
emacs

#emacs

Table of Contents

About 1

Chapter 1: Getting started with emacs 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Debian systems 3

Build for source 3

Redhat systems 4

Arch Linux 4

Gentoo and Funtoo 4

GSRC (GNU Source Release Collection) 4

Darwin systems 4

Homebrew 5

MacPorts 5

pkgsrc 5

App Bundle 5

Windows 5

Chocolatey package manager 5

Scoop package manager 5

Official Binary Installers 5

Other Binary Installers 6

Interactive Emacs Tutorial 6

Emacs Rocks Video Tutorials 6

Chapter 2: Basic Keybindings 9

Examples 9

Quit Emacs 9

Suspend Emacs 9

File handling 9

Abort current command 9

Multiples windows or frames 10

Buffers 10

Search and Replace 12

Region - Cut, Copy, Paste 12

Kill 13

Select and cut (kill) 13

Yank 13

Yank text killed previously 13

Cursor (point) movement 14

Undo 14

Case 15

Key bindings notation 15

Key chords 15

Key sequences 15

Using ESC instead of Alt 15

Describing key bindings in Emacs lisp files 16

Chapter 3: emacs has already very high quality, well organized documentation. why duplicat 17

Introduction 17

Examples 17

Keys 17

Chapter 4: Emacs nomenclature 18

Examples 18

Files and buffers 18

Elements of the User Interface 18

Frame 18

Window 18

Buffer 19

Mode line 19

Tool Bar 19

Minibuffer 19

Point, mark and region 19

Killing and yanking 20

Killing 20

Yanking 20

Modes 20

Major mode 20

Minor mode 20

Chapter 5: Helm 22

Examples 22

Installing helm via MELPA 22

Chapter 6: Help Within Emacs 25

Remarks 25

Examples 25

Emacs Tutorial 25

Available Functions and Key Bindings 25

Key Binding Documentation 25

Function Documentation 25

Chapter 7: Magit 27

Introduction 27

Remarks 27

Examples 27

Installation 27

Basic usage: commit unstaged edits within an existing repo 27

Chapter 8: Manage bookmarks within Emacs 28

Examples 28

How to bookmark frequently used files 28

Chapter 9: Org-mode 29

Remarks 29

Examples 29

Markup syntax 29

Structure 29

Document title 29

Sectioning 29

Lists 29

Checkboxes 30

Emphasis and monospace 30

Links and references 30

Links 30

Footnotes 30

Basic Key Bindings 31

Code blocks 31

Tables 32

Chapter 10: Package Management 33

Examples 33

Automatic package installation on emacs start-up 33

References 33

Automatic Package Installation with use-package 34

Automatic package management using Cask 34

Automatic Package Management with el-get 35

Chapter 11: Starter Kits 37

Remarks 37

Themes and Customization 37

Popular Kits 37

Is a starter kit needed? 37

Examples 37

Spacemacs 38

Prelude 38

emacs-live 38

Scimax 38

Chapter 12: The Many Variants Of Emacs 40

Introduction 40

Examples 40

Spacemacs 40

Credits 41

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: emacs

It is an unofficial and free emacs ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official emacs.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/emacs
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with emacs

Remarks

Emacs is a text editor whose most prominent feature is the ability of users to programmatically
customize nearly all aspects of it. This is facilitated though a special dialect of the Lisp
programming language, called Emacs Lisp, created specifically for use in the Emacs editor.

There are a multitude of extensions written in Emacs Lisp that add to Emacs functionality. These
extensions include editing facilities for specific programming languages (similar to what an IDE
might provide), e-mail and IRC clients, Git frontends, games such as Tetris and 2048, and much
more.

Many aspects of the Emacs editor can be used with no programming knowledge. Users looking to
programmatically customize Emacs, however, will find certain features of the Emacs Lisp
language such as the (self-)documentation system incredibly helpful and accommodating.

External references:

Sacha chua's site is a very good place to find more learning resources on Emacs.

a. For those who need a more visual appeal on the Emacs learning path

b. For those who would like to get the key bindings easily

1.

Wikemacs is based on mediawiki, and thus has structured content, browsable categories
and such. Start exploring !

2.

Versions

Version Release date

25.1 2016-09-17

24.5 2015-04-10

24.4 2014-10-20

24.3 2013-03-11

24.2 2012-08-27

24.1 2012-06-10

23.4 2012-01-29

23.3 2011-03-10

https://riptutorial.com/ 2

http://sachachua.com/blog/category/emacs/
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs-v2-Large.png
http://sachachua.com/blog/2013/09/how-to-learn-emacs-keyboard-shortcuts-a-visual-tutorial-for-newbies/
http://wikemacs.org
http://wikemacs.org/wiki/Main_Page#Explore_WikEmacs
https://www.gnu.org/software/emacs/index.html#Releases
http://lists.gnu.org/archive/html/info-gnu-emacs/2015-04/msg00002.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2014-10/msg00002.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2013-03/msg00001.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2012-08/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2012-06/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2012-01/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2011-03/msg00000.html

Version Release date

23.2 2010-05-08

23.1 2009-07-29

22.3 2008-09-05

22.2 2008-03-26

22.1 2007-06-02

21.4 2005-02-06

21.3 2003-03-24

21.2 2002-03-18

21.1 2001-10-28

Examples

Installation or Setup

Detailed instructions on getting emacs set up or installed.

Official instructions are available on the GNU Emacs website.

Debian systems

On systems with the Debian package manager (such as Debian, Ubuntu, and Mint) Emacs can be
installed via the simple command:

sudo apt-get install emacs

For a bleeding-edge release one can use the following ppa:

sudo apt-add-repository ppa:ubuntu-elisp/ppa
sudo apt-get install emacs-snapshot

Build for source

If your debian based distro does not have the version of emacs you want you can build it from
scratch.

sudo apt-get build-dep emacs24 -y

https://riptutorial.com/ 3

http://lists.gnu.org/archive/html/info-gnu-emacs/2010-05/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2009-07/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2008-09/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2008-03/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2007-06/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2005-02/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2003-03/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2002-03/msg00000.html
http://lists.gnu.org/archive/html/info-gnu-emacs/2001-10/msg00009.html
https://www.gnu.org/software/emacs/download.html

cd /tmp/

wget http://alpha.gnu.org/gnu/emacs/pretest/emacs-25.0.93.tar.xz
tar -xvf emacs-25.0.93.tar.xz

cd emacs-25.0.93
./configure
make
sudo make install

rm -rf /tmp/emacs-25.0.93*

Redhat systems

On systems with the Redhat package manager (such as RHEL, CentOS, and Fedora Core)
Emacs can be installed via the simple command:

sudo yum install emacs

Arch Linux

Emacs can be installed via the simple command:

sudo pacman -Syu emacs

Gentoo and Funtoo

On systems running Portage, Emacs can be installed via the simple command:

sudo emerge emacs

GSRC (GNU Source Release Collection)

Works on any GNU/Linux system for getting the latest version of emacs without using the system
package manager (which may be out of date) or downloading the archive or binary. To install gsrc
see it's documentation. Then:

cd gsrc
make -C gnu/emacs install
add the binaries to your PATH
source ./setup.sh

Darwin systems

https://riptutorial.com/ 4

https://www.gnu.org/software/gsrc/

Homebrew

brew install emacs --with-cocoa # basic install
additional flags of interest can be viewed by calling `brew info emacs`
brew linkapps emacs # to put a symlink in your Applications directory

MacPorts

sudo port install emacs

pkgsrc

sudo pkgin -y install emacs-24.5

App Bundle

Precompiled app bundles for the latest stable and development versions can be downloaded at
https://emacsformacosx.com.

