt/
https://github.com/avh4/elm-format#installation-
https://github.com/avh4/elm-format
https://github.com/avh4/elm-format#editor-integration


Supposing you have compiled the Hello World example into elm.js file, you can let Elm take over 
the <body> tag like so:

<!DOCTYPE html> 
<html> 
    <body> 
        <script src="elm.js"></script> 
        <script> 
          Elm.Main.fullscreen() 
        </script> 
    </body> 
</html>

WARNING: Sometimes some chrome extensions mess with <body> which can cause your app to 
break in production. It's recommended to always embed in a specific div. More info here.

Embed into a Div (or other DOM node)

Alternatively, by providing concrete HTML element, Elm code can be run in that specific page 
element:

<!DOCTYPE html> 
<html> 
    <head> 
        <title>Hello World</title> 
    </head> 
    <body> 
        <div id='app'></div> 
        <script src="elm.js"></script> 
        <script> 
            Elm.Main.embed(document.getElementById('app')) 
        </script> 
    </body> 
</html>

Embed as a Web worker (no UI)

Elm code can also be started as a worker and communicate thru ports:

<!DOCTYPE html> 
<html> 
    <head> 
        <title>Hello Worker</title> 
    </head> 
    <body> 
        <script src="elm.js"></script> 
        <script> 
            var app = Elm.Main.worker(); 
            app.ports.fromElmToJS.subscribe(function(world) { 
                console.log(world) 
            }); 
            app.ports.fromJSToElm.send('hello'); 

https://riptutorial.com/ 7

http://www.riptutorial.com/elm/example/3906/hello-world
https://github.com/elm-lang/html/issues/44
http://www.riptutorial.com/elm/topic/2200/ports--js-interop-


        </script> 
    </body> 
</html>

REPL

A good way to learn about Elm is to try writing some expressions in the REPL (Read-Eval-Print 
Loop). Open a console in your elm-app folder (that you have created in the Initialize and build 
phase) and try the following:

$ elm repl 
---- elm-repl 0.17.1 ----------------------------------------------------------- 
 :help for help, :exit to exit, more at <https://github.com/elm-lang/elm-repl> 
-------------------------------------------------------------------------------- 
> 2 + 2 
4 : number 
> \x -> x 
<function> : a -> a 
> (\x -> x + x) 
<function> : number -> number 
> (\x -> x + x) 2 
4 : number 
>

elm-repl is actually a pretty powerful tool. Let's say you create a Test.elm file inside your elm-app 
folder with the following code:

module Test exposing (..) 
 
 
a = 1 
 
 
b = "Hello"

Now, you go back to your REPL (which has stayed opened) and type:

import Test exposing (..) 
> a 
1 : number 
> b 
"Hello" : String 
>

Even more impressive, if you add a new definition to your Test.elm file, such as

s = """ 
Hello, 
Goodbye. 
"""

Save your file, go back once again to your REPL, and without importing Test again, the new 
definition is available immediately:

https://riptutorial.com/ 8

http://www.riptutorial.com/elm/example/7220/initialize-and-build


> s 
"\nHello,\nGoodbye.\n" : String 
>

It's really convenient when you want to write expressions which span many lines. It's also very 
useful to quickly test functions that you have just defined. Add the following to your file:

f x = 
  x + x * x

Save and go back to the REPL:

> f 
<function> : number -> number 
> f 2 
6 : number 
> f 4 
20 : number 
>

Each time you modify and save a file that you have imported, and you go back to the REPL and 
try to do anything, the full file is recompiled. Therefore it will tell you about any error in your code. 
Add this:

c = 2 ++ 2

Try that:

> 0 
-- TYPE MISMATCH -------------------------------------------------- ././Test.elm 
 
The left argument of (++) is causing a type mismatch. 
 
22|     2 ++ 2 
        ^ 
(++) is expecting the left argument to be a: 
 
    appendable 
 
But the left argument is: 
 
    number 
 
Hint: Only strings, text, and lists are appendable. 
 
 
> 

To conclude this introduction to the REPL, let's add that elm-repl also knows about the packages 
that you have installed with elm package install. For instance:

> import Html.App 
> Html.App.beginnerProgram 

https://riptutorial.com/ 9



<function> 
    : { model : a, update : b -> a -> a, view : a -> Html.Html b } 
      -> Platform.Program Basics.Never 
>

Local Build Server (Elm Reactor)

Elm Reactor is the essential tool for prototyping your application.

Please note, that you will not be able to compile Main.elm with Elm Reactor, if you are using 
Http.App.programWithFlags or Ports

Running elm-reactor in a projects directory will start a web server with a project explorer, that 
allows you to compile every separate component.

Any changes you make to your code are updated when you reload the page.

$ elm-reactor                     # launch elm-reactor on localhost:8000 
$ elm-reactor -a=0.0.0.0 -p=3000  # launch elm-reactor on 0.0.0.0:3000

Read Getting started with Elm Language online: https://riptutorial.com/elm/topic/1011/getting-
started-with-elm-language

https://riptutorial.com/ 10

http://www.riptutorial.com/elm/example/13036/program-with-flags
http://www.riptutorial.com/elm/topic/2200/ports--js-interop-
https://riptutorial.com/elm/topic/1011/getting-started-with-elm-language
https://riptutorial.com/elm/topic/1011/getting-started-with-elm-language


Chapter 2: Backend Integration

Examples

Basic elm Http.post json request to node.js express server

Live upcase server that returns error when input string is longer than 10 characters.

Server:

const express = require('express'), 
    jsonParser = require('body-parser').json(), 
    app = express(); 
 
// Add headers to work with elm-reactor 
app.use((req, res, next) => { 
    res.setHeader('Access-Control-Allow-Origin', 'http://localhost:8000'); 
    res.setHeader('Access-Control-Allow-Methods', 'POST, OPTIONS'); 
    res.setHeader('Access-Control-Allow-Headers', 'X-Requested-With,content-type'); 
    res.setHeader('Access-Control-Allow-Credentials', true); 
    next(); 
}); 
 
app.post('/upcase', jsonParser, (req, res, next) => { 
    // Just an example of possible invalid data for an error message demo 
    if (req.body.input && req.body.input.length < 10) { 
        res.json({ 
            output: req.body.input.toUpperCase() 
        }); 
    } else { 
        res.status(500).json({ 
            error: `Bad input: '${req.body.input}'` 
        }); 
    } 
}); 
 
const server = app.listen(4000, () => { 
    console.log('Server is listening at http://localhost:4000/upcase'); 
});

Client:

import Html exposing (..) 
import Html.Attributes exposing (..) 
import Html.Events exposing (..) 
import Http 
import Json.Decode as JD 
import Json.Encode as JE 
 
main : Program Never Model Msg 
main = 
    Html.program 
        { init = init 
        , view = view 
        , update = update 

https://riptutorial.com/ 11



        , subscriptions = subscriptions 
        } 
 
-- MODEL 
 
type alias Model = 
    { output: String 
    , error: Maybe String 
    } 
 
init : (Model, Cmd Msg) 
init = 
    ( Model "" Nothing 
    , Cmd.none 
    ) 
 
-- UPDATE 
 
type Msg 
    = UpcaseRequest ( Result Http.Error String ) 
    | InputString String 
 
update : Msg -> Model -> (Model, Cmd Msg) 
update msg model = 
    case msg of 
        UpcaseRequest (Ok response) -> 
            ( { model | output = response, error = Nothing }, Cmd.none ) 
 
        UpcaseRequest (Err err) -> 
            let 
                errMsg = case err of 
                    Http.Timeout -> 
                        "Request timeout" 
 
                    Http.NetworkError -> 
                        "Network error" 
 
                    Http.BadPayload msg _ -> 
                        msg 
 
                    Http.BadStatus response -> 
                        case JD.decodeString upcaseErrorDecoder response.body of 
                            Ok errStr -> 
                                errStr 
 
                            Err _ -> 
                                response.status.message 
 
                    Http.BadUrl msg -> 
                        "Bad url: " ++ msg 
            in 
                ( { model | output = "", error = Just errMsg }, Cmd.none ) 
 
        InputString str -> 
            ( model, upcaseRequest str ) 
 
-- VIEW 
 
view : Model -> Html Msg 
view model = 
    let 

https://riptutorial.com/ 12



        outDiv = case model.error of 
            Nothing -> 
                div [] 
                    [ label [ for "outputUpcase" ] [ text "Output" ] 
                    , input [ type_ "text", id "outputUpcase", readonly True, value 
model.output ] [] 
                    ] 
 
            Just err -> 
                div [] 
                    [ label [ for "errorUpcase" ] [ text "Error" ] 
                    , input [ type_ "text", id "errorUpcase", readonly True, value err ] [] 
                    ] 
    in 
        div [] 
            [ div [] 
                [ label [ for "inputToUpcase" ] [ text "Input" ] 
                , input [ type_ "text", id "inputToUpcase", onInput InputString ] [] 
                ] 
            , outDiv 
            ] 
 
-- SUBSCRIPTIONS 
 
subscriptions : Model -> Sub Msg 
subscriptions model = 
    Sub.none 
 
-- HELPERS 
 
upcaseSuccessDecoder : JD.Decoder String 
upcaseSuccessDecoder = JD.field "output" JD.string 
 
upcaseErrorDecoder : JD.Decoder String 
upcaseErrorDecoder = JD.field "error" JD.string 
 
upcaseRequestEncoder : String -> JE.Value 
upcaseRequestEncoder str = JE.object [ ( "input", JE.string str ) ] 
 
upcaseRequest : String -> Cmd Msg 
upcaseRequest str = 
    let 
        req = Http.post "http://localhost:4000/upcase" ( Http.jsonBody <| upcaseRequestEncoder 
str ) upcaseSuccessDecoder 
    in 
        Http.send UpcaseRequest req

Read Backend Integration online: https://riptutorial.com/elm/topic/8087/backend-integration

https://riptutorial.com/ 13

https://riptutorial.com/elm/topic/8087/backend-integration


Chapter 3: Collecting Data: Tuples, Records 
and Dictionaries

Examples

Tuples

Tuples are ordered lists of values of any type.

(True, "Hello!", 42)

It is impossible to change the structure of a Tuple or update the value.

Tuples in Elm are considered a primitive data type, which means that you don't need to import any 
modules to use Tuples.

Accessing values

Basics module has two helper functions for accessing values of a Tuple with a length of two ( a, b 
) without using pattern matching:

fst (True, "Hello!") -- True 
snd (True, "Hello!") -- "Hello!"

Access values of tuples with a bigger length is done through pattern matching.

Pattern matching

Tuples are extremely useful in combination with pattern matching:

toggleFlag: (Sting, Bool) -> (Sting, Bool) 
toggleFlag (name, flag) = 
    (name, not flag)

Remarks on Tuples

Tuples contain less than 7 values of comparable data type

Dictionaries

Dictionaries are implemented in a Dict core library.

https://riptutorial.com/ 14

http://package.elm-lang.org/packages/elm-lang/core/4.0.3/Basics
http://package.elm-lang.org/packages/elm-lang/core/4.0.3/Dict


A dictionary mapping unique keys to values. The keys can be any comparable type. 
This includes Int, Float, Time, Char, String, and tuples or lists of comparable types.

