
Entity Framework

#entity-

framework

Table of Contents

About 1

Chapter 1: Getting started with Entity Framework 2

Remarks 2

Versions 2

Examples 2

Using Entity Framework from C# (Code First) 2

Installing The Entity Framework NuGet Package 3

What is Entity Framework ? 7

Chapter 2: .t4 templates in entity-framework 9

Examples 9

Dynamically adding Interfaces to model 9

Adding XML Documentation to Entity Classes 9

Chapter 3: Advanced mapping scenarios: entity splitting, table splitting 11

Introduction 11

Examples 11

Entity splitting 11

Table splitting 12

Chapter 4: Best Practices For Entity Framework (Simple & Professional) 14

Introduction 14

Examples 14

1- Entity Framework @ Data layer (Basics) 14

2- Entity Framework @ Business layer 18

3- Using Business layer @ Presentation layer (MVC) 21

4- Entity Framework @ Unit Test Layer 22

Chapter 5: Code First - Fluent API 26

Remarks 26

Examples 26

Mapping models 26

Step one: Create model. 26

Step two: Create mapper class 26

Step three: Add mapping class to configurations. 28

Primary Key 28

Composite Primary Key 28

Maximum Length 29

Required properties (NOT NULL) 29

Explict Foreign Key naming 30

Chapter 6: Code First Conventions 31

Remarks 31

Examples 31

Primary Key Convention 31

Removing Conventions 31

Type Discovery 31

DecimalPropertyConvention 33

Relationship Convention 34

Foreign Key Convention 35

Chapter 7: Code First DataAnnotations 37

Remarks 37

Examples 37

[Key] attribute 37

[Required] attribute 38

[MaxLength] and [MinLength] attributes 38

[Range(min,max)] attribute 39

[DatabaseGenerated] attribute 40

[NotMapped] attribute 41

[Table] attribute 42

[Column] attribute 42

[Index] attribute 43

[ForeignKey(string)] attribute 43

[StringLength(int)] attribute 44

[Timestamp] attribute 45

[ConcurrencyCheck] Attribute 45

[InverseProperty(string)] attribute 46

[ComplexType] attribute 47

Chapter 8: Complex Types 48

Examples 48

Code First Complex Types 48

Chapter 9: Database first model generation 49

Examples 49

Generating model from database 49

Adding data annotations to the generated model 50

Chapter 10: Database Initialisers 53

Examples 53

CreateDatabaseIfNotExists 53

DropCreateDatabaseIfModelChanges 53

DropCreateDatabaseAlways 53

Custom database initializer 53

MigrateDatabaseToLatestVersion 54

Chapter 11: Entity Framework Code First 55

Examples 55

Connect to an existing database 55

Chapter 12: Entity Framework with SQLite 57

Introduction 57

Examples 57

Setting up a project to use Entity Framework with an SQLite provider 57

Install SQLite Managed Libraries 57

Including Unmanaged Library 58

Editing the project's App.config 58

Required Fixes 58

Add SQLite connection string 59

Your first SQLite DbContext 59

Chapter 13: Entity-Framework with Postgresql 60

Examples 60

Pre-Steps needed in order to use Entity Framework 6.1.3 with PostgresSql using Npgsqlddexp 60

Chapter 14: Entity-framework Code First Migrations 61

Examples 61

Enable Migrations 61

Add your first migration 61

Seeding Data during migrations 63

Using Sql() during migrations 64

Other Usage 65

Doing "Update-Database" within your code 65

Initial Entity Framework Code First Migration Step by Step 66

Chapter 15: Inheritance with EntityFramework (Code First) 67

Examples 67

Table per hierarchy 67

Table per type 68

Chapter 16: Loading related entities 70

Remarks 70

Examples 70

Lazy loading 70

Eager loading 71

Strongly typed. 71

String overload. 71

Explicit loading 72

Filter related entities. 72

Projection Queries 72

Chapter 17: Managing entity state 74

Remarks 74

Examples 74

Setting state Added of a single entity 74

Setting state Added of an object graph 74

Example 75

Chapter 18: Mapping relationship with Entity Framework Code First: One-to-many and Many-to 76

Introduction 76

Examples 76

Mapping one-to-many 76

Mapping one-to-many: against the convention 77

Mapping zero or one-to-many 79

Many-to-many 79

Many-to-many: customizing the join table 80

Many-to-many: custom join entity 82

Chapter 19: Mapping relationship with Entity Framework Code First: One-to-one and variatio 85

Introduction 85

Examples 85

Mapping one-to-zero or one 85

Mapping one-to-one 89

Mapping one or zero-to-one or zero 89

Chapter 20: Model Restraints 91

Examples 91

One-to-many relationships 91

Chapter 21: Optimization Techniques in EF 93

Examples 93

Using AsNoTracking 93

Loading Only Required Data 93

Execute queries in the database when possible, not in memory. 94

Execute multiple queries async and in parallel 94

Bad Example 94

Good Example 95

Disable change tracking and proxy generation 95

Working with stub entities 96

Chapter 22: Tracking vs. No-Tracking 98

Remarks 98

Examples 98

Tracking queries 98

No-tracking queries 98

Tracking and projections 99

Chapter 23: Transactions 100

Examples 100

Database.BeginTransaction() 100

Credits 101

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: entity-framework

It is an unofficial and free Entity Framework ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Entity
Framework.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/entity-framework
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Entity
Framework

Remarks

Entity Framework (EF) is an object-relational mapper (ORM) that enables .NET developers to
work with relational data using domain-specific objects. It eliminates the need for most of the data-
access code that developers usually need to write.

Entity Framework allows you to create a model by writing code or using boxes and lines in the EF
Designer. Both of these approaches can be used to target an existing database or create a new
database.

Entity Framework is the main ORM that Microsoft provides for the .NET Framework and
Microsoft’s recommended data access technology.

Versions

Version Release Date

1.0 2008-08-11

4.0 2010-04-12

4.1 2011-04-12

4.1 Update 1 2011-07-25

4.3.1 2012-02-29

5.0 2012-08-11

6.0 2013-10-17

6.1 2014-03-17

Core 1.0 2016-06-27

Release Notes: https://msdn.microsoft.com/en-ca/data/jj574253.aspx

Examples

Using Entity Framework from C# (Code First)

https://riptutorial.com/ 2

https://msdn.microsoft.com/en-ca/data/jj574253.aspx

Code first allows you to create your entities (classes) without using a GUI designer or a .edmx file.
It is named Code first, because you can create your models first and Entity framework will create
database according to mappings for you automatically. Or you can also use this approach with
existing database, which is called code first with existing database For example, if you want a
table to hold a list of planets:

public class Planet
{
 public string Name { get; set; }
 public decimal AverageDistanceFromSun { get; set; }
}

Now create your context which is the bridge between your entity classes and the database. Give it
one or more DbSet<> properties:

using System.Data.Entity;

public class PlanetContext : DbContext
{
 public DbSet<Planet> Planets { get; set; }
}

We can use this by doing the following:

using(var context = new PlanetContext())
{
 var jupiter = new Planet
 {
 Name = "Jupiter",
 AverageDistanceFromSun = 778.5
 };

 context.Planets.Add(jupiter);
 context.SaveChanges();
}

In this example we create a new Planet with the Name property with the value of "Jupiter" and the
AverageDistanceFromSun property with the value of 778.5

We can then add this Planet to the context by using the DbSet's Add() method and commit our
changes to the database by using the SaveChanges() method.

