
Embarcadero Delphi

#delphi

Table of Contents

About 1

Chapter 1: Getting started with Embarcadero Delphi 2

Remarks 2

Versions 2

Examples 3

Hello World 3

Show 'Hello World' using the VCL 3

Show 'Hello World' Using WinAPI MessageBox 4

Cross-platform Hello World using FireMonkey 4

Chapter 2: Creating easily removable runtime error checks 5

Introduction 5

Examples 5

Trivial example 5

Chapter 3: For Loops 7

Syntax 7

Remarks 7

Examples 7

Simple for loop 7

Looping over characters of a string 8

Reverse-direction for loop 8

For loop using an enumeration 9

For in array 9

Chapter 4: Generics 11

Examples 11

Sort a dynamic array via generic TArray.Sort 11

Simple usage of TList 11

Descending from TList making it specific 11

Sort a TList 12

Chapter 5: Interfaces 13

Remarks 13

Examples 13

Defining and implementing an interface 13

Implementing multiple interfaces 14

Inheritance for interfaces 14

Properties in interfaces 15

Chapter 6: Loops 16

Introduction 16

Syntax 16

Examples 16

Break and Continue in Loops 16

Repeat-Until 17

While do 17

Chapter 7: Retrieving updated TDataSet data in a background thread 18

Remarks 18

Examples 18

FireDAC example 18

Chapter 8: Running a thread while keeping GUI responsive 21

Examples 21

Responsive GUI using threads for background work and PostMessage to report back from the t 21

Thread 21

Form 22

Chapter 9: Running other programs 25

Examples 25

CreateProcess 25

Chapter 10: Strings 27

Examples 27

String types 27

Strings 27

Chars 27

UPPER and lower case 28

Assignment 28

Reference counting 28

Encodings 29

Chapter 11: Time intervals measurement 31

Examples 31

Using Windows API GetTickCount 31

Using TStopwatch record 31

Chapter 12: TStringList class 33

Examples 33

Introduction 33

Key-Value Pairing 33

Chapter 13: Use of try, except, and finally 35

Syntax 35

Examples 35

Simple try..finally example to avoid memory leaks 35

Exception-safe return of a new object 35

Try-finally nested inside try-except 36

Try-except nested inside try-finally 36

Try-finally with 2 or more objects 37

Chapter 14: Using Animations in Firemonkey 38

Examples 38

Rotating TRectangle 38

Chapter 15: Using RTTI in Delphi 39

Introduction 39

Remarks 39

Examples 39

Basic Class Information 39

Credits 41

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: embarcadero-delphi

It is an unofficial and free Embarcadero Delphi ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Embarcadero
Delphi.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/embarcadero-delphi
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Embarcadero
Delphi

Remarks

Delphi is a general-purpose language based on an Object Pascal dialect with its roots coming
from Borland Turbo Pascal. It comes with its own IDE designed to support rapid application
development (RAD).

It allows cross-platform native (compiled) application development from a single code base.
Currently supported platforms are Windows, OSX, iOS and Android.

It comes with two visual frameworks:

VCL: Visual Component Library specifically designed for Windows development wrapping
Windows native controls and support for creating custom ones.

•

FMX: FireMonkey cross-platform framework for all supported platforms•

Versions

Version Numeric version Product name Release date

1 1.0 Borland Delphi 1995-02-14

2 2.0 Borland Delphi 2 1996-02-10

3 3.0 Borland Delphi 3 1997-08-05

4 4.0 Borland Delphi 4 1998-07-17

5 5.0 Borland Delphi 5 1999-08-10

6 6.0 Borland Delphi 6 2001-05-21

7 7.0 Borland Delphi 7 2002-08-09

8 8.0 Borland Delphi 8 for .NET 2003-12-22

2005 9.0 Borland Delphi 2005 2004-10-12

2006 10.0 Borland Delphi 2006 2005-11-23

2007 11.0 CodeGear Delphi 2007 2007-03-16

2009 12.0 CodeGear Delphi 2009 2008-08-25

https://riptutorial.com/ 2

Version Numeric version Product name Release date

2010 14.0 Embarcadero RAD Studio 2010 2009-08-15

XE 15.0 Embarcadero RAD Studio XE 2010-08-30

XE2 16.0 Embarcadero RAD Studio XE2 2011-09-02

XE3 17.0 Embarcadero RAD Studio XE3 2012-09-03

XE4 18.0 Embarcadero RAD Studio XE4 2013-04-22

XE5 19.0 Embarcadero RAD Studio XE5 2013-09-11

XE6 20.0 Embarcadero RAD Studio XE6 2014-04-15

XE7 21.0 Embarcadero RAD Studio XE7 2014-09-02

XE8 22.0 Embarcadero RAD Studio XE8 2015-04-07

10 Seattle 23.0 Embarcadero RAD Studio 10 Seattle 2015-08-31

10.1 Berlin 24.0 Embarcadero RAD Studio 10.1 Berlin 2016-04-20

10.2 Tokyo 25.0 Embarcadero RAD Studio 10.2 Tokyo 2017-03-22

Examples

Hello World

This program, saved to a file named HelloWorld.dpr, compiles to a console application that prints
"Hello World" to the console:

program HelloWorld;

{$APPTYPE CONSOLE}

begin
 WriteLn('Hello World');
end.

Show 'Hello World' using the VCL

This progam uses VCL, the default UI components library of Delphi, to print "Hello World" into a
message box. The VCL wrapps most of the commonly used WinAPI components. This way, they
can be used much easier, e.g. without the need to work with Window Handles.

To include a dependency (like Vcl.Dialogs in this case), add the uses block including a comma-
separated list of units ending with an semicolon.

https://riptutorial.com/ 3

program HelloWindows;

uses
 Vcl.Dialogs;

begin
 ShowMessage('Hello Windows');
end.

Show 'Hello World' Using WinAPI MessageBox

This program uses the Windows API (WinAPI) to print "Hello World" into a message box.

To include a dependency (like Windows in this case), add the uses block including a comma-
separated list of units ending with an semicolon.

program HelloWorld;

uses
 Windows;

begin
 MessageBox(0, 'Hello World!', 'Hello World!', 0);
end.

Cross-platform Hello World using FireMonkey

XE2

program CrossPlatformHelloWorld;

uses
 FMX.Dialogs;

{$R *.res}

begin
 ShowMessage('Hello world!');
end.

Most of the Delphi supported platforms (Win32/Win64/OSX32/Android32/iOS32/iOS64) also
support a console so the WriteLn example fits them well.

For the platforms that require a GUI (any iOS device and some Android devices), the above
FireMonkey example works well.

Read Getting started with Embarcadero Delphi online:
https://riptutorial.com/delphi/topic/599/getting-started-with-embarcadero-delphi

https://riptutorial.com/ 4

https://riptutorial.com/delphi/topic/599/getting-started-with-embarcadero-delphi

Chapter 2: Creating easily removable runtime
error checks

Introduction

This shows how a runtime error check routine of your own making can be easily incorporated so
that it doesn't generate any code overhead when it is turned off.

Examples

Trivial example

{$DEFINE MyRuntimeCheck} // Comment out this directive when the check is no-longer required!
 // You can also put MyRuntimeCheck in the project defines instead.

 function MyRuntimeCheck: Boolean; {$IFNDEF MyRuntimeCheck} inline; {$ENDIF}
 begin
 result := TRUE;
 {$IFDEF MyRuntimeCheck}
 // .. the code for your check goes here
 {$ENDIF}
 end;

The concept is basically this:

The defined symbol is used to turn on the use of the code. It also stops the code being explicitly
in-lined, which means it is easier to put a breakpoint into the check routine.

