
ember.js

#ember.js

Table of Contents

About 1

Chapter 1: Getting started with ember.js 2

Remarks 2

Versions 2

Up-To-Date Release 2

Examples 2

Installation or Setup 2

Dependencies 2

Node.js and npm 2

Git 3

Watchman (optional) 3

PhantomJS (optional) 3

Installation 3

Creating App 3

Deploy App 4

How to work with JavaScript plugins 4

Assign localhost ports (esp. permissions/availability issues, running multiple ember sites 4

Chapter 2: Asynchronous Tasks in Components 6

Remarks 6

Examples 6

ember-concurrency task 6

Pros 6

Cons 6

JavaScript 6

Template 7

PromiseProxyMixin 7

Pros 7

Cons 7

JavaScript 7

Template 8

Chapter 3: Component - communication between child to parent component. 9

Syntax 9

Remarks 9

Examples 9

Composable Components 9

Chapter 4: Currency formatting template helper 11

Remarks 11

Examples 11

Creating a new helper 11

Chapter 5: Date Format Helper 12

Examples 12

Helper for a clean date and hour format. 12

Chapter 6: Debugging 14

Examples 14

Logging EmberData 14

Running debug-only code 14

Chapter 7: How to import JavaScript library/plugin 16

Introduction 16

Syntax 16

Examples 16

Example ember-cli-build.js file 16

Chapter 8: How to update Ember, Ember Data and Ember CLI 18

Remarks 18

Examples 18

Updating Ember 18

Updating Ember Data 18

Updating Ember CLI 18

Chapter 9: Initialize Foundation or Bootstrap on ember-cli in a proper way 20

Introduction 20

Parameters 20

Remarks 20

Examples 21

Install ember-bootstrap with default version 21

Instal ember-bootstrap with version 4 and SASS - experimental 21

Install SASS and Foundation 21

Install Foundation dependencies 21

Ember build file with Foundation addons 21

Ember Bootstrap sample form 22

Chapter 10: Testing 23

Introduction 23

Examples 23

Waiting for promises in tests in elegant way 23

Credits 24

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ember-js

It is an unofficial and free ember.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ember.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ember-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ember.js

Remarks

This section provides an overview of what ember.js is, and why a developer might want to use it.

It should also mention any large subjects within ember.js, and link out to the related topics. Since
the Documentation for ember.js is new, you may need to create initial versions of those related
topics.

Versions

Up-To-Date Release

Version Release Date

2.14.0 beta 2017-04-29

2.13.0 2017-04-29

Examples

Installation or Setup

Getting started with Ember is easy. Ember projects are created and managed through our
command line build tool Ember CLI. This tool provides:

Modern application asset management (including concatenation, minification, and
versioning).

•

Generators to help create components, routes, and more.•
A conventional project layout, making existing Ember applications easy to approach.•
Support for ES2015/ES6 JavaScript via the Babel project. This includes support for
JavaScript modules, which are used throughout this guide.

•

A complete QUnit test harness.•
The ability to consume a growing ecosystem of Ember Addons.•

Dependencies

Node.js and npm

Ember CLI is built with JavaScript, and expects the Node.js runtime. It also requires dependencies
fetched via npm. npm is packaged with Node.js, so if your computer has Node.js installed you are
ready to go.

https://riptutorial.com/ 2

http://babeljs.io/docs/learn-es2015/
http://exploringjs.com/es6/ch_modules.html
https://qunitjs.com/
https://emberobserver.com/
https://nodejs.org/
https://www.npmjs.com/

Ember requires Node.js 0.12 or higher and npm 2.7 or higher. If you're not sure whether you have
Node.js or the right version, run this on your command line:

node --version
npm --version

If you get a "command not found" error or an outdated version for Node:

Windows or Mac users can download and run this Node.js installer.•
Mac users often prefer to install Node using Homebrew. After installing Homebrew, run brew
install node to install Node.js.