Windows

Chocolatey package manager

Emacs can be installed with

choco install emacs

Scoop package manager

Can be installed from extras bucket

scoop bucket add extras
scoop install emacs

Official Binary Installers

stable•
latest•

(Note that official binaries do not come with some libraries - e.g., libraries for image formats)

https://riptutorial.com/ 5

https://emacsformacosx.com
https://chocolatey.org/install
http://scoop.sh
http://ftpmirror.gnu.org/emacs/windows
http://sourceforge.net/projects/emacs-bin/files/snapshots

Other Binary Installers

Emacs with pre-compilled AUCTeX and ESS•

64-Bit GNU Emacs for MS Windows with optimization provides native and optimized 64-bit
binary installer with unmodified source code from git master and release version, with JPEG,
GIF, PNG, TIFF, SVG, XML2, and GnuTLS support out-of-box.

•

Interactive Emacs Tutorial

From within Emacs, type C-h t (Control-h, t) to get an excellent interactive tutorial within Emacs.
The user learns basic navigation and editing by operating on the TUTORIAL text itself, as they
read the tutorial. (Modifications to the tutorial are discarded when the tutorial is closed, so each
time a user requests the tutorial, it's a clean default version of the tutorial.

Helpfully, the first thing in the tutorial is how to understand C-<chr> and M-<chr> references in the
text. The second thing is how to page forward and backwards in the text.

Emacs Rocks Video Tutorials

Good video tutorials about Emacs can be found at emacsrocks.com.

https://riptutorial.com/ 6

http://vgoulet.act.ulaval.ca/en/emacs
http://emacsbinw64.sourceforge.net/
http://emacsrocks.com

Read Getting started with emacs online:
https://riptutorial.com/ 7

https://i.stack.imgur.com/dl7L0.png

https://riptutorial.com/emacs/topic/986/getting-started-with-emacs

https://riptutorial.com/ 8

https://riptutorial.com/emacs/topic/986/getting-started-with-emacs

Chapter 2: Basic Keybindings

Examples

Quit Emacs

You can quit Emacs with the following keybinding:

C-x C-c

Where C is the control key.

Suspend Emacs

You can suspend Emacs using the following keybinding :

C-z

It gets you back to your shell. If you want to resume your emacs session, enter fg in your terminal.

File handling

Re-Save open file under the same filename (Save):

C-x C-s

•

Write as filename (Save As):

C-x C-w filename

The new file name will be prompted in the minibuffer.

•

Create new file or load existing file (New / Load):

C-x C-f filename

With the mnemonic here for f meaning file. You will be prompted for a file path in the minibuffer.

•

Visit alternate file

C-x C-f

If the file does not exist yet, you will be prompted the path of the file to create in the minibuffer.

•

Abort current command

Often you will get into a state where you have a partially typed command sequence in progress,
but you want to abort it. You can abort it with either of the following keybindings:

https://riptutorial.com/ 9

C-g

EscEscEsc

Multiples windows or frames

"Window" in Emacs refers to what might otherwise be called a "pane" or "screen division". Some
window manipulation commands include:

Split current window horizontally: C-x 2•
Split current window vertically: C-x 3•
Select next window: C-x o•
Close current window: C-x 0•
Close all other windows, except the current one: C-x 1•

A "frame" in Emacs is what might otherwise be called a "window". Frames are manipulated using
these commands:

Create new frame: C-x 5 2•
Delete current frame: C-x 5 0•
Delete other frames: C-x 5 1•

Switching windows can be acheived using

S-left, S-right, S-up, S-down (that is, Shift in conjunction with an arrow key) to switch to the
neighboring window in a direction, or

•

C-x o to switch to the next window.•

Buffers

Example of a buffer list

CRM Buffer Size Mode Filename[/Process]
. * .emacs 3294 Emacs-Lisp ~/.emacs
 % *Help* 101 Help
 search.c 86055 C ~/cvs/emacs/src/search.c
 % src 20959 Dired by name ~/cvs/emacs/src/
 * *mail* 42 Mail
 % HELLO 1607 Fundamental ~/cvs/emacs/etc/HELLO
 % NEWS 481184 Outline ~/cvs/emacs/etc/NEWS
 scratch 191 Lisp Interaction
 * *
Messages* 1554 Messages

The first field of a line indicates:

‘.’ the buffer is current.○

‘%’ a read-only buffer.○

‘*’ the buffer is modified.○

•

Select buffer. You can select out of any open buffer with the following keybinding:•

https://riptutorial.com/ 10

C-x b

You will be prompted for the buffer name you wish to switch to.

List buffers:

C-x C-b

•

Save-some-buffer, giving the choice which buffer to save or not:

C-x s

•

Kill one buffer:

C-x k

•

Operations on marked buffers:

S Save the marked buffers

A View the marked buffers in this frame.

H View the marked buffers in another frame.

V Revert the marked buffers.

T Toggle read-only state of marked buffers.

D Kill the marked buffers.

M-s a C-s Do incremental search in the marked buffers.

M-s a C-M-s Isearch for regexp in the marked buffers.

U Replace by regexp in each of the marked buffers.

Q Query replace in each of the marked buffers.

I As above, with a regular expression.

P Print the marked buffers.

O List lines in all marked buffers which match a given regexp (like the function `occur').

X Pipe the contents of the marked buffers to a shell command.

N Replace the contents of the marked buffers with the output of a shell command.

! Run a shell command with the buffer's file as an argument.

E Evaluate a form in each of the marked buffers. This is a very flexible command. For
example, if you want to make all of the marked buffers read only, try using (read-only-mode
1) as the input form.

•

https://riptutorial.com/ 11

W - As above, but view each buffer while the form is evaluated.

k - Remove the marked lines from the Ibuffer buffer, but don't kill the associated buffer.

x - Kill all buffers marked for deletion.