However, the real beauty of this construction is when you don't want the check anymore. By
commenting out the $DEFINE (put '//' in-front of it) you will not only remove the check code, but
you will also switch on the inline for the routine and thus remove any overheads from all the
places where you invoked the routine! The compiler will remove all traces of your check entirely
(assuming that inlining itself is set to "On" or "Auto", of course).

The example above is essentially similar to the concept of "assertions", and your first line could set
the result to TRUE or FALSE as appropriate to the usage.

But you are now also free to use this manner of construction for code that does trace-logging,
metrics, whatever. For example:

 procedure MyTrace(const what: string); {$IFNDEF MyTrace} inline; {$ENDIF}
 begin
 {$IFDEF MyTrace}
 // .. the code for your trace-logging goes here
 {$ENDIF}
 end;
...
MyTrace('I was here'); // This code overhead will vanish if 'MyTrace' is not defined.

https://riptutorial.com/ 5

MyTrace(SomeString); // So will this.

Read Creating easily removable runtime error checks online:
https://riptutorial.com/delphi/topic/10541/creating-easily-removable-runtime-error-checks

https://riptutorial.com/ 6

https://riptutorial.com/delphi/topic/10541/creating-easily-removable-runtime-error-checks

Chapter 3: For Loops

Syntax

for OrdinalVariable := LowerOrdinalValue to UpperOrdinalValue do begin {loop-body} end;•
for OrdinalVariable := UpperOrdinalValue downto LowerOrdinalValue do begin {loop-body}
end;

•

for EnumerableVariable in Collection do begin {loop-body} end;•

Remarks

Delphi's for-loop syntax does not provide anything to change step amount from 1 to any
other value.

•

When looping with variable ordinal values, e.g. local variables of type Integer, the upper and
lower values will be determined only once. Changes to such variables will have no effect on
the loops iteration count.

•

Examples

Simple for loop

A for loop iterates from the starting value to the ending value inclusive.

program SimpleForLoop;

{$APPTYPE CONSOLE}

var
 i : Integer;
begin
 for i := 1 to 10 do
 WriteLn(i);
end.

Output:

1
2
3
4
5
6
7
8
9
10

https://riptutorial.com/ 7

Looping over characters of a string

2005

The following iterates over the characters of the string s. It works similarly for looping over the
elements of an array or a set, so long as the type of the loop-control variable (c, in this example)
matches the element type of the value being iterated.

program ForLoopOnString;

{$APPTYPE CONSOLE}

var
 s : string;
 c : Char;
begin
 s := 'Example';
 for c in s do
 WriteLn(c);
end.

Output:

E
x
a
m
p
l
e

Reverse-direction for loop

A for loop iterates from the starting value down to the ending value inclusive, as a "count-down"
example.

program CountDown;

{$APPTYPE CONSOLE}

var
 i : Integer;
begin
 for i := 10 downto 0 do
 WriteLn(i);
end.

Output:

10
9
8

https://riptutorial.com/ 8

7
6
5
4
3
2
1
0

For loop using an enumeration

A for loop iterate through items in an enumeration

program EnumLoop;

uses
 TypInfo;

type
 TWeekdays = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);

var
 wd : TWeekdays;
begin

 for wd in TWeekdays do
 WriteLn(GetEnumName(TypeInfo(TWeekdays), Ord(wd)));

end.

Output:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

For in array

A for loop iterate through items in an array

program ArrayLoop;
{$APPTYPE CONSOLE}
const a : array[1..3] of real = (1.1, 2.2, 3.3);
var f : real;
begin
 for f in a do
 WriteLn(f);
end.

https://riptutorial.com/ 9

Output:

1,1
2,2
3,3

Read For Loops online: https://riptutorial.com/delphi/topic/4643/for-loops

https://riptutorial.com/ 10

https://riptutorial.com/delphi/topic/4643/for-loops

Chapter 4: Generics

Examples

Sort a dynamic array via generic TArray.Sort

uses
 System.Generics.Collections, { TArray }
 System.Generics.Defaults; { TComparer<T> }

var StringArray: TArray<string>; { Also works with "array of string" }

...

{ Sorts the array case insensitive }
TArray.Sort<string>(StringArray, TComparer<string>.Construct(
 function (const A, B: string): Integer
 begin
 Result := string.CompareText(A, B);
 end
));

Simple usage of TList

var List: TList<Integer>;

...

List := TList<Integer>.Create; { Create List }
try
 List.Add(100); { Add Items }
 List.Add(200);

 WriteLn(List[1]); { 200 }
finally
 List.Free;
end;

Descending from TList making it specific

type
 TIntegerList = class(TList<Integer>)
 public
 function Sum: Integer;
 end;

...

function TIntegerList.Sum: Integer;
var
 Item: Integer;
begin
 Result := 0;

https://riptutorial.com/ 11

 for Item in Self do
 Result := Result + Item;
end;

Sort a TList

var List: TList<TDateTime>;

...

List.Sort(
 TComparer<TDateTime>.Construct(
 function(const A, B: TDateTime): Integer
 begin
 Result := CompareDateTime(A, B);
 end
)
);

Read Generics online: https://riptutorial.com/delphi/topic/4054/generics

https://riptutorial.com/ 12

https://riptutorial.com/delphi/topic/4054/generics

Chapter 5: Interfaces

Remarks

Interfaces are used to describe the needed information and the expected output of methods and
classes, without providing information of the explicit implementation.

Classes can implement interfaces, and interfaces can inherit from each other. If a class is
implementing an interface, this means all functions and procedures exposed by the interface
exist in the class.

A special aspect of interfaces in delphi is that instances of interfaces have a lifetime management
based on reference counting. The lifetime of class instances has to be managed manually.

Considering all these aspects, interfaces can be used to achieve different goals:

Provide multiple different implementations for operations (e.g. saving in a file, database or
sending as E-Mail, all as Interface "SaveData")

•

Reduce dependencies, improving the decoupling and thus making the code better
maintainable and testable

•

Work with instances in multiple units without getting troubled by lifetime management
(though even here pitfalls exist, beware!)

•

Examples

Defining and implementing an interface

An interface is declared like a class, but without access modifiers (public, private, ...). Also, no
definitions are allowed, so variables and constants can't be used.

Interfaces should always have an Unique Identifier, which can be generated by pressing Ctrl +
Shift + G.

IRepository = interface
 ['{AFCFCE96-2EC2-4AE4-8E23-D4C4FF6BBD01}']
 function SaveKeyValuePair(aKey: Integer; aValue: string): Boolean;
end;

To implement an interface, the name of the interface must be added behind the base class. Also,
the class should be a descendant of TInterfacedObject (this is important for the lifetime
management).

TDatabaseRepository = class(TInterfacedObject, IRepository)
 function SaveKeyValuePair(aKey: Integer; aValue: string): Boolean;
end;

When a class implements an interface, it must include all methods and functions declared in the

https://riptutorial.com/ 13

interface, else it won't compile.

One thing worth noting is that access modifiers don't have any influence, if the caller works with
the interface. For example all functions of the interface can be implemented as strict private
members, but can still be called from another class if an instance of the interface is used.

Implementing multiple interfaces

Classes can implement more than one interface, as opposed to inheriting from more than one
class (Multiple Inheritance) which isn't possible for Delphi classes. To achieve this, the name of all
interfaces must be added comma-separated behind the base class.

Of course, the implementing class must also define the functions declared by each of the
interfaces.