•

Linux users can use this guide for Node.js installation on Linux.•

If you get an outdated version of npm, run npm install -g npm.

Git

Ember requires Git to manage many of its dependencies. Git comes with Mac OS X and most
Linux distributions. Windows users can download and run this Git installer.

Watchman (optional)

On Mac and Linux, you can improve file watching performance by installing Watchman.

PhantomJS (optional)

You can run your tests from the command line with PhantomJS, without the need for a browser to
be open. Consult the PhantomJS download instructions.

Installation

Install Ember using npm:

npm install -g ember-cli

To verify that your installation was successful, run:

ember -v

If a version number is shown, you're ready to go.

Creating App

Ember CLI allows you to use one of two options to generate a new app:

Create a folder and run ember init (generates application structure and sets up git and
makes your first commit)

1.

https://riptutorial.com/ 3

http://nodejs.org/download/
http://brew.sh/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://git-scm.com/download/win
https://facebook.github.io/watchman/docs/install.html
http://phantomjs.org/download.html

Run ember new <app name> (creates a folder with the specified name, steps into it and runs
ember init)

2.

Once the generation process is complete, boot a live-reload server within the app folder by
running:

ember server

or ember s for short. *Ta-da, now you have a running Ember app! Official Docs

Creating your first template

Let's create a new template using the ember generate command.

ember generate template application

The application template is always on screen when a user is visiting your application. In your
editor of choice, open app/templates/application.hbs and add the following code:

<h2>My first Ember application</h2>

{{outlet}}

Now you should see the newly added text on the welcome page of your application. Also notice
that Ember automatically detects the new file and reloads the page for you. Neat, right?

Deploy App

To deploy an Ember application simply transfer the output from ember build to a web server. This
can be done with standard Unix file transfer tools such as rsync or scp. There are also services that
will let you deploy easily.

ember build
scp -r dist/* myserver.com:/var/www/public/

normally we would use ember build --environment=production which does more to make your code
ready for production (gzip and minify code).

How to work with JavaScript plugins

There are four ways to work with JavaScript plugins,

Ember add-on1.
Import JavaScript plugins globally2.
Consume named AMD plugins3.
Via ember-browserify4.

Assign localhost ports (esp. permissions/availability issues, running multiple

https://riptutorial.com/ 4

https://ember-cli.com/user-guide/#getting-started

ember sites simultaneously)

Occasionally it's useful to assign one or more ports manually vs using the defaults. Doing so can
solve port availability/permissions issues or accommodate running more than one ember instance
at a time.

To have ember-cli attempt to identify and assign an available port, use:

ember serve --port 0

Per ember help: "Pass 0 to automatically pick an available port". (In a terminal, type ember help).

To run more than one ember site at the same time, each needs its own server and live-reload
ports. A simple approach: in separate Terminal windows navigate to each instance and use the
following to launch them with their own ports:

ember serve --port 0 --live-reload-port 0

If you get an error about availability or permission in any of these cases, enter the following python
script at your Terminal prompt to identify an available port:

python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]);
s.close()'

Use the results to specify ports you now know to be available:

ember serve --port <known_port_1> --live-reload-port <known_port_2>

Read Getting started with ember.js online: https://riptutorial.com/ember-js/topic/905/getting-
started-with-ember-js

https://riptutorial.com/ 5

https://riptutorial.com/ember-js/topic/905/getting-started-with-ember-js
https://riptutorial.com/ember-js/topic/905/getting-started-with-ember-js

Chapter 2: Asynchronous Tasks in
Components

Remarks

in ember-concurrency the extra setting of error is a work around to prevent thrown exceptions from
bubbling up to Ember's onerror (since it is meant to be handled in the template). There is a feature
request to handle this better.

Examples

ember-concurrency task

An alternative community de facto standard is an addon called ember-concurrency that makes a
lot of the promise confusion go away.

It can be installed with the command ember install ember-concurrency.