Save-some-buffer, giving the choice which buffer to save or not:

C-x s

•

Switch to the next buffer:

C-x RIGHT

•

Switch to previous buffer:

C-x LEFT

•

Search and Replace

In Emacs, basic search tool (I-Search) allows you to search after or before the location of your
cursor.

To search for sometext after the location of your cursor (search-forward) hit C-s sometext. If
you want to go to the next occurence of sometext, just press C-s again (and so on for the next
occurences). When cursor lands in the right location, press Enter to exit the search prompt.

•

To search before the location of your cursor (search-backward), use C-r the same way you
used before.

•

To switch from search-backward to search-forward, press 2 times C-s. And press 2 times C-r to
search backward when you're in search-forward prompt.

•

Search and replace:

M-% (or Esc-%) oldtext Enter newtext Enter

Confirm: y○

Skip: n○

Quit: q○

Replace all: !○

•

Region - Cut, Copy, Paste

Set mark in cursor location:

C-space or C-@

•

Kill region (Cut):

C-w

•

https://riptutorial.com/ 12

Copy region to kill ring:

M-w or Esc-w

•

Yank (Paste) most recently killed:

C-y

•

Yank (Paste) next last killed:

M-y or Esc-y

•

Kill

killis the command used by Emacs for the deletion of text. The kill command is analogous to the
cut command in Windows. Various commands exist that 'kills' one word (M-d), the rest of the line (
C-k), or larger text blocks. The deleted text is added to the kill-ring, from which it can later be
yanked.

Select and cut (kill)

Killing and yanking Similar to the select-and-cut feature in Windows, here we have C-spc. The key
binding C-spc will start the selection, the user can move the mark with the help of arrow keys or
other command to make a selection. Once selection is complete - push the C-w to kill the selected
text

Some basic commands which can be used as quick reference for kill command (taken from
Emacs tutorial)

 M-DEL Kill the word immediately before the cursor
 M-d Kill the next word after the cursor

 C-k Kill from the cursor position to end of line
 M-k Kill to the end of the current sentence

Yank

yankdescribes the insertion of previously deleted text, e.g. using C-y which yanks the most recently
killed text. Yank command is analogous to the paste command in Windows.

Yank text killed previously

We know that the kill command adds the text killed to a kill-ring. To retrieve the deleted text
from the kill-ring use M-y command repeatedly until the desired text is yanked.

(Note: For the M-y key to work the previous command should be a YANK otherwise it wouldn't work)

https://riptutorial.com/ 13

Cursor (point) movement

In addition to cursor movements using the arrow keys, Home, End, Page up, and Page down,
emacs defines a number of keystrokes that can move the cursor over smaller or larger pieces of
text:

By character:

Backward character: C-b•
Forward character: C-f•

By word

Backward word: M-b (i.e. Alt b, or Meta b)•
Forward word: M-f•

By line:

Beginning of current line: C-a•
Beginning of current line first(non-space)character:M-m•
End of current line: C-e•
Previous line: C-p•
Next line: C-n•

Entire buffer:

Beginning of buffer: M-<•
End of buffer: M->•

By 'block', depending on context (mode):

Typical key bindings:

Backward sentence/statement: M-a•
Forward sentence/statement: M-e•
Beginning of function: M-C-a•
End of function: M-C-e•

Prefix arguments

In order to move several 'steps' at once, the movement commands may be given a prefix
argument by pressing ESC or C-u and a number before the listed keystrokes. For C-u, the number is
optional and defaults to 4.
E.g. ESC 3 C-n moves 3 lines down, while C-u M-f moves 4 words forward.

Undo

To undo something you just did:

C-_ or C-x u or C-/

https://riptutorial.com/ 14

Case

Capitalize word: M-c•

Convert word to upper case: M-u•

Convert word to lower case: M-l•

Key bindings notation

Emacs' documentation uses a consistent notation for all key bindings, which is explained here:

Key chords

A "key chord" is obtained by pressing two or more keys simultaneously. Key chords are denoted
by separating all keys by dashes (-). They usually involve modifier keys, which are put up front:

C-: control;•
S-: shift;•
M-: alt (the "M" stands for "Meta" for historical reasons).•

Other keys are simply denoted by their name, like:

a: the a key;•
left: the left arrow key;•
SPC: the space key;•
RET: the return key.•

Examples of key chords thus include:

C-a: pressing control and a simultaneously;•
S-right: pressing shift and right simultaneously;•
C-M-a: pressing control, alt and a simultaneously.•

Key sequences

"Key sequences" are sequences of keys (or key chords), which must be typed one after the other.
They are denoted by separating all key (or chord) notations by a space.

Examples include:

C-x b: pressing control and x simultaneously, then releasing them and pressing b;•
C-x C-f: pressing control and x simultaneously, then releasing x and pressing f (since both
chords involve the control modifier, it is not necessary to release it).

•

Using ESC instead of Alt

https://riptutorial.com/ 15

Key chords using the Alt modifier can also be entered as a key sequence starting with ESC. This
can be useful when using Emacs over a remote connection that does not transmit Alt key chords,
or when these key combinations are captured e.g by a window manager.

Example:

M-x can be entered as ESC x.

Describing key bindings in Emacs lisp files

The same notation that is described here can be used when defining key bindings in Emacs lisp
files.

Example:

(global-set-key (kbd "C-x C-b") 'buffer-menu)
binds the key sequence C-x C-b to the command buffer-menu

Read Basic Keybindings online: https://riptutorial.com/emacs/topic/3436/basic-keybindings

https://riptutorial.com/ 16

https://riptutorial.com/emacs/topic/3436/basic-keybindings

Chapter 3: emacs has already very high
quality, well organized documentation. why
duplicate it?

Introduction

https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html#Top

Examples

Keys

https://www.gnu.org/software/emacs/manual/html_node/emacs/Keys.html#Keys

3 Keys

Some Emacs commands are invoked by just one input event; for example, C-f moves forward one
character in the buffer. Other commands take two or more input events to invoke, such as C-x C-f
and C-x 4 C-f.

A key sequence, or key for short, is a sequence of one or more input events that is meaningful as
a unit. If a key sequence invokes a command, we call it a complete key; for example, C-f, C-x C-f
and C-x 4 C-f are all complete keys. If a key sequence isn’t long enough to invoke a command, we
call it a prefix key; from the preceding example, we see that C-x and C-x 4 are prefix keys. Every
key sequence is either a complete key or a prefix key.