IInterface1 = interface
 ['{A2437023-7606-4551-8D5A-1709212254AF}']
 procedure Method1();
 function Method2(): Boolean;
end;

IInterface2 = interface
 ['{6C47FF48-3943-4B53-8D5D-537F4A0DEC0D}']
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject;

 property Value: TObject read GetValue write SetValue;
end;

TImplementer = class(TInterfacedObject, IInterface1, IInterface2)
 // IInterface1
 procedure Method1();
 function Method2(): Boolean;

 // IInterface2
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject

 property Value: TObject read GetValue write SetValue;
end;

Inheritance for interfaces

Interfaces can inherit from each other, exactly like classes do, too. An implementing class thus has
to implement functions of the interface and all base interfaces. This way, however, the compiler
doesn't know that the implenting class also implements the base interface, it only knows of the
interfaces that are explicitly listed. That's why using as ISuperInterface on TImplementer wouldn't
work. That also results in the common practice, to explicitly implement all base interfaces, too (in
this case TImplementer = class(TInterfacedObject, IDescendantInterface, ISuperInterface)).

ISuperInterface = interface
 ['{A2437023-7606-4551-8D5A-1709212254AF}']
 procedure Method1();

https://riptutorial.com/ 14

 function Method2(): Boolean;
end;

IDescendantInterface = interface(ISuperInterface)
 ['{6C47FF48-3943-4B53-8D5D-537F4A0DEC0D}']
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject;

 property Value: TObject read GetValue write SetValue;
end;

TImplementer = class(TInterfacedObject, IDescendantInterface)
 // ISuperInterface
 procedure Method1();
 function Method2(): Boolean;

 // IDescendantInterface
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject

 property Value: TObject read GetValue write SetValue;
end;

Properties in interfaces

Since the declaration of variables in interfaces isn't possible, the "fast" way of defining properites (
property Value: TObject read FValue write FValue;) can't be used. Instead, the Getter and setter
(each only if needed) have to be declared in the interface, too.

IInterface = interface(IInterface)
 ['{6C47FF48-3943-4B53-8D5D-537F4A0DEC0D}']
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject;

 property Value: TObject read GetValue write SetValue;
end;

One thing worth noting is that the implementing class doesn't have to declare the property. The
compiler would accept this code:

TImplementer = class(TInterfacedObject, IInterface)
 procedure SetValue(const aValue: TObject);
 function GetValue(): TObject
end;

One caveat, however, is that this way the property can only be accessed through an instance of
the interface, noth through the class itself. Also, adding the property to the class increases the
readability.

Read Interfaces online: https://riptutorial.com/delphi/topic/4885/interfaces

https://riptutorial.com/ 15

https://riptutorial.com/delphi/topic/4885/interfaces

Chapter 6: Loops

Introduction

Delphi language provide 3 types of loop

for - iterator for fixed sequence over integer, string, array or enumeration

repeat-until - quit condition is checking after each turn, loop executing at minimum once tmeeven

while do - do condition is checking before each turn, loop could be never executed

Syntax

for OrdinalVariable := LowerOrdinalValue to UpperOrdinalValue do begin {loop-body} end;•
for OrdinalVariable := UpperOrdinalValue downto LowerOrdinalValue do begin {loop-body}
end;

•

for EnumerableVariable in Collection do begin {loop-body} end;•
repeat {loop-body} until {break-condition};•
while {condition} do begin {loop-body} end;•

Examples

Break and Continue in Loops

program ForLoopWithContinueAndBreaks;

{$APPTYPE CONSOLE}

var
 var i : integer;
begin
 for i := 1 to 10 do
 begin
 if i = 2 then continue; (* Skip this turn *)
 if i = 8 then break; (* Break the loop *)
 WriteLn(i);
 end;
 WriteLn('Finish.');
end.

Output:

1
3
4
5
6

https://riptutorial.com/ 16

7
Finish.

Repeat-Until

program repeat_test;

{$APPTYPE CONSOLE}

var s : string;
begin
 WriteLn('Type a words to echo. Enter an empty string to exit.');
 repeat
 ReadLn(s);
 WriteLn(s);
 until s = '';
end.

This short example print on console Type a words to echo. Enter an empty string to exit., wait for
user type, echo it and waiting input again in infinite loop - until user entering the empty string.

While do

program WhileEOF;
{$APPTYPE CONSOLE}
uses SysUtils;

const cFileName = 'WhileEOF.dpr';
var F : TextFile;
s : string;
begin
 if FileExists(cFileName)
 then
 begin
 AssignFile(F, cFileName);
 Reset(F);

 while not Eof(F) do
 begin
 ReadLn(F, s);
 WriteLn(s);
 end;

 CloseFile(F);
 end
 else
 WriteLn('File ' + cFileName + ' not found!');
end.

This example print to console the text content of WhileEOF.dpr file using While not(EOF) condition. If
file is empty then ReadLn-WriteLn loop is not executed.

Read Loops online: https://riptutorial.com/delphi/topic/9931/loops

https://riptutorial.com/ 17

https://riptutorial.com/delphi/topic/9931/loops

Chapter 7: Retrieving updated TDataSet data
in a background thread

Remarks

This FireDAC example, and the others I'm planning to submit, will avoid the use of native calls to
asynchronously open the dataset.

Examples

FireDAC example

The code sample below shows one way to retrieve records from an MSSql Server in a background
thread using FireDAC. Tested for Delphi 10 Seattle

As written:

The thread retrieves data using its own TFDConnection and TFDQuery and transfers the
data to the form's FDQuery in a call to Sychronize().

•

The Execute retrieves the data only once. It could be altered to run the query repeatedly in
response to a message posted from the VCL thread.

•

Code:

 type
 TForm1 = class;

 TFDQueryThread = class(TThread)
 private
 FConnection: TFDConnection;
 FQuery: TFDQuery;
 FForm: TForm1;
 published
 constructor Create(AForm : TForm1);
 destructor Destroy; override;
 procedure Execute; override;
 procedure TransferData;
 property Query : TFDQuery read FQuery;
 property Connection : TFDConnection read FConnection;
 property Form : TForm1 read FForm;
 end;

 TForm1 = class(TForm)
 FDConnection1: TFDConnection;
 FDQuery1: TFDQuery;
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 DBNavigator1: TDBNavigator;
 Button1: TButton;

https://riptutorial.com/ 18

 procedure FormDestroy(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 public
 QueryThread : TFDQueryThread;
 end;

 var
 Form1: TForm1;

 implementation

 {$R *.dfm}

 { TFDQueryThread }

 constructor TFDQueryThread.Create(AForm : TForm1);
 begin
 inherited Create(True);
 FreeOnTerminate := False;
 FForm := AForm;
 FConnection := TFDConnection.Create(Nil);
 FConnection.Params.Assign(Form.FDConnection1.Params);
 FConnection.LoginPrompt := False;

 FQuery := TFDQuery.Create(Nil);
 FQuery.Connection := Connection;
 FQuery.SQL.Text := Form.FDQuery1.SQL.Text;
 end;

 destructor TFDQueryThread.Destroy;
 begin
 FQuery.Free;
 FConnection.Free;
 inherited;
 end;

 procedure TFDQueryThread.Execute;
 begin
 Query.Open;
 Synchronize(TransferData);
 end;

 procedure TFDQueryThread.TransferData;
 begin
 Form.FDQuery1.DisableControls;
 try
 if Form.FDQuery1.Active then
 Form.FDQuery1.Close;
 Form.FDQuery1.Data := Query.Data;
 finally
 Form.FDQuery1.EnableControls;
 end;
 end;

 procedure TForm1.FormDestroy(Sender: TObject);
 begin
 QueryThread.Free;
 end;

https://riptutorial.com/ 19

 procedure TForm1.Button1Click(Sender: TObject);
 begin
 if not QueryThread.Finished then
 QueryThread.Start
 else
 ShowMessage('Thread already executed!');
 end;

 procedure TForm1.FormCreate(Sender: TObject);
 begin
 FDQuery1.Open;
 QueryThread := TFDQueryThread.Create(Self);
 end;

 end.