Or we can retrieve rows from the database:

using(var context = new PlanetContext())
{
 var jupiter = context.Planets.Single(p => p.Name == "Jupiter");
 Console.WriteLine($"Jupiter is {jupiter.AverageDistanceFromSun} million km from the
sun.");
}

Installing The Entity Framework NuGet Package

https://riptutorial.com/ 3

In your Visual Studio open the Solution Explorer window then right click on your project then
choose Manage NuGet Packages from the menu:

In the window that opens type EntityFramework in the search box in the top right.

https://riptutorial.com/ 4

http://i.stack.imgur.com/Wx3Hk.png

Or if you are using Visual Studio 2015 you'll see something like this:

https://riptutorial.com/ 5

http://i.stack.imgur.com/NgmOs.png

Then click Install.

We can also install entity framework using the package manager console. To do you have first to
open it using the Tools menu -> NuGet Package Manager -> Package Manager Console then
enter this:

Install-Package EntityFramework

https://riptutorial.com/ 6

http://i.stack.imgur.com/ln0Z9.png

This will install Entity Framework and automatically add a reference to the assembly in your
project.

What is Entity Framework ?

Writing and managing ADO.Net code for data access is a tedious and monotonous job. Microsoft
has provided an O/RM framework called "Entity Framework" to automate database related
activities for your application.

Entity framework is an Object/Relational Mapping (O/RM) framework. It is an enhancement to
ADO.NET that gives developers an automated mechanism for accessing & storing the data in the
database.

What is O/RM?

ORM is a tool for storing data from domain objects to the relational database like MS SQL Server,
in an automated way, without much programming. O/RM includes three main parts:

Domain class objects1.
Relational database objects2.
Mapping information on how domain objects map to relational database objects(e.x tables,
views & stored procedures)

3.

ORM allows us to keep our database design separate from our domain class design. This makes
the application maintainable and extendable. It also automates standard CRUD operation (Create,

https://riptutorial.com/ 7

http://i.stack.imgur.com/6iSJR.png

Read, Update & Delete) so that the developer doesn't need to write it manually.

Read Getting started with Entity Framework online: https://riptutorial.com/entity-
framework/topic/815/getting-started-with-entity-framework

https://riptutorial.com/ 8

https://riptutorial.com/entity-framework/topic/815/getting-started-with-entity-framework
https://riptutorial.com/entity-framework/topic/815/getting-started-with-entity-framework

Chapter 2: .t4 templates in entity-framework

Examples

Dynamically adding Interfaces to model

When working with existing model that is quite big and is being regenerated quite often in cases
where abstraction needed it might be costly to manually go around redecorating model with
interfaces. In such cases one might want to add some dynamic behavior to model generation.

Following example will show how automatically add interfaces on classes that have specific
column names:

In your model go to .tt file modify the EntityClassOpening method in following way, this will add
IPolicyNumber interface on entities that have POLICY_NO column, and IUniqueId on UNIQUE_ID

public string EntityClassOpening(EntityType entity)
{
 var stringsToMatch = new Dictionary<string,string> { { "POLICY_NO", "IPolicyNumber" }, {
"UNIQUE_ID", "IUniqueId" } };
 return string.Format(
 CultureInfo.InvariantCulture,
 "{0} {1}partial class {2}{3}{4}",
 Accessibility.ForType(entity),
 _code.SpaceAfter(_code.AbstractOption(entity)),
 _code.Escape(entity),
 _code.StringBefore(" : ", _typeMapper.GetTypeName(entity.BaseType)),
 stringsToMatch.Any(o => entity.Properties.Any(n => n.Name == o.Key)) ? " : " +
string.Join(", ", stringsToMatch.Join(entity.Properties, l => l.Key, r => r.Name, (l,r) =>
l.Value)) : string.Empty);
}

This is one specific case but it shows a power of being able to modify .tt templates.

Adding XML Documentation to Entity Classes

On every generated model classes there are no documentation comments added by default. If you
want to use XML documentation comments for every generated entity classes, find this part inside
[modelname].tt (modelname is current EDMX file name):

foreach (var entity in typeMapper.GetItemsToGenerate<EntityType>(itemCollection))
{
 fileManager.StartNewFile(entity.Name + ".cs");
 BeginNamespace(code); // used to write model namespace
#>
<#=codeStringGenerator.UsingDirectives(inHeader: false)#>

You can add the XML documentation comments before UsingDirectives line as shown in example
below:

https://riptutorial.com/ 9

foreach (var entity in typeMapper.GetItemsToGenerate<EntityType>(itemCollection))
{
 fileManager.StartNewFile(entity.Name + ".cs");
 BeginNamespace(code);
#>
/// <summary>
/// <#=entity.Name#> model entity class.
/// </summary>
<#=codeStringGenerator.UsingDirectives(inHeader: false)#>

The generated documentation comment should be includes entity name as given below.

/// <summary>
/// Example model entity class.
/// </summary>
public partial class Example
{
 // model contents
}

Read .t4 templates in entity-framework online: https://riptutorial.com/entity-framework/topic/3964/-
t4-templates-in-entity-framework

https://riptutorial.com/ 10

https://riptutorial.com/entity-framework/topic/3964/-t4-templates-in-entity-framework
https://riptutorial.com/entity-framework/topic/3964/-t4-templates-in-entity-framework

Chapter 3: Advanced mapping scenarios:
entity splitting, table splitting

Introduction

How to configure your EF model to support entity splitting or table splitting.

Examples

Entity splitting

So let's say you have an entity class like this:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string AddressLine { get; set; }
}

And then let's say that you want to map this Person entity into two tables — one with the PersonId
and the Name, and another one with the address details. Of course you would need the PersonId
here as well in order to identify which person the address belongs to. So basically what you want
is to split the entity into two (or even more) parts. Hence the name, entity splitting. You can do this
by mapping each of the properties to a different table:

public class MyDemoContext : DbContext
{
 public DbSet<Person> Products { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Person>().Map(m =>
 {
 m.Properties(t => new { t.PersonId, t.Name });
 m.ToTable("People");
 }).Map(m =>
 {
 m.Properties(t => new { t.PersonId, t.AddressLine, t.City, t.ZipCode });
 m.ToTable("PersonDetails");
 });
 }
}

This will create two tables: People and PersonDetails. Person has two fields, PersonId and Name,
PersonDetails has four columns, PersonId, AddressLine, City and ZipCode. In People, PersonId is
the primary key. In PersonDetails the primary key is also PersonId, but it is also a foreign key

https://riptutorial.com/ 11

referencing PersonId in the Person table.

If you query the People DbSet, EF will do a join on the PersonIds to get the data from both tables
to populate the entities.

You can also change the name of the columns:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Person>().Map(m =>
 {
 m.Properties(t => new { t.PersonId });
 m.Property(t => t.Name).HasColumnName("PersonName");
 m.ToTable("People");
 }).Map(m =>
 {
 m.Property(t => t.PersonId).HasColumnName("ProprietorId");
 m.Properties(t => new { t.AddressLine, t.City, t.ZipCode });
 m.ToTable("PersonDetails");
 });
}

This will create the same table structure, but in the People table there will be a PersonName
column instead of the Name column, and in the PersonDetails table there will be a ProprietorId
instead of the PersonId column.