Read emacs has already very high quality, well organized documentation. why duplicate it? online:
https://riptutorial.com/emacs/topic/9077/emacs-has-already-very-high-quality--well-organized-
documentation--why-duplicate-it-

https://riptutorial.com/ 17

https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html#Top
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keys.html#Keys
https://riptutorial.com/emacs/topic/9077/emacs-has-already-very-high-quality--well-organized-documentation--why-duplicate-it-
https://riptutorial.com/emacs/topic/9077/emacs-has-already-very-high-quality--well-organized-documentation--why-duplicate-it-

Chapter 4: Emacs nomenclature

Examples

Files and buffers

In Emacs, file has the same meaning as in the operating system, and is used for permanent
storage of data. A buffer is the internal representation of a file being edited. Files can be read into
buffers using C-x C-f, and buffers can be written to files using C-x C-s (save file at its current
location) or C-x C-w (write file to a different location, prompting for it - the equivalent of Save as).

Elements of the User Interface

Emacs's user interface uses terms that were coined early and can be unsettling to users used to a
more modern terminology.

Frame

In Emacs, what is otherwise called a window (the area of the display used by a program) is called
a frame. Emacs starts using one frame, though additional frames may be created using C-x 5.

https://riptutorial.com/ 18

http://i.stack.imgur.com/hIeNf.png

Window

A frame contains one or more windows (otherwise usually called panes), each showing the
content of one buffer. Each frame usually starts with only one window, but additional windows can
be created by splitting existing ones ; either horizontally using C-x 2 or vertically with C-x 3. See
also Multiples windows or frames.

Buffer

The term buffer refers to the content displayed in a window. Such content may reflect the content
of a file in the file system (or maybe an updated version that has not been saved to the disk yet),
but more generally it can be any kind of text.

Mode line

At the bottom of each window is a mode line, which synthetically describes the buffer displayed in
the window.

Tool Bar

In a similar way to many other softwares, a tool bar can be displayed at the top of each frame. Its
contents may vary depending on the type of buffer being currently edited.

Minibuffer

A minibuffer, usually displayed at the bottom of each frame, allows interacting with Emacs. Each
time a command asks for user input, it is prompted in the minibuffer. Conversely, messages
displayed for the user to see are printed there.

Point, mark and region

Emacs uses the terms point, mark, and region to provide more precision about the selected text
and position of the cursor. By understanding these terms, it'll help you understand and use other
operations and functions.

The point is the place in a buffer where editing (i.e. insertion) is currently taking place, and is
usually indicated by a cursor.
The mark is a marker placed anywhere in the buffer using commands like set-mark-command (C-SPC)
or exchange-point-and-mark (C-x C-x).
The region is the area between point and mark, and many commands operate on the region to
e.g. delete, spell check, indent, or compile it.

https://riptutorial.com/ 19

http://www.riptutorial.com/emacs/example/11893/multiples-windows-or-frames

When you click your mouse on a location in a buffer, you're seeing the point. When you select
text, you're setting the region (the selected text) and the mark (at the beginning of your selection).

Killing and yanking

Killing and yanking more or less correspond to what is usually called "cutting" and "pasting".

Killing

killing means deleting text, and copying it to the kill-ring (which could be seen as a sort of
"clipboard" in the "cut & paste" terminology). The kill ring is so named because it stores several
pieces of killed text, which can later be accessed in cyclic order.

Various commands exist that kill one word (M-d), the rest of the line (C-k), or larger text blocks
(such as the currently selected region: C-w).

Other commands exist, that save text to the kill ring, without actually killing it (in a similar way to
"copying" in modern terminologies). For example, M-w, which acts on the currently selected region.

Yanking

Entries in the kill ring can later be yanked back into a buffer. One can typically yank the most
recently killed text using e.g C-y (which is similar to the "paste" operation in a more modern
terminology). But other commands can access and yank older entries from the kill ring.

Modes

Major mode

Emacs can adapt its behaviour to the specific type of text edited in a buffer. The set of specific
Emacs customizations for a particular type of text is called a "major mode". Each buffer has
exactly one major mode depending on its content type.

Major modes can change the meaning of some keys, define syntax highlighing or indentation
rules, and install new key bindings (usually beginning with C-c) for mode-specific commands.
Emacs ships with a wide range of major modes, falling into three main categories:

support for text (e.g. markup languages),•
support for programming languages,•
applications within emacs (e.g. dired, gnus, ...). Buffers using this last group of major modes
are usually not associated to files, but rather serve as a user interface.

•

Minor mode

https://riptutorial.com/ 20

Minor modes are optional features that can be turned on and off. Minor modes can be enabled for
specific buffers (buffer-local modes) or all buffers (global modes). In contrast to major modes any
number of minor mode can be activated for a given buffer.

Emacs provides lots of minor modes. A few examples include:

Auto-fill mode to automatically wrap text lines as you type.•
Flyspell mode to highlight spelling errors as you type.•
Visual Line mode to wrap long lines to fit the screen.•
Transient Mark mode to highlight the current region.•

Read Emacs nomenclature online: https://riptutorial.com/emacs/topic/3683/emacs-nomenclature

https://riptutorial.com/ 21

https://riptutorial.com/emacs/topic/3683/emacs-nomenclature

Chapter 5: Helm

Examples

Installing helm via MELPA

From emacs 24.4 package.el is avalable, and one way to install helm is to do it via MELPA. First,
add the MELPA repository as package archive by putting following code somewhere in your
~/.emacs (or, ~/.emacs.d/init.el).

(require 'package)

;; add the repository before the package-initialize.
(add-to-list 'package-archives '("melpa" . "http://melpa.milkbox.net/packages/"))

(package-initialize)

Next, enter M-x list-packages to see the avaiable package list. Search for helm entry, put your
cursor on the helm entry, press RET. You'll see the package information buffer. Put your cursor on
[Install], and press RET. Helm will be installed. The package list window and the package
information window is shown in following image.

https://riptutorial.com/ 22

https://riptutorial.com/ 23

http://i.stack.imgur.com/GUEEN.png

Read Helm online: https://riptutorial.com/emacs/topic/5341/helm

https://riptutorial.com/ 24

https://riptutorial.com/emacs/topic/5341/helm

Chapter 6: Help Within Emacs

Remarks

Emacs is described as a self-documenting editor, and provides lots of information on how to use it
within the editor itself. Amongst the entry points to this documentation is a tutorial, information
about what functions is available related to a given topic,a information about the bindings between
keystrokes and functions.The documentation is accessed using the prefix C-h, i.e. Ctrl h, or F1,
with a list of further choices available by pressing ?

Examples

Emacs Tutorial

C-h t runs the function help-with-tutorial, which opens a buffer containing a tutorial on the basic
editing functionality of emacs, including moving around in text, and working with files, buffers, and
windows.

Available Functions and Key Bindings

Pressing C-h a will run the emacs function apropos-command which makes emacs prompt for words
(or a regexp) to search for. It will then show a buffer containing a list of names and descriptions
related to that topic, including key bindings for each of the functions available via keystrokes.