Read Retrieving updated TDataSet data in a background thread online:
https://riptutorial.com/delphi/topic/4114/retrieving-updated-tdataset-data-in-a-background-thread

https://riptutorial.com/ 20

https://riptutorial.com/delphi/topic/4114/retrieving-updated-tdataset-data-in-a-background-thread

Chapter 8: Running a thread while keeping
GUI responsive

Examples

Responsive GUI using threads for background work and PostMessage to
report back from the threads

Keeping a GUI responsive while running a lengthy process requires either some very elaborate
"callbacks" to allow the GUI to process its message queue, or the use of (background) (worker)
threads.

Kicking off any number of threads to do some work usually isn't a problem. The fun starts when
you want to make the GUI show intermediate and final results or report on the progress.

Showing anything in the GUI requires interacting with controls and/or the message queue/pump.
That should always be done in the context of the main thread. Never in the context of any other
thread.

There are many ways to handle this.

This example shows how you can do it using simple threads, allowing the GUI to access the
thread instance after it is finished by setting FreeOnTerminate to false, and reporting when a thread
is "done" using PostMessage.

Notes on race conditions: References to the worker threads are kept in an array in the form. When
a thread is finished, the corresponding reference in the array gets nil-ed.

This is a potential source of race conditions. As is the use of a "Running" boolean to make it easier
to determine whether there are still any threads that need to finish.

You will need to decide whether you need to protect theses resource using locks or not.

In this example, as it stands, there is no need. They are only modified in two locations: the
StartThreads method and the HandleThreadResults method. Both methods only ever run in the
context of the main thread. As long as you keep it that way and don't start calling these methods
from the context of different threads, there is no way for them to produce race conditions.

Thread

type
 TWorker = class(TThread)
 private
 FFactor: Double;
 FResult: Double;
 FReportTo: THandle;

https://riptutorial.com/ 21

 protected
 procedure Execute; override;
 public
 constructor Create(const aFactor: Double; const aReportTo: THandle);

 property Factor: Double read FFactor;
 property Result: Double read FResult;
 end;

The constructor just sets the private members and sets FreeOnTerminate to False. This is
essential as it will allow the main thread to query the thread instance for its result.

The execute method does its calculation and then posts a message to the handle it received in its
constructor to say its done:

procedure TWorker.Execute;
const
 Max = 100000000;var
 i : Integer;
begin
 inherited;

 FResult := FFactor;
 for i := 1 to Max do
 FResult := Sqrt(FResult);

 PostMessage(FReportTo, UM_WORKERDONE, Self.Handle, 0);
end;

The use of PostMessage is essential in this example. PostMessage "just" puts a message on the
queue of the main thread's message pump and doesn't wait for it to be handled. It is asynchronous
in nature. If you were to use SendMessage you'd be coding yourself into a pickle. SendMessage puts the
message on the queue and waits until it has been processed. In short, it is synchronous.

The declarations for the custom UM_WORKERDONE message are declared as:

const
 UM_WORKERDONE = WM_APP + 1;
type
 TUMWorkerDone = packed record
 Msg: Cardinal;
 ThreadHandle: Integer;
 unused: Integer;
 Result: LRESULT;
 end;

The UM_WORKERDONE const uses WM_APP as a starting point for its value to ensure that it doesn't
interfere with any values used by Windows or the Delphi VCL (as recommended by MicroSoft).

Form

Any form can be used to start threads. All you need to do is add the following members to it:

https://riptutorial.com/ 22

https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms644930(v=vs.85).aspx

private
 FRunning: Boolean;
 FThreads: array of record
 Instance: TThread;
 Handle: THandle;
 end;
 procedure StartThreads(const aNumber: Integer);
 procedure HandleThreadResult(var Message: TUMWorkerDone); message UM_WORKERDONE;

Oh, and the example code assumes the existence of a Memo1: TMemo; in the form's declarations,
which it uses for "logging and reporting".

The FRunning can be used to prevent the GUI from starting being clicked while the work is going
on. FThreads is used to hold the instance pointer and the handle of the created threads.

The procedure to start the threads has a pretty straightforward implementation. It starts with a
check whether there already is a set of threads being waited on. If so, it just exits. If not, it sets the
flag to true and starts the threads providing each with its own handle so they know where to post
their "done" message.

procedure TForm1.StartThreads(const aNumber: Integer);
var
 i: Integer;
begin
 if FRunning then
 Exit;

 FRunning := True;

 Memo1.Lines.Add(Format('Starting %d worker threads', [aNumber]));
 SetLength(FThreads, aNumber);
 for i := 0 to aNumber - 1 do
 begin
 FThreads[i].Instance := TWorker.Create(pi * (i+1), Self.Handle);
 FThreads[i].Handle := FThreads[i].Instance.Handle;
 end;
end;

The thread's handle is also put in the array because that is what we receive in the messages that
tell us a thread is done and having it outside the thread's instance makes it slightly easier to
access. Having the handle available outside the thread's instance also allows us to use
FreeOnTerminate set to True if we didn't need the instance to get its results (for example if they had
been stored in a database). In that case there would of course be no need to keep a reference to
the instance.

The fun is in the HandleThreadResult implementation:

procedure TForm1.HandleThreadResult(var Message: TUMWorkerDone);
var
 i: Integer;
 ThreadIdx: Integer;
 Thread: TWorker;
 Done: Boolean;
begin

https://riptutorial.com/ 23

 // Find thread in array
 ThreadIdx := -1;
 for i := Low(FThreads) to High(FThreads) do
 if FThreads[i].Handle = Cardinal(Message.ThreadHandle) then
 begin
 ThreadIdx := i;
 Break;
 end;

 // Report results and free the thread, nilling its pointer and handle
 // so we can detect when all threads are done.
 if ThreadIdx > -1 then
 begin
 Thread := TWorker(FThreads[i].Instance);
 Memo1.Lines.Add(Format('Thread %d returned %f', [ThreadIdx, Thread.Result]));
 FreeAndNil(FThreads[i].Instance);
 FThreads[i].Handle := nil;
 end;

 // See whether all threads have finished.
 Done := True;
 for i := Low(FThreads) to High(FThreads) do
 if Assigned(FThreads[i].Instance) then
 begin
 Done := False;
 Break;
 end;
 if Done then
 begin
 Memo1.Lines.Add('Work done');
 FRunning := False;
 end;
end;

This method first looks up the thread using the handle received in the message. If a match was
found, it retrieves and reports the thread's result using the instance (FreeOnTerminate was False,
remember?), and then finishes up: freeing the instance and setting both the instance reference
and the handle to nil, indicating this thread is no longer relevant.

Finally it checks to see if any of the threads is still running. If none is found, "all done" is reported
and the FRunning flag set to False so a new batch of work can be started.

Read Running a thread while keeping GUI responsive online:
https://riptutorial.com/delphi/topic/1796/running-a-thread-while-keeping-gui-responsive

https://riptutorial.com/ 24

https://riptutorial.com/delphi/topic/1796/running-a-thread-while-keeping-gui-responsive

Chapter 9: Running other programs

Examples

CreateProcess

Following function encapsulates code for using CreateProcess Windows API for launching other
programs.

It is configurable and can wait until calling process finishes or return immediately.