Table splitting

And now let's say you want to do the opposite of entity splitting: instead of mapping one entity into
two tables, you would like to map one table into two entities. This is called table splitting. Let's say
you have one table with five columns: PersonId, Name, AddressLine, City, ZipCode, where
PersonId is the primary key. And then you would like to create an EF model like this:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public Address Address { get; set; }
}

public class Address
{
 public string ZipCode { get; set; }
 public string City { get; set; }
 public string AddressLine { get; set; }
 public int PersonId { get; set; }
 public Person Person { get; set; }
}

One thing jumps right out: there is no AddressId in Address. That's because the two entities are
mapped to the same table, so they must have the same primary key as well. If you do table
splitting, this is something you just have to deal with. So besides table splitting, you also have to
configure the Address entity and specify the primary key. And here's how:

https://riptutorial.com/ 12

public class MyDemoContext : DbContext
{
 public DbSet<Person> Products { get; set; }
 public DbSet<Address> Addresses { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Address>().HasKey(t => t.PersonId);
 modelBuilder.Entity<Person>().HasRequired(t => t.Address)
 .WithRequiredPrincipal(t => t.Person);

 modelBuilder.Entity<Person>().Map(m => m.ToTable("People"));
 modelBuilder.Entity<Address>().Map(m => m.ToTable("People"));
 }
}

Read Advanced mapping scenarios: entity splitting, table splitting online:
https://riptutorial.com/entity-framework/topic/9362/advanced-mapping-scenarios--entity-splitting--
table-splitting

https://riptutorial.com/ 13

https://riptutorial.com/entity-framework/topic/9362/advanced-mapping-scenarios--entity-splitting--table-splitting
https://riptutorial.com/entity-framework/topic/9362/advanced-mapping-scenarios--entity-splitting--table-splitting

Chapter 4: Best Practices For Entity
Framework (Simple & Professional)

Introduction

This article is to introduce a simple and professional practice to use Entity Framework.

Simple: because it only needs one class (with one interface)

Professional: because it applies SOLID architecture principles

I don't wish to talk more.... let's enjoy it!

Examples

1- Entity Framework @ Data layer (Basics)

In this article we will use a simple database called “Company” with two tables:

[dbo].[Categories]([CategoryID], [CategoryName])

[dbo].[Products]([ProductID], [CategoryID], [ProductName])

1-1 Generate Entity Framework code

In this layer we generate the Entity Framework code (in project library) (see this article in how can
you do that) then you will have the following classes

public partial class CompanyContext : DbContext
public partial class Product
public partial class Category

1-2 Create basic Interface

We will create one interface for our basics functions

public interface IDbRepository : IDisposable
{
 #region Tables and Views functions

 IQueryable<TResult> GetAll<TResult>(bool noTracking = true) where TResult : class;
 TEntity Add<TEntity>(TEntity entity) where TEntity : class;
 TEntity Delete<TEntity>(TEntity entity) where TEntity : class;
 TEntity Attach<TEntity>(TEntity entity) where TEntity : class;
 TEntity AttachIfNot<TEntity>(TEntity entity) where TEntity : class;

 #endregion Tables and Views functions

https://riptutorial.com/ 14

https://www.codeproject.com/Articles/703634/SOLID-architecture-principles-using-simple-Csharp
https://msdn.microsoft.com/en-us/library/jj206878(v=vs.113).aspx

 #region Transactions Functions

 int Commit();
 Task<int> CommitAsync(CancellationToken cancellationToken = default(CancellationToken));

 #endregion Transactions Functions

 #region Database Procedures and Functions

 TResult Execute<TResult>(string functionName, params object[] parameters);

 #endregion Database Procedures and Functions
}

1-3 Implementing basic Interface

/// <summary>
/// Implementing basic tables, views, procedures, functions, and transaction functions
/// Select (GetAll), Insert (Add), Delete, and Attach
/// No Edit (Modify) function (can modify attached entity without function call)
/// Executes database procedures or functions (Execute)
/// Transaction functions (Commit)
/// More functions can be added if needed
/// </summary>
/// <typeparam name="TEntity">Entity Framework table or view</typeparam>
public class DbRepository : IDbRepository
{
 #region Protected Members

 protected DbContext _dbContext;

 #endregion Protected Members

 #region Constractors

 /// <summary>
 /// Repository constructor
 /// </summary>
 /// <param name="dbContext">Entity framework databse context</param>
 public DbRepository(DbContext dbContext)
 {
 _dbContext = dbContext;

 ConfigureContext();
 }

 #endregion Constractors

 #region IRepository Implementation

 #region Tables and Views functions

 /// <summary>
 /// Query all
 /// Set noTracking to true for selecting only (read-only queries)
 /// Set noTracking to false for insert, update, or delete after select
 /// </summary>
 public virtual IQueryable<TResult> GetAll<TResult>(bool noTracking = true) where TResult :
class
 {

https://riptutorial.com/ 15

 var entityDbSet = GetDbSet<TResult>();

 if (noTracking)
 return entityDbSet.AsNoTracking();

 return entityDbSet;
 }

 public virtual TEntity Add<TEntity>(TEntity entity) where TEntity : class
 {
 return GetDbSet<TEntity>().Add(entity);
 }

 /// <summary>
 /// Delete loaded (attached) or unloaded (Detached) entitiy
 /// No need to load object to delete it
 /// Create new object of TEntity and set the id then call Delete function
 /// </summary>
 /// <param name="entity">TEntity</param>
 /// <returns></returns>
 public virtual TEntity Delete<TEntity>(TEntity entity) where TEntity : class
 {
 if (_dbContext.Entry(entity).State == EntityState.Detached)
 {
 _dbContext.Entry(entity).State = EntityState.Deleted;
 return entity;
 }
 else
 return GetDbSet<TEntity>().Remove(entity);
 }

 public virtual TEntity Attach<TEntity>(TEntity entity) where TEntity : class
 {
 return GetDbSet<TEntity>().Attach(entity);
 }

 public virtual TEntity AttachIfNot<TEntity>(TEntity entity) where TEntity : class
 {
 if (_dbContext.Entry(entity).State == EntityState.Detached)
 return Attach(entity);

 return entity;
 }

 #endregion Tables and Views functions

 #region Transactions Functions

 /// <summary>
 /// Saves all changes made in this context to the underlying database.
 /// </summary>
 /// <returns>The number of objects written to the underlying database.</returns>
 public virtual int Commit()
 {
 return _dbContext.SaveChanges();
 }

 /// <summary>
 /// Asynchronously saves all changes made in this context to the underlying database.
 /// </summary>
 /// <param name="cancellationToken">A System.Threading.CancellationToken to observe while

https://riptutorial.com/ 16

waiting for the task to complete.</param>
 /// <returns>A task that represents the asynchronous save operation. The task result
contains the number of objects written to the underlying database.</returns>
 public virtual Task<int> CommitAsync(CancellationToken cancellationToken =
default(CancellationToken))
 {
 return _dbContext.SaveChangesAsync(cancellationToken);
 }