Pros

Intuitive reasoning of complex asynchronous code.•
Offers a complete API for managing tasks.•
Can be canceled.•
Can be used directly in a component without the need of a proxy object.•
Destructures promises inside the task function.•
Can use JavaScript try / catch / finally blocks to manage asynchronous assignment,
exceptions, and cleanup.

•

Tasks are automagically cancelled on willDestroy event, avoiding errors setting values on
destroyed objects (e.g. after a timer)

•

Cons

Not builtin – requires ember install ember-concurrency•
Uses generator functions that can confuse developers used to promise chains.•

JavaScript

import Ember from 'ember';
import { task, timeout } from 'ember-concurrency';

const { Component, set } = Ember;

export default Component.extend({

https://riptutorial.com/ 6

https://github.com/machty/ember-concurrency/issues/40
https://github.com/machty/ember-concurrency/issues/40
http://ember-concurrency.com/

 myTask: task(function * () {
 set(this, 'error', null);
 try {
 yield timeout(2000);
 return 'Foobar';
 } catch (err) {
 set(this, 'error', error);
 }
 }).keepLatest()
});

Template

{{#if myTask.isIdle}}
 <button onclick={{perform myTask}}>
 Start Task
 </button>
{{else}}
 Loading…
{{/if}}

{{#if myTask.last.value}}
 Done. {{myTask.last.value}}
{{/if}}

{{#if error}}
 Something went wrong. {{error}}
{{/if}}

PromiseProxyMixin

Ember comes with a built in helper that will provide computed properties for the status of an
asynchronous task.

Pros

Built in – no need for an addon.•
Can be managed in the life cycle of a component.•
Provides convenient state properties that can drive the template logic.•

Cons

Must be wrapped in an Ember.Object and cannot be applied to an Ember.Component directly.•
Creates a disconnect between the original promise chain and the destructing of the content
value.

•

Is not very intuitive and can be difficult to reason with.•
Cannot be cancelled.•

JavaScript

https://riptutorial.com/ 7

import Ember from 'ember';

const {
 Component, PromiseProxyMixin, get, set, computed,
 isPresent, run, RSVP: { Promise }
} = Ember;

const MyPromiseProxy = Ember.Object.extend(PromiseProxyMixin);

export default Component({
 myProxy: computed('promise', {
 get() {
 const promise = get(this, 'promise');
 return isPresent(promise) ? MyPromiseProxy.create({promise}) : null;
 }
 }),

 actions: {
 performTask() {
 const fakeTask = new Promise((resolve) => {
 run.later(resolve, 'Foobar', 2000);
 });
 set(this, 'promise', fakeTask);
 }
 }
});

Template

{{#if myProxy.isPending}}
 Loading…
{{else}}
 <button onclick={{action "performTask"}}>
 Start Task
 </button>
{{/if}}

{{#if myProxy.isFulfilled}}
 Done. {{myProxy.content}}
{{/if}}

{{#if myProxy.isRejected}}
 Something went wrong. {{myProxy.reason}}
{{/if}}

Read Asynchronous Tasks in Components online: https://riptutorial.com/ember-
js/topic/1054/asynchronous-tasks-in-components

https://riptutorial.com/ 8

https://riptutorial.com/ember-js/topic/1054/asynchronous-tasks-in-components
https://riptutorial.com/ember-js/topic/1054/asynchronous-tasks-in-components

Chapter 3: Component - communication
between child to parent component.

Syntax

(yield -- Allows you to export items from a component•
(hash -- Allows you to export a hash or object, since this is required to call child components
within the parent's block. The requirement is that there is a . for the component to be created

•

(component -- Creates the child component which can take anything in the parent's context.
The component can be curried, since it is only called when the user uses it, so add as many
attributes as you need, and the user can add the rest.

•

(action -- Creates an action based on a function or a string pointing to a function in the
actions hash of the parent component in this case.

•

Remarks

For creating components that interact with a parent component, composable components are the
best option, although they require Ember 2.3+.