Insert, remove, and query operations all take O(log n) time.

Unlike Tuples and Records, Dictionaries can change their structure, in other words it is possible to 
add and remove keys.

It is possible to update a value by a key.

It is also possible to access or update a value using dynamic keys.

Accessing values

You can retrieve a value from a Dictionary by using a Dict.get function.

Type definition of Dict.get:

get : comparable -> Dict comparable v -> Maybe v

It will always return Maybe v, because it is possible to try to get a value by an non-existent key.

import Dict 
 
initialUsers = 
      Dict.fromList [ (1, "John"), (2, "Brad") ] 
 
getUserName id = 
  initialUsers 
  |> Dict.get id 
  |> Maybe.withDefault "Anonymous" 
 
getUserName 2 -- "Brad" 
getUserName 0 -- "Anonymous"

Updating values

Update operation on a Dictionary is performed by using Maybe.map, since the requested key might 
be absent.

import Dict 
 
initialUsers = 
  Dict.fromList [ (1, "John"), (2, "Brad") ] 
 
updatedUsers = 
  Dict.update 1 (Maybe.map (\name -> name ++ " Johnson")) initialUsers 
 
Maybe.withDefault "No user" (Dict.get 1 updatedUsers) -- "John Johnson"

https://riptutorial.com/ 15



Records

Record is a set of key-value pairs.

greeter = 
    { isMorning: True 
    , greeting: "Good morning!" 
    }

It is impossible to access a value by an non-existent key.

It is impossible to dynamically modify Record's structure.

Records only allow you to update values by constant keys.

Accessing values

Values can not be accessed using a dynamic key to prevent possible run-time errors:

isMorningKeyName = 
    "isMorning " 
 
 
greeter[isMorningKeyName] -- Compiler error 
greeter.isMorning -- True

The alternative syntax for accessing the value allows you to extract the value, while piping through 
the Record:

greeter 
    |> .greeting 
    |> (++) " Have a nice day!" -- "Good morning! Have a nice day!"

Extending Types

Sometimes you'd want the signature of a parameter to constrain the record types you pass into 
functions. Extending record types makes the idea of supertypes unnecessary. The following 
example shows how this concept can be implemented:

type alias Person = 
    { name : String 
    } 
 
 
type alias Animal = 
    { name : String 
    } 
 
 

https://riptutorial.com/ 16



peter : Person 
peter = 
    { name = "Peter" } 
 
 
dog : Animal 
dog = 
    { name = "Dog" } 
 
 
getName : { a | name : String } -> String 
getName livingThing = 
    livingThing.name 
 
 
bothNames : String 
bothNames = 
    getName peter ++ " " ++ getName dog

We could even take extending records a step further and do something like:

type alias Named a = { a | name : String } 
type alias Totalled a = { a | total : Int } 
 
 
totallyNamed : Named ( Totalled { age : Int }) 
totallyNamed = 
  { name = "Peter Pan" 
  , total = 1337 
  , age = 14 
  }

We now have ways to pass these partial types around in functions:

changeName : Named a -> String -> Named a 
changeName a newName = 
  { a | name = newName } 
 
cptHook = changeName totallyNamed "Cpt. Hook" |> Debug.log "who?"

Updating values

Elm has a special syntax for Record updates:

model = 
    { id: 1 
    , score: 0 
    , name: "John Doe" 
    } 
 
 
update model = 
    { model 
       | score = model.score + 100 
       | name = "John Johnson" 

https://riptutorial.com/ 17



    }

Read Collecting Data: Tuples, Records and Dictionaries online: 
https://riptutorial.com/elm/topic/2166/collecting-data--tuples--records-and-dictionaries

https://riptutorial.com/ 18

https://riptutorial.com/elm/topic/2166/collecting-data--tuples--records-and-dictionaries


Chapter 4: Custom JSON Decoders

Introduction

How to use Json.Decode to create custom decoders, for example decoding into union types and 
user defined data types

Examples

Decoding into union type

import Json.Decode as JD 
import Json.Decode.Pipeline as JP 
 
type PostType = Image | Video 
 
type alias Post = { 
    id: Int 
    , postType: PostType 
} 
-- assuming server will send int value of 0 for Image or 1 for Video 
decodePostType: JD.Decoder PostType 
decodePostType = 
    JD.int |> JD.andThen (\postTypeInt -> 
        case postTypeInt of 
            0 -> 
                JD.succeed Image 
 
 
            1 -> 
                JD.succed Video 
 
            _ -> 
                JD.fail "invalid posttype" 
 
    ) 
 
decodePostMap : JD.Decoder Post 
decodePostMap = 
    JD.map2 Post 
        (JD.field "id" JD.int) 
        (JD.field "postType" decodePostType) 
 
decodePostPipline : JD.Decoder Post 
decodePostPipline = 
    JP.decode Post 
        |> JP.required "id" JD.int 
        |> JP.required "postType" decodePostType

Read Custom JSON Decoders online: https://riptutorial.com/elm/topic/9927/custom-json-decoders

https://riptutorial.com/ 19

https://riptutorial.com/elm/topic/9927/custom-json-decoders


Chapter 5: Debugging

Syntax

Debug.log "tag" anyValue•

Remarks

Debug.log takes two parameters, a String to tag the debug output in the console (so you know 
where it's coming from / what the message corresponds to), and a value of any type. Debug.log 
executes the side-effect of logging the tag and the value to the JavaScript console, and then 
returns the value. The implementation in JS might look something like:

function log (tag, value){ 
    console.log(tag, value); 
    return value 
}

JavaScript has implicit conversions, so value doesn't have to be explicitly converted to a String for 
the above code to work. However, Elm types must be explicitly converted to a String, and the 
Native code for Debug.log shows this in action.

Examples

Logging a value without interrupting computations

Debug.log's second argument is always returned, so you could write code like the following and it 
would just work:

update : Msg -> Model -> (Model, Cmd Msg) 
update msg model = 
    case Debug.log "The Message" msg of 
        Something -> 
            ...

Replacing case msg of with case Debug.log "The Message" msg of will cause the current message to 
be logged the console every time the update function is called, but changes nothing else.

Piping a Debug.log

At run time the following would display a list of url in your console and continue computation

payload = 
    [{url:..., title:...}, {url=..., title=...}] 
 
main = 

https://riptutorial.com/ 20

https://github.com/elm-lang/core/blob/4.0.3/src/Native/Debug.js#L7


    payload 
        |> List.map .url -- only takes the url 
        |> Debug.log " My list of URLs" -- pass the url list to Debug.log and return it 
        |> doSomething -- do something with the url list

Time-traveling debugger

0.170.18.0

At the time of writing (July 2016) elm-reactor has been temporarily stripped of its time traveling 
functionality. It's possible to get it, though, using the jinjor/elm-time-travel package.

It's usage mirrors Html.App or Navigation modules' program* functions, for example instead of:

import Html.App 
 
main = 
    Html.App.program 
        { init = init 
        , update = update 
        , view = view 
        , subscriptions = subscriptions 
        }

you'd write:

import TimeTravel.Html.App 
 
main = 
    TimeTravel.Html.App.program 
        { init = init 
        , update = update 
        , view = view 
        , subscriptions = subscriptions 
        }

(Of course, after installing the package with elm-package.)

The interface of your app changes as a result, see one of the demos.

0.18.0

Since version 0.18.0 you can simply can compile your program with the --debug flag and get time 
travel debugging with no additional effort.

Debug.Crash

case thing of 
    Cat -> 
        meow 
    Bike -> 
        ride 
    Sandwich -> 

https://riptutorial.com/ 21

https://github.com/elm-lang/elm-reactor#note-about-time-travel
http://package.elm-lang.org/packages/jinjor/elm-time-travel/latest/
http://www.riptutorial.com/elm/topic/3771/the-elm-architecture
http://package.elm-lang.org/packages/elm-lang/navigation/1.0.0/Navigation
http://jinjor.github.io/elm-time-travel/
http://elm-lang.org/blog/the-perfect-bug-report
http://elm-lang.org/blog/the-perfect-bug-report


        eat 
    _ -> 
        Debug.crash "Not yet implemented"

You can use Debug.crash when you want the program to fail, typically used when you're in the 
middle of implementing a case expression. It is not recommended to use Debug.crash instead of 
using a Maybe or Result type for unexpected inputs, but typically only during the course of 
development (i.e. you typically wouldn't publish Elm code which uses Debug.crash).

Debug.crash takes one String value, the error message to show when crashing. Note that Elm will 
also output the name of the module and the line of the crash, and if the crash is in a case 
expression, it will indicate the value of the case.

Read Debugging online: https://riptutorial.com/elm/topic/2845/debugging

https://riptutorial.com/ 22

http://package.elm-lang.org/packages/elm-lang/core/latest/Debug#crash
https://riptutorial.com/elm/topic/2845/debugging


Chapter 6: Functions and Partial Application

Syntax

-- defining a function with no arguments looks the same as simply defining a value
language = "Elm"

•

-- calling a function with no arguments by stating its name
language

•

-- parameters are separated by spaces and follow the function's name
add x y = x + y

•

-- call a function in the same way
add 5 2

•

-- partially apply a function by providing only some of its parameters
increment = add 1

•

-- use the |> operator to pass the expression on the left to the function on the right
ten = 9 |> increment

•

-- the <| operator passes the expression on the right to the function on the left
increment <| add 5 4

•

-- chain/compose two functions together with the >> operator
backwardsYell = String.reverse >> String.toUpper

•

-- the << works the same in the reverse direction
backwardsYell = String.toUpper << String.reverse

•

-- a function with a non-alphanumeric name in parentheses creates a new operator
(#) x y = x * y
ten = 5 # 2

•

-- any infix operator becomes a normal function when you wrap it in parentheses
ten = (+) 5 5

•

-- optional type annotations appear above function declarations
isTen : Int -> Bool
isTen n = if n == 10 then True else False

•

Examples

Overview

Function application syntax in Elm does not use parenthesis or commas, and is instead 
whitespace-sensitive.

To define a function, specify its name multiplyByTwo and arguments x, any operations after equal 
sign = is what returned from a function.

multiplyByTwo x = 
    x * 2

To call a function, specify its name and arguments:

https://riptutorial.com/ 23



multiplyByTwo 2  -- 4

Note that syntax like multiplyByTwo(2) is not necessary (even though the compiler doesn't 
complain). The parentheses only serve to resolve precedence:

> multiplyByTwo multiplyByTwo 2 
-- error, thinks it's getting two arguments, but it only needs one 
 
> multiplyByTwo (multiplyByTwo 2) 
4 : number 
 
> multiplyByTwo 2 + 2 
6 : number 
-- same as (multiplyByTwo 2) + 2 
 
> multiplyByTwo (2 + 2) 
8 : number

Lambda expressions

Elm has a special syntax for lambda expressions or anonymous functions:

\arguments -> returnedValue

For example, as seen in List.filter:

> List.filter (\num -> num > 1) [1,2,3] 
[2,3] : List number

More to the depth, a backward slash, \, is used to mark the beginning of lambda expression, and 
the arrow, ->, is used to delimit arguments from the function body. If there are more arguments, 
they get separated by a space:

normalFunction x y = x + y 
-- is equivalent to 
lambdaFunction = \x y -> x + y 
 
> normalFunction 1 2 
3 : number 
 
> lambdaFunction 1 2 
3 : number

Local variables

It is possible to define local variables inside a function to

reduce code repetition•
give name to subexpressions•
reduce the amount of passed arguments.•

https://riptutorial.com/ 24



The construct for this is let ... in ....

bigNumbers = 
    let 
        allNumbers = 
            [1..100] 
 
        isBig number = 
            number > 95 
    in 
        List.filter isBig allNumbers 
 
> bigNumbers 
[96,97,98,99,100] : List number 
 
> allNumbers 
-- error, doesn't know what allNumbers is!