Pressing C-h m (describe-mode) gives a buffer describing the major and minor modes in effect,
including listings of available functions and their key bindings.

Pressing C-h b (describe-bindings) gives a buffer listing all current key bindings. The listing
includes global bindings as well as bindings for the active major and minor modes in the current
buffer.

Key Binding Documentation

C-h k runs the function describe-key, which looks up the function mapped to the key strokes
provided, and presents a description of the function which will be run when these keys are
pressed.

C-h c runs the function describe-key-briefly, which only displays the function name mapped to
given key sequence.

Function Documentation

C-h f runs the function describe-function, which displays information on the usage and purpose of
a given function. This is especially useful for functions that do not have a mapped key binding that
can be used for documentation lookup via C-h k.

https://riptutorial.com/ 25

Read Help Within Emacs online: https://riptutorial.com/emacs/topic/4736/help-within-emacs

https://riptutorial.com/ 26

https://riptutorial.com/emacs/topic/4736/help-within-emacs

Chapter 7: Magit

Introduction

Magit is an interface to the version control system Git, implemented as an Emacs package. It
allows you to interact with git in Emacs.

Remarks

Magit is an interface to the version control system Git, implemented as an Emacs package. Magit
aspires to be a complete Git porcelain. While we cannot (yet) claim, that Magit wraps and
improves upon each and every Git command, it is complete enough to allow even experienced Git
users to perform almost all of their daily version control tasks directly from within Emacs. While
many fine Git clients exist, only Magit and Git itself deserve to be called porcelains.

Note that Magit can interface itself to Github (with Magithub, see also Github integration in Emacs)
and that Emacs also has packages to work with Gitlab, Bitbucket and others.

Examples

Installation

You can install Magit from MELPA with:

M-x package-install RET magit RET

Basic usage: commit unstaged edits within an existing repo

M-x magit-status
s RET <file-to-stage> RET
c c <commit message>
C-c C-c
q

Read Magit online: https://riptutorial.com/emacs/topic/3909/magit

https://riptutorial.com/ 27

https://github.com/vermiculus/magithub/
http://wikemacs.org/wiki/Github
http://wikemacs.org/wiki/Gitlab
https://riptutorial.com/emacs/topic/3909/magit

Chapter 8: Manage bookmarks within Emacs

Examples

How to bookmark frequently used files

Use the following commands to create bookmarks and access bookmarks from within Emacs.

Let us say that you are editing a file called foobar.org and suppose that you visit this file frequently
to edit / view contents.

It would be convenient to access this file with couple of key strokes rather than navigate through
the file structure (Dired) and visit the file.

Steps:

Open foobar.org for once by navigating to the file (visit the file in Emacs lingo)1.
While the file is open type C-xrm this will prompt you to provide the bookmark name for the
file. Let us say foobar in this case.

2.

Close the file (C-xk - kill buffer) - save if required3.
Now to visit the file, just type C-xrl - this will populate a list which will contain foobar.4.
Select foobar and hit Enter key5.
Use M-xbookmark-delete to delete any unnecessary bookmark of a file.6.

Note: Deleting a bookmark is analogous to deleting a shortcut in your Windows desktop.
The main file will be safe in its location and only the listing of the file from the bookmark menu will
be removed.

Read Manage bookmarks within Emacs online: https://riptutorial.com/emacs/topic/5837/manage-
bookmarks-within-emacs

https://riptutorial.com/ 28

https://riptutorial.com/emacs/topic/5837/manage-bookmarks-within-emacs
https://riptutorial.com/emacs/topic/5837/manage-bookmarks-within-emacs

Chapter 9: Org-mode

Remarks

Org is a mode for keeping notes, maintaining TODO lists, and project planning with a fast and
effective plain-text system. It also is an authoring system with unique support for literate
programming and reproducible research.

org Mode official site

Examples

Markup syntax

Org provides a full markup language which helps structuring the document, and is reflected as
accurately as possible when exporting to other formats (like HTML or LaTeX).

Structure

Document title

#+TITLE: This is the title of the document

Sectioning

* First level
** Second level

Lists

Ordered list (items can also be numbered like '1)', with a perenthesis):
1. foo
2. bar
3. baz

Unordered list (items can also start with '+' or '*'):
- foo
- bar
- baz

Description
- lorem ipsum :: this is example text
- foo bar :: these are placeholder words

https://riptutorial.com/ 29

http://orgmode.org/

Checkboxes

Every item in a plain list can be made into a checkbox by starting it with the string ‘[]’.

* TODO [2/4] (or [50%])
 - [-] call people [1/3]
 - [] Peter
 - [X] Sarah
 - [] Sam
 - [X] order food
 - [] think about what music to play
 - [X] talk to the neighbors

C-c C-c org-toggle-checkbox•
C-c C-x C-b org-toggle-checkbox•
M-S- org-insert-todo-heading•
C-c C-x o org-toggle-ordered-property•
C-c # org-update-statistics-cookies•

Emphasis and monospace

You can make words *bold*, /italic/, _underlined_, =verbatim=
and ~code~, and, if you must, ‘+strike-through+’.

Text in the code and verbatim string is not processed for Org mode specific syntax, it is exported
verbatim.

Links and references

Links

Org-mode will recognize URL formats and activate them as clickable links. However, links can be
explicitly declared like this:

You will find more information in the [[http://orgmode.org/org.html][Org Manual]].

or alternatively :

The org manual is located here: [[http://orgmode.org/org.html]]

Footnotes

Footnotes can either be named:

https://riptutorial.com/ 30

See the org manual[fn:manual] to get more details.
...
[fn:manual] You will find it here: http://orgmode.org/org.html

or anonymous and inline:

See the org manual[fn:: You will find it here: http://orgmode.org/org.html]
to get more details.

Basic Key Bindings

To cycle the level of outline shown:

Tab Cycle outline level for one heading•
Shift-Tab Cycle outline level for the whole document•

To cycle through TODO states:

Shift-Right Arrow•
Shift-Left Arrow•

To increase or decrease hierarchical level for a heading

Meta-Right Arrow Make lower level ("increase indent")•
Meta-Left Arrow Make higher level ("decrease indent")•

To cycle the priority for a given heading:

Shift-Up Arrow•
Shift-Down Arrow•

To move a heading up or down:

Meta-Up Arrow•
Meta-Down Arrow•

(Meta refers to different keys on different keyboards. Most often it is either Alt or �).

Code blocks

To add a code block, surround it with #+BEGIN_SRC language and #+END_SRC. language should
correspond to the major mode for the language in question, e.g. the major mode for Emacs Lisp is
emacs-lisp-mode, so write #+BEGIN_SRC emacs-lisp.