Examples

Composable Components

Inside parent-component.hbs

{{yield (hash
 child=(
 component 'child-component'
 onaction=(action 'parentAction')
)
)}}

Inside parent-component.js

export default Ember.Component.extend({
 actions: {
 // We pass this action to the child to call at it's discretion
 parentAction(childData) {
 alert('Data from child-component: ' + childData);
 }
 }
});

Inside child-component.js

export default Ember.Component.extend({

https://riptutorial.com/ 9

 // On click we call the action passed down to us from the parent
 click() {
 let data = this.get('data');
 this.get('onaction')(data);
 }
});

Inside usage.hbs

{{#parent-component as |ui|}}
 {{#each model as |item|}}
 {{ui.child data=item}}
 {{/each}}
{{/parent-component}}

Read Component - communication between child to parent component. online:
https://riptutorial.com/ember-js/topic/3066/component---communication-between-child-to-parent-
component-

https://riptutorial.com/ 10

https://riptutorial.com/ember-js/topic/3066/component---communication-between-child-to-parent-component-
https://riptutorial.com/ember-js/topic/3066/component---communication-between-child-to-parent-component-

Chapter 4: Currency formatting template
helper

Remarks

More details available in Ember guides, where this example was taken from.

Compatible with Ember 2.2.0+ (2.11.0 was the latest at the time of writing)

Examples

Creating a new helper

Use Ember CLI to generate a new helper in your app:

ember generate helper format-currency

Then edit helpers/format-currency.js to contain the following:

import Ember from 'ember';

export function formatCurrency([value, ...rest]) {
 const dollars = Math.floor(value / 100);
 const cents = value % 100;
 const sign = '$';

 if (cents.toString().length === 1) { cents = '0' + cents; }
 return `${sign}${dollars}.${cents}`;
}

export default Ember.Helper.helper(formatCurrency);

Now you can use {{format-currency model.someNumericValue}} in templates.

A unit test for the new helper is automatically created in tests/unit/helpers/

Read Currency formatting template helper online: https://riptutorial.com/ember-
js/topic/6647/currency-formatting-template-helper

https://riptutorial.com/ 11

https://guides.emberjs.com/v2.11.0/templates/writing-helpers/
https://riptutorial.com/ember-js/topic/6647/currency-formatting-template-helper
https://riptutorial.com/ember-js/topic/6647/currency-formatting-template-helper

Chapter 5: Date Format Helper

Examples

Helper for a clean date and hour format.

When you want the current date and time, you can do this with the Javascript function Date, but will
return the following format which isn't always useful: Wed Jun 07 2017 13:26:15 GMT+0200 (Romance
(zomertijd)).

Copy the following code into app/helpers/helpers.js, and simply call getCurrentDateAndFormat()
instead of new Date().

export function getCurrentDateAndFormat() {
 let today = new Date();
 let dd = today.getDate();
 let MM = today.getMonth()+1; //January is 0!
 let hh = today.getHours();
 let mm = today.getMinutes();
 let yyyy = today.getFullYear();

 if (dd<10) {
 dd= '0'+dd;
 }

 if (MM<10) {
 MM= '0'+MM;
 }

 if (hh<10) {
 hh= '0'+hh;
 }

 if (mm<10) {
 mm= '0'+mm;
 }

 today = dd+'/'+MM+'/'+yyyy+" "+hh+"h"+mm;

 return today;
}

The helper extracts all separate time values, adds a 0 if the value is below 10 (for format and
readability) and reassembles them in a more fitting format. In this case: day, month, year, hours
and minutes.

today = dd+'/'+MM+'/'+yyyy+" "+hh+"h"+mm;

will display: 07/06/2017 13h26

today = MM+'/'+dd+'/'+yyyy+" "+hh+"h"+mm;

https://riptutorial.com/ 12

will display: 06/07/2017 13h26

Changing month and date position, depending on your region, is as easy as replacing MM with dd
and vice versa, as evident from above example.