The order of definitions in the first part of let doesn't matter!

outOfOrder = 
    let 
        x = 
            y + 1  -- the compiler can handle this 
 
        y = 
            100 
    in 
        x + y 
 
> outOfOrder 
201 : number

Partial Application

Partial application means calling a function with less arguments than it has and saving the result 
as another function (that waits for the rest of the arguments).

multiplyBy: Int -> Int -> Int 
multiplyBy x y = 
    x * y 
 
 
multiplyByTwo : Int -> Int  -- one Int has disappeared! we now know what x is. 
multiplyByTwo = 
    multiplyBy 2 
 
 
> multiplyByTwo 2 
4 : Int 
 
> multiplyByTwo 4 
8 : Int

As an academic sidenote, Elm can do this because of currying behind the scenes.

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/Currying


Strict and delayed evaluation

In elm, a function's value is computed when the last argument is applied. In the example below, 
the diagnostic from log will be printed when f is invoked with 3 arguments or a curried form of f is 
applied with the last argument.

import String 
import Debug exposing (log) 
 
f a b c = String.join "," (log "Diagnostic" [a,b,c]) -- <function> : String -> String -> 
String -> String 
 
f2 = f "a1" "b2" -- <function> : String -> String 
 
f "A" "B" "C" 
-- Diagnostic: ["A","B","C"] 
"A,B,C" : String 
 
f2 "c3" 
-- Diagnostic: ["a1","b2","c3"] 
"a1,b2,c3" : String

At times you'll want to prevent a function from being applied right away. A typical use in elm is 
Lazy.lazy which provides an abstraction for controlling when functions are applied.

lazy : (() -> a) -> Lazy a

Lazy computations take a function of one () or Unit type argument. The unit type is conventionally 
the type of a placeholder argument. In an argument list, the corresponding argument is specified 
as _, indicating that the value isn't used. The unit value in elm is specified by the special symbol () 
which can conceptually represent an empty tuple, or a hole. It resembles the empty argument list 
in C, Javascript and other languages that use parenthesis for function calls, but it's an ordinary 
value.

In our example, f can be protected from being evaluated immediately with a lambda:

doit f = f () -- <function> : (() -> a) -> a 
whatToDo = \_ -> f "a" "b" "c" -- <function> : a -> String 
-- f is not evaluated yet 
 
doit whatToDo 
-- Diagnostic: ["a","b","c"] 
"a,b,c" : String

Function evaluation is delayed any time a function is partially applied.

defer a f = \_ -> f a -- <function> : a -> (a -> b) -> c -> b 
 
delayF = f "a" "b" |> defer "c" -- <function> : a -> String 
 
doit delayF 
-- Diagnostic: ["a","b","c"] 
"a,b,c" : String

https://riptutorial.com/ 26

http://package.elm-lang.org/packages/elm-lang/lazy/1.0.0/Lazy#lazy


Elm has an always function, which cannot be used to delay evaluation. Because elm evaluates all 
function arguments regardless of whether and when the result of the function application is used, 
wrapping a function application in always won't cause a delay, because f is fully applied as a 
parameter to always.

alwaysF = always (f "a" "b" "c") -- <function> : a -> String 
-- Diagnostic: ["a","b","c"] -- Evaluation wasn't delayed.

Infix operators and infix notation

Elm allows the definition of custom infix operators.

Infix operators are defined using parenthesis around the name of a function.

Consider this example of infix operator for construction Tuples 1 => True -- (1, True):

(=>) : a -> b -> ( a, b ) 
(=>) a b = 
    ( a, b )

Most of the functions in Elm are defined in prefix notation.

Apply any function using infix notation by specifying the first argument before the function name 
enclosed with grave accent character:

import List exposing (append) 
 
 
append [1,1,2] [3,5,8]   -- [1,1,2,3,5,8] 
[1,1,2] `append` [3,5,8] -- [1,1,2,3,5,8]

Read Functions and Partial Application online: https://riptutorial.com/elm/topic/2051/functions-and-
partial-application

https://riptutorial.com/ 27

http://package.elm-lang.org/packages/elm-lang/core/2.1.0/Basics#always
https://riptutorial.com/elm/topic/2051/functions-and-partial-application
https://riptutorial.com/elm/topic/2051/functions-and-partial-application


Chapter 7: Json.Decode

Remarks

Json.Decode exposes two functions to decode a payload, first one is decodeValue which tries to 
decode a Json.Encode.Value, the second one is decodeString which tries to decode a JSON string. 
Both function take 2 parameters, a decoder and a Json.Encode.Value or Json string.

Examples

Decoding a list

The following example can be tested on https://ellie-app.com/m9tk39VpQg/0.

import Html exposing (..) 
import Json.Decode 
 
payload = 
  """ 
  ["fu", "bar"] 
  """ 
 
main = 
  Json.Decode.decodeString decoder payload -- Ok ["fu","bar"] 
  |> toString 
  |> text 
 
decoder = 
  Json.Decode.list Json.Decode.string

Pre-decode a field and decode the rest depending on that decoded value

The following examples can be tested on https://ellie-app.com/m9vmQ8NcMc/0.

import Html exposing (..) 
import Json.Decode 
 
payload = 
  """ 
  [ { "bark": true, "tag": "dog", "name": "Zap", "playful": true } 
  , { "whiskers": true, "tag" : "cat", "name": "Felix" } 
  , {"color": "red", "tag": "tomato"} 
  ] 
  """ 
 
-- OUR MODELS 
 
type alias Dog = 
  { bark: Bool 
  , name: String 
  , playful: Bool 
  } 

https://riptutorial.com/ 28

https://ellie-app.com/m9tk39VpQg/0
https://ellie-app.com/m9vmQ8NcMc/0


 
type alias Cat = 
  { whiskers: Bool 
  , name: String 
  } 
 
-- OUR DIFFERENT ANIMALS 
 
type Animal 
  = DogAnimal Dog 
  | CatAnimal Cat 
  | NoAnimal 
 
main = 
  Json.Decode.decodeString decoder payload 
  |> toString 
  |> text 
 
decoder = 
  Json.Decode.field "tag" Json.Decode.string 
    |> Json.Decode.andThen animalType 
    |> Json.Decode.list 
 
animalType tag = 
  case tag of 
    "dog" -> 
      Json.Decode.map3 Dog 
          (Json.Decode.field "bark" Json.Decode.bool) 
          (Json.Decode.field "name" Json.Decode.string) 
          (Json.Decode.field "playful" Json.Decode.bool) 
        |> Json.Decode.map DogAnimal 
    "cat" -> 
      Json.Decode.map2 Cat 
          (Json.Decode.field "whiskers" Json.Decode.bool) 
          (Json.Decode.field "name" Json.Decode.string) 
        |> Json.Decode.map CatAnimal 
    _ -> 
      Json.Decode.succeed NoAnimal

Decoding JSON from Rust enum

This is useful if you use rust in the backend and elm on the front end

enum Complex{ 
    Message(String), 
    Size(u64) 
} 
 
let c1 = Complex::Message("hi"); 
let c2 = Complex::Size(1024u64);

The encoded Json from rust will be:

c1: 
    {"variant": "Message", 
     "fields": ["hi"] 
    } 
c2: 

https://riptutorial.com/ 29



    {"variant": "Size", 
     "fields": [1024] 
    }

The decoder in elm

import Json.Decode as Decode exposing (Decoder) 
 
type Complex = Message String 
    | Size Int 
 
-- decodes json to Complex type 
complexDecoder: Decoder Value 
complexDecoder = 
    ("variant" := Decode.string `Decode.andThen` variantDecoder) 
 
variantDecoder: String -> Decoder Value 
variantDecoder variant = 
    case variant of 
        "Message" -> 
            Decode.map Message 
                ("fields" := Decode.tuple1 (\a -> a) Decode.string) 
        "Size" -> 
            Decode.map Size 
                ("fields" := Decode.tuple1 (\a -> a) Decode.int) 
        _ -> 
            Debug.crash "This can't happen"

Usage: the data is requested from http rest api and the decoding of the payload will be

    Http.fromJson complexDecoder payload

Decoding from string will be

    Decode.decodeString complexDecoder payload

Decoding a list of records

The following code can be found in a demo here: https://ellie-app.com/mbFwJT9jD3/0

import Html exposing (..) 
import Json.Decode exposing (Decoder) 
 
payload = 
  """ 
  [{ 
      "id": 0, 
      "name": "Adam Carter", 
      "work": "Unilogic", 
      "email": "adam.carter@unilogic.com", 
      "dob": "24/11/1978", 
      "address": "83 Warner Street", 
      "city": "Boston", 
      "optedin": true 
    }, 

https://riptutorial.com/ 30

https://ellie-app.com/mbFwJT9jD3/0


    { 
      "id": 1, 
      "name": "Leanne Brier", 
      "work": "Connic", 
      "email": "leanne.brier@connic.org", 
      "dob": "13/05/1987", 
      "address": "9 Coleman Avenue", 
      "city": "Toronto", 
      "optedin": false 
    }] 
  """ 
 
type alias User = 
  { name: String 
  , work: String 
  , email: String 
  , dob: String 
  , address: String 
  , city: String 
  , optedin: Bool 
  } 
 
main = 
  Json.Decode.decodeString decoder payload 
  |> toString 
  |> text 
 
decoder: Decoder (List User) 
decoder = 
    Json.Decode.map7 User 
    (Json.Decode.field "name" Json.Decode.string) 
    (Json.Decode.field "work" Json.Decode.string) 
    (Json.Decode.field "email" Json.Decode.string) 
    (Json.Decode.field "dob" Json.Decode.string) 
    (Json.Decode.field "address" Json.Decode.string) 
    (Json.Decode.field "city" Json.Decode.string) 
    (Json.Decode.field "optedin" Json.Decode.bool) 
    |> Json.Decode.list 

Decode a Date

In case you have json with an ISO date string like this

JSON.stringify({date: new Date()}) 
// -> "{"date":"2016-12-12T13:24:34.470Z"}"

You can map it to elm Date type:

import Html exposing (text) 
import Json.Decode as JD 
import Date 
 
payload = """{"date":"2016-12-12T13:24:34.470Z"}""" 
 
dateDecoder : JD.Decoder Date.Date 
dateDecoder = 
  JD.string 
    |> JD.andThen ( \str -> 

https://riptutorial.com/ 31



          case Date.fromString str of 
            Err err -> JD.fail err 
            Ok date -> JD.succeed date ) 
 
payloadDecoder : JD.Decoder Date.Date 
payloadDecoder = 
  JD.field "date" dateDecoder 
 
main = 
  JD.decodeString payloadDecoder payload 
  |> toString 
  |> text

Decode a List of Objects Containing Lists of Objects

See Ellie for a working example. This example uses the NoRedInk/elm-decode-pipeline module.