Parameters:

FileName - full path to executable•
Params - command line parameters or use empty string•
Folder - working folder for called program - if empty path will be extracted from FileName•
WaitUntilTerminated - if true function will wait for process to finish execution•
WaitUntilIdle - if true function will call WaitForInputIdle function and wait until the specified
process has finished processing its initial input and until there is no user input pending

•

RunMinimized - if true process will be run minimized•
ErrorCode - if function fails this will contain encountered Windows Error Code•

function ExecuteProcess(const FileName, Params: string; Folder: string; WaitUntilTerminated,
WaitUntilIdle, RunMinimized: boolean;
 var ErrorCode: integer): boolean;
var
 CmdLine: string;
 WorkingDirP: PChar;
 StartupInfo: TStartupInfo;
 ProcessInfo: TProcessInformation;
begin
 Result := true;
 CmdLine := '"' + FileName + '" ' + Params;
 if Folder = '' then Folder := ExcludeTrailingPathDelimiter(ExtractFilePath(FileName));
 ZeroMemory(@StartupInfo, SizeOf(StartupInfo));
 StartupInfo.cb := SizeOf(StartupInfo);
 if RunMinimized then
 begin
 StartupInfo.dwFlags := STARTF_USESHOWWINDOW;
 StartupInfo.wShowWindow := SW_SHOWMINIMIZED;
 end;
 if Folder <> '' then WorkingDirP := PChar(Folder)
 else WorkingDirP := nil;
 if not CreateProcess(nil, PChar(CmdLine), nil, nil, false, 0, nil, WorkingDirP, StartupInfo,
ProcessInfo) then
 begin
 Result := false;
 ErrorCode := GetLastError;
 exit;
 end;
 with ProcessInfo do
 begin
 CloseHandle(hThread);

https://riptutorial.com/ 25

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687022(v=vs.85).aspx

 if WaitUntilIdle then WaitForInputIdle(hProcess, INFINITE);
 if WaitUntilTerminated then
 repeat
 Application.ProcessMessages;
 until MsgWaitForMultipleObjects(1, hProcess, false, INFINITE, QS_ALLINPUT) <>
WAIT_OBJECT_0 + 1;
 CloseHandle(hProcess);
 end;
end;

Usage of above function

var
 FileName, Parameters, WorkingFolder: string;
 Error: integer;
 OK: boolean;
begin
 FileName := 'C:\FullPath\myapp.exe';
 WorkingFolder := ''; // if empty function will extract path from FileName
 Parameters := '-p'; // can be empty
 OK := ExecuteProcess(FileName, Parameters, WorkingFolder, false, false, false, Error);
 if not OK then ShowMessage('Error: ' + IntToStr(Error));
end;

CreateProcess documentation

Read Running other programs online: https://riptutorial.com/delphi/topic/5180/running-other-
programs

https://riptutorial.com/ 26

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx
https://riptutorial.com/delphi/topic/5180/running-other-programs
https://riptutorial.com/delphi/topic/5180/running-other-programs

Chapter 10: Strings

Examples

String types

Delphi has the following string types (in order of popularity):

Type
Maximum
length

Minimum
size

Description

string 2GB 16 bytes
A managed string. An alias for AnsiString
through Delphi 2007, and an alias for
UnicodeString as of Delphi 2009.

UnicodeString 2GB 16 bytes A managed string in UTF-16 format.

AnsiString 2GB 16 bytes
A managed string in pre-Unicode ANSI format.
As of Delphi 2009, it carries an explicit code-
page indicator.

UTF8String 2GB 16 bytes
A managed string in UTF-8 format, implemented
as an AnsiString with a UTF-8 code page.

ShortString 255 chars 2 bytes
A legacy, fixed-length, unmanaged string with
very little overhead

WideString 2GB 4 bytes
Intended for COM interop, a managed string in
UTF-16 format. Equivalent to the Windows BSTR
type.

UnicodeString and AnsiString are reference counted and copy-on-write (COW).
ShortString and WideString are not reference counted and do not have COW semantics.

Strings

uses
 System.Character;

var
 S1, S2: string;
begin
 S1 := 'Foo';
 S2 := ToLower(S1); // Convert the string to lower-case
 S1 := ToUpper(S2); // Convert the string to upper-case

Chars

https://riptutorial.com/ 27

https://en.wikipedia.org/wiki/Reference_counting#Delphi
https://en.wikipedia.org/wiki/Copy-on-write

2009

uses
 Character;

var
 C1, C2: Char;
begin
 C1 := 'F';
 C2 := ToLower(C1); // Convert the char to lower-case
 C1 := ToUpper(C2); // Convert the char to upper-case

The uses clause should be System.Character if version is XE2 or above.

UPPER and lower case

uses
 SysUtils;

var
 S1, S2: string;
begin
 S1 := 'Foo';
 S2 := LowerCase(S1); // S2 := 'foo';
 S1 := UpperCase(S2); // S1 := 'FOO';

Assignment

Assigning string to different string types and how the runtime environment behaves regarding
them. Memory allocation, reference counting, indexed access to chars and compiler errors
described briefly where applicable.

var
 SS5: string[5]; {a shortstring of 5 chars + 1 length byte, no trailing `0`}
 WS: Widestring; {managed pointer, with a bit of compiler support}
 AS: ansistring; {ansistring with the default codepage of the system}
 US: unicodestring; {default string type}
 U8: UTF8string;//same as AnsiString(65001)
 A1251: ansistring(1251); {ansistring with codepage 1251: Cryllic set}
 RB: RawbyteString; {ansistring with codepage 0: no conversion set}
begin
 SS5:= 'test'; {S[0] = Length(SS254) = 4, S[1] = 't'...S[5] = undefined}
 SS5:= 'test1'; {S[0] = 5, S[5] = '1', S[6] is out of bounds}
 SS5:= 'test12'; {compile time error}
 WS:= 'test'; {WS now points to a constant unicodestring hard compiled into the data segment}
 US:= 'test'+IntToStr(1); {New unicode string is created with reference count = 1}
 WS:= US; {SysAllocateStr with datacopied to dest, US refcount = 1 !}
 AS:= US; {the UTF16 in US is converted to "extended" ascii taking into account the codepage
in AS possibly losing data in the process}
 U8:= US; {safe copy of US to U8, all data is converted from UTF16 into UTF8}
 RB:= US; {RB = 'test1'#0 i.e. conversion into RawByteString uses system default codepage}
 A1251:= RB; {no conversion takes place, only reference copied. Ref count incremented }

Reference counting

https://riptutorial.com/ 28

Counting references on strings is thread-safe. Locks and exception handlers are used to
safeguard the process. Consider the following code, with comments indicating where the compiler
inserts code at compile time to manage reference counts:

procedure PassWithNoModifier(S: string);
// prologue: Increase reference count of S (if non-negative),
// and enter a try-finally block
begin
 // Create a new string to hold the contents of S and 'X'. Assign the new string to S,
 // thereby reducing the reference count of the string S originally pointed to and
 // brining the reference count of the new string to 1.
 // The string that S originally referred to is not modified.
 S := S + 'X';
end;
// epilogue: Enter the `finally` section and decrease the reference count of S, which is
// now the new string. That count will be zero, so the new string will be freed.

procedure PassWithConst(const S: string);
var
 TempStr: string;
// prologue: Clear TempStr and enter a try-finally block. No modification of the reference
// count of string referred to by S.
begin
 // Compile-time error: S is const.
 S := S + 'X';
 // Create a new string to hold the contents of S and 'X'. TempStr gets a reference count
 // of 1, and reference count of S remains unchanged.
 TempStr := S + 'X';
end;
// epilogue: Enter the `finally` section and decrease the reference count of TempStr,
// freeing TempStr because its reference count will be zero.