Read Date Format Helper online: https://riptutorial.com/ember-js/topic/10153/date-format-helper

https://riptutorial.com/ 13

https://riptutorial.com/ember-js/topic/10153/date-format-helper

Chapter 6: Debugging

Examples

Logging EmberData

The ember data models have a toJSON method that extracts the relevant data:

console.log(model.toJSON());

This method uses the JSONSerializer to create the JSON representation.

If you want to log the data in a more app-specific way, you can use serialize:

model.serialize();

which uses the serialization strategy you can define in the store's adapter to create a JSON
representation of the model.

All objects in an Ember app, including Ember Data models, inherit from Ember.CoreObject, which
has a toString method that prints this representation:

<app-name@ember-type:object-name:id>

Explanation:

app-name is the name of your application•
ember-type is the ember type of the object you are logging (can be controller, route etc.)•
object-name is the name of the object you are logging (name of your model, or controller, or
route etc.)

•

id is either a guId create with Ember.guidFor or, for example, the model's id.•

You can overwrite this value using the method toStringExtension in your particular model.

For comparison example, here's how logging an application controller could look:

<my-awesome-app@controller:application::ember324>

Running debug-only code

Ember has a static global method called runInDebug which can run a function meant for
debugging.

Ember.runInDebug(() => {
 // this code only runs in dev mode
});

https://riptutorial.com/ 14

http://emberjs.com/api/data/classes/DS.Model.html#method_toJSON
http://emberjs.com/api/data/classes/DS.JSONSerializer.html
http://emberjs.com/api/data/classes/DS.Model.html#method_serialize
http://emberjs.com/api/classes/Ember.CoreObject.html
http://emberjs.com/api/classes/Ember.CoreObject.html#method_toString
http://emberjs.com/api/#method_guidFor
http://emberjs.com/api/#method_runInDebug

In a production build, this method is defined as an empty function (NOP). Uses of this method in
Ember itself are stripped from the ember.prod.js build.

Read Debugging online: https://riptutorial.com/ember-js/topic/2320/debugging

https://riptutorial.com/ 15

https://riptutorial.com/ember-js/topic/2320/debugging

Chapter 7: How to import JavaScript
library/plugin

Introduction

Open the directory of your ember.js project, You will find there a file named ember-cli-build.js. You
can install Your libraries or plugins using bower, then point the import to the bower_components
folder, but if you have a file You want to add, just drag them to the folder of Your project and write
the app.import to that file.

Syntax

app.import('path to file starting from project folder/file.js');•

Examples

Example ember-cli-build.js file

var EmberApp = require('ember-cli/lib/broccoli/ember-app');

module.exports = function(defaults) {
 var app = new EmberApp(defaults, {
 // Add options here
 datatables: {
 core: true,
 style: 'bs',
 extensions: [
 { name: 'buttons', extensions: ['colVis','flash','html5','print'] },
 { name: 'responsive', style: 'bs' },
 'select'
],
 pdfmake: false,
 vfs_fonts: false,
 jszip: true
 }
 });
 //Imports:
 app.import('bower_components/js-cookie/src/js.cookie.js');
 app.import('bower_components/moment/min/moment.min.js');
 app.import('bower_components/crypto-js/crypto-js.js');
 // Use `app.import` to add additional libraries to the generated
 // output files.
 //
 // If you need to use different assets in different
 // environments, specify an object as the first parameter. That
 // object's keys should be the environment name and the values
 // should be the asset to use in that environment.
 //
 // If the library that you are including contains AMD or ES6
 // modules that you would like to import into your application

https://riptutorial.com/ 16

 // please specify an object with the list of modules as keys
 // along with the exports of each module as its value.

 return app.toTree();
};

Read How to import JavaScript library/plugin online: https://riptutorial.com/ember-
js/topic/9239/how-to-import-javascript-library-plugin

https://riptutorial.com/ 17

https://riptutorial.com/ember-js/topic/9239/how-to-import-javascript-library-plugin
https://riptutorial.com/ember-js/topic/9239/how-to-import-javascript-library-plugin

Chapter 8: How to update Ember, Ember Data
and Ember CLI

Remarks

To find the latest stable version of Ember, click here.•
To find the latest stable version of Ember Data, click here.•
To find the latest stable version of Ember CLI, click here.•

All these steps were found on Ember cli release note.