Given a list of JSON objects, which themselves contain lists of JSON objects:

[ 
  { 
    "id": 0, 
    "name": "Item 1", 
    "transactions": [ 
      { "id": 0, "amount": 75.00 }, 
      { "id": 1, "amount": 25.00 } 
    ] 
  }, 
  { 
    "id": 1, 
    "name": "Item 2", 
    "transactions": [ 
      { "id": 0, "amount": 50.00 }, 
      { "id": 1, "amount": 15.00 } 
    ] 
  } 
]

If the above string is in the payload string, that can be decoded using the following:

module Main exposing (main) 
 
import Html exposing (..) 
import Json.Decode as Decode exposing (Decoder) 
import Json.Decode.Pipeline as JP 
import String 
 
 
type alias Item = 
    { id : Int 
    , name : String 
    , transactions : List Transaction 
    } 
 
 
type alias Transaction = 
    { id : Int 

https://riptutorial.com/ 32

https://ellie-app.com/qw3Hmcp3NGa1/0
https://github.com/NoRedInk/elm-decode-pipeline


    , amount : Float 
    } 
 
 
main = 
    Decode.decodeString (Decode.list itemDecoder) payload 
        |> toString 
        |> String.append "JSON " 
        |> text 
 
 
 
itemDecoder : Decoder Item 
itemDecoder = 
    JP.decode Item 
        |> JP.required "id" Decode.int 
        |> JP.required "name" Decode.string 
        |> JP.required "transactions" (Decode.list transactionDecoder) 
 
 
transactionDecoder : Decoder Transaction 
transactionDecoder = 
    JP.decode Transaction 
        |> JP.required "id" Decode.int 
        |> JP.required "amount" Decode.float

Read Json.Decode online: https://riptutorial.com/elm/topic/2849/json-decode

https://riptutorial.com/ 33

https://riptutorial.com/elm/topic/2849/json-decode


Chapter 8: Lists and Iteration

Remarks

The List (linked list) shines in sequential access:

accessing the first element•
prepending to the front of the list•
deleting from the front of the list•

On the other hand, it's not ideal for random access (ie. getting nth element) and traversation in 
reverse order, and you might have better luck (and performance) with the Array data structure.

Examples

Creating a list by range

0.18.0

Prior to 0.18.0 you can create ranges like this:

> range = [1..5] 
[1,2,3,4,5] : List number 
> 
> negative = [-5..3] 
[-5,-4,-3,-2,-1,0,1,2,3] : List number

0.18.0

In 0.18.0 The [1..5] syntax has been removed.

> range = List.range 1 5 
[1,2,3,4,5] : List number 
> 
> negative = List.range -5 3 
[-5,-4,-3,-2,-1,0,1,2,3] : List number

Ranges created by this syntax are always inclusive and the step is always 1.

Creating a list

> listOfNumbers = [1,4,99] 
[1,4,99] : List number 
> 
> listOfStrings = ["Hello","World"] 
["Hello","World"] : List String 
> 
> emptyList = []   -- can be anything, we don't know yet 
[] : List a 

https://riptutorial.com/ 34

https://en.wikipedia.org/wiki/Linked_list
https://github.com/elm-lang/elm-platform/blob/master/upgrade-docs/0.18.md#list-ranges


>

Under the hood, List (linked list) is constructed by the :: function (called "cons"), which takes two 
arguments: an element, known as the head, and a (possibly empty) list the head is prepended to.

> withoutSyntaxSugar = 1 :: [] 
[1] : List number 
> 
> longerOne = 1 :: 2 :: 3 :: [] 
[1,2,3] : List number 
> 
> nonemptyTail = 1 :: [2] 
[1,2] : List number 
>

List can only take values of one type, so something like [1,"abc"] is not possible. If you need this, 
use tuples.

> notAllowed = [1,"abc"] 
==================================== ERRORS ==================================== 
 
-- TYPE MISMATCH --------------------------------------------- repl-temp-000.elm 
 
The 1st and 2nd elements are different types of values. 
 
8|              [1,"abc"] 
               ^^^^^ 
The 1st element has this type: 
 
    number 
 
But the 2nd is: 
 
    String 
 
Hint: All elements should be the same type of value so that we can iterate 
through the list without running into unexpected values. 
 
 
> 

Getting elements

> ourList = [1,2,3,4,5] 
[1,2,3,4,5] : List number 
> 
> firstElement = List.head ourList 
Just 1 : Maybe Int 
> 
> allButFirst = List.tail ourList 
Just [2,3,4,5] : Maybe (List Int)

This wrapping into Maybe type happens because of the following scenario:

What should List.head return for an empty list? (Remember, Elm doesn't have exceptions or 

https://riptutorial.com/ 35

https://en.wikipedia.org/wiki/Linked_list


nulls.)

> headOfEmpty = List.head [] 
Nothing : Maybe Int 
> 
> tailOfEmpty = List.tail [] 
Nothing : Maybe (List Int) 
> 
> tailOfAlmostEmpty = List.tail [1] -- warning ... List is a *linked list* :) 
Just [] : Maybe (List Int)

Transforming every element of a list

List.map : (a -> b) -> List a -> List b is a higher-order function that applies a one-parameter 
function to each element of a list, returning a new list with the modified values.

import String 
 
ourList : List String 
ourList = 
    ["wubba", "lubba", "dub", "dub"] 
 
lengths : List Int 
lengths = 
    List.map String.length ourList 
-- [5,5,3,3] 
 
slices : List String 
slices = 
    List.map (String.slice 1 3) ourList 
-- ["ub", "ub", "ub", "ub"]

If you need to know the index of the elements you can use List.indexedMap : (Int -> a -> b) -> 
List a -> List b:

newList : List String 
newList = 
    List.indexedMap (\index element -> String.concat [toString index, ": ", element]) ourList 
-- ["0: wubba","1: lubba","2: dub","3: dub"] 

Filtering a list

List.filter : (a -> Bool) -> List a -> List a is a higher-order function which takes a one-
parameter function from any value to a boolean, and applies that function to every element of a 
given list, keeping only those elements for which the function returns True on. The function that 
List.filter takes as its first parameter is often referred to as a predicate.

import String 
 
catStory : List String 
catStory = 
    ["a", "crazy", "cat", "walked", "into", "a", "bar"] 
 

https://riptutorial.com/ 36

http://stackoverflow.com/questions/3230944/what-does-predicate-mean-in-the-context-of-computer-science


-- Any word with more than 3 characters is so long! 
isLongWord : String -> Bool 
isLongWord string = 
    String.length string > 3 
 
longWordsFromCatStory : List String 
longWordsFromCatStory = 
    List.filter isLongWord catStory

Evaluate this in elm-repl:

> longWordsFromCatStory 
["crazy", "walked", "into"] : List String 
> 
> List.filter (String.startsWith "w") longWordsFromCatStory 
["walked"] : List String

Pattern Matching on a list

We can match on lists like any other data type, though they are somewhat unique, in that the 
constructor for building up lists is the infix function ::. (See the example Creating a list for more on 
how that works.)

matchMyList : List SomeType -> SomeOtherType 
matchMyList myList = 
    case myList of 
        [] -> 
            emptyCase 
 
        (theHead :: theRest) -> 
            doSomethingWith theHead theRest

We can match as many elements in the list as we want:

hasAtLeast2Elems : List a -> Bool 
hasAtLeast2Elems myList = 
    case myList of 
        (e1 :: e2 :: rest) -> 
            True 
 
        _ -> 
            False 
 
hasAtLeast3Elems : List a -> Bool 
hasAtLeast3Elems myList = 
    case myList of 
        (e1 :: e2 :: e3 :: rest) -> 
            True 
 
        _ -> 
            False

Getting nth element from the list

List

https://riptutorial.com/ 37

http://www.riptutorial.com/elm/example/5282/creating-a-list


doesn't support "random access", which means it takes more work to get, say, the fifth element 
from the list than the first element, and as a result there's no List.get nth list function. One has 
to go all the way from the beginning (1 -> 2 -> 3 -> 4 -> 5).

If you need random access, you might get better results (and performance) with random access 
data structures, like Array, where taking the first element takes the same amount of work as taking, 
say, the 1000th. (complexity O(1)).

Nevertheless, it's possible (but discouraged) to get nth element:

get : Int -> List a -> Maybe a 
get nth list = 
    list 
        |> List.drop (nth - 1) 
        |> List.head 
 
fifth : Maybe Int 
fifth = get 5 [1..10] 
--    = Just 5 
 
nonexistent : Maybe Int 
nonexistent = get 5 [1..3] 
--          = Nothing

Again, this takes significantly more work the bigger the nth argument is.

Reducing a list to a single value

In Elm, reducing functions are called "folds", and there are two standard methods to "fold" values 
up: from the left, foldl, and from the right, foldr.

> List.foldl (+) 0 [1,2,3] 
6 : number

The arguments to foldl and foldr are:

reducing function: newValue -> accumulator -> accumulator•
accumulator starting value•
list to reduce•

One more example with custom function:

type alias Counts = 
    { odd : Int 
    , even : Int 
    } 
 
addCount : Int -> Counts -> Counts 
addCount num counts = 
    let 
        (incOdd, incEven) = 
            if num `rem` 2 == 0 
                then (0,1) 

https://riptutorial.com/ 38



                else (1,0) 
    in 
        { counts 
            | odd = counts.odd + incOdd 
            , even = counts.even + incEven 
        } 
 
> List.foldl 
      addCount 
      { odd = 0, even = 0 } 
      [1,2,3,4,5] 
{ odd = 3, even = 2 } : Counts

In the first example above the program goes like this:

List.foldl (+) 0 [1,2,3] 
3 + (2 + (1 + 0)) 
3 + (2 + 1) 
3 + 3 
6

List.foldr (+) 0 [1,2,3] 
1 + (2 + (3 + 0)) 
1 + (2 + 3) 
1 + 5 
6

In the case of a commutative function like (+) there's not really a difference.

But see what happens with (::):

List.foldl (::) [] [1,2,3] 
3 :: (2 :: (1 :: [])) 
3 :: (2 :: [1]) 
3 :: [2,1] 
[3,2,1]

List.foldr (::) [] [1,2,3] 
1 :: (2 :: (3 :: [])) 
1 :: (2 :: [3]) 
1 :: [2,3] 
[1,2,3]

Creating a list by repeating a value

> List.repeat 3 "abc" 
["abc","abc","abc"] : List String

You can give List.repeat any value:

> List.repeat 2 {a = 1, b = (2,True)} 
[{a = 1, b = (2,True)}, {a = 1, b = (2,True)}] 
  : List {a : Int, b : (Int, Bool)}

https://riptutorial.com/ 39

https://en.wikipedia.org/wiki/Commutative_property


Sorting a list

By default, List.sort sorts in ascending order.

> List.sort [3,1,5] 
[1,3,5] : List number

List.sort needs the list elements to be comparable. That means: String, Char, number (Int and Float
), List of comparable or tuple of comparable.