As shown above, introducing temporary local string to hold the modifications to a parameter
involves the same overhead as making modifications directly to that parameter. Declaring a string
const only avoids reference counting when the string parameter is truly read-only. However, to
avoid leaking implementation details outside a function, it is advisable to always use one of const,
var, or out on string parameter.

Encodings

String types like UnicodeString, AnsiString, WideString and UTF8String are stored in a memory
using their respective encoding (see String Types for more details). Assigning one type of string
into another may result in a conversion. Type string is designed to be encoding independent - you
should never use its internal representation.

The class Sysutils.TEncoding provides method GetBytes for converting string to TBytes (array of
bytes) and GetString for converting TBytes to string. The class Sysutils.TEncoding also provides
many predefined encodings as class properties.

One way how to deal with encodings is to use only string type in your application and use
TEncoding every time you need to use specific encoding - typically in I/O operations, DLL calls,
etc...

https://riptutorial.com/ 29

procedure EncodingExample;
var hello,response:string;
 dataout,datain:TBytes;
 expectedLength:integer;
 stringStream:TStringStream;
 stringList:TStringList;

begin
 hello := 'Hello World!Привет мир!';
 dataout := SysUtils.TEncoding.UTF8.GetBytes(hello); //Conversion to UTF8
 datain := SomeIOFunction(dataout); //This function expects input as TBytes in UTF8 and
returns output as UTF8 encoded TBytes.
 response := SysUtils.TEncoding.UTF8.GetString(datain); //Convertsion from UTF8

 //In case you need to send text via pointer and length using specific encoding (used mostly
for DLL calls)
 dataout := SysUtils.TEncoding.GetEncoding('ISO-8859-2').GetBytes(hello); //Conversion to ISO
8859-2
 DLLCall(addr(dataout[0]),length(dataout));
 //The same is for cases when you get text via pointer and length
 expectedLength := DLLCallToGetDataLength();
 setLength(datain,expectedLength);
 DLLCall(addr(datain[0]),length(datain));
 response := Sysutils.TEncoding.GetEncoding(1250).getString(datain);

 //TStringStream and TStringList can use encoding for I/O operations
 stringList:TStringList.create;
 stringList.text := hello;
 stringList.saveToFile('file.txt',SysUtils.TEncoding.Unicode);
 stringList.destroy;
 stringStream := TStringStream(hello,SysUtils.TEncoding.Unicode);
 stringStream.saveToFile('file2.txt');
 stringStream.Destroy;
end;

Read Strings online: https://riptutorial.com/delphi/topic/3957/strings

https://riptutorial.com/ 30

https://riptutorial.com/delphi/topic/3957/strings

Chapter 11: Time intervals measurement

Examples

Using Windows API GetTickCount

The Windows API GetTickCount function returns the number of milliseconds since the system
(computer) was started. The simplest example follows:

var
 Start, Stop, ElapsedMilliseconds: cardinal;
begin
 Start := GetTickCount;
 // do something that requires measurement
 Stop := GetTickCount;
 ElapsedMillseconds := Stop - Start;
end;

Note that GetTickCount returns 32-bit DWORD so it wraps every 49.7 days. To avoid wrapping, you
may either use GetTickCount64 (available since Windows Vista) or special routines to calculate tick
difference:

function TickDiff(StartTick, EndTick: DWORD): DWORD;
begin
 if EndTick >= StartTick
 then Result := EndTick - StartTick
 else Result := High(NativeUInt) - StartTick + EndTick;
end;

function TicksSince(Tick: DWORD): DWORD;
begin
 Result := TickDiff(Tick, GetTickCount);
end;

Anyway these routines will return incorrect results if the interval of two subsequent calls of
GetTickCount exceeds the 49.7 day boundary.

To convert milliseconds to seconds example:

var
 Start, Stop, ElapsedMilliseconds: cardinal;
begin
 Start := GetTickCount;
 sleep(4000); // sleep for 4 seconds
 Stop := GetTickCount;
 ElapsedMillseconds := Stop - Start;
 ShowMessage('Total Seconds: '
 +IntToStr(round(ElapsedMilliseconds/SysUtils.MSecsPerSec))); // 4 seconds
end;

Using TStopwatch record

https://riptutorial.com/ 31

Recent versions of Delphi ships with the TStopwatch record which is for time interval
measurement. Example usage:

uses
 System.Diagnostics;

var
 StopWatch: TStopwatch;
 ElapsedMillseconds: Int64;
begin
 StopWatch := TStopwatch.StartNew;
 // do something that requires measurement
 ElapsedMillseconds := StopWatch.ElapsedMilliseconds;
end;

Read Time intervals measurement online: https://riptutorial.com/delphi/topic/2425/time-intervals-
measurement

https://riptutorial.com/ 32

http://docwiki.embarcadero.com/Libraries/en/System.Diagnostics.TStopwatch
https://riptutorial.com/delphi/topic/2425/time-intervals-measurement
https://riptutorial.com/delphi/topic/2425/time-intervals-measurement

Chapter 12: TStringList class

Examples

Introduction

TStringList is a descendant of the TStrings class of the VCL. TStringList can be used for storing
and manipulating of list of Strings. Although originally intended for Strings, any type of objects can
also be manipulated using this class.

TStringList is widely used in VCL when the the purpose is there for maintaining a list of Strings.
TStringList supports a rich set of methods which offer high level of customization and ease of
manipulation.

The following example demonstrates the creation, adding of strings, sorting, retrieving and freeing
of a TStringList object.

procedure StringListDemo;
var
 MyStringList: TStringList;
 i: Integer;

Begin

 //Create the object
 MyStringList := TStringList.Create();
 try
 //Add items
 MyStringList.Add('Zebra');
 MyStringList.Add('Elephant');
 MyStringList.Add('Tiger');

 //Sort in the ascending order
 MyStringList.Sort;

 //Output
 for i:=0 to MyStringList.Count - 1 do
 WriteLn(MyStringList[i]);
 finally
 //Destroy the object
 MyStringList.Free;
 end;
end;

TStringList has a variety of user cases including string manipulation, sorting, indexing, key-value
pairing and delimiter separation among them.

Key-Value Pairing

You can use a TStringList to store Key-Value pairs. This can be useful if you want to store
settings, for example. A settings consists of a Key (The Identifier of the setting) and the value.

https://riptutorial.com/ 33

http://docwiki.embarcadero.com/Libraries/Berlin/en/System.Classes.TStringList

Each Key-Value pair is stored in one line of the StringList in Key=Value format.

procedure Demo(const FileName: string = '');
var
 SL: TStringList;
 i: Integer;
begin
 SL:= TStringList.Create;
 try
 //Adding a Key-Value pair can be done this way
 SL.Values['FirstName']:= 'John'; //Key is 'FirstName', Value is 'John'
 SL.Values['LastName']:= 'Doe'; //Key is 'LastName', Value is 'Doe'

 //or this way
 SL.Add('City=Berlin'); //Key ist 'City', Value is 'Berlin'

 //you can get the key of a given Index
 IF SL.Names[0] = 'FirstName' THEN
 begin
 //and change the key at an index
 SL.Names[0]:= '1stName'; //Key is now "1stName", Value remains "John"
 end;

 //you can get the value of a key
 s:= SL.Values['City']; //s now is set to 'Berlin'

 //and overwrite a value
 SL.Values['City']:= 'New York';

 //if desired, it can be saved to an file
 IF (FileName <> '') THEN
 begin
 SL.SaveToFile(FileName);
 end;
 finally
 SL.Free;
 end;
end;

In this example, the Stringlist has the following content before it is destroyed:

1stName=John
LastName=Doe
City=New York

Note on performance

Under the hood TStringList performs key search by straight looping through all items, searching
for separator inside every item and comparing the name part against the given key. No need to
say it does huge impact on performance so this mechanism should only be used in non-critical,
rarely repeated places. In cases where performance matters, one should use
TDictionary<TKey,TValue> from System.Generics.Collections that implements hash table search or to
keep keys in sorted TStringList with values stored as Object-s thus utilizing binary find algorithm.

