
ember-cli

#ember-cli

Table of Contents

About 1

Chapter 1: Getting started with ember-cli 2

Remarks 2

Examples 2

Installation 2

Chapter 2: Ember-cli Pods structure 5

Syntax 5

Parameters 5

Remarks 5

Examples 6

Organize with Pods 6

podModulePrefix: app/pods 6

Chapter 3: Getting Started with Ember-Cli and Deployments 7

Syntax 7

Parameters 7

Remarks 7

Examples 8

Heroku 8

Azure 8

Firebase 8

AWS S3 9

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ember-cli

It is an unofficial and free ember-cli ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ember-cli.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ember-cli
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ember-cli

Remarks

This section provides an overview of what ember-cli is, and why a developer might want to use it.

It should also mention any large subjects within ember-cli, and link out to the related topics. Since
the Documentation for ember-cli is new, you may need to create initial versions of those related
topics.

Simple syntax to create a project is :

ember new my-new-app
cd my-new-app
ember s

Kindly check instruction to setup ember-cli in this document

Examples

Installation

Ember-cli first requires Node and NPM to be installed on the system. Either follow the installation
instructions on nodejs.org, or use a preferred package manager (such as Homebrew on OSX.) It's
recommended to install latest version of each.

Once its done, run the following commands to ensure installation was correct:

node -v
npm -v

Since Yarn package manager has been released recently (October 2016), it's possible to install
dependencies with Yarn instead of NPM. Checking the guide on yarn's website for further details.

Next, install Ember CLI globally:

npm install -g ember-cli

OR

yarn global add ember-cli

This will grant access to the ember command-line runner.

BOWER

https://riptutorial.com/ 2

http://nodejs.org
http://brew.sh/
http://yarnpkg.org
http://yarnpkg.org

Globally install Bower, a package manager that keeps front-end dependencies up-to-date.
(including jQuery, Ember, and QUnit)

npm install -g bower

OR

yarn global add bower

This will grant access to the bower command-line runner.

PhantomJS

With Ember CLI, use a preferred automated test runner. Most testing services recommend or
require PhantomJS, which can be installed via npm or the PhantomJS website. (PhantomJS is the
default test runner for Testem and Karma.)

To use PhantomJS for integration tests, it must be globally installed:

npm install -g phantomjs-prebuilt

or

yarn global add phantomjs-prebuilt

Watchman

On OSX and UNIX-like operating systems, it is recommended to install Watchman version 4.x.
This provides Ember CLI a more effective way for watching project changes.

File-watching on OSX is error-prone and Node’s built-in NodeWatcher has trouble observing large
trees. Watchman solves these problems and performs well on extremely massive file trees.

On OSX, install Watchman using Homebrew:

brew install watchman

For complete installation instructions, refer to the docs on the Watchman website.

Do not use an NPM version of Watchman. The following command can be used to uninstall it:

npm uninstall -g watchman

Congratulations! Now you are able to create your first project by running:

ember new my-first-app

start Ember server by running :

https://riptutorial.com/ 3

https://facebook.github.io/watchman/
https://facebook.github.io/watchman/

ember s

Navigate to http://localhost:4200 to see the new app in action.

Navigate to http://localhost:4200/tests to see the test results in action.

Read Getting started with ember-cli online: https://riptutorial.com/ember-cli/topic/7441/getting-
started-with-ember-cli

https://riptutorial.com/ 4

https://riptutorial.com/ember-cli/topic/7441/getting-started-with-ember-cli
https://riptutorial.com/ember-cli/topic/7441/getting-started-with-ember-cli

Chapter 2: Ember-cli Pods structure

Syntax

Ember g [blueprints.eg: route] [name] --pod•
Ember g route foo --pod•
Ember g component my-name --pod•

Parameters

Generate pods

g --pod

Remarks

Just pass --pod to ember generate when generating new files.

If you would like to use the pods structure as the default for your project, you can set usePods in
your .ember-cli config file to true (setting was previously named usePodsByDefault). To generate or
destroy a blueprint in the classic type structure while usePods is true, use the --classic flag.