> List.sort [(5,"ddd"),(4,"zzz"),(5,"aaa")] 
[(4,"zzz"),(5,"aaa"),(5,"ddd")] : List ( number, String ) 
 
> List.sort [[3,4],[2,3],[4,5],[1,2]] 
[[1,2],[2,3],[3,4],[4,5]] : List (List number)

You can't sort lists of Bool or objects with List.sort. For that see Sorting a list with custom 
comparator.

> List.sort [True, False] 
-- error, can't compare Bools

Sorting a list with custom comparator

List.sortWith allows you to sort lists with data of any shape - you supply it with a comparison 
function.

compareBools : Bool -> Bool -> Order 
compareBools a b = 
    case (a,b) of 
        (False, True) -> 
            LT 
 
        (True, False) -> 
            GT 
 
        _ -> 
            EQ 
 
> List.sortWith compareBools [False, True, False, True] 
[False, False, True, True] : List Bool

Reversing a list

Note: this is not very efficient due to the nature of List (see Remarks below). It will be better to 
construct the list the "right" way from the beginning than to construct it and then reverse it.

> List.reverse [1,3,5,7,9] 
[9,7,5,3,1] : List number

https://riptutorial.com/ 40

http://www.riptutorial.com/elm/example/7089/comparable-data-types
http://www.riptutorial.com/elm/example/7087/tuples


Sorting a list in descending order

By default List.sort sorts in ascending order, with the compare function.

There are two ways to sort in descending order: one efficient and one inefficient.

The efficient way: List.sortWith and a descending comparison function.1. 

descending a b = 
    case compare a b of 
      LT -> GT 
      EQ -> EQ 
      GT -> LT 
 
> List.sortWith descending [1,5,9,7,3] 
[9,7,5,3,1] : List number

The inefficient way (discouraged!): List.sort and then List.reverse.2. 

> List.reverse (List.sort [1,5,9,7,3]) 
[9,7,5,3,1] : List number

Sorting a list by a derived value

List.sortBy allows to use a function on the elements and use its result for the comparison.

> List.sortBy String.length ["longest","short","medium"] 
["short","medium","longest"] : List String 
-- because the lengths are: [7,5,6]

It also nicely works with record accessors:

people = 
    [ { name = "John", age = 43 } 
    , { name = "Alice", age = 30 } 
    , { name = "Rupert", age = 12 } 
    ] 
 
> List.sortBy .age people 
[ { name = "Rupert", age = 12 } 
, { name = "Alice", age = 30 } 
, { name = "John", age = 43 } 
] : List {name: String, age: number} 
 
> List.sortBy .name people 
[ { name = "Alice", age = 30 } 
, { name = "John", age = 43 } 
, { name = "Rupert", age = 12 } 
] : List {name: String, age: number}

Read Lists and Iteration online: https://riptutorial.com/elm/topic/1635/lists-and-iteration

https://riptutorial.com/ 41

https://riptutorial.com/elm/topic/1635/lists-and-iteration


Chapter 9: Making complex update functions 
with ccapndave/elm-update-extra

Introduction

ccapndave/elm-update-extra is a fantastic package which helps you handle more complex 
updating functions, and may be very useful.

Examples

Message which call a list of messages

Using sequence function you can easily describe a message that calls a list of other messages. It's 
useful when dealing with semantics of your messages.

Example 1: You are making a game engine, and you need to refresh the screen on every frame.

module Video exposing (..) 
type Message = module Video exposing (..) 
 
import Update.Extra exposing (sequence) 
 
-- Model definition [...] 
 
type Message 
    = ClearBuffer 
    | DrawToBuffer 
    | UpdateLogic 
    | Update 
 
update : Message -> Model -> (Model, Cmd) 
update msg model = 
    case msg of 
        ClearBuffer -> 
            -- do something 
        DrawToBuffer -> 
            -- do something 
        UpdateLogic -> 
            -- do something 
        Update -> 
            model ! [] 
                |> sequence update [ ClearBuffer 
                                   , DrawToBuffer 
                                   , UpdateLogic]

Chaining messages with andThen

The andThen function allows update call composition. Can be used with the pipeline operator (|>) to 
chain updates.

https://riptutorial.com/ 42



Example: You are making a document editor, and you want that each modification message you 
send to your document, you also save it:

import Update.Extra exposing (andThen) 
import Update.Extra.Infix exposing (..) 
 
-- type alias Model = [...] 
 
type Message 
    = ModifyDocumentWithSomeSettings 
    | ModifyDocumentWithOtherSettings 
    | SaveDocument 
 
update : Model -> Message -> (Model, Cmd) 
update model msg = 
    case msg of 
        ModifyDocumentWithSomeSettings -> 
            -- make the modifications 
            (modifiedModel, Cmd.none) 
            |> andThen SaveDocument 
        ModifyDocumentWithOtherSettings -> 
            -- make other modifications 
            (modifiedModel, Cmd.none) 
            |> andThen SaveDocument 
        SaveDocument -> 
            -- save document code

If you import also Update.Extra.Infix exposing (..) you may be able to use the infix operator:

update : Model -> Message -> (Model, Cmd) 
update model msg = 
    case msg of 
        ModifyDocumentWithSomeSettings -> 
            -- make the modifications 
            (modifiedModel, Cmd.none) 
            :> andThen SaveDocument 
        ModifyDocumentWithOtherSettings -> 
            -- make other modifications 
            (modifiedModel, Cmd.none) 
            :> SaveDocument 
        SaveDocument -> 
            -- save document code

Read Making complex update functions with ccapndave/elm-update-extra online: 
https://riptutorial.com/elm/topic/9737/making-complex-update-functions-with-ccapndave-elm-
update-extra

https://riptutorial.com/ 43

https://riptutorial.com/elm/topic/9737/making-complex-update-functions-with-ccapndave-elm-update-extra
https://riptutorial.com/elm/topic/9737/making-complex-update-functions-with-ccapndave-elm-update-extra


Chapter 10: Pattern Matching

Examples

Function arguments

type Dog = Dog String 
 
dogName1 dog = 
    case dog of 
      Dog name -> 
         name 
 
dogName2 (Dog name) -> 
     name

dogName1 and dogName2 are equivalent. Note that this only works for ADTs that have a single 
constructor.

type alias Pet = 
   { name: String 
   , weight: Float 
 
   } 
 
render : Pet -> String 
render ({name, weight} as pet) = 
    (findPetEmoji pet) ++ " " ++ name ++ " weighs " ++ (toString weight) 
 
findPetEmoji : Pet -> String 
findPetEmoji pet = 
    Debug.crash "Implementation TBD"

Here we deconstruct a record and also get a reference to the undeconstructed record.

Single type deconstructed argument

type ProjectIdType = ProjectId String 
 
getProject : ProjectIdType -> Cmd Msg 
getProject (ProjectId id) = 
    Http.get <| "/projects/" ++ id

Read Pattern Matching online: https://riptutorial.com/elm/topic/7168/pattern-matching

https://riptutorial.com/ 44

https://riptutorial.com/elm/topic/7168/pattern-matching


Chapter 11: Ports (JS interop)

Syntax

Elm (receiving): port functionName : (value -> msg) -> Sub msg•
JS (sending): app.ports.functionName.send(value)•
Elm (sending): port functionName : args -> Cmd msg•
JS (receiving): app.ports.functionName.subscribe(function(args) { ... });•

Remarks

Consult http://guide.elm-lang.org/interop/javascript.html from The Elm Guide to aid in 
understanding these examples.

Examples

Overview

A module, that is using Ports should have port keyword in it's module definition.

port module Main exposing (..)

It is impossible to use ports with Html.App.beginnerProgram, since it does not allow using 
Subscriptions or Commands.

Ports are integrated in to update loop of Html.App.program or Html.App.programWithFlags.

Note

program and programWithFlags in elm 0.18 are inside the package Html instead of Html.App.

Outgoing

Outgoing ports are used as Commands, that you return from your update function.

Elm side

Define outgoing port:

port output : () -> Cmd msg

In this example we send an empty Tuple, just to trigger a subscription on the JavaScript side.

https://riptutorial.com/ 45

http://guide.elm-lang.org/interop/javascript.html


To do so, we have to apply output function with an empty Tuple as argument, to get a Command 
for sending the outgoing data from Elm.

update msg model = 
    case msg of 
        TriggerOutgoing data -> 
            ( model, output () )

JavaScript side

Initialize the application:

var root = document.body; 
var app = Elm.Main.embed(root);

Subscribe to a port with a corresponding name:

app.ports.output.subscribe(function () { 
    alert('Outgoing message from Elm!'); 
});

Note

As of 0.17.0, immediate outgoing message to JavaScript from your initial state will have no 
effect.

init : ( Model, Cmd Msg ) 
init = 
    ( Model 0, output () ) -- Nothing will happen

See the workaround in the example below.

Incoming

Incoming data from JavaScript is going through Subscriptions.

Elm side

First, we need to define an incoming port, using the following syntax:

port input : (Int -> msg) -> Sub msg

We can use Sub.batch if we have multiple subscriptions, this example will only contain one 
Subscription to input port

https://riptutorial.com/ 46



subscriptions : Model -> Sub Msg 
subscriptions model = 
    input Get

Then you have to pass the subscriptions to your Html.program:

main = 
    Html.program 
        { init = init 
        , view = view 
        , update = update 
        , subscriptions = subscriptions 
        }

JavaScript side

Initialize the application:

var root = document.body; 
var app = Elm.Main.embed(root);

Send the message to Elm:

var counter = 0; 
 
document.body.addEventListener('click', function () { 
    counter++; 
    app.ports.input.send(counter); 
});

Note

Please note, that as of 0.17.0 the immediate app.ports.input.send(counter); after app initialization 
will have no effect!

Pass all the required data for the start-up as Flags using Html.programWithFlags

Immediate outgoing message on start-up in 0.17.0

To send an immediate message with data to JavaScript, you have to trigger an action from your 
init.

init : ( Model, Cmd Msg ) 
init = 
    ( Model 0, send SendOutgoing ) 
 
 
send : msg -> Cmd msg 
send msg = 

https://riptutorial.com/ 47



    Task.perform identity identity (Task.succeed msg)

Get started

index.html

<!DOCTYPE html> 
<html> 
  <head> 
    <meta charset="utf-8"> 
    <title>Trying out ports</title> 
  </head> 
  <body> 
    <div id="app"></div> 
    <script src="elm.js"></script> 
    <script> 
 
      var node = document.getElementById('app'); 
      var app = Elm.Main.embed(node); 
 
      // subscribe to messages from Elm 
      app.ports.toJs.subscribe(function(messageFromElm) { 
        alert(messageFromElm); 
        // we could send something back by 
        // app.ports.fromJs.send('Hey, got your message! Sincerely, JS'); 
      }); 
 
      // wait three seconds and then send a message from JS to Elm 
      setTimeout(function () { 
        app.ports.fromJs.send('Hello from JS'); 
      }, 3000); 
 
    </script> 
  </body> 
</html>

Main.elm

port module Main exposing (..) 
 
import Html 
 
port toJs : String -> Cmd msg 
port fromJs : (String -> msg) -> Sub msg 
 
main = 
   Html.program 
        { init = (Nothing, Cmd.none) -- our model will be the latest message from JS (or 
Nothing for 'no message yet') 
        , update = update 
        , view = view 
        , subscriptions = subscriptions 
        } 
 
type Msg 
    = GotMessageFromJs String 
 
update msg model = 

https://riptutorial.com/ 48



    case msg of 
        GotMessageFromJs message -> 
            (Just message, toJs "Hello from Elm") 
 
view model = 
    case model of 
        Nothing -> 
            Html.text "No message from JS yet :(" 
        Just message -> 
            Html.text ("Last message from JS: " ++ message) 
 
subscriptions model = 
    fromJs GotMessageFromJs

Install the elm-lang/html package if you haven't yet by elm-package install elm-lang/html --yes.