#+BEGIN_SRC emacs-lisp
(defun hello-world ()
 (interactive)
 (message "hello world"))
#+END_SRC

#+BEGIN_SRC python
print "hello world"

https://riptutorial.com/ 31

#+END_SRC

You can open the code block in a separate buffer by typing C-c ' (for org-edit-special). If you
don't have the major mode for the specified language, that will give an error message such as No
such language mode: foo-mode.

If the content you want to put in the block is not in any programming language, you can use
#+BEGIN_EXAMPLE and #+END_EXAMPLE instead.

#+BEGIN_EXAMPLE
output from a command I just ran
#+END_EXAMPLE

There are easy templates for both of these. At the beginning of the line, type either <s or <e, and
then hit TAB. It will expand into a block with begin and end markers for SRC or EXAMPLE, respectively.

These markers are all case insensitive, so you can write #+begin_src etc instead if you prefer.

Tables

| Name | Phone | Age |
|-------+-------+-----|
| Peter | 1234 | 17 |
| Anna | 4321 | 25 |

To add a Table in org-mode, simply surround your columns with a bar (|)

| column1 | column2 | this column is wider |

When you press Return from inside a column, org-mode will automatically create a new row with
the bars.

Tab and Return will respectively move to the next cell or row (or create a new one if there isn't
any)

•

You can swap the rows and columns around with M-ArrowKey•
M-S-Down and M-S-Right will respectively create a row (above the current) and a column (on
the left of the current)

•

M-S-Up and M-S-Left will respectively remove the current row and the current column•
C-c i create a separator•

Read Org-mode online: https://riptutorial.com/emacs/topic/6259/org-mode

https://riptutorial.com/ 32

http://orgmode.org/manual/Easy-Templates.html
https://riptutorial.com/emacs/topic/6259/org-mode

Chapter 10: Package Management

Examples

Automatic package installation on emacs start-up

;; package.el is available since emacs 24
(require 'package)

;; Add melpa package source when using package list
(add-to-list 'package-archives '("melpa" . "http://melpa.org/packages/") t)

;; Load emacs packages and activate them
;; This must come before configurations of installed packages.
;; Don't delete this line.
(package-initialize)
;; `package-initialize' call is required before any of the below
;; can happen

;; If you do not put the "(package-initialize)" in your ~/.emacs.d/init.el (or
;; ~/.emacs), package.el will do it for you starting emacs 25.1.

;; Below manual maintenance of packages should not be required starting emacs
;; 25.1 with the introduction of `package-selected-packages' variable. This
;; variable is automatically updated by emacs each time you install or delete a
;; package. After this variable is synced across multiple machines, you can
;; install the missing packages using the new
;; `package-install-selected-packages' command in emacs 25.1.

;; To clarify, below technique is useful on emacs 24.5 and older versions.
;; Request some packages:
(defconst my-package-list '()
 "List of my favorite packages")

(defvar my-missing-packages '()
 "List populated at each startup that contains the list of packages that need
to be installed.")

(dolist (p my-package-list)
 (when (not (package-installed-p p))
 (add-to-list 'my-missing-packages p)))

(when my-missing-packages
 (message "Emacs is now refreshing its package database...")
 (package-refresh-contents)
 ;; Install the missing packages
 (dolist (p my-missing-packages)
 (message "Installing `%s' .." p)
 (package-install p))
 (setq my-missing-packages '()))

References

https://riptutorial.com/ 33

Comparison of package repos•
Blog post on user selected packages feature in emacs 25.1•

Automatic Package Installation with use-package

;; disable automatic loading of packages after the init file
(setq package-enable-at-startup nil)
;; instead load them explicitly
(package-initialize)
;; refresh package descriptions
(unless package-archive-contents
 (package-refresh-contents))

;;; use-package initialization
;;; install use-package if not already done
(if (not (package-installed-p 'use-package))
 (progn
 (package-refresh-contents)
 (package-install 'use-package)))
;;; use-package for all others
(require 'use-package)

;; install your packages
(use-package helm
 :ensure t)
(use-package magit
 :ensure t)

Automatic package management using Cask

Cask is a project management tool which can be also used to easily manage your local emacs
configuration.

Installing cask is easy. You can either run the following command on the command-line:

 curl -fsSL https://raw.githubusercontent.com/cask/cask/master/go | python

Or if you are on a mac, you can install it using homebrew:

brew install cask

Once installed, you create a Cask file. Cask files list all package dependencies which should be
included in your configuration. You can create a new Cask file at the root of your ~/.emacs
directory.

You will also need to initialize Cask in your ~/.emacs.d/init.el. If you installed using homebrew,
add these lines:

(require 'cask "/usr/local/share/emacs/site-lisp/cask/cask.el")
(cask-initialize)

Or you can supply the path to cask, if you used the install script:

https://riptutorial.com/ 34

http://emacs.stackexchange.com/q/268/115
http://endlessparentheses.com/new-in-package-el-in-emacs-25-1-user-selected-packages.html
https://github.com/cask/cask

(require 'cask "~/.cask/cask.el")
(cask-initialize)

A simple Cask file looks like this:

(source gnu)
(source melpa)

(depends-on "projectile")
(depends-on "flx")
(depends-on "flx-ido")

Here we are specifying source repositories to look for packages in. Then we are specifying that we
want the projectile, flx, and flx-ido packages installed.

Once you have a Cask file, you can install all the dependencies with the follwoing command on
the command-line:

cask install

Automatic Package Management with el-get

el-get is an open source package management system for GNU Emacs. el-get works with melpa,
as well as with many common version control systms. Its documentation includes a simple self-
installer for your .emacs:

(unless (require 'el-get nil t)
 (url-retrieve
 "https://raw.github.com/dimitri/el-get/master/el-get-install.el"
 (lambda (s)
 (let (el-get-master-branch)
 (goto-char (point-max))
 (eval-print-last-sexp)))))

(el-get 'sync)

el-get maintains package installations in a directory structure at ~/.emacs.d/el-get. It loads
definitions from ~/.emacs.d/el-get/.loaddefs.el and tracks package status with ~/.emacs.d/el-
get/.status.el. (el-get 'sync) installs or removes packages to bring the actual machine state in
sync with the package .status.el.

el-get is self-hosted - here is its own status from .status.el:

(el-get status "installed" recipe
 (:name el-get :website "https://github.com/dimitri/el-get#readme" :description "Manage the
external elisp bits and pieces you depend upon." :type github :branch "master" :pkgname
"dimitri/el-get" :info "." :compile
 ("el-get.*\\.el$" "methods/")
 :features el-get :post-init
 (when
 (memq 'el-get
 (bound-and-true-p package-activated-list))

https://riptutorial.com/ 35

https://github.com/dimitri/el-get

 (message "Deleting melpa bootstrap el-get")
 (unless package--initialized
 (package-initialize t))
 (when
 (package-installed-p 'el-get)
 (let
 ((feats
 (delete-dups
 (el-get-package-features
 (el-get-elpa-package-directory 'el-get)))))
 (el-get-elpa-delete-package 'el-get)
 (dolist
 (feat feats)
 (unload-feature feat t))))
 (require 'el-get))))

Read Package Management online: https://riptutorial.com/emacs/topic/2414/package-
management

https://riptutorial.com/ 36

https://riptutorial.com/emacs/topic/2414/package-management
https://riptutorial.com/emacs/topic/2414/package-management

Chapter 11: Starter Kits

Remarks

Starter kits enable new users to start using Emacs quickly and avoid some of the setup hurdles
that come from a mature system like Emacs -- one that has grown through decades of evolution
and naturally has some historical quirks. Experienced users also benefit from having a kit
configuration of extensions that are curated by others.