 #endregion Transactions Functions

 #region Database Procedures and Functions

 /// <summary>
 /// Executes any function in the context
 /// use to call database procesdures and functions
 /// </summary>>
 /// <typeparam name="TResult">return function type</typeparam>
 /// <param name="functionName">context function name</param>
 /// <param name="parameters">context function parameters in same order</param>
 public virtual TResult Execute<TResult>(string functionName, params object[] parameters)
 {
 MethodInfo method = _dbContext.GetType().GetMethod(functionName);

 return (TResult)method.Invoke(_dbContext, parameters);
 }

 #endregion Database Procedures and Functions

 #endregion IRepository Implementation

 #region IDisposable Implementation

 public void Dispose()
 {
 _dbContext.Dispose();
 }

 #endregion IDisposable Implementation

 #region Protected Functions

 /// <summary>
 /// Set Context Configuration
 /// </summary>
 protected virtual void ConfigureContext()
 {
 // set your recommended Context Configuration
 _dbContext.Configuration.LazyLoadingEnabled = false;
 }

 #endregion Protected Functions

 #region Private Functions

 private DbSet<TEntity> GetDbSet<TEntity>() where TEntity : class
 {
 return _dbContext.Set<TEntity>();
 }

 #endregion Private Functions

https://riptutorial.com/ 17

}

2- Entity Framework @ Business layer

In this layer we will write the application business.

It is recommended for each presentation screen, you create the business interface and
implementation class that contain all required functions for the screen.

Below we will write the business for product screen as example

/// <summary>
/// Contains Product Business functions
/// </summary>
public interface IProductBusiness
{
 Product SelectById(int productId, bool noTracking = true);
 Task<IEnumerable<dynamic>> SelectByCategoryAsync(int CategoryId);
 Task<Product> InsertAsync(string productName, int categoryId);
 Product InsertForNewCategory(string productName, string categoryName);
 Product Update(int productId, string productName, int categoryId);
 Product Update2(int productId, string productName, int categoryId);
 int DeleteWithoutLoad(int productId);
 int DeleteLoadedProduct(Product product);
 IEnumerable<GetProductsCategory_Result> GetProductsCategory(int categoryId);
}

/// <summary>
/// Implementing Product Business functions
/// </summary>
public class ProductBusiness : IProductBusiness
{
 #region Private Members

 private IDbRepository _dbRepository;

 #endregion Private Members

 #region Constructors

 /// <summary>
 /// Product Business Constructor
 /// </summary>
 /// <param name="dbRepository"></param>
 public ProductBusiness(IDbRepository dbRepository)
 {
 _dbRepository = dbRepository;
 }

 #endregion Constructors

 #region IProductBusiness Function

 /// <summary>
 /// Selects Product By Id

https://riptutorial.com/ 18

 /// </summary>
 public Product SelectById(int productId, bool noTracking = true)
 {
 var products = _dbRepository.GetAll<Product>(noTracking);

 return products.FirstOrDefault(pro => pro.ProductID == productId);
 }

 /// <summary>
 /// Selects Products By Category Id Async
 /// To have async method, add reference to EntityFramework 6 dll or higher
 /// also you need to have the namespace "System.Data.Entity"
 /// </summary>
 /// <param name="CategoryId">CategoryId</param>
 /// <returns>Return what ever the object that you want to return</returns>
 public async Task<IEnumerable<dynamic>> SelectByCategoryAsync(int CategoryId)
 {
 var products = _dbRepository.GetAll<Product>();
 var categories = _dbRepository.GetAll<Category>();

 var result = (from pro in products
 join cat in categories
 on pro.CategoryID equals cat.CategoryID
 where pro.CategoryID == CategoryId
 select new
 {
 ProductId = pro.ProductID,
 ProductName = pro.ProductName,
 CategoryName = cat.CategoryName
 }
);

 return await result.ToListAsync();
 }

 /// <summary>
 /// Insert Async new product for given category
 /// </summary>
 public async Task<Product> InsertAsync(string productName, int categoryId)
 {
 var newProduct = _dbRepository.Add(new Product() { ProductName = productName,
CategoryID = categoryId });

 await _dbRepository.CommitAsync();

 return newProduct;
 }

 /// <summary>
 /// Insert new product and new category
 /// Do many database actions in one transaction
 /// each _dbRepository.Commit(); will commit one transaction
 /// </summary>
 public Product InsertForNewCategory(string productName, string categoryName)
 {
 var newCategory = _dbRepository.Add(new Category() { CategoryName = categoryName });
 var newProduct = _dbRepository.Add(new Product() { ProductName = productName, Category
= newCategory });

 _dbRepository.Commit();

https://riptutorial.com/ 19

 return newProduct;
 }

 /// <summary>
 /// Update given product with tracking
 /// </summary>
 public Product Update(int productId, string productName, int categoryId)
 {
 var product = SelectById(productId,false);
 product.CategoryID = categoryId;
 product.ProductName = productName;

 _dbRepository.Commit();

 return product;
 }

 /// <summary>
 /// Update given product with no tracking and attach function
 /// </summary>
 public Product Update2(int productId, string productName, int categoryId)
 {
 var product = SelectById(productId);
 _dbRepository.Attach(product);

 product.CategoryID = categoryId;
 product.ProductName = productName;

 _dbRepository.Commit();

 return product;
 }

 /// <summary>
 /// Deletes product without loading it
 /// </summary>
 public int DeleteWithoutLoad(int productId)
 {
 _dbRepository.Delete(new Product() { ProductID = productId });

 return _dbRepository.Commit();
 }

 /// <summary>
 /// Deletes product after loading it
 /// </summary>
 public int DeleteLoadedProduct(Product product)
 {
 _dbRepository.Delete(product);

 return _dbRepository.Commit();
 }

 /// <summary>
 /// Assuming we have the following procedure in database
 /// PROCEDURE [dbo].[GetProductsCategory] @CategoryID INT, @OrderBy VARCHAR(50)
 /// </summary>
 public IEnumerable<GetProductsCategory_Result> GetProductsCategory(int categoryId)
 {
 return
_dbRepository.Execute<IEnumerable<GetProductsCategory_Result>>("GetProductsCategory",

https://riptutorial.com/ 20

categoryId, "ProductName DESC");
 }

 #endregion IProductBusiness Function
}

3- Using Business layer @ Presentation layer (MVC)

In this example we will use the Business layer in Presentation layer. And we will use MVC as
example of Presentation layer (but you can use any other Presentation layer).

