
Entity Framework Core

#entity-

framework-

core



Table of Contents

About 1

Chapter 1: Getting started with Entity Framework Core 2

Remarks 2

Examples 2

Adding packages to the project 2

Database First in Entity Framework Core with a Class Library and SQL Server 2

Step 1 - Install .NET Core 2

Step 2 - Create The Projects 3

Step 3 - Installing EF Packages 5

---------------- OR 6

Step 4 - Creating the Database Model 7

Finally 9

Passing a Connection String 10

Model, Querying and Saving Data 11

Model 11

Querying 11

Saving Data 12

Deleting Data 12

Updating Data 12

Chapter 2: EF Core vs EF6.x 14

Remarks 14

Examples 14

Side-by-side comparison 14

Chapter 3: Updating a Many to Many relationship 18

Introduction 18

Examples 18

MVC POST Edit example 18

Credits 20



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: entity-framework-core

It is an unofficial and free Entity Framework Core ebook created for educational purposes. All the 
content is extracted from Stack Overflow Documentation, which is written by many hardworking 
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Entity 
Framework Core.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/entity-framework-core
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with Entity 
Framework Core

Remarks

Entity Framework (EF) Core is a lightweight and extensible version of the popular Entity 
Framework data access technology.

EF Core is an object-relational mapper (O/RM) that enables .NET developers to work with a 
database using .NET objects. It eliminates the need for most of the data-access code that 
developers usually need to write.

Examples

Adding packages to the project

To add EntityFrameworkCore to your project, update the project.json file (add new lines into the 
dependencies and tools sections):

"dependencies": { 
    ... 
    "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
    "Microsoft.EntityFrameworkCore.SqlServer.Design": "1.0.0", 
    "Microsoft.EntityFrameworkCore.Design": { 
      "version": "1.0.0", 
      "type": "build" 
    }, 
}, 
"tools": { 
    ... 
    "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final" 
}

Don't forget to run dotnet restore to actually download these packages from the internet.

If you are using an RDBMS other than Microsoft SQLServer - replace 
Microsoft.EntityFrameworkCore.SqlServer with the correct version (
Microsoft.EntityFrameworkCore.Sqlite, Npgsql.EntityFrameworkCore.PostgreSQL or other - consult your 
RDBMS documentation for the recommended package).

Database First in Entity Framework Core with a Class Library and SQL Server

Okay it took me about a day to figure it out so here I am posting the steps I followed to get my 
Database First working in a Class Project (.NET Core), with a .NET Core Web App.

https://riptutorial.com/ 2



Step 1 - Install .NET Core

Make Sure you are using .NET Core not DNX (Hint: You should be able to see the .NET Core 
option when creating a New Project) - If NOT Download from Here

If you have problems installing .NET Core (Error is something like Visual Studio 2015 Update 3 not 
installed correctly) - You can run the installing using the command: [DotNetCore.1.0.0-
VS2015Tools.Preview2.exe SKIP_VSU_CHECK=1] -- Which will prevent the installation performing the 
Visual Studio Check Github Issue

Step 2 - Create The Projects

Create a new ASP.NET Core Web Application --> Then Select Web Application in the next screen

https://riptutorial.com/ 3

https://www.microsoft.com/net
https://github.com/aspnet/Home/issues/1626
http://i.stack.imgur.com/1mQZw.png


Add a Class Library (.NET Core) Project

https://riptutorial.com/ 4

http://i.stack.imgur.com/IhuGi.png


Step 3 - Installing EF Packages

Open your project.json file of Class Library, and paste the following, then Save the file:

{ 
  "version": "1.0.0-*", 
 
  "dependencies": { 
    "Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
    "Microsoft.EntityFrameworkCore.SqlServer.Design": "1.0.0", 
    "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final", 
    "NETStandard.Library": "1.6.0" 
  }, 
  "tools": { 
    "Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final" 
  }, 
 
  "frameworks": { 
    "net46": { 
    }, 
    "netcoreapp1.0": { 
      "dependencies": { 

https://riptutorial.com/ 5

http://i.stack.imgur.com/QjqAg.png


        "Microsoft.NETCore.App": { 
          "type": "platform", 
          "version": "1.0.0-*" 
        } 
      } 
    } 
  } 
}

This should restore the packages under References

---------------- OR

You can install them using Nuget Package Manager by running the following commands in the 
Package Manager Console

Install-Package Microsoft.EntityFrameworkCore.SqlServer 
 
Install-Package Microsoft.EntityFrameworkCore.Tools –Pre 
 
Install-Package Microsoft.EntityFrameworkCore.SqlServer.Design

Note: Install one Package at a time - if you get an error after installing

Microsoft.EntityFrameworkCore.Tools

Then change the content of your project.json frameworks section to this:

  "frameworks": { 
    "net46": { 
    }, 
    "netcoreapp1.0": { 
      "dependencies": { 
        "Microsoft.NETCore.App": { 
          "type": "platform", 
          "version": "1.0.0-*" 

https://riptutorial.com/ 6

http://i.stack.imgur.com/R47M6.png


        } 
      } 
    } 
  }

Step 4 - Creating the Database Model

Now to generate the Database run the following command in the Package Manager Console (DON'T 
forget to Change the connection string to your Database)

Scaffold-DbContext "Server=. ; Database=DATABASE; user id= USER ; password = PASSWORD;" 
Microsoft.EntityFrameworkCore.SqlServer

This will give you the Error about Startup Project:

For this you have to add the same references you added to Class Library to the .NET Web App

So open your project.json for the Web App,

Under dependencies, add:

"Microsoft.EntityFrameworkCore.SqlServer": "1.0.0", 
"Microsoft.EntityFrameworkCore.SqlServer.Design": "1.0.0", 
"Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final",

and under tools add:

"Microsoft.EntityFrameworkCore.Tools": "1.0.0-preview2-final",

https://riptutorial.com/ 7

http://i.stack.imgur.com/fz7V3.png


After making the changes Save the file.

This is what my project.json looks like

Then again run the command in Package Manager Console against the class library:

If you haven't already added the reference of your Class Library to the Web App, you will get this 
error:

https://riptutorial.com/ 8

http://i.stack.imgur.com/BtAuH.png


to solve this add reference of your class Library to your Web App:

Finally

Run the Command again - in the Package Manager Console:

Scaffold-DbContext "Server=. ; Database=DATABASE; user id= USER ; password = PASSWORD;" 
Microsoft.EntityFrameworkCore.SqlServer -OutputDir Models

This should create the Entities under Models Folder, in the class library

https://riptutorial.com/ 9

http://i.stack.imgur.com/q9R0a.png
http://i.stack.imgur.com/xPkRz.png


Passing a Connection String

In my case here, we have a Multi Tenant Application, in which each client has their own Database, 
e.g. Client_1, Client_2, Client_3. So the connection string had to be dynamic.

So we added a connection string property to a constructor, and passed it to the Context in the 
OnConfiguring method

public partial class ClientContext 
{ 
    private readonly string _connectionString; 
 
    public ClientContext(string connectionString) : base() 
    { 
        _connectionString = connectionString; 
    } 
 
    protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) 
    { 
        optionsBuilder.UseSqlServer(_connectionString); 
    } 
}

and used it like this:

    public void TestConnection() 
    { 
        var clientId = 1; 
 
        var connectionString = string.Format("Server=192.168.0.211; Database=Client_{0}; user 
id= USER; password = PWD;", clientId); 
 
        using (var clientContext = new ClientContext(connectionString)) 
        { 
            var assets = clientContext.Users.Where(s => s.UserId == 1); 
        } 

https://riptutorial.com/ 10

http://i.stack.imgur.com/Tgyi1.png


    }

Model, Querying and Saving Data

Model

With EF Core, data access is performed using a model. A model is made up of entity classes and 
a derived context that represents a session with the database, allowing you to query and save 
data.

You can generate a model from an existing database, hand code a model to match your database, 
or use EF Migrations to create a database from your model (and evolve it as your model changes 
over time).

using Microsoft.EntityFrameworkCore; 
using System.Collections.Generic; 
 
namespace Intro 
{ 
    public class BloggingContext : DbContext 
    { 
        public DbSet<Blog> Blogs { get; set; } 
        public DbSet<Post> Posts { get; set; } 
 
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) 
        { 
 
optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=MyDatabase;Trusted_Connection=True;");
 
        } 
    } 
 
    public class Blog 
    { 
        public int BlogId { get; set; } 
        public string Url { get; set; } 
 
        public List<Post> Posts { get; set; } 
    } 
 
    public class Post 
    { 
        public int PostId { get; set; } 
        public string Title { get; set; } 
        public string Content { get; set; } 
 
        public int BlogId { get; set; } 
        public Blog Blog { get; set; } 
    } 
}

Querying

https://riptutorial.com/ 11



Instances of your entity classes are retrieved from the database using Language Integrated Query 
(LINQ).

using (var db = new BloggingContext()) 
{ 
    var blogs = db.Blogs 
        .Where(b => b.Rating > 3) 
        .OrderBy(b => b.Url) 
        .ToList(); 
}

Saving Data

Data is created, deleted, and modified in the database using instances of your entity classes.

using (var db = new BloggingContext()) 
{ 
    var blog = new Blog { Url = "http://sample.com" }; 
    db.Blogs.Add(blog); 
    db.SaveChanges(); 
}

Deleting Data

Instances of your entity classes are retrieved from the database using Language Integrated Query 
(LINQ).