It requires considerable effort to maintain a set of packages and settings that will continue to work
well together as packages improve (or bit-rot) over time. Many Emacs users don't desire to do this
maintenance, so they turn to starter kits. Assembly and maintenance of a kit bears a small-scale
resemblance to management of a Linux distribution.

Themes and Customization

Some starter kits are themed; e.g., for specific programming language environments, or music
creation, or emulation of another editor. Others aim to provide a kitchen sink of bundling
comfortable/productive modules for as many situations or languages as possible.

Most starter kits have provisions for extension and customization. A user will override particular
key bindings and settings, and be able to add packages that are not yet provided.

Popular Kits

There are many starter kits available. In theory, anyone who publishes their ~/.emacs.d has created
one. But a handful have become popular and well maintained by one or more individuals. Some
examples (in order of subjective popularity based on Github stars) include Spacemacs, Prelude,
Purcell, Emacs Starter Kit, Magnars, and Emacs Live. More details are listed in the Examples
section above and more starter kits are listed on this wiki.

A notable "micro-kit" is Sane Defaults, providing a handful of settings to remove some of Emacs'
default surprise-to-newcomers behaviors.

Is a starter kit needed?

Although there is some controversy around using starter kits, for many the benefits can far
outweigh the cost figuring out how to harmonize a dynamic Emacs setup. Arguments against
starter kits usually pertain to: users being unaware of some of the nuances and native behavior of
Emacs, being difficult to debug, and even making Emacs look more like a foreign editor
(Spacemacs).

Examples

https://riptutorial.com/ 37

https://github.com/syl20bnr/spacemacs
http://batsov.com/prelude/
https://github.com/purcell/emacs.d
https://github.com/technomancy/emacs-starter-kit
https://github.com/magnars/.emacs.d
http://overtone.github.io/emacs-live/
http://wikemacs.org/wiki/Starter_Kits
https://github.com/magnars/.emacs.d/blob/master/settings/sane-defaults.el
https://www.reddit.com/r/emacs/comments/1udtd1/starting_emacs_with_preludestarter_kits_scares_me/

Spacemacs

Spacemacs is a popular starter kit for emacs. It features a robust package management solution
and centers around emacs's popular evil mode, which provides many of the keybindings from vim.

It is called Spacemacs because it uses the Space key as the leader key (the idea is similar to Vim's
leader key).

Installation is pretty easy. Just download and install the standard emacs distribution and then
clone the git repo:

git clone https://github.com/syl20bnr/spacemacs ~/.emacs.d

Or, you can download a zip locally from the website and just copy it to ~/.emacs.d

Once you have it downloaded (cloned), launch it, then press the space bar to explore the
interactive list of carefully-chosen key bindings. You can also press the home buffer's [?] button for
some first key bindings to try.

Prelude

Prelude is another popular starter kit. It features good support for various programming languages
out-of-the-box including, notably - clojure. On *nix systems it can be installed with the following
command:

curl -L https://git.io/epre | sh

emacs-live

emacs-live is another popular emacs starter kit, with an additional focus on live music coding using
overtone.

You can install it in 2 ways:

On *nix (e.g. linux, OSX, etc.) systems, run the following command on the command-line:1.

bash <(curl -fksSL https://raw.github.com/overtone/emacs-live/master/installer/install-
emacs-live.sh)

Download the zip from the github page.•
Backup your current ~/.emacs.d in your home directory•
extract the zip you downloaded and move it to ~/.emacs.d:•

2.

Scimax

Scimax is an Emacs starter kit focused on reproducible research, targeted mainly at scientists and
engineers. Scimax customizes Org-Mode with features that make cross-referencing, exporting,
and coding (in particular Python), simpler.

https://riptutorial.com/ 38

http://spacemacs.org/
https://www.emacswiki.org/emacs/Evil
http://www.vim.org/
https://github.com/bbatsov/prelude
https://github.com/overtone/emacs-live
http://overtone.github.io/
https://raw.github.com/overtone/emacs-live/master/installer/install-emacs-live.sh)
https://raw.github.com/overtone/emacs-live/master/installer/install-emacs-live.sh)
https://github.com/jkitchin/scimax/blob/master/scimax.org

Installation instructions can be found on the landing page of the project.

Read Starter Kits online: https://riptutorial.com/emacs/topic/1960/starter-kits

https://riptutorial.com/ 39

https://github.com/jkitchin/scimax
https://riptutorial.com/emacs/topic/1960/starter-kits

Chapter 12: The Many Variants Of Emacs

Introduction

Most of this documentation implicitly or explicitly applies to GNU Emacs. This may be the most
well known variant of Emacs, as well as the source of several forks, and the target of some
merges.

This topic discusses some of the variants of Emacs one may encounter, and their primary
differences from GNU Emacs.

Examples

Spacemacs

Spacemacs (http://spacemacs.org/) is a variant of Emacs that attempts to end the long-term
conflict between Emacs and vim users, by making an Emacs that behaves like vim.

Read The Many Variants Of Emacs online: https://riptutorial.com/emacs/topic/9456/the-many-
variants-of-emacs

https://riptutorial.com/ 40

http://spacemacs.org/)
https://riptutorial.com/emacs/topic/9456/the-many-variants-of-emacs
https://riptutorial.com/emacs/topic/9456/the-many-variants-of-emacs

Credits

S.
No

Chapters Contributors

1
Getting started with
emacs

Adobe, Community, ebpa, Ehvince, eyqs, IntFloat, Jack
Henahan, joon, legoscia, mellowmaroon, Michel de Ruiter,
Nemanja Trifunovic, omul, pcurry, Prasanna, salotz, squiter

2 Basic Keybindings
Adeel Ansari, Arjun J Rao, boehm_s, Francesco, Idan, Jeff
Bencteux, julienc, leeor, Meaningful Username, mellowmaroon,
Nikana Reklawyks, Prasanna, SuperBear, Tej Chajed, Terje D.