With the usePods set to true.

// .ember-cli
{
 "usePods": true
}

The following would occur when generating a route:

ember generate route taco

installing
 create app/taco/route.js
 create app/taco/template.hbs
installing
 create tests/unit/taco/route-test.js

ember generate route taco --classic

installing
 create app/routes/taco.js
 create app/templates/taco.hbs
installing
 create tests/unit/routes/taco-test.js

There are some benefits to use this method, however, it's completely up to you.Firstly, it separates

https://riptutorial.com/ 5

your application into more logical groupings, thus, you can keep your files neatly organized into
resources.

This structure also makes our development's life easier. For instance, if I want to find the myname
controller in the default structure, I need to preface what I actually want (myname) with the type
(controllers). However, with pods, I can fuzzy-find the same controller by simply looking up
“myname.”

Examples

Organize with Pods

app/controllers/myname.js
app/templates/myname.hbs
app/routes/myname.js
app/models/myname.js

Using pods, the example above would translate into this:

app/myname/controller.js
app/myname/template.hbs
app/myname/route.js
app/myname/model.js

podModulePrefix: app/pods

ember generate route foo --pod

installing
 create app/pods/foo/route.js
 create app/pods/foo/template.hbs
installing
 create tests/unit/pods/foo/route-test.js

Read Ember-cli Pods structure online: https://riptutorial.com/ember-cli/topic/7855/ember-cli-pods-
structure

https://riptutorial.com/ 6

https://riptutorial.com/ember-cli/topic/7855/ember-cli-pods-structure
https://riptutorial.com/ember-cli/topic/7855/ember-cli-pods-structure

Chapter 3: Getting Started with Ember-Cli and
Deployments

Syntax

ember deploy production // deploy production environment•
ember deploy staging // deploy staging environment•
ember deploy development // deploy development environment which is not compress and
minified

•

Parameters

parameters details

ember help show all possible params and depth guide as well as shortcodes

Remarks

Ember-Cli is a powerful tool which comes with many others to help us deploying faster and
convenient. All you need to install Ember-Cli-Deploy and use ember deploy.

Ember CLI Deploy structures your app’s deployment using a deploy pipeline, which
consists of several pipeline hooks. These standard hooks are the foundation for a rich
ecosystem of plugins which you can compose to create a deployment process suitable
for your application.

As Ember-Cli-Deploy is an addon of Ember so you can easily install that with ember install ember-
cli-deploy. There are two useful other add-ons which make our build and compressing reliable
during deployment.

Simply run the following commands:

Install the Build plugin, which builds your app during deployment
ember install ember-cli-deploy-build

Gzip our files
ember install ember-cli-deploy-gzip

However, if you are going to maximize your benefits using ember deploy, it's most likey to have
different environments in your Ember application and deploy production,staging or development
version of your app with the appropriate configuration.

Platforms that you can deploy by now are:

https://riptutorial.com/ 7

http://ember-cli-deploy.com/

Heroku•
Azure•
AWS S3•
Firebase•
CouchDB cluster•

Kindly refer to example section to see how you can deploy.

Examples

Heroku

You must have installed Heroku Toolbelt first. Having an account in Heroku and installation of
ember-cli-deploy are mandatory.

Creating a new Heroku instance from an Ember CLI application's parent directory:

$ heroku create --buildpack https://github.com/tonycoco/heroku-buildpack-ember-cli.git

$ git push heroku master

Azure

Firstly, it's required to install Microsoft’s module ember-cli-azure-deploy. You need to be in your
application root directory.

npm install --save-dev -g ember-cli-azure-deploy
azure-deploy init

If you are using Yarn package manager you can simply install by:

yarn global add ember-cli-azure-deploy
azure-deploy init

This will create a deploy.sh in your project's root folder, enabling Azure to follow a set of
instructions - including installing all the required Node Modules, running ember build and deploying
the resulting dist/ folder to your website's wwwroot.