Read TStringList class online: https://riptutorial.com/delphi/topic/6045/tstringlist-class

https://riptutorial.com/ 34

https://riptutorial.com/delphi/topic/6045/tstringlist-class

Chapter 13: Use of try, except, and finally

Syntax

Try-except: try [statements] except [[[on E:ExceptionType do statement]] [else statement] |
[statements] end;

Try-finally: try [statements] finally [statements] end;

1.

Examples

Simple try..finally example to avoid memory leaks

Use try-finally to avoid leaking resources (such as memory) in case an exception occurs during
execution.

The procedure below saves a string in a file and prevents the TStringList from leaking.

procedure SaveStringToFile(const aFilename: TFilename; const aString: string);
var
 SL: TStringList;
begin
 SL := TStringList.Create; // call outside the try
 try
 SL.Text := aString;
 SL.SaveToFile(aFilename);
 finally
 SL.Free // will be called no matter what happens above
 end;
end;

Regardless of whether an exception occurs while saving the file, SL will be freed. Any exception
will go to the caller.

Exception-safe return of a new object

When a function returns an object (as opposed to using one that's passed in by the caller), be
careful an exception doesn't cause the object to leak.

function MakeStrings: TStrings;
begin
 // Create a new object before entering the try-block.
 Result := TStringList.Create;
 try
 // Execute code that uses the new object and prepares it for the caller.
 Result.Add('One');
 MightThrow;
 except
 // If execution reaches this point, then an exception has occurred. We cannot
 // know how to handle all possible exceptions, so we merely clean up the resources

https://riptutorial.com/ 35

 // allocated by this function and then re-raise the exception so the caller can
 // choose what to do with it.
 Result.Free;
 raise;
 end;
 // If execution reaches this point, then no exception has occurred, so the
 // function will return Result normally.
end;

Naive programmers might attempt to catch all exception types and return nil from such a function,
but that's just a special case of the general discouraged practice of catching all exception types
without handling them.

Try-finally nested inside try-except

A try-finally block may be nested inside a try-except block.

try
 AcquireResources;
 try
 UseResource;
 finally
 ReleaseResource;
 end;
except
 on E: EResourceUsageError do begin
 HandleResourceErrors;
 end;
end;

If an exception occurs inside UseResource, then execution will jump to ReleaseResource. If the
exception is an EResourceUsageError, then execution will jump to the exception handler and call
HandleResourceErrors. Exceptions of any other type will skip the exception handler above and
bubble up to the next try-except block up the call stack.

Exceptions in AcquireResource or ReleaseResource will cause execution to go to the exception
handler, skipping the finally block, either because the corresponding try block has not been
entered yet or because the finally block has already been entered.

Try-except nested inside try-finally

A try-except block may be nested inside a try-finally block.

AcquireResource;
try
 UseResource1;
 try
 UseResource2;
 except
 on E: EResourceUsageError do begin
 HandleResourceErrors;
 end;
 end;
 UseResource3;

https://riptutorial.com/ 36

finally
 ReleaseResource;
end;

If an EResourceUsageError occurs in UseResource2, then execution will jump to the exception handler
and call HandleResourceError. The exception will be considered handled, so execution will continue
to UseResource3, and then ReleaseResource.

If an exception of any other type occurs in UseResource2, then the exception handler show here will
not apply, so execution will jump over the UseResource3 call and go directly to the finally block,
where ReleaseResource will be called. After that, execution will jump to the next applicable exception
handler as the exception bubbles up the call stack.

If an exception occurs in any other call in the above example, then HandleResourceErrors will not be
called. This is because none of the other calls occur inside the try block corresponding to that
exception handler.

Try-finally with 2 or more objects

Object1 := nil;
Object2 := nil;
try
 Object1 := TMyObject.Create;
 Object2 := TMyObject.Create;
finally
 Object1.Free;
 Object2.Free;
end;

If you do not initialize the objects with nil outside the try-finally block, if one of them fails to be
created an AV will occur on the finally block, because the object won't be nil (as it wasn't
initialized) and will cause an exception.

The Free method checks if the object is nil, so initializing both objects with nil avoids errors when
freeing them if they weren't created.

Read Use of try, except, and finally online: https://riptutorial.com/delphi/topic/3055/use-of-try--
except--and-finally

https://riptutorial.com/ 37

https://riptutorial.com/delphi/topic/3055/use-of-try--except--and-finally
https://riptutorial.com/delphi/topic/3055/use-of-try--except--and-finally

Chapter 14: Using Animations in Firemonkey

Examples

Rotating TRectangle

Create blank Multi-Device (Firemonkey) application.1.
Drop Rectangle on Form.2.
In Object inspector window (F11) find RotationAngle click on drop down button, and select
"Create New TFloatAnimation".

3.

Object inspector window is automatically switched to a newly added TFloatAnimation, you
can also view it in Structure menu (Shift + Alt

F11).•

4.

In Object inspector of TFloatAnimation fill duration with any number (in seconds). In our case
lets take 1. Leave StartValue property as it is, and in StopValue type - 360 (Degrees, so it all
goes round). Also lets turn Loop option on (this loops animation until you stop it from code).

5.

Now we have our animation set up. All is left is to turn it on: Drop two buttons on form, call first one
"Start", second one - "Stop". in OnClick event of first button write:

FloatAnimation1.Start;

OnClick of second button code:

FloatAnimation1.Stop;

If you changed name of your TFloatAnimation - Also change it when calling Start and Stop.

Now run your project, click Start button and enjoy.

Read Using Animations in Firemonkey online: https://riptutorial.com/delphi/topic/5383/using-
animations-in-firemonkey

https://riptutorial.com/ 38

https://riptutorial.com/delphi/topic/5383/using-animations-in-firemonkey
https://riptutorial.com/delphi/topic/5383/using-animations-in-firemonkey

Chapter 15: Using RTTI in Delphi

Introduction

Delphi provided Runtime Type Information (RTTI) more than a decade ago. Yet even today many
developers aren't fully aware of its risks and benefits.

In short, Runtime Type Information is information about an object's data type that is set into
memory at run-time.

RTTI provides a way to determine if an object's type is that of a particular class or one of its
descendants.

Remarks

RTTI IN DELPHI - EXPLAINED

The Run-Time Type Information In Delphi - Can It Do Anything For You? article by Brian Long
provides a great introduction to the RTTI capabilities of Delphi. Brian explains that the RTTI
support in Delphi has been added first and foremost to allow the design-time environment to do its
job, but that developers can also take advantage of it to achieve certain code simplifications. This
article also provides a great overview of the RTTI classes along with a few examples.

Examples include: Reading and writing arbitrary properties, common properties with no common
ancestor, copying properties from one component to another, etc.

Examples

Basic Class Information

This example shows how to obtain the ancestry of a component using the ClassType and
ClassParent properties. It uses a button Button1: TButton and a list box ListBox1: TListBox on a
form TForm1.