Compile this code using elm-make Main.elm --yes --output elm.js so that the HTML file finds it.

If everything goes well, you should be able to open the index.html file with the "No message" text 
displayed. After three seconds the JS sends a message, Elm gets it, changes its model, sends a 
response, JS gets it and opens an alert.

Read Ports (JS interop) online: https://riptutorial.com/elm/topic/2200/ports--js-interop-

https://riptutorial.com/ 49

https://riptutorial.com/elm/topic/2200/ports--js-interop-


Chapter 12: Subscriptions

Remarks

Subscriptions are means to listen to inputs. Incoming ports, keyboard or mouse events, 
WebSocket messages, geolocation and page visibility changes, all can serve as inputs.

Examples

Basic subscription to Time.every event with 'unsubscribe'

0.18.0

Model is passed to subscriptions which means that every state change can modify subscriptions.

import Html exposing ( Html, div, text, button ) 
import Html.Events exposing ( onClick ) 
import Time 
 
main : Program Never Model Msg 
main = 
    Html.program 
        { init = init 
        , update = update 
        , subscriptions = subscriptions 
        , view = view 
        } 
 
-- MODEL 
 
type alias Model = 
    { time: Time.Time 
    , suspended: Bool 
    } 
 
init : (Model, Cmd Msg) 
init = 
    ( Model 0 False, Cmd.none ) 
 
-- UPDATE 
 
type Msg 
    = Tick Time.Time 
    | SuspendToggle 
 
update : Msg -> Model -> ( Model, Cmd Msg ) 
update msg model = 
    case msg of 
        Tick newTime -> 
            ( { model | time = newTime }, Cmd.none ) 
 
        SuspendToggle -> 
            ( { model | suspended = not model.suspended }, Cmd.none ) 
 

https://riptutorial.com/ 50

http://www.riptutorial.com/elm/example/7189/incoming


-- SUBSCRIPTIONS 
 
subscriptions : Model -> Sub Msg 
subscriptions model = 
    if model.suspended then 
        Sub.none 
    else 
        Time.every Time.second Tick 
 
-- VIEW 
 
view : Model -> Html Msg 
view model = 
    div [] 
        [ div [] [ text <| toString model ] 
        , button [ onClick SuspendToggle ] [ text ( if model.suspended then "Resume" else 
"Suspend" ) ] 
        ]

Read Subscriptions online: https://riptutorial.com/elm/topic/4279/subscriptions

https://riptutorial.com/ 51

https://riptutorial.com/elm/topic/4279/subscriptions


Chapter 13: The Elm Architecture

Introduction

The recommended way to structure your applications is dubbed 'the Elm Architecture.'

The simplest program consists of a model record storing all data that might be updated, a union 
type Msg that defines ways your program updates that data, a function update which takes the 
model and a Msg and returns a new model, and a function view which takes a model and returns 
the HTML your page will display. Anytime a function returns a Msg, the Elm runtime uses it to 
update the page.

Examples

Beginner program

Html has beginnerProgram mostly for learning purposes.

beginnerProgram is not capable of handling Subscriptions or running Commands.

It is only capable of handling user input from DOM Events.

It only requires a view to render the model and an update function to handle state changes.

Example

Consider this minimal example of beginnerProgram.

The model in this example consists of single Int value.

The update function has only one branch, which increments the Int, stored in the model.

The view renders the model and attaches click DOM Event.

See how to build the example in Initialize and build

import Html exposing (Html, button, text) 
import Html exposing (beginnerProgram) 
import Html.Events exposing (onClick) 
 
 
main : Program Never 
main = 
    beginnerProgram { model = 0, view = view, update = update } 
 
 
-- UPDATE 
 

https://riptutorial.com/ 52

http://package.elm-lang.org/packages/elm-lang/html/latest/Html
http://www.riptutorial.com/elm/example/7220/initialize-and-build


 
type Msg 
    = Increment 
 
update : Msg -> Int -> Int 
update msg model = 
    case msg of 
        Increment -> 
            model + 1 
 
 
-- VIEW 
 
 
view : Int -> Html Msg 
view model = 
    button [ onClick Increment ] [ text ("Increment: " ++ (toString model)) ]

Program

program is a good pick, when your application does not require any external data for initialization.

It is capable of handling Subscriptions and Commands, which enables way more opportunities for 
handling I/O, such as HTTP communication or interop with JavaScript.

The initial state is required to return start-up Commands along with the Model.

The initialization of program will require subscriptions to be provided, along with model, view and 
update.

See the type definition:

program : 
    { init : ( model, Cmd msg ) 
    , update : msg -> model -> ( model, Cmd msg ) 
    , subscriptions : model -> Sub msg 
    , view : model -> Html msg 
    } 
    -> Program Never

Example

The simplest way to illustrate, how you can use Subscriptions is to setup a simple Port 
communication with JavaScript.

See how to build the example in Initialize and build / Embedding into HTML

port module Main exposing (..) 
 
import Html exposing (Html, text) 
import Html exposing (program) 
 
 

https://riptutorial.com/ 53

http://www.riptutorial.com/elm/topic/4279/subscriptions
http://www.riptutorial.com/elm/topic/2200/ports--js-interop-
http://www.riptutorial.com/elm/example/7220/initialize-and-build
http://www.riptutorial.com/elm/example/13029/embedding-into-html


main : Program Never 
main = 
    program 
        { init = init 
        , view = view 
        , update = update 
        , subscriptions = subscriptions 
        } 
 
 
port input : (Int -> msg) -> Sub msg 
 
 
-- MODEL 
 
 
type alias Model = 
    Int 
 
 
init : ( Model, Cmd msg ) 
init = 
    ( 0, Cmd.none ) 
 
 
-- UPDATE 
 
 
type Msg = Incoming Int 
 
 
update : Msg -> Model -> ( Model, Cmd msg ) 
update msg model = 
    case msg of 
        Incoming x -> 
          ( x, Cmd.none ) 
 
 
-- SUBSCRIPTIONS 
 
 
subscriptions : Model -> Sub Msg 
subscriptions model = 
    input Incoming 
 
 
-- VIEW 
 
 
view : Model -> Html msg 
view model = 
    text (toString model)

<!DOCTYPE html> 
<html> 
    <head> 
        <script src='elm.js'></script> 
</head> 
    <body> 
    <div id='app'></div> 
    <script>var app = Elm.Main.embed(document.getElementById('app'));</script> 

https://riptutorial.com/ 54



    <button onclick='app.ports.input.send(1);'>send</button> 
</body> 
</html>

Program with Flags

programWithFlags has only one difference from program.

It can accept the data upon initialization from JavaScript:

var root = document.body; 
var user = { id: 1, name: "Bob" }; 
var app = Elm.Main.embed( root, user );

The data, passed from JavaScript is called Flags.

In this example we are passing a JavaScript Object to Elm with user information, it is a good 
practice to specify a Type Alias for flags.

type alias Flags = 
    { id: Int 
    , name: String 
    }

Flags are passed to the init function, producing the initial state:

init : Flags -> ( Model, Cmd Msg ) 
init flags = 
    let 
        { id, name } = 
            flags 
    in 
        ( Model id name, Cmd.none )

You might notice the difference from it's type signature:

programWithFlags : 
    { init : flags -> ( model, Cmd msg )          -- init now accepts flags 
    , update : msg -> model -> ( model, Cmd msg ) 
    , subscriptions : model -> Sub msg 
    , view : model -> Html msg 
    } 
    -> Program flags

The initialization code looks almost the same, since it's only init function that is different.

main = 
    programWithFlags 
        { init = init 
        , update = update 
        , view = view 
        , subscriptions = subscriptions 
        }

https://riptutorial.com/ 55



One way parent-child communication

Example demonstrates component composition and one-way message passing from parent to 
children.

0.18.0

Component composition relies on Message tagging with Html.App.map

0.18.0

In 0.18.0 HTML.App was collapsed into HTML

Component composition relies on Message tagging with Html.map

Example

See how to build the example in Initialise and build

module Main exposing (..) 
 
import Html exposing (text, div, button, Html) 
import Html.Events exposing (onClick) 
import Html.App exposing (beginnerProgram) 
 
 
main = 
    beginnerProgram 
        { view = view 
        , model = init 
        , update = update 
        } 
 
{- In v0.18.0 HTML.App was collapsed into HTML 
   Use Html.map instead of Html.App.map 
-} 
view : Model -> Html Msg 
view model = 
    div [] 
        [ Html.App.map FirstCounterMsg (counterView model.firstCounter) 
        , Html.App.map SecondCounterMsg (counterView model.secondCounter) 
        , button [ onClick ResetAll ] [ text "Reset counters" ] 
        ] 
 
 
type alias Model = 
    { firstCounter : CounterModel 
    , secondCounter : CounterModel 
    } 
 
 
init : Model 
init = 
    { firstCounter = 0 
    , secondCounter = 0 

https://riptutorial.com/ 56

https://github.com/elm-lang/elm-platform/blob/master/upgrade-docs/0.18.md#package-changes
http://www.riptutorial.com/elm/example/7220/initialize-and-build


    } 
 
 
type Msg 
    = FirstCounterMsg CounterMsg 
    | SecondCounterMsg CounterMsg 
    | ResetAll 
 
 
update : Msg -> Model -> Model 
update msg model = 
    case msg of 
        FirstCounterMsg childMsg -> 
            { model | firstCounter = counterUpdate childMsg model.firstCounter } 
 
        SecondCounterMsg childMsg -> 
            { model | secondCounter = counterUpdate childMsg model.secondCounter } 
 
        ResetAll -> 
            { model 
                | firstCounter = counterUpdate Reset model.firstCounter 
                , secondCounter = counterUpdate Reset model.secondCounter 
            } 
 
 
type alias CounterModel = 
    Int 
 
 
counterView : CounterModel -> Html CounterMsg 
counterView model = 
    div [] 
        [ button [ onClick Decrement ] [ text "-" ] 
        , text (toString model) 
        , button [ onClick Increment ] [ text "+" ] 
        ] 
 
 
type CounterMsg 
    = Increment 
    | Decrement 
    | Reset 
 
 
counterUpdate : CounterMsg -> CounterModel -> CounterModel 
counterUpdate msg model = 
    case msg of 
        Increment -> 
            model + 1 
 
        Decrement -> 
            model - 1 
 
        Reset -> 
            0

Message tagging with Html.App.map

Components define their own Messages, sent after emitted DOM Events, eg. CounterMsg from 

https://riptutorial.com/ 57



Parent-child communication

type CounterMsg 
    = Increment 
    | Decrement 
    | Reset

The view of this component will send messages of CounterMsg type, therefore the view type 
signature is Html CounterMsg.