Firebase

First, you need to install Firebase tools. Simply, run the commands below:

Npm Package manager

npm install -g firebase-tools

or Yarn package manager

https://riptutorial.com/ 8

http://%20https://toolbelt.heroku.com/
https://github.com/felixrieseberg/ember-cli-azure-deploy
http://%20https://github.com/firebase/firebase-tools

yarn add firebase-tools

To configure your application to be ready to deploy you need to run the following in your app’s root
directory:

firebase init

finally, by running the following command you can deploy your application

firebase deploy

AWS S3

To proceed with the deployment to S3, we will install these plugins:

ember-cli-deploy-s3-index: It uploads the index.html to S3 with revision information, and
activates it

•

ember-cli-deploy-s3: It uploads the assets (js, css and other media files) to S3•

As they are Ember addon you can easily install by running the following commands

ember install ember-cli-deploy-s3-index
ember install ember-cli-deploy-s3

All you need after that is to configure deploy.js file which should under /config folder:

// config/deploy.js

module.exports = function(deployTarget) {

 var ENV = {
 build: {
 environment: deployTarget
 },
 'revision-data': {
 type: 'git-commit'
 },
 's3-index': {
 accessKeyId: process.env['S3_ACCESS_KEY'],
 secretAccessKey: process.env['S3_SECRET_ACCESS_KEY'],
 bucket: "your-app-deployment-bucket",
 region: "YOUR REGISION",
 allowOverwrite: true // if you want to overwrite index file if not change it to false
 },
 's3': {
 accessKeyId: process.env['S3_ACCESS_KEY'],
 secretAccessKey: process.env['S3_SECRET_ACCESS_KEY'],
 bucket: "your-app-deployment-bucket",
 region: "YOUR REGISION",
 }
 };

 return ENV;

https://riptutorial.com/ 9

https://github.com/ember-cli-deploy/ember-cli-deploy-s3-index
https://github.com/ember-cli-deploy/ember-cli-deploy-s3

};

Notice that we have used the environmental variables within our config.If you need to read
configuration from a file, it’s also possible to return a promise that resolves with the ENV object.
Here is an example to define different environments in deploy.js file:

if (deployTarget === 'development') {
 ENV.build.environment = 'development';
 // configure other plugins for development deploy target here
 }

 if (deployTarget === 'staging') {
 ENV.build.environment = 'production';
 // configure other plugins for staging deploy target here
 }

 if (deployTarget === 'production') {
 ENV.build.environment = 'production';
 // configure other plugins for production deploy target here
 }

Finally, you can easily run following command to deploy

ember deploy [YOUR APP ENVIRONMENT] //e.g-> ember deploy production or ember deploy staging

if you like to see details you can run:

ember deploy production --verbose --activate=true

Read Getting Started with Ember-Cli and Deployments online: https://riptutorial.com/ember-
cli/topic/7444/getting-started-with-ember-cli-and-deployments

https://riptutorial.com/ 10

https://riptutorial.com/ember-cli/topic/7444/getting-started-with-ember-cli-and-deployments
https://riptutorial.com/ember-cli/topic/7444/getting-started-with-ember-cli-and-deployments

Credits

S.
No

Chapters Contributors

1
Getting started with
ember-cli

4444, Community, Majid

2
Ember-cli Pods
structure

Majid

3
Getting Started with
Ember-Cli and
Deployments

Majid

https://riptutorial.com/ 11

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1921541/majid
https://riptutorial.com/contributor/1921541/majid
https://riptutorial.com/contributor/1921541/majid

	About
	Chapter 1: Getting started with ember-cli
	Remarks
	Examples
	Installation

	Chapter 2: Ember-cli Pods structure
	Syntax
	Parameters
	Remarks
	Examples
	Organize with Pods
	podModulePrefix: app/pods

	Chapter 3: Getting Started with Ember-Cli and Deployments
	Syntax
	Parameters
	Remarks
	Examples
	Heroku
	Azure
	Firebase
	AWS S3

	Credits