When the user clicks the button, the name of the button’s class and the names of its parent
classes are added to the list box.

procedure TForm1.Button1Click(Sender: TObject) ;
var
 ClassRef: TClass;
begin
 ListBox1.Clear;
 ClassRef := Sender.ClassType;
 while ClassRef <> nil do
 begin
 ListBox1.Items.Add(ClassRef.ClassName) ;
 ClassRef := ClassRef.ClassParent;

https://riptutorial.com/ 39

http://www.blong.com/Conferences/BorConUK98/DelphiRTTI/CB140.htm

 end;
end;

The list box contains the following strings after the user clicks the button:

TButton•
TButtonControl•
TWinControl•
TControl•
TComponent•
TPersistent•
TObject•

Read Using RTTI in Delphi online: https://riptutorial.com/delphi/topic/9578/using-rtti-in-delphi

https://riptutorial.com/ 40

https://riptutorial.com/delphi/topic/9578/using-rtti-in-delphi

Credits

S.
No

Chapters Contributors

1
Getting started with
Embarcadero Delphi

Charlie H, Community, Dalija Prasnikar, Florian Koch, Jeroen
Wiert Pluimers, René Hoffmann, RepeatUntil, Rob Kennedy,
Vadim Shakun, w5m, Y.N, Zam

2
Creating easily
removable runtime
error checks

Alex T

3 For Loops
Filipe Martins, Jeroen Wiert Pluimers, John Easley, René
Hoffmann, Rob Kennedy, Siendor, Y.N

4 Generics Rob Kennedy, Steffen Binas, Uli Gerhardt

5 Interfaces Florian Koch, Willo van der Merwe

6 Loops Y.N

7
Retrieving updated
TDataSet data in a
background thread

MartynA

8
Running a thread
while keeping GUI
responsive

Fr0sT, Jerry Dodge, Johan, kami, LU RD, Marjan Venema

9
Running other
programs

Dalija Prasnikar

10 Strings
AlekXL, Dalija Prasnikar, EMBarbosa, Fabricio Araujo, Johan,
Radek Hladík, René Hoffmann, RepeatUntil, Rob Kennedy,
Rudy Velthuis

11
Time intervals
measurement

Fr0sT, John Easley, kludg, Rob Kennedy, Victoria, Wolf

12 TStringList class Charlie H, Fabricio Araujo, Fr0sT, KaiW

13
Use of try, except,
and finally

EMBarbosa, Fabio Gomes, Johan, MrE, Nick Hodges, Rob
Kennedy, Shadow

14
Using Animations in
Firemonkey

Alexander Petrosyan

https://riptutorial.com/ 41

https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4267244/dalija-prasnikar
https://riptutorial.com/contributor/3326982/florian-koch
https://riptutorial.com/contributor/29290/jeroen-wiert-pluimers
https://riptutorial.com/contributor/29290/jeroen-wiert-pluimers
https://riptutorial.com/contributor/4236400/rene-hoffmann
https://riptutorial.com/contributor/3500668/repeatuntil
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/6133926/vadim-shakun
https://riptutorial.com/contributor/2047725/w5m
https://riptutorial.com/contributor/3578861/y-n
https://riptutorial.com/contributor/2403570/zam
https://riptutorial.com/contributor/2658643/alex-t
https://riptutorial.com/contributor/1614156/filipe-martins
https://riptutorial.com/contributor/29290/jeroen-wiert-pluimers
https://riptutorial.com/contributor/1120271/john-easley
https://riptutorial.com/contributor/4236400/rene-hoffmann
https://riptutorial.com/contributor/4236400/rene-hoffmann
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/5148316/siendor
https://riptutorial.com/contributor/3578861/y-n
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/94305/steffen-binas
https://riptutorial.com/contributor/1431618/uli-gerhardt
https://riptutorial.com/contributor/3326982/florian-koch
https://riptutorial.com/contributor/5777696/willo-van-der-merwe
https://riptutorial.com/contributor/3578861/y-n
https://riptutorial.com/contributor/2663863/martyna
https://riptutorial.com/contributor/1497831/fr0st
https://riptutorial.com/contributor/988445/jerry-dodge
https://riptutorial.com/contributor/650492/johan
https://riptutorial.com/contributor/4908529/kami
https://riptutorial.com/contributor/576719/lu-rd
https://riptutorial.com/contributor/11225/marjan-venema
https://riptutorial.com/contributor/4267244/dalija-prasnikar
https://riptutorial.com/contributor/5338349/alekxl
https://riptutorial.com/contributor/4267244/dalija-prasnikar
https://riptutorial.com/contributor/460775/embarbosa
https://riptutorial.com/contributor/10300/fabricio-araujo
https://riptutorial.com/contributor/650492/johan
https://riptutorial.com/contributor/733349/radek-hladik
https://riptutorial.com/contributor/4236400/rene-hoffmann
https://riptutorial.com/contributor/3500668/repeatuntil
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/95954/rudy-velthuis
https://riptutorial.com/contributor/1497831/fr0st
https://riptutorial.com/contributor/1120271/john-easley
https://riptutorial.com/contributor/246408/kludg
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/8041231/victoria
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/10300/fabricio-araujo
https://riptutorial.com/contributor/1497831/fr0st
https://riptutorial.com/contributor/7030067/kaiw
https://riptutorial.com/contributor/460775/embarbosa
https://riptutorial.com/contributor/727/fabio-gomes
https://riptutorial.com/contributor/650492/johan
https://riptutorial.com/contributor/6342659/mre
https://riptutorial.com/contributor/2044/nick-hodges
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/33732/rob-kennedy
https://riptutorial.com/contributor/5872147/shadow
https://riptutorial.com/contributor/4964977/alexander-petrosyan

15 Using RTTI in Delphi Petzy, René Hoffmann

https://riptutorial.com/ 42

https://riptutorial.com/contributor/6917318/petzy
https://riptutorial.com/contributor/4236400/rene-hoffmann

	About
	Chapter 1: Getting started with Embarcadero Delphi
	Remarks
	Versions
	Examples
	Hello World
	Show 'Hello World' using the VCL
	Show 'Hello World' Using WinAPI MessageBox
	Cross-platform Hello World using FireMonkey

	Chapter 2: Creating easily removable runtime error checks
	Introduction
	Examples
	Trivial example

	Chapter 3: For Loops
	Syntax
	Remarks
	Examples
	Simple for loop
	Looping over characters of a string
	Reverse-direction for loop
	For loop using an enumeration
	For in array

	Chapter 4: Generics
	Examples
	Sort a dynamic array via generic TArray.Sort
	Simple usage of TList
	Descending from TList making it specific
	Sort a TList

	Chapter 5: Interfaces
	Remarks
	Examples
	Defining and implementing an interface
	Implementing multiple interfaces
	Inheritance for interfaces
	Properties in interfaces

	Chapter 6: Loops
	Introduction
	Syntax
	Examples
	Break and Continue in Loops
	Repeat-Until
	While do

	Chapter 7: Retrieving updated TDataSet data in a background thread
	Remarks
	Examples
	FireDAC example

	Chapter 8: Running a thread while keeping GUI responsive
	Examples
	Responsive GUI using threads for background work and PostMessage to report back from the threads

	Thread
	Form

	Chapter 9: Running other programs
	Examples
	CreateProcess

	Chapter 10: Strings
	Examples
	String types
	Strings
	Chars
	UPPER and lower case
	Assignment
	Reference counting
	Encodings

	Chapter 11: Time intervals measurement
	Examples
	Using Windows API GetTickCount
	Using TStopwatch record

	Chapter 12: TStringList class
	Examples
	Introduction
	Key-Value Pairing

	Chapter 13: Use of try, except, and finally
	Syntax
	Examples
	Simple try..finally example to avoid memory leaks
	Exception-safe return of a new object
	Try-finally nested inside try-except
	Try-except nested inside try-finally
	Try-finally with 2 or more objects

	Chapter 14: Using Animations in Firemonkey
	Examples
	Rotating TRectangle

	Chapter 15: Using RTTI in Delphi
	Introduction
	Remarks
	Examples
	Basic Class Information

	Credits