Examples

Updating Ember

In this example, 2.13.2 is the latest version. We install it via bower, specifying the particular version
as ember#2.13.2 and including the save flag to persist it to bower.json.

As of writing this post the latest version is 2.13.2. From the command line, in the root of your app's
directory, run:

bower install ember#2.13.2 --save

You may be prompted to choose your version of Ember. If you are, prepend your answer with a !
to make sure it's saved.

Updating Ember Data

Since Ember Data is an Ember CLI add-on we can install it just like any other add-on by using
ember install.

As of writing this post the latest version is 2.13.1. From the command line, in the root of your app's
directory, run:

ember install ember-data@2.13.1

Updating Ember CLI

Ember CLI is a normal npm package. To update it we have to uninstall it and then install the
version we want.

As of writing this post the latest version is 2.13.2. From the command line run:

npm uninstall -g ember-cli

https://riptutorial.com/ 18

https://github.com/emberjs/ember.js/releases/latest
https://github.com/emberjs/data/releases/latest
https://github.com/ember-cli/ember-cli/releases/latest
https://github.com/ember-cli/ember-cli/releases

npm cache clean
bower cache clean
npm install -g ember-cli@2.13.2

To verify the proper version was installed run:

ember -v

Then update your project. This will clear out the cache and update the Ember CLI version in
package.json. The last part will run the new project blueprint on your projects directory. Just follow
the prompts and review all the changes.

rm -rf node_modules bower_components dist tmp
npm install --save-dev ember-cli@2.13.2
npm install
bower install
ember init

references

Read How to update Ember, Ember Data and Ember CLI online: https://riptutorial.com/ember-
js/topic/1722/how-to-update-ember--ember-data-and-ember-cli

https://riptutorial.com/ 19

https://riptutorial.com/ember-js/topic/1722/how-to-update-ember--ember-data-and-ember-cli
https://riptutorial.com/ember-js/topic/1722/how-to-update-ember--ember-data-and-ember-cli

Chapter 9: Initialize Foundation or Bootstrap
on ember-cli in a proper way

Introduction

Bootstrap : I think that's not proper way. The best way in my opinion is an ember-bootstrap addon.

ember-bootstrap uses the Bootstrap CSS classes while replacing the behaviors from the
components Bootstrap implements in bootstrap.js, such as toggle, navbar, modal, etc., with
equivalent, CSS class-compatible native Ember components.

Foundation: There is an addon called Ember CLI Foundation 6 SASS, it's also installed using
command line.

Parameters

Parameter Usage

Ember install Download a new extension package using Ember

npm install Download a new extension package using node.js

SASS CSS language necessary in Foundation

Ember-cli-build.js File with Ember imports, configuration, etc.

{{#bs-modal-simple}} Creation of a new bootstrap modal

fade=fade Set the modal animations

{{#bs-button}} Button with a Bootstrap cool look

{{#bs-form onSubmit(action = "Submit")}} New form with an action after submitting

Remarks

Both addons are not mine, I thought it will be nice to present them to You, there are github pages
of addons:

Ember Bootstrap: https://github.com/kaliber5/ember-bootstrap

Ember foundation 6 https://github.com/acoustep/ember-cli-foundation-6-sass

You can find documentation there.

https://riptutorial.com/ 20

https://github.com/kaliber5/ember-bootstrap
https://github.com/acoustep/ember-cli-foundation-6-sass