using (var db = new BloggingContext()) 
{ 
    var blog = new Blog { Url = "http://sample.com" }; 
    db.Blogs.Attach(blog); 
    db.Blogs.Remove(blog); 
    db.SaveChanges(); 
}

Updating Data

Data is updated in the database using instances of your entity classes.

using (var db = new BloggingContext()) 
{ 
    var blog = new Blog { Url = "http://sample.com" }; 
    var entity = db.Blogs.Find(blog); 
    entity.Url = "http://sample2.com"; 
    db.SaveChanges(); 
}

https://riptutorial.com/ 12



Read Getting started with Entity Framework Core online: https://riptutorial.com/entity-framework-
core/topic/3796/getting-started-with-entity-framework-core

https://riptutorial.com/ 13

https://riptutorial.com/entity-framework-core/topic/3796/getting-started-with-entity-framework-core
https://riptutorial.com/entity-framework-core/topic/3796/getting-started-with-entity-framework-core


Chapter 2: EF Core vs EF6.x

Remarks

For latest updates, please refer to: Feature Comparison

Examples

Side-by-side comparison

The following table compares the features available(1) in EF Core and EF6.x.

It is intended to give a high level comparison and does not list every feature, or attempt to give 
details on possible differences between how the same feature works.

Creating a Model EF6.x EF Core 1.0.0

Basic modelling (classes, properties, etc.) Yes Yes

Conventions Yes Yes

Custom conventions Yes Partial

Data annotations Yes Yes

Fluent API Yes Yes

Inheritance: Table per hierarchy (TPH) Yes Yes

Inheritance: Table per type (TPT) Yes

Inheritance: Table per concrete class (TPC) Yes

Shadow state properties Yes

Alternate keys Yes

Many-to-many: With join entity Yes Yes

Many-to-many: Without join entity Yes

Key generation: Database Yes Yes

Key generation: Client Yes

Complex/value types Yes

Spatial data Yes

https://riptutorial.com/ 14

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/


Creating a Model EF6.x EF Core 1.0.0

Graphical visualization of model Yes

Graphical drag/drop editor Yes

Model format: Code Yes Yes

Model format: EDMX (XML) Yes

Reverse engineer model from database: Command line Yes

Reverse engineer model from database: VS wizard Yes

Incremental update model from database Yes

Querying Data EF6.x EF Core 1.0.0

LINQ: Simple queries Stable Stable

LINQ: Moderate queries Stable Stabilizing

LINQ: Complex queries Stable In-Progress

LINQ: Queries using navigation properties Stable In-Progress

“Pretty” SQL generation Poor Yes

Mixed client/server evaluation Yes

Loading related data: Eager Yes Yes

Loading related data: Lazy Yes

Loading related data: Explicit Yes

Raw SQL queries: Model types Yes Yes

Raw SQL queries: Un-mapped types Yes

Raw SQL queries: Composing with LINQ Yes

Saving Data EF6.x EF Core 1.0.0

SaveChanges Yes Yes

Change tracking: Snapshot Yes Yes

Change tracking: Notification Yes Yes

Accessing tracked state Yes Partial

https://riptutorial.com/ 15



Saving Data EF6.x EF Core 1.0.0

Optimistic concurrency Yes Yes

Transactions Yes Yes

Batching of statements Yes

Stored procedure Yes

Detached graph support (N-Tier): Low level APIs Poor Yes

Detached graph support (N-Tier): End-to-end Poor

Other Features EF6.x EF Core 1.0.0

Migrations Yes Yes

Database creation/deletion APIs Yes Yes

Seed data Yes

Connection resiliency Yes

Lifecycle hooks (events, command interception, ...) Yes

Database Providers EF6.x EF Core 1.0.0

SQL Server Yes Yes

MySQL Yes Paid only, unpaid coming soon (2)

PostgreSQL Yes Yes

Oracle Yes Paid only, unpaid coming soon (2)

SQLite Yes Yes

SQL Compact Yes Yes

DB2 Yes Yes

InMemory (for testing) Yes

Azure Table Storage Prototype

Redis Prototype

Application Models EF6.x EF Core 1.0.0

WinForms Yes Yes

https://riptutorial.com/ 16



Application Models EF6.x EF Core 1.0.0

WPF Yes Yes

Console Yes Yes

ASP.NET Yes Yes

ASP.NET Core Yes

Xamarin Coming soon (3)

UWP Yes

Footnotes:

(1) : As of 2016/10/18

(2) : Paid providers are available, unpaid providers are being worked on. The teams working on 
the unpaid providers have not shared public details of timeline etc.

(3) : EF Core is built to work on Xamarin when support for .NET Standard is enabled in Xamarin.