We need first to register the IoC (we will use Unity, but you can use any IoC), then write our
Presentation layer

3-1 Register Unity types within MVC

3-1-1 Add “Unity bootstrapper for ASP.NET MVC” NuGet backage

3-1-2 Add UnityWebActivator.Start(); in Global.asax.cs file (Application_Start() function)

3-1-3 Modify UnityConfig.RegisterTypes function as following

 public static void RegisterTypes(IUnityContainer container)
 {
 // Data Access Layer
 container.RegisterType<DbContext, CompanyContext>(new PerThreadLifetimeManager());
 container.RegisterType(typeof(IDbRepository), typeof(DbRepository), new
PerThreadLifetimeManager());

 // Business Layer
 container.RegisterType<IProductBusiness, ProductBusiness>(new
PerThreadLifetimeManager());

 }

3-2 Using Business layer @ Presentation layer (MVC)

public class ProductController : Controller
{
 #region Private Members

 IProductBusiness _productBusiness;

 #endregion Private Members

 #region Constractors

 public ProductController(IProductBusiness productBusiness)
 {
 _productBusiness = productBusiness;
 }

 #endregion Constractors

https://riptutorial.com/ 21

 #region Action Functions

 [HttpPost]
 public ActionResult InsertForNewCategory(string productName, string categoryName)
 {
 try
 {
 // you can use any of IProductBusiness functions
 var newProduct = _productBusiness.InsertForNewCategory(productName, categoryName);

 return Json(new { success = true, data = newProduct });
 }
 catch (Exception ex)
 { /* log ex*/
 return Json(new { success = false, errorMessage = ex.Message});
 }
 }

 [HttpDelete]
 public ActionResult SmartDeleteWithoutLoad(int productId)
 {
 try
 {
 // deletes product without load
 var deletedProduct = _productBusiness.DeleteWithoutLoad(productId);

 return Json(new { success = true, data = deletedProduct });
 }
 catch (Exception ex)
 { /* log ex*/
 return Json(new { success = false, errorMessage = ex.Message });
 }
 }

 public async Task<ActionResult> SelectByCategoryAsync(int CategoryId)
 {
 try
 {
 var results = await _productBusiness.SelectByCategoryAsync(CategoryId);

 return Json(new { success = true, data = results },JsonRequestBehavior.AllowGet);
 }
 catch (Exception ex)
 { /* log ex*/
 return Json(new { success = false, errorMessage = ex.Message
},JsonRequestBehavior.AllowGet);
 }
 }
 #endregion Action Functions
}

4- Entity Framework @ Unit Test Layer

In Unit Test layer we usually test the Business Layer functionalities. And in order to do this, we will
remove the Data Layer (Entity Framework) dependencies.

And the question now is: How can I remove the Entity Framework dependencies in order to unit
test the Business Layer functions?

https://riptutorial.com/ 22

And the answer is simple: we will a fake implementation for IDbRepository Interface then we can
do our unit test

4-1 Implementing basic Interface (fake implementation)

class FakeDbRepository : IDbRepository
{
 #region Protected Members

 protected Hashtable _dbContext;
 protected int _numberOfRowsAffected;
 protected Hashtable _contextFunctionsResults;

 #endregion Protected Members

 #region Constractors

 public FakeDbRepository(Hashtable contextFunctionsResults = null)
 {
 _dbContext = new Hashtable();
 _numberOfRowsAffected = 0;
 _contextFunctionsResults = contextFunctionsResults;
 }

 #endregion Constractors

 #region IRepository Implementation

 #region Tables and Views functions

 public IQueryable<TResult> GetAll<TResult>(bool noTracking = true) where TResult : class
 {
 return GetDbSet<TResult>().AsQueryable();
 }

 public TEntity Add<TEntity>(TEntity entity) where TEntity : class
 {
 GetDbSet<TEntity>().Add(entity);
 ++_numberOfRowsAffected;
 return entity;
 }

 public TEntity Delete<TEntity>(TEntity entity) where TEntity : class
 {
 GetDbSet<TEntity>().Remove(entity);
 ++_numberOfRowsAffected;
 return entity;
 }

 public TEntity Attach<TEntity>(TEntity entity) where TEntity : class
 {
 return Add(entity);
 }

 public TEntity AttachIfNot<TEntity>(TEntity entity) where TEntity : class
 {
 if (!GetDbSet<TEntity>().Contains(entity))
 return Attach(entity);

 return entity;

https://riptutorial.com/ 23

 }

 #endregion Tables and Views functions

 #region Transactions Functions

 public virtual int Commit()
 {
 var numberOfRowsAffected = _numberOfRowsAffected;
 _numberOfRowsAffected = 0;
 return numberOfRowsAffected;
 }

 public virtual Task<int> CommitAsync(CancellationToken cancellationToken =
default(CancellationToken))
 {
 var numberOfRowsAffected = _numberOfRowsAffected;
 _numberOfRowsAffected = 0;
 return new Task<int>(() => numberOfRowsAffected);
 }

 #endregion Transactions Functions

 #region Database Procedures and Functions

 public virtual TResult Execute<TResult>(string functionName, params object[] parameters)
 {
 if (_contextFunctionsResults != null &&
_contextFunctionsResults.Contains(functionName))
 return (TResult)_contextFunctionsResults[functionName];

 throw new NotImplementedException();
 }

 #endregion Database Procedures and Functions

 #endregion IRepository Implementation

 #region IDisposable Implementation

 public void Dispose()
 {

 }

 #endregion IDisposable Implementation

 #region Private Functions

 private List<TEntity> GetDbSet<TEntity>() where TEntity : class
 {
 if (!_dbContext.Contains(typeof(TEntity)))
 _dbContext.Add(typeof(TEntity), new List<TEntity>());

 return (List<TEntity>)_dbContext[typeof(TEntity)];
 }

 #endregion Private Functions
}

https://riptutorial.com/ 24

4-2 Run your unit testing

[TestClass]
public class ProductUnitTest
{
 [TestMethod]
 public void TestInsertForNewCategory()
 {
 // Initialize repositories
 FakeDbRepository _dbRepository = new FakeDbRepository();

 // Initialize Business object
 IProductBusiness productBusiness = new ProductBusiness(_dbRepository);

 // Process test method
 productBusiness.InsertForNewCategory("Test Product", "Test Category");

 int _productCount = _dbRepository.GetAll<Product>().Count();
 int _categoryCount = _dbRepository.GetAll<Category>().Count();

 Assert.AreEqual<int>(1, _productCount);
 Assert.AreEqual<int>(1, _categoryCount);
 }

 [TestMethod]
 public void TestProceduresFunctionsCall()
 {
 // Initialize Procedures / Functions result
 Hashtable _contextFunctionsResults = new Hashtable();
 _contextFunctionsResults.Add("GetProductsCategory", new
List<GetProductsCategory_Result> {
 new GetProductsCategory_Result() { ProductName = "Product 1", ProductID = 1,
CategoryName = "Category 1" },
 new GetProductsCategory_Result() { ProductName = "Product 2", ProductID = 2,
CategoryName = "Category 1" },
 new GetProductsCategory_Result() { ProductName = "Product 3", ProductID = 3,
CategoryName = "Category 1" }});

 // Initialize repositories
 FakeDbRepository _dbRepository = new FakeDbRepository(_contextFunctionsResults);

 // Initialize Business object
 IProductBusiness productBusiness = new ProductBusiness(_dbRepository);

 // Process test method
 var results = productBusiness.GetProductsCategory(1);

 Assert.AreEqual<int>(3, results.Count());
 }
}

Read Best Practices For Entity Framework (Simple & Professional) online:
https://riptutorial.com/entity-framework/topic/8879/best-practices-for-entity-framework--simple---
professional-

https://riptutorial.com/ 25

https://riptutorial.com/entity-framework/topic/8879/best-practices-for-entity-framework--simple---professional-
https://riptutorial.com/entity-framework/topic/8879/best-practices-for-entity-framework--simple---professional-

Chapter 5: Code First - Fluent API

Remarks

There are two general ways of specifying HOW Entity Framework will map POCO classes to
database tables, columns, etc.: Data Annotations and Fluent API.

While Data Annotations are a simple to read and understand, they lack of certain features such as
specifying the "Cascade on Delete" behavior for an entity. The Fluent API on the other hand is a
bit more complex to use, but provides a far more advanced set of features.