Examples

Install ember-bootstrap with default version

ember install ember-bootstrap

Instal ember-bootstrap with version 4 and SASS - experimental

ember generate ember-bootstrap --bootstrap-version=4 --preprocessor=sass

Install SASS and Foundation

npm install --save-dev ember-cli-sass
ember install ember-cli-foundation-6-sass

Install Foundation dependencies

ember g ember-cli-foundation-6-sass

Ember build file with Foundation addons

// ember-cli-build.js

/* global require, module */
var EmberApp = require('ember-cli/lib/broccoli/ember-app');

module.exports = function(defaults) {
 var app = new EmberApp(defaults, {
 // Add options here
 'ember-cli-foundation-6-sass': {
 'foundationJs': [
 'core',
 'util.box',
 'util.keyboard',
 'util.mediaQuery',
 'util.motion',
 'util.nest',
 'util.timerAndImageLoader',
 'util.touch',
 'util.triggers',
 'abide',
 'accordion',
 'accordionMenu',
 'drilldown',
 'dropdown',
 'dropdownMenu',
 'equalizer',
 'interchange',
 'magellan',
 'offcanvas',
 'orbit',

https://riptutorial.com/ 21

 'responsiveMenu',
 'responsiveToggle',
 'reveal',
 'slider',
 'sticky',
 'tabs',
 'toggler',
 'tooltip'
]
 },
 }
 });

 return app.toTree();
};

Ember Bootstrap sample form

{{#bs-form model=this onSubmit=(action "submit") as |form|}}
 {{#form.element label="Email" placeholder="Email" property="email" as |el|}}
 <div class="input-group">
 <input value={{el.value}} class="form-control" placeholder="Email" oninput={{action (mut
el.value) value="target.value"}} onchange={{action (mut el.value) value="target.value"}}
id={{el.id}} type="text">
 @example.com
 </div>
 {{/form.element}}
 {{bs-button defaultText="Submit" type="primary" buttonType="submit"}}
{{/bs-form}}

Read Initialize Foundation or Bootstrap on ember-cli in a proper way online:
https://riptutorial.com/ember-js/topic/10176/initialize-foundation-or-bootstrap-on-ember-cli-in-a-
proper-way

https://riptutorial.com/ 22

https://riptutorial.com/ember-js/topic/10176/initialize-foundation-or-bootstrap-on-ember-cli-in-a-proper-way
https://riptutorial.com/ember-js/topic/10176/initialize-foundation-or-bootstrap-on-ember-cli-in-a-proper-way

Chapter 10: Testing

Introduction

Creating and maintaining a comprehensive test suite should be a priority for each developer.
Testing in Ember.js involves dealing with asynchrony, Ember Run Loop and mocking your API. It
is common for Ember.js developers to struggle when writing tests. However, there are some tips
which could save your time and energy.

Examples

Waiting for promises in tests in elegant way

You can make function passed to test() method async - then you can use await keyword. Your
test will wait until Promises resolve and testing asynchronous code becomes easier and more
readable. In the following example call that returns a Promise is changeset.validate(). Please
notice also wrapping set call in Ember.run. Setting quantity has asynchronous effects (observers,
computed properties) and thus we need to wrap it in Ember.run.

test('quantity validation: greater than 0', async function (assert) {
 assert.expect(3);

 const model = this.subject({
 quantity: 1
 });

 const changeset = createChangeset(model);

 await changeset.validate();

 assert.ok(!changeset.get('error.quantity'));

 Ember.run(() => {
 changeset.set('quantity', -1);
 });

 await changeset.validate();

 assert.equal(changeset.get('error.quantity.validation.length'), 1);
 assert.ok(!changeset.get('isValid'));
});

Read Testing online: https://riptutorial.com/ember-js/topic/10722/testing

https://riptutorial.com/ 23

https://riptutorial.com/ember-js/topic/10722/testing

Credits

S.
No

Chapters Contributors

1
Getting started with
ember.js

Cameron, Community, Eric D. Johnson, Kenneth Larsen, locks,
Nicos Karalis, ownsourcing dev training, Patsy Issa, Sid,
Xinyang Li

2
Asynchronous Tasks
in Components

Sukima, user2708383, wdspkr

3

Component -
communication
between child to
parent component.