To be able to reuse counterView inside parent component's view, we need to pass every CounterMsg 
message through parent's Msg.

This technique is called message tagging.

Parent component must define messages for passing child messages:

type Msg 
    = FirstCounterMsg CounterMsg 
    | SecondCounterMsg CounterMsg 
    | ResetAll

FirstCounterMsg Increment is a tagged message.

0.18.0

To get a counterView to send tagged messages, we must use the Html.App.map function:

Html.map FirstCounterMsg (counterView model.firstCounter)

0.18.0

The HTML.App package was collapsed into the HTML package in v0.18.0

To get a counterView to send tagged messages, we must use the Html.map function:

Html.map FirstCounterMsg (counterView model.firstCounter)

That changes the type signature Html CounterMsg -> Html Msg so it's possible to use the counter 
inside the parent view and handle state updates with parent's update function.

Read The Elm Architecture online: https://riptutorial.com/elm/topic/3771/the-elm-architecture

https://riptutorial.com/ 58

http://www.riptutorial.com/elm/example/13037/one-way-parent-child-communication
https://github.com/elm-lang/elm-platform/blob/master/upgrade-docs/0.18.md#package-changes
https://riptutorial.com/elm/topic/3771/the-elm-architecture


Chapter 14: Types, Type Variables, and Type 
Constructors

Remarks

Please play with these concepts yourself to really master them! The elm-repl (see the Introduction 
to the REPL) is probably a good place to play around with the code above. You can also play with 
elm-repl online.

Examples

Comparable data types

Comparable types are primitive types that can be compared using comparison operators from 
Basics module, like: (<), (>), (<=), (>=), max, min, compare

Comparable types in Elm are Int, Float, Time, Char, String, and tuples or lists of comparable types.

In documentation or type definitions they are referred as a special type variable comparable, eg. see 
type definition for Basics.max function:

max : comparable -> comparable -> comparable

Type Signatures

In Elm, values are declared by writing a name, an equals sign, and then the actual value:

someValue = 42

Functions are also values, with the addition of taking a value or values as arguments. They are 
usually written as follows:

double n = n * 2

Every value in Elm has a type. The types of the values above will be inferred by the compiler 
depending on how they are used. But it is best-practice to always explicitly declare the type of any 
top-level value, and to do so you write a type signature as follows:

someValue : Int 
someValue = 
    42 
 
someOtherValue : Float 
someOtherValue = 
    42

https://riptutorial.com/ 59

http://www.riptutorial.com/elm/example/13154/repl
http://www.riptutorial.com/elm/example/13154/repl
http://elmrepl.cuberoot.in/
http://elmrepl.cuberoot.in/
http://package.elm-lang.org/packages/elm-lang/core/4.0.3/Basics


As we can see, 42 can be defined as either an Int or a Float. This makes intuitive sense, but see 
Type Variables for more information.

Type signatures are particularly valuable when used with functions. Here's the doubling function 
from before:

double : Int -> Int 
double n = 
    n * 2

This time, the signature has a ->, an arrow, and we'd pronounce the signature as "int to int", or 
"takes an integer and returns an integer". -> indicates that by giving double an Int value as an 
argument, double will return an Int. Hence, it takes an integer to an integer:

> double 
<function> : Int -> Int 
 
> double 3 
6 : Int

Basic Types

In elm-repl, type a piece of code to get its value and inferred type. Try the following to learn about 
the various types that exist:

> 42 
42 : number 
 
> 1.987 
1.987 : Float 
 
> 42 / 2 
21 : Float 
 
> 42 % 2 
0 : Int 
 
> 'e' 
'e' : Char 
 
> "e" 
"e" : String 
 
> "Hello Friend" 
"Hello Friend" : String 
 
> ['w', 'o', 'a', 'h'] 
['w', 'o', 'a', 'h'] : List Char 
 
> ("hey", 42.42, ['n', 'o']) 
("hey", 42.42, ['n', 'o']) : ( String, Float, List Char ) 
 
> (1, 2.1, 3, 4.3, 'c') 
(1,2.1,3,4.3,'c') : ( number, Float, number', Float, Char ) 
 

https://riptutorial.com/ 60



> {} 
{} : {} 
 
> { hey = "Hi", someNumber = 43 } 
{ hey = "Hi", someNumber = 43 } : { hey : String, someNumber : number } 
 
> () 
() : ()

{} is the empty Record type, and () is the empty Tuple type. The latter is often used for the 
purposes of lazy evaluation. See the corresponding example in Functions and Partial Application.

Note how number appears uncapitalized. This indicates that it is a Type Variable, and moreover 
the particular word number refers to a Special Type Variable that can either be an Int or a Float 
(see the corresponding sections for more). Types though are always upper-case, such as Char, 
Float, List String, et cetera.

Type Variables

Type variables are uncapitalized names in type-signatures. Unlike their capitalized counterparts, 
such as Int and String, they do not represent a single type, but rather, any type. They are used to 
write generic functions that can operate on any type or types, and are particularly useful for writing 
operations over containers like List or Dict. The List.reverse function, for example, has the 
following signature:

reverse : List a -> List a

Which means it can work on a list of any type value, so List Int, List (List String), both of those 
and any others can be reversed all the same. Hence, a is a type variable that can stand in for any 
type.

The reverse function could have used any uncapitalized variable name in its type signature, except 
for the handful of special type variable names, such as number (see the corresponding example 
on that for more information):

reverse : List lol -> List lol 
 
reverse : List wakaFlaka -> List wakaFlaka

The names of type variables become meaningful only when there when there are different type 
variables within a single signature, exemplified by the map function on lists:

map : (a -> b) -> List a -> List b

map takes some function from any type a to any type b, along with a list with elements of some type 
a, and returns a list of elements of some type b, which it gets by applying the given function to 
every element of the list.

Let's make the signature concrete to better see this:

https://riptutorial.com/ 61

http://www.riptutorial.com/elm/topic/2051/functions-and-partial-application


plusOne : Int -> Int 
plusOne x = 
    x + 1 
 
> List.map plusOne 
<function> : List Int -> List Int

As we can see, both a = Int and b = Int in this case. But, if map had a type signature like map : (a 
-> a) -> List a -> List a, then it would only work on functions that operate on a single type, and 
you'd never be able to change the type of a list by using the map function. But since the type 
signature of map has multiple different type variables, a and b, we can use map to change the type of 
a list:

isOdd : Int -> Bool 
isOdd x = 
    x % 2 /= 0 
 
> List.map isOdd 
<function> : List Int -> List Bool

In this case, a = Int and b = Bool. Hence, to be able to use functions that can take and return 
different types, you must use different type variables.

Type Aliases

Sometimes we want to give a type a more descriptive name. Let's say our app has a data type 
representing users:

{ name : String, age : Int, email : String }

And our functions on users have type signatures along the lines of:

prettyPrintUser : { name : String, age : Int, email : String } -> String

This could become quite unwieldy with a larger record type for a user, so let's use a type alias to 
cut down on the size and give a more meaningful name to that data structure:

type alias User = 
    { name: String 
    , age : Int 
    , email : String 
    } 
 
 
prettyPrintUser : User -> String

Type aliases make it much cleaner to define and use a model for an application:

type alias Model = 
    { count : Int 
    , lastEditMade : Time 

https://riptutorial.com/ 62



    }

Using type alias literally just aliases a type with the name you give it. Using the Model type above 
is exactly the same as using { count : Int, lastEditMade : Time }. Here's an example showing 
how aliases are no different than the underlying types:

type alias Bugatti = Int 
 
type alias Fugazi = Int 
 
unstoppableForceImmovableObject : Bugatti -> Fugazi -> Int 
unstoppableForceImmovableObject bug fug = 
    bug + fug 
 
> unstoppableForceImmovableObject 09 87 
96 : Int

A type alias for a record type defines a constructor function with one argument for each field in 
declaration order.

type alias Point = { x : Int, y : Int } 
 
Point 3 7 
{ x = 3, y = 7 } : Point 
 
type alias Person = { last : String, middle : String, first : String } 
 
Person "McNameface" "M" "Namey" 
{ last = "McNameface", middle = "M", first = "Namey" } : Person

Each record type alias has its own field order even for a compatible type.

type alias Person = { last : String, middle : String, first : String } 
type alias Person2 = { first : String, last : String, middle : String } 
 
Person2 "Theodore" "Roosevelt" "-" 
{ first = "Theodore", last = "Roosevelt", middle = "-" } : Person2 
 
a = [ Person "Last" "Middle" "First", Person2 "First" "Last" "Middle" ] 
[{ last = "Last", middle = "Middle", first = "First" },{ first = "First", last = "Last", 
middle = "Middle" }] : List Person2

Improving Type-Safety Using New Types

Aliasing types cuts down on boilerplate and enhances readability, but it is no more type-safe than 
the aliased type itself is. Consider the following:

type alias Email = String 
 
type alias Name = String 
 
someEmail = "holmes@private.com" 
 
someName = "Benedict" 

https://riptutorial.com/ 63



 
sendEmail : Email -> Cmd msg 
sendEmail email = ...

Using the above code, we can write sendEmail someName, and it will compile, even though it really 
shouldn't, because despite names and emails both being Strings, they are entirely different things.

We can truly distinguish one String from another String on the type-level by creating a new type. 
Here's an example that rewrites Email as a type rather than a type alias:

module Email exposing (Email, create, send) 
 
type Email = EmailAddress String 
 
isValid : String -> Bool 
isValid email = 
  -- ...validation logic 
 
create : String -> Maybe Email 
create email = 
    if isValid email then 
        Just (EmailAddress email) 
    else 
        Nothing 
 
send : Email -> Cmd msg 
send (EmailAddress email) = ...

Our isValid function does something to determine if a string is a valid email address. The create 
function checks if a given String is a valid email, returning a Maybe-wrapped Email to ensure that we 
only return validated addresses. While we can sidestep the validation check by constructing an 
Email directly by writing EmailAddress "somestring", if our module declaration doesn't expose the 
EmailAddress constructor, as show here

module Email exposing (Email, create, send)

then no other module will have access to the EmailAddress constructor, though they can still use 
the Email type in annotations. The only way to build a new Email outside of this module is by using 
the create function it provides, and that function ensures that it will only return valid email 
addresses in the first place. Hence, this API automatically guides the user down the correct path 
via its type safety: send only works with values constructed by create, which performs a validation, 
and enforces handling of invalid emails since it returns a Maybe Email.

If you'd like to export the Email constructor, you could write

module Email exposing (Email(EmailAddress), create, send)

Now any file that imports Email can also import its constructor. In this case, doing so would allow 
users to sidestep validation and send invalid emails, but you're not always building an API like this, 
so exporting constructors can be useful. With a type that has several constructors, you may also 
only want to export some of them.

https://riptutorial.com/ 64



Constructing Types

The type alias keyword combination gives a new name for a type, but the type keyword in 
isolation declares a new type. Let's examine one of the most fundamental of these types: Maybe

type Maybe a 
    = Just a 
    | Nothing

The first thing to note is that the Maybe type is declared with a type variable of a. The second thing 
to note is the pipe character, |, which signifies "or". In other words, something of type Maybe a is 
either Just a or Nothing.