Read EF Core vs EF6.x online: https://riptutorial.com/entity-framework-core/topic/7513/ef-core-vs-
ef6-x

https://riptutorial.com/ 17

https://riptutorial.com/entity-framework-core/topic/7513/ef-core-vs-ef6-x
https://riptutorial.com/entity-framework-core/topic/7513/ef-core-vs-ef6-x


Chapter 3: Updating a Many to Many 
relationship

Introduction

How to update a Many to Many relationship in EF Core:

Examples

MVC POST Edit example

Say we have a Product class with Multiple Colors which can be on many Products.

public class Product 
{ 
    public int ProductId { get; set; } 
    public ICollection<ColorProduct> ColorProducts { get; set; } 
} 
 
public class ColorProduct 
{ 
    public int ProductId { get; set; } 
    public int ColorId { get; set; } 
 
    public virtual Color Color { get; set; } 
    public virtual Product Product { get; set; } 
} 
 
public class Color 
{ 
    public int ColorId { get; set; } 
    public ICollection<ColorProduct> ColorProducts { get; set; } 
}

Using this extension to make it easier:

public static class Extensions 
{ 
    public static void TryUpdateManyToMany<T, TKey>(this DbContext db, IEnumerable<T> 
currentItems, IEnumerable<T> newItems, Func<T, TKey> getKey) where T : class 
    { 
        db.Set<T>().RemoveRange(currentItems.Except(newItems, getKey)); 
        db.Set<T>().AddRange(newItems.Except(currentItems, getKey)); 
    } 
 
    public static IEnumerable<T> Except<T, TKey>(this IEnumerable<T> items, IEnumerable<T> 
other, Func<T, TKey> getKeyFunc) 
    { 
        return items 
            .GroupJoin(other, getKeyFunc, getKeyFunc, (item, tempItems) => new { item, 
tempItems }) 

https://riptutorial.com/ 18



            .SelectMany(t => t.tempItems.DefaultIfEmpty(), (t, temp) => new { t, temp }) 
            .Where(t => ReferenceEquals(null, t.temp) || t.temp.Equals(default(T))) 
            .Select(t => t.t.item); 
    } 
}

Updating a product's colors would look like this (a MVC Edit POST Method)

[HttpPost] 
public IActionResult Edit(ProductVm vm) 
{ 
if (ModelState.IsValid) 
    { 
        var model = db.Products 
            .Include(x => x.ColorProducts) 
            .FirstOrDefault(x => x.ProductId == vm.Product.ProductId); 
 
        db.TryUpdateManyToMany(model.ColorProducts, vm.ColorsSelected 
            .Select(x => new ColorProduct 
            { 
                ColorId = x, 
                ProductId = vm.Product.ProductId 
            }), x => x.ColorId); 
 
        db.SaveChanges(); 
 
        return RedirectToAction("Index"); 
    } 
   return View(vm); 
} 
 
 
public class ProductVm 
{ 
    public Product Product { get; set; } 
 
    public IEnumerable<int> ColorsSelected { get; set; } 
}

Code has been simplified as much as i can, no extra properties on any classes.

Read Updating a Many to Many relationship online: https://riptutorial.com/entity-framework-
core/topic/9527/updating-a-many-to-many-relationship

https://riptutorial.com/ 19

https://riptutorial.com/entity-framework-core/topic/9527/updating-a-many-to-many-relationship
https://riptutorial.com/entity-framework-core/topic/9527/updating-a-many-to-many-relationship


Credits

S. 
No

Chapters Contributors

1
Getting started with 
Entity Framework 
Core

Community, Dawood Awan, Dmitry, hasan, natemcmaster, 
NovaDev, tmg, uTeisT

2 EF Core vs EF6.x Frédéric, Ruud Lenders, uTeisT

3
Updating a Many to 
Many relationship

Paw Ormstrup Madsen

https://riptutorial.com/ 20

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1910735/dawood-awan
https://riptutorial.com/contributor/460298/dmitry
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/2526265/natemcmaster
https://riptutorial.com/contributor/3845390/novadev
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/4635792/uteist
https://riptutorial.com/contributor/1178314/frederic
https://riptutorial.com/contributor/1185136/ruud-lenders
https://riptutorial.com/contributor/4635792/uteist
https://riptutorial.com/contributor/5572947/paw-ormstrup-madsen

	About
	Chapter 1: Getting started with Entity Framework Core
	Remarks
	Examples
	Adding packages to the project
	Database First in Entity Framework Core with a Class Library and SQL Server


	Step 1 - Install .NET Core
	Step 2 - Create The Projects
	Step 3 - Installing EF Packages
	---------------- OR

	Step 4 - Creating the Database Model
	Finally
	Passing a Connection String
	Model, Querying and Saving Data

	Model
	Querying
	Saving Data
	Deleting Data
	Updating Data
	Chapter 2: EF Core vs EF6.x
	Remarks
	Examples
	Side-by-side comparison


	Chapter 3: Updating a Many to Many relationship
	Introduction
	Examples
	MVC POST Edit example


	Credits