Cameron, knownasilya, locks, Xinyang Li

4
Currency formatting
template helper

Alan Mabry, Andrius

5 Date Format Helper Daniel Kmak, Silvio Langereis

6 Debugging nem035

7
How to import
JavaScript
library/plugin

Rafalsonn

8
How to update
Ember, Ember Data
and Ember CLI

Cameron, ddoria921, heat, locks

9

Initialize Foundation
or Bootstrap on
ember-cli in a proper
way

Rafalsonn

10 Testing Daniel Kmak

https://riptutorial.com/ 24

https://riptutorial.com/contributor/5645583/cameron
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3018212/eric-d--johnson
https://riptutorial.com/contributor/5596808/kenneth-larsen
https://riptutorial.com/contributor/30001/locks
https://riptutorial.com/contributor/839049/nicos-karalis
https://riptutorial.com/contributor/5440638/ownsourcing-dev-training
https://riptutorial.com/contributor/1401094/patsy-issa
https://riptutorial.com/contributor/4143605/sid
https://riptutorial.com/contributor/2226315/xinyang-li
https://riptutorial.com/contributor/227176/sukima
https://riptutorial.com/contributor/2708383/user2708383
https://riptutorial.com/contributor/1148130/wdspkr
https://riptutorial.com/contributor/5645583/cameron
https://riptutorial.com/contributor/483616/knownasilya
https://riptutorial.com/contributor/30001/locks
https://riptutorial.com/contributor/2226315/xinyang-li
https://riptutorial.com/contributor/1564463/alan-mabry
https://riptutorial.com/contributor/871376/andrius
https://riptutorial.com/contributor/2166409/daniel-kmak
https://riptutorial.com/contributor/4309050/silvio-langereis
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/5255770/rafalsonn
https://riptutorial.com/contributor/5645583/cameron
https://riptutorial.com/contributor/1976407/ddoria921
https://riptutorial.com/contributor/901308/heat
https://riptutorial.com/contributor/30001/locks
https://riptutorial.com/contributor/5255770/rafalsonn
https://riptutorial.com/contributor/2166409/daniel-kmak

	About
	Chapter 1: Getting started with ember.js
	Remarks
	Versions
	Up-To-Date Release
	Examples
	Installation or Setup

	Dependencies
	Node.js and npm
	Git
	Watchman (optional)
	PhantomJS (optional)

	Installation
	Creating App
	Deploy App
	How to work with JavaScript plugins
	Assign localhost ports (esp. permissions/availability issues, running multiple ember sites simultaneously)

	Chapter 2: Asynchronous Tasks in Components
	Remarks
	Examples
	ember-concurrency task

	Pros
	Cons
	JavaScript
	Template
	PromiseProxyMixin

	Pros
	Cons
	JavaScript
	Template

	Chapter 3: Component - communication between child to parent component.
	Syntax
	Remarks
	Examples
	Composable Components

	Chapter 4: Currency formatting template helper
	Remarks
	Examples
	Creating a new helper

	Chapter 5: Date Format Helper
	Examples
	Helper for a clean date and hour format.

	Chapter 6: Debugging
	Examples
	Logging EmberData
	Running debug-only code

	Chapter 7: How to import JavaScript library/plugin
	Introduction
	Syntax
	Examples
	Example ember-cli-build.js file

	Chapter 8: How to update Ember, Ember Data and Ember CLI
	Remarks
	Examples
	Updating Ember
	Updating Ember Data
	Updating Ember CLI

	Chapter 9: Initialize Foundation or Bootstrap on ember-cli in a proper way
	Introduction
	Parameters
	Remarks
	Examples
	Install ember-bootstrap with default version
	Instal ember-bootstrap with version 4 and SASS - experimental
	Install SASS and Foundation
	Install Foundation dependencies
	Ember build file with Foundation addons
	Ember Bootstrap sample form

	Chapter 10: Testing
	Introduction
	Examples
	Waiting for promises in tests in elegant way

	Credits