Examples

Mapping models

EntityFramewok Fluent API is a powerful and elegant way of mapping your code-first domain
models to underlying database. This also can be used with code-first with existing database. You
have two options when using Fluent API: you can directly map your models on OnModelCreating
method or you can create mapper classes which inherits from EntityTypeConfiguration and then
add that models to modelBuilder on OnModelCreating method. Second option is which I prefer
and am going to show example of it.

Step one: Create model.

public class Employee
{
 public int Id { get; set; }
 public string Surname { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public short Age { get; set; }
 public decimal MonthlySalary { get; set; }

 public string FullName
 {
 get
 {
 return $"{Surname} {FirstName} {LastName}";
 }
 }
}

Step two: Create mapper class

public class EmployeeMap
 : EntityTypeConfiguration<Employee>
{
 public EmployeeMap()

https://riptutorial.com/ 26

 {
 // Primary key
 this.HasKey(m => m.Id);

 this.Property(m => m.Id)
 .HasColumnType("int")
 .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);

 // Properties
 this.Property(m => m.Surname)
 .HasMaxLength(50);

 this.Property(m => m.FirstName)
 .IsRequired()
 .HasMaxLength(50);

 this.Property(m => m.LastName)
 .HasMaxLength(50);

 this.Property(m => m.Age)
 .HasColumnType("smallint");

 this.Property(m => m.MonthlySalary)
 .HasColumnType("number")
 .HasPrecision(14, 5);

 this.Ignore(m => m.FullName);

 // Table & column mappings
 this.ToTable("TABLE_NAME", "SCHEMA_NAME");
 this.Property(m => m.Id).HasColumnName("ID");
 this.Property(m => m.Surname).HasColumnName("SURNAME");
 this.Property(m => m.FirstName).HasColumnName("FIRST_NAME");
 this.Property(m => m.LastName).HasColumnName("LAST_NAME");
 this.Property(m => m.Age).HasColumnName("AGE");
 this.Property(m => m.MonthlySalary).HasColumnName("MONTHLY_SALARY");
 }
}

Let us explain mappings:

HasKey - defines the primary key. Composite primary keys can also be used. For example:
this.HasKey(m => new { m.DepartmentId, m.PositionId }).

•

Property - lets us to configure model properties.•
HasColumnType - specify database level column type. Please note that, it can be different
for different databases like Oracle and MS SQL.

•

HasDatabaseGeneratedOption - specifies if property is calculated at database level.
Numeric PKs are DatabaseGeneratedOption.Identity by default, you should specify
DatabaseGeneratedOption.None if you do not want them to be so.

•

HasMaxLength - limits the length of string.•
IsRequired - marks the property as requiered.•
HasPrecision - lets us to specify precision for decimals.•
Ignore - Ignores property completely and does not map it to database. We ignored
FullName, because we do not want this column at our table.

•

ToTable - specify table name and schema name (optional) for model.•
HasColumnName - relate property with column name. This is not needed when property •

https://riptutorial.com/ 27

names and column names are identical.

Step three: Add mapping class to configurations.

We need to tell EntityFramework to use our mapper class. To do so, we have to add it to
modelBuilder.Configurations on OnModelCreating method:

public class DbContext()
 : base("Name=DbContext")
{
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Configurations.Add(new EmployeeMap());
 }
}

And that is it. We are all set to go.

Primary Key

By using the .HasKey() method, a property can be explicitly configured as primary key of the
entity.

using System.Data.Entity;
// ..

public class PersonContext : DbContext
{
 // ..

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // ..

 modelBuilder.Entity<Person>().HasKey(p => p.PersonKey);
 }
}

Composite Primary Key

By using the .HasKey() method, a set of properties can be explicitly configured as the composite
primary key of the entity.

using System.Data.Entity;
// ..

public class PersonContext : DbContext
{
 // ..

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // ..

https://riptutorial.com/ 28

 modelBuilder.Entity<Person>().HasKey(p => new { p.FirstName, p.LastName });
 }
}

Maximum Length

By using the .HasMaxLength() method, the maximum character count can be configured for a
property.

using System.Data.Entity;
// ..

public class PersonContext : DbContext
{
 // ..

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // ..

 modelBuilder.Entity<Person>()
 .Property(t => t.Name)
 .HasMaxLength(100);
 }
}

The resulting column with the specified column length:

Required properties (NOT NULL)

By using the .IsRequired() method, properties can be specified as mandatory, which means that
the column will have a NOT NULL constraint.

using System.Data.Entity;
// ..

public class PersonContext : DbContext
{
 // ..

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // ..

 modelBuilder.Entity<Person>()
 .Property(t => t.Name)
 .IsRequired();
 }
}

https://riptutorial.com/ 29

http://i.stack.imgur.com/KEYue.png

The resulting column with the NOT NULL constraint:

Explict Foreign Key naming

When a navigation property exist on a model, Entity Framework will automatically create a Foreign
Key column. If a specific Foreign Key name is desired but is not contained as a property in the
model, it can be set explicitly using the Fluent API. By utilizing the Map method while establishing
the Foreign Key relationship, any unique name can be used for Foreign Keys.

public class Company
{
 public int Id { get; set; }
}

public class Employee
{
 property int Id { get; set; }
 property Company Employer { get; set; }
}

public class EmployeeContext : DbContext
{
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Employee>()
 .HasRequired(x => x.Employer)
 .WithRequiredDependent()
 .Map(m => m.MapKey("EmployerId"));
 }
}

After specifying the relationship, the Map method allows the Foreign Key name to be explicitly set
by executing MapKey. In this example, what would have resulted in a column name of Employer_Id
is now EmployerId.

Read Code First - Fluent API online: https://riptutorial.com/entity-framework/topic/4530/code-first---
fluent-api

https://riptutorial.com/ 30

http://i.stack.imgur.com/VJm33.png
https://riptutorial.com/entity-framework/topic/4530/code-first---fluent-api
https://riptutorial.com/entity-framework/topic/4530/code-first---fluent-api

Chapter 6: Code First Conventions

Remarks

Convention is a set of default rules to automatically configure a conceptual model based on
domain class definitions when working with Code-First. Code-First conventions are defined in
System.Data.Entity.ModelConfiguration.Conventions namespace (EF 5 & EF 6).

Examples

Primary Key Convention

By default a property is a primary key if a property on a class is named “ID” (not case sensitive), or
the class name followed by "ID". If the type of the primary key property is numeric or GUID it will
be configured as an identity column. Simple Example:

public class Room
{
 // Primary key
 public int RoomId{ get; set; }
 ...
}

Removing Conventions

You can remove any of the conventions defined in the
System.Data.Entity.ModelConfiguration.Conventions namespace, by overriding OnModelCreating
method.

The following example removes PluralizingTableNameConvention.

public class EshopContext : DbContext
{
 public DbSet<Product> Products { set; get; }
 . . .

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
 }
}

By default EF will create DB table with entity class name suffixed by 's'. In this example, Code First
is configured to ignore PluralizingTableName convention so, instead of dbo.Products table
dbo.Product table will be created.

Type Discovery

https://riptutorial.com/ 31

http://msdn.microsoft.com/en-us/library/system.data.entity.modelconfiguration.conventions(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.modelconfiguration.conventions(v=vs.113).aspx

By default Code First includes in model

Types defined as a DbSet property in context class.1.
Reference types included in entity types even if they are defined in different assembly.2.
Derived classes even if only the base class is defined as DbSet property3.