When you write the above code, Just and Nothing come into scope as value-constructors, and 
Maybe comes into scope as a type-constructor. These are their signatures:

Just : a -> Maybe a 
 
Nothing : Maybe a 
 
Maybe : a -> Maybe a -- this can only be used in type signatures

Because of the type variable a, any type can be "wrapped inside" of the Maybe type. So, Maybe Int, 
Maybe (List String), or Maybe (Maybe (List Html)), are all valid types. When destructuring any type 
value with a case expression, you must account for each possible instantiation of that type. In the 
case of a value of type Maybe a, you have to account for both the Just a case, and the Nothing 
case:

thing : Maybe Int 
thing = 
    Just 3 
 
blah : Int 
blah = 
    case thing of 
        Just n -> 
            n 
 
        Nothing -> 
            42 
 
-- blah = 3

Try writing the above code without the Nothing clause in the case expression: it won't compile. This 
is what makes the Maybe type-constructor a great pattern for expressing values that may not exist, 
as it forces you to handle the logic of when the value is Nothing.

The Never type

The Never type cannot be constructed (the Basics module hasn't exported its value constructor 
and hasn't given you any other function that returns Never either). There is no value never : Never 

https://riptutorial.com/ 65

https://github.com/elm-lang/core/blob/4.0.3/src/Maybe.elm
http://www.riptutorial.com/elm/example/8809/type-variables


or a function createNever : ?? -> Never.

This has its benefits: you can encode in a type system a possibility that can't happen. This can be 
seen in types like Task Never Int which guarantees it will succeed with an Int; or Program Never that 
will not take any parameters when initializing the Elm code from JavaScript.

Special Type Variables

Elm defines the following special type variables that have a particular meaning to the compiler:

comparable: Comprised of Int, Float, Char, String and tuples thereof. This allows the use of 
the < and > operators.

Example: You could define a function to find the smallest and largest elements in a list (
extent). You think what type signature to write. On one hand, you could write extentInt : 
List Int -> Maybe (Int, Int) and extentChar : List Char -> Maybe (Char, Char) and another 
for Float and String. The implementation of these would be the same:

extentInt list = 
  let 
    helper x (minimum, maximum) = 
      ((min minimum x), (max maximum x)) 
  in 
    case list of 
      [] -> 
        Nothing 
      x :: xs -> 
        Just <| List.foldr helper (x, x) xs

You might be tempted to simply write extent : List a -> Maybe (a, a), but the compiler will 
not let you do this, because the functions min and max are not defined for these types (NB: 
these are just simple wrappers around the < operator mentioned above). You can solve this 
by defining extent : List comparable -> Maybe (comparable, comparable). This allows your 
solution to be polymorphic, which just means that it will work for more than one type.

•

number: Comprised of Int and Float. Allows the use of arithmetic operators except division. 
You can then define for example sum : List number -> number and have it work for both ints 
and floats.

•

appendable: Comprised of String, List. Allows the use of the ++ operator.•

compappend: This sometimes appears, but is an implementation detail of the compiler. 
Currently this can't be used in your own programs, but is sometimes mentioned.

•

Note that in a type annotation like this: number -> number -> number these all refer to the same type, 
so passing in Int -> Float -> Int would be a type error. You can solve this by adding a suffix to 
the type variable name: number -> number' -> number'' would then compile fine.

There is no official name for these, they are sometimes called:

Special Type Variables•

https://riptutorial.com/ 66



Typeclass-like Type Variables•
Pseudo-typeclasses•

This is because they work like Haskell's Type Classes, but without the ability for the user to define 
these.

Read Types, Type Variables, and Type Constructors online: 
https://riptutorial.com/elm/topic/2648/types--type-variables--and-type-constructors

https://riptutorial.com/ 67

http://www.riptutorial.com/haskell/topic/1879/type-classes
https://riptutorial.com/elm/topic/2648/types--type-variables--and-type-constructors


Credits

S. 
No

Chapters Contributors

1
Getting started with 
Elm Language

2426021684, alejosocorro, AnimiVulpis, Community, Douglas 
Correa, gabrielperales, gar, halfzebra, Jakub Hampl, jmite, 
JustGage, lonelyelk, Martin Janiczek, mrkovec, thSoft, Zimm i48

2 Backend Integration lonelyelk

3
Collecting Data: 
Tuples, Records and 
Dictionaries

halfzebra, Martin Janiczek, Mr. Baudin

4
Custom JSON 
Decoders

Khaled Jouda

5 Debugging
AnimiVulpis, bdukes, Jonathan de M., Martin Janiczek, Nicholas 
Montaño

6
Functions and Partial 
Application

Art Yerkes, halfzebra, lonelyelk, Martin Janiczek, Nicholas 
Montaño, Ryan Plant, Will White

7 Json.Decode ivanceras, Jonathan de M., lonelyelk, Matthew Rankin

8 Lists and Iteration
2426021684, AnimiVulpis, jmite, lonelyelk, Martin Janiczek, 
Nicholas Montaño, Zimm i48

9

Making complex 
update functions with 
ccapndave/elm-
update-extra

Mateus Felipe

10 Pattern Matching Gerald Kaszuba, Jakub Hampl, Tosh

11 Ports (JS interop)
Adam Bowen, gabrielperales, halfzebra, Martin Janiczek, 
Nicholas Montaño

12 Subscriptions lonelyelk, mrkovec, Tosh

13 The Elm Architecture AnimiVulpis, halfzebra, mrkovec, Ryan Plant, vlad_o, Zimm i48

14
Types, Type 
Variables, and Type 
Constructors

Art Yerkes, bright-star, halfzebra, Jakub Hampl, Joseph 
Weissman, Martin Janiczek, Nicholas Montaño, Zimm i48

https://riptutorial.com/ 68

https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/1330831/alejosocorro
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1743541/douglas-correa
https://riptutorial.com/contributor/1743541/douglas-correa
https://riptutorial.com/contributor/1463630/gabrielperales
https://riptutorial.com/contributor/101975/gar
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/333786/jakub-hampl
https://riptutorial.com/contributor/788337/jmite
https://riptutorial.com/contributor/1402585/justgage
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4628371/mrkovec
https://riptutorial.com/contributor/90874/thsoft
https://riptutorial.com/contributor/3335288/zimm-i48
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/1654375/mr--baudin
https://riptutorial.com/contributor/1319493/khaled-jouda
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/2688/bdukes
https://riptutorial.com/contributor/966187/jonathan-de-m-
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/2379903/art-yerkes
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/2854373/ryan-plant
https://riptutorial.com/contributor/2586790/will-white
https://riptutorial.com/contributor/62018/ivanceras
https://riptutorial.com/contributor/966187/jonathan-de-m-
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/95592/matthew-rankin
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/788337/jmite
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/3335288/zimm-i48
https://riptutorial.com/contributor/3055725/mateus-felipe
https://riptutorial.com/contributor/11125/gerald-kaszuba
https://riptutorial.com/contributor/333786/jakub-hampl
https://riptutorial.com/contributor/1238847/tosh
https://riptutorial.com/contributor/936858/adam-bowen
https://riptutorial.com/contributor/1463630/gabrielperales
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/2907849/lonelyelk
https://riptutorial.com/contributor/4628371/mrkovec
https://riptutorial.com/contributor/1238847/tosh
https://riptutorial.com/contributor/1988796/animivulpis
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/4628371/mrkovec
https://riptutorial.com/contributor/2854373/ryan-plant
https://riptutorial.com/contributor/1123347/vlad-o
https://riptutorial.com/contributor/3335288/zimm-i48
https://riptutorial.com/contributor/2379903/art-yerkes
https://riptutorial.com/contributor/2023432/bright-star
https://riptutorial.com/contributor/2294657/halfzebra
https://riptutorial.com/contributor/333786/jakub-hampl
https://riptutorial.com/contributor/90042/joseph-weissman
https://riptutorial.com/contributor/90042/joseph-weissman
https://riptutorial.com/contributor/403702/martin-janiczek
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/3335288/zimm-i48

	About
	Chapter 1: Getting started with Elm Language
	Remarks
	Versions
	Examples
	Installation


	Using the installer
	Using npm
	Using homebrew
	Switch between versions with elm-use
	Further reading
	Hello World
	Editors

	Atom
	Light Table
	Sublime Text
	Vim
	Emacs
	IntelliJ IDEA
	Brackets
	VS Code
	Initialize and build

	Initialization
	Building the project
	Style Guide and elm-format
	Embedding into HTML

	Embed into the body tag
	Embed into a Div (or other DOM node)
	Embed as a Web worker (no UI)
	REPL
	Local Build Server (Elm Reactor)

	Chapter 2: Backend Integration
	Examples
	Basic elm Http.post json request to node.js express server


	Chapter 3: Collecting Data: Tuples, Records and Dictionaries
	Examples
	Tuples


	Accessing values
	Pattern matching
	Remarks on Tuples
	Dictionaries

	Accessing values
	Updating values
	Records

	Accessing values
	Extending Types
	Updating values
	Chapter 4: Custom JSON Decoders
	Introduction
	Examples
	Decoding into union type


	Chapter 5: Debugging
	Syntax
	Remarks
	Examples
	Logging a value without interrupting computations
	Piping a Debug.log
	Time-traveling debugger
	Debug.Crash


	Chapter 6: Functions and Partial Application
	Syntax
	Examples
	Overview
	Lambda expressions
	Local variables
	Partial Application
	Strict and delayed evaluation
	Infix operators and infix notation


	Chapter 7: Json.Decode
	Remarks
	Examples
	Decoding a list
	Pre-decode a field and decode the rest depending on that decoded value
	Decoding JSON from Rust enum
	Decoding a list of records
	Decode a Date
	Decode a List of Objects Containing Lists of Objects


	Chapter 8: Lists and Iteration
	Remarks
	Examples
	Creating a list by range
	Creating a list
	Getting elements
	Transforming every element of a list
	Filtering a list
	Pattern Matching on a list
	Getting nth element from the list
	Reducing a list to a single value
	Creating a list by repeating a value
	Sorting a list
	Sorting a list with custom comparator
	Reversing a list
	Sorting a list in descending order
	Sorting a list by a derived value


	Chapter 9: Making complex update functions with ccapndave/elm-update-extra
	Introduction
	Examples
	Message which call a list of messages
	Chaining messages with andThen


	Chapter 10: Pattern Matching
	Examples
	Function arguments
	Single type deconstructed argument


	Chapter 11: Ports (JS interop)
	Syntax
	Remarks
	Examples
	Overview


	Note
	Outgoing

	Elm side
	JavaScript side
	Note
	Incoming

	Elm side
	JavaScript side
	Note
	Immediate outgoing message on start-up in 0.17.0
	Get started

	Chapter 12: Subscriptions
	Remarks
	Examples
	Basic subscription to Time.every event with 'unsubscribe'


	Chapter 13: The Elm Architecture
	Introduction
	Examples
	Beginner program


	Example
	Program

	Example
	Program with Flags
	One way parent-child communication

	Example
	Message tagging with Html.App.map

	Chapter 14: Types, Type Variables, and Type Constructors
	Remarks
	Examples
	Comparable data types
	Type Signatures
	Basic Types
	Type Variables
	Type Aliases
	Improving Type-Safety Using New Types
	Constructing Types
	The Never type
	Special Type Variables


	Credits