3

emacs has already
very high quality,
well organized
documentation. why
duplicate it?

erjoalgo

4 Emacs nomenclature
Doug Harris, Francesco, Nikana Reklawyks, Stephen Leppik,
Terje D.

5 Helm Yuki Inoue

6 Help Within Emacs mellowmaroon, Terje D., ygram

7 Magit boehm_s, Ehvince, glallen, mellowmaroon, squiter

8
Manage bookmarks
within Emacs

Francesco, Prasanna

9 Org-mode Christopher Bottoms, Francesco, legoscia, SuperBear, Wazam

10
Package
Management

Adobe, Kaushal Modi, leeor, pcurry, salotz, squiter

11 Starter Kits dangom, Ehvince, Kaushal Modi, leeor, Micah Elliott, Xinyang Li

12
The Many Variants
Of Emacs

pcurry

https://riptutorial.com/ 41

https://riptutorial.com/contributor/788700/adobe
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/569280/ebpa
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/4606185/intfloat
https://riptutorial.com/contributor/794944/jack-henahan
https://riptutorial.com/contributor/794944/jack-henahan
https://riptutorial.com/contributor/439325/joon
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/1017523/mellowmaroon
https://riptutorial.com/contributor/357313/michel-de-ruiter
https://riptutorial.com/contributor/4004007/nemanja-trifunovic
https://riptutorial.com/contributor/7093783/omul
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/3799061/prasanna
https://riptutorial.com/contributor/3524689/salotz
https://riptutorial.com/contributor/937506/squiter
https://riptutorial.com/contributor/42769/adeel-ansari
https://riptutorial.com/contributor/585585/arjun-j-rao
https://riptutorial.com/contributor/4756304/boehm-s
https://riptutorial.com/contributor/1225607/francesco
https://riptutorial.com/contributor/5099208/idan
https://riptutorial.com/contributor/3452702/jeff-bencteux
https://riptutorial.com/contributor/3452702/jeff-bencteux
https://riptutorial.com/contributor/2679935/julienc
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/3382913/meaningful-username
https://riptutorial.com/contributor/1017523/mellowmaroon
https://riptutorial.com/contributor/1449460/nikana-reklawyks
https://riptutorial.com/contributor/3799061/prasanna
https://riptutorial.com/contributor/2688411/superbear
https://riptutorial.com/contributor/4084567/tej-chajed
https://riptutorial.com/contributor/1577260/terje-d-
https://riptutorial.com/contributor/1941755/erjoalgo
https://riptutorial.com/contributor/138776/doug-harris
https://riptutorial.com/contributor/1225607/francesco
https://riptutorial.com/contributor/1449460/nikana-reklawyks
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1577260/terje-d-
https://riptutorial.com/contributor/3090068/yuki-inoue
https://riptutorial.com/contributor/1017523/mellowmaroon
https://riptutorial.com/contributor/1577260/terje-d-
https://riptutorial.com/contributor/337997/ygram
https://riptutorial.com/contributor/4756304/boehm-s
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/222519/glallen
https://riptutorial.com/contributor/1017523/mellowmaroon
https://riptutorial.com/contributor/937506/squiter
https://riptutorial.com/contributor/1225607/francesco
https://riptutorial.com/contributor/3799061/prasanna
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/1225607/francesco
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/2688411/superbear
https://riptutorial.com/contributor/7345321/wazam
https://riptutorial.com/contributor/788700/adobe
https://riptutorial.com/contributor/1219634/kaushal-modi
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/3524689/salotz
https://riptutorial.com/contributor/937506/squiter
https://riptutorial.com/contributor/3568092/dangom
https://riptutorial.com/contributor/1506338/ehvince
https://riptutorial.com/contributor/1219634/kaushal-modi
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/326516/micah-elliott
https://riptutorial.com/contributor/2226315/xinyang-li
https://riptutorial.com/contributor/1339820/pcurry

	About
	Chapter 1: Getting started with emacs
	Remarks
	Versions
	Examples
	Installation or Setup

	Debian systems
	Build for source

	Redhat systems
	Arch Linux
	Gentoo and Funtoo
	GSRC (GNU Source Release Collection)
	Darwin systems
	Homebrew
	MacPorts
	pkgsrc
	App Bundle

	Windows
	Chocolatey package manager
	Scoop package manager
	Official Binary Installers
	Other Binary Installers
	Interactive Emacs Tutorial
	Emacs Rocks Video Tutorials

	Chapter 2: Basic Keybindings
	Examples
	Quit Emacs

	Suspend Emacs
	File handling
	Abort current command
	Multiples windows or frames
	Buffers
	Search and Replace
	Region - Cut, Copy, Paste

	Kill
	Select and cut (kill)

	Yank
	Yank text killed previously
	Cursor (point) movement
	Undo
	Case
	Key bindings notation

	Key chords
	Key sequences
	Using ESC instead of Alt
	Describing key bindings in Emacs lisp files

	Chapter 3: emacs has already very high quality, well organized documentation. why duplicate it?
	Introduction
	Examples
	Keys

	Chapter 4: Emacs nomenclature
	Examples
	Files and buffers
	Elements of the User Interface

	Frame
	Window
	Buffer
	Mode line
	Tool Bar
	Minibuffer
	Point, mark and region
	Killing and yanking

	Killing
	Yanking
	Modes

	Major mode
	Minor mode
	Chapter 5: Helm
	Examples
	Installing helm via MELPA

	Chapter 6: Help Within Emacs
	Remarks
	Examples
	Emacs Tutorial
	Available Functions and Key Bindings
	Key Binding Documentation
	Function Documentation

	Chapter 7: Magit
	Introduction
	Remarks
	Examples
	Installation
	Basic usage: commit unstaged edits within an existing repo

	Chapter 8: Manage bookmarks within Emacs
	Examples
	How to bookmark frequently used files

	Chapter 9: Org-mode
	Remarks
	Examples
	Markup syntax

	Structure
	Document title
	Sectioning
	Lists
	Checkboxes

	Emphasis and monospace
	Links and references
	Links
	Footnotes
	Basic Key Bindings
	Code blocks
	Tables

	Chapter 10: Package Management
	Examples
	Automatic package installation on emacs start-up

	References
	Automatic Package Installation with use-package
	Automatic package management using Cask
	Automatic Package Management with el-get

	Chapter 11: Starter Kits
	Remarks
	Themes and Customization
	Popular Kits
	Is a starter kit needed?
	Examples
	Spacemacs
	Prelude
	emacs-live
	Scimax

	Chapter 12: The Many Variants Of Emacs
	Introduction
	Examples
	Spacemacs

	Credits