Here is an example, that we are only adding Company as DbSet<Company> in our context class:

public class Company
{
 public int Id { set; get; }
 public string Name { set; get; }
 public virtual ICollection<Department> Departments { set; get; }
}

public class Department
{
 public int Id { set; get; }
 public string Name { set; get; }
 public virtual ICollection<Person> Staff { set; get; }
}

[Table("Staff")]
public class Person
{
 public int Id { set; get; }
 public string Name { set; get; }
 public decimal Salary { set; get; }
}

public class ProjectManager : Person
{
 public string ProjectManagerProperty { set; get; }
}

public class Developer : Person
{
 public string DeveloperProperty { set; get; }
}

public class Tester : Person
{
 public string TesterProperty { set; get; }
}

public class ApplicationDbContext : DbContext
{
 public DbSet<Company> Companies { set; get; }
}

We can see that all the classes are included in model

https://riptutorial.com/ 32

DecimalPropertyConvention

By default Entity Framework maps decimal properties to decimal(18,2) columns in database
tables.

public class Box
{
 public int Id { set; get; }
 public decimal Length { set; get; }
 public decimal Width { set; get; }
 public decimal Height { set; get; }
}

We can change the precision of decimal properties:

1.Use Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Box>().Property(b => b.Width).HasPrecision(20, 4);

https://riptutorial.com/ 33

http://i.stack.imgur.com/cIW5p.png
http://i.stack.imgur.com/AO6np.png

}

Only "Width" Property is mapped to decimal(20, 4).

2.Replace the convention:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Conventions.Remove<DecimalPropertyConvention>();
 modelBuilder.Conventions.Add(new DecimalPropertyConvention(10, 4));
}

Every decimal property is mapped to decimal(10,4) columns.

Relationship Convention

Code First infer the relationship between the two entities using navigation property. This
navigation property can be a simple reference type or collection type. For example, we defined
Standard navigation property in Student class and ICollection navigation property in Standard
class. So, Code First automatically created one-to-many relationship between Standards and
Students DB table by inserting Standard_StandardId foreign key column in the Students table.

public class Student
{

 public int StudentID { get; set; }
 public string StudentName { get; set; }
 public DateTime DateOfBirth { get; set; }

https://riptutorial.com/ 34

http://i.stack.imgur.com/ykeMc.png
http://i.stack.imgur.com/NksFE.png

 //Navigation property
 public Standard Standard { get; set; }
}

public class Standard
{

 public int StandardId { get; set; }
 public string StandardName { get; set; }

 //Collection navigation property
 public IList<Student> Students { get; set; }

}

The above entities created the following relationship using Standard_StandardId foreign key.

Foreign Key Convention

If class A is in relationship with class B and class B has property with the same name and type as
the primary key of A, then EF automatically assumes that property is foreign key.

public class Department
{
 public int DepartmentId { set; get; }
 public string Name { set; get; }
 public virtual ICollection<Person> Staff { set; get; }
}

public class Person
{
 public int Id { set; get; }
 public string Name { set; get; }
 public decimal Salary { set; get; }

https://riptutorial.com/ 35

http://i.stack.imgur.com/cSV0p.png

 public int DepartmentId { set; get; }
 public virtual Department Department { set; get; }
}

In this case DepartmentId is foreign key without explicit specification.

Read Code First Conventions online: https://riptutorial.com/entity-framework/topic/2447/code-first-
conventions

https://riptutorial.com/ 36

https://riptutorial.com/entity-framework/topic/2447/code-first-conventions
https://riptutorial.com/entity-framework/topic/2447/code-first-conventions

Chapter 7: Code First DataAnnotations

Remarks

Entity Framework Code-First provides a set of DataAnnotation attributes, which you can apply to
your domain classes and properties. DataAnnotation attributes override default Code-First
conventions.

System.ComponentModel.DataAnnotations includes attributes that impacts on nullability
or size of the column.

1.

System.ComponentModel.DataAnnotations.Schema namespace includes attributes that
impacts the schema of the database.

2.

Note: DataAnnotations only give you a subset of configuration options. Fluent API provides a full
set of configuration options available in Code-First.

Examples

[Key] attribute

Key is a field in a table which uniquely identifies each row/record in a database table.

Use this attribute to override the default Code-First convention. If applied to a property, it will
be used as the primary key column for this class.

using System.ComponentModel.DataAnnotations;

public class Person
{
 [Key]
 public int PersonKey { get; set; } // <- will be used as primary key

 public string PersonName { get; set; }
}

If a composite primary key is required, the [Key] attribute can also be added to multiple properties.
The order of the columns within the composite key must be provided in the form [Key,
Column(Order = x)].

using System.ComponentModel.DataAnnotations;

public class Person
{
 [Key, Column(Order = 0)]
 public int PersonKey1 { get; set; } // <- will be used as part of the primary key

 [Key, Column(Order = 1)]
 public int PersonKey2 { get; set; } // <- will be used as part of the primary key

https://riptutorial.com/ 37

 public string PersonName { get; set; }
}

Without the [Key] attribute, EntityFramework will fall back to the default convention which is to
use the property of the class as a primary key that is named "Id" or "{ClassName}Id".

public class Person
{
 public int PersonID { get; set; } // <- will be used as primary key

 public string PersonName { get; set; }
}

[Required] attribute

When applied to a property of a domain class, the database will create a NOT NULL column.

using System.ComponentModel.DataAnnotations;

public class Person
{
 public int PersonID { get; set; }

 [Required]
 public string PersonName { get; set; }
}

The resulting column with the NOT NULL constraint:

Note: It can also be used with asp.net-mvc as a validation attribute.

[MaxLength] and [MinLength] attributes

[MaxLength(int)] attribute can be applied to a string or array type property of a domain class.
Entity Framework will set the size of a column to the specified value.

using System.ComponentModel.DataAnnotations;

public class Person
{
 public int PersonID { get; set; }

 [MinLength(3), MaxLength(100)]
 public string PersonName { get; set; }
}

The resulting column with the specified column length:

https://riptutorial.com/ 38

http://i.stack.imgur.com/VJm33.png

[MinLength(int)] attribute is a validation attribute, it does not affect the database structure. If we
try to insert/update a Person with PersonName with length less than 3 characters, this commit will
fail. We’ll get a DbUpdateConcurrencyException that we'll need to handle.

using (var db = new ApplicationDbContext())
{
 db.Staff.Add(new Person() { PersonName = "ng" });
 try
 {
 db.SaveChanges();
 }
 catch (DbEntityValidationException ex)
 {
 //ErrorMessage = "The field PersonName must be a string or array type with a minimum
length of '3'."
 }
}

Both [MaxLength] and [MinLength] attributes can also be used with asp.net-mvc as a validation
attribute.

[Range(min,max)] attribute

Specifies a numeric minimum and maximum range for a property

using System.ComponentModel.DataAnnotations;

public partial class Enrollment
{
 public int EnrollmentID { get; set; }

 [Range(0, 4)]
 public Nullable<decimal> Grade { get; set; }
}

If we try to insert/update a Grade with value out of range, this commit will fail. We’ll get a
DbUpdateConcurrencyException that we'll need to handle.

using (var db = new ApplicationDbContext())
{
 db.Enrollments.Add(new Enrollment() { Grade = 1000 });

 try
 {
 db.SaveChanges();
 }
 catch (DbEntityValidationException ex)
 {
 // Validation failed for one or more entities

https://riptutorial.com/ 39

http://i.stack.imgur.com/KEYue.png

 }
}

It can also be used with asp.net-mvc as a validation attribute.

Result:

[DatabaseGenerated] attribute

Specifies how the database generates values for the property. There are three possible values:

None specifies that the values are not generated by the database.1.
Identity specifies that the column is an identity column, which is typically used for integer
primary keys.

2.

Computed specifies that the database generates the value for the column.3.

If the value is anything other than None, Entity Framework will not commit changes made to the
property back to the database.

By default (based on the StoreGeneratedIdentityKeyConvention) an integer key property will be
treated as an identity column. To override this convention and force it to be treated as a non-
identity column you can use the DatabaseGenerated attribute with a value of None.

using System.ComponentModel.DataAnnotations.Schema;

public class Foo
{
 [Key]
 public int Id { get; set; } // identity (auto-increment) column
}

public class Bar
{
 [Key]
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int Id { get; set; } // non-identity column
}

The following SQL creates a table with a computed column:

CREATE TABLE [Person] (
 Name varchar(100) PRIMARY KEY,
 DateOfBirth Date NOT NULL,
 Age AS DATEDIFF(year, DateOfBirth, GETDATE())
)
GO

To create an entity for representing the records in the above table, you would need to use the

https://riptutorial.com/ 40

http://i.stack.imgur.com/z0UZ1.png
https://msdn.microsoft.com/en-us/library/ms186775.aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.modelconfiguration.conventions.storegeneratedidentitykeyconvention(v=vs.113).aspx

DatabaseGenerated attribute with a value of Computed.

[Table("Person")]
public class Person
{
 [Key, StringLength(100)]
 public string Name { get; set; }
 public DateTime DateOfBirth { get; set; }
 [DatabaseGenerated(DatabaseGeneratedOption.Computed)]
 public int Age { get; set; }
}

[NotMapped] attribute

By Code-First convention, Entity Framework creates a column for every public property that is of a
supported data type and has both a getter and a setter. [NotMapped] annotation must be applied
to any properties that we do NOT want a column in a database table for.

An example of a property that we might not want to store in the database is a student’s full name
based on their first and last name. That can be calculated on the fly and there is no need to store it
in the database.

public string FullName => string.Format("{0} {1}", FirstName, LastName);

The "FullName" property has only a getter and no setter, so by default, Entity Framework will NOT
create a column for it.

Another example of a property that we might not want to store in the database is a student’s
"AverageGrade". We do not want to get the AverageGrade on-demand; instead we might have a
routine elsewhere that calculates it.

[NotMapped]
public float AverageGrade { set; get; }

The "AverageGrade" must be marked [NotMapped] annotation, else Entity Framework will create
a column for it.

using System.ComponentModel.DataAnnotations.Schema;

public class Student
{
 public int Id { set; get; }

 public string FirstName { set; get; }

 public string LastName { set; get; }

 public string FullName => string.Format("{0} {1}", FirstName, LastName);

 [NotMapped]
 public float AverageGrade { set; get; }
}

https://riptutorial.com/ 41

For the above Entity we will see inside DbMigration.cs

CreateTable(
 "dbo.Students",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 FirstName = c.String(),
 LastName = c.String(),
 })
 .PrimaryKey(t => t.Id);

and in SQL Server Management Studio

[Table] attribute

[Table("People")]
public class Person
{
 public int PersonID { get; set; }
 public string PersonName { get; set; }
}

Tells Entity Framework to use a specific table name instead of generating one (i.e. Person or
Persons)

We can also specify a schema for the table using [Table] attribute

[Table("People", Schema = "domain")]

[Column] attribute

public class Person
{
 public int PersonID { get; set; }

 [Column("NameOfPerson")]
 public string PersonName { get; set; }
}

Tells Entity Framework to use a specific column name instead using the name of the property. You

https://riptutorial.com/ 42

http://i.stack.imgur.com/B0Qzr.png

can also specify the database data type and the order of the column in table:

[Column("NameOfPerson", TypeName = "varchar", Order = 1)]
public string PersonName { get; set; }

[Index] attribute

public class Person
{
 public int PersonID { get; set; }
 public string PersonName { get; set; }

 [Index]
 public int Age { get; set; }
}

Creates a database index for a column or set of columns.

[Index("IX_Person_Age")]
public int Age { get; set; }

This creates an index with a specific name.

[Index(IsUnique = true)]
public int Age { get; set; }

This creates a unique index.

[Index("IX_Person_NameAndAge", 1)]
public int Age { get; set; }

[Index("IX_Person_NameAndAge", 2)]
public string PersonName { get; set; }

This creates a composite index using 2 columns. To do this you must specify the same index
name and provide a column order.

Note: The Index attribute was introduced in Entity Framework 6.1. If you are using an earlier
version the information in this section does not apply.

[ForeignKey(string)] attribute

Specifies custom foreign key name if a foreign key not following EF's convention is desired.

public class Person
{
 public int IdAddress { get; set; }

 [ForeignKey(nameof(IdAddress))]
 public virtual Address HomeAddress { get; set; }
}

https://riptutorial.com/ 43

This can also be used when you have multiple relationships to the same entity type.

using System.ComponentModel.DataAnnotations.Schema;

public class Customer
{
 ...

 public int MailingAddressID { get; set; }
 public int BillingAddressID { get; set; }

 [ForeignKey("MailingAddressID")]
 public virtual Address MailingAddress { get; set; }
 [ForeignKey("BillingAddressID")]
 public virtual Address BillingAddress { get; set; }
}

Without the ForeignKey attributes, EF might get them mixed up and use the value of
BillingAddressID when fetching the MailingAddress, or it might just come up with a different name
for the column based on its own naming conventions (like Address_MailingAddress_Id) and try to
use that instead (which would result in an error if you're using this with an existing database).

[StringLength(int)] attribute

using System.ComponentModel.DataAnnotations;

public class Post
{
 public int Id { get; set; }

 [StringLength(100)]
 public string Title { get; set;}

 [StringLength(300)]
 public string Abstract { get; set; }

 public string Description { get; set; }
}

Defines a maximum length for a string field.

Note: It can also be used with asp.net-mvc as a validation attribute.

https://riptutorial.com/ 44

http://i.stack.imgur.com/a5P8D.png

[Timestamp] attribute

[TimeStamp] attribute can be applied to only one byte array property in a given Entity class. Entity
Framework will create a non-nullable timestamp column in the database table for that property.
Entity Framework will automatically use this TimeStamp column in concurrency check.

using System.ComponentModel.DataAnnotations.Schema;

public class Student
{
 public int Id { set; get; }

 public string FirstName { set; get; }

 public string LastName { set; get; }

 [Timestamp]
 public byte[] RowVersion { get; set; }
}

[ConcurrencyCheck] Attribute

This attribute is applied to the class property. You can use ConcurrencyCheck attribute when you
want to use existing columns for concurrency check and not a separate timestamp column for
concurrency.

using System.ComponentModel.DataAnnotations;

public class Author
{
 public int AuthorId { get; set; }

 [ConcurrencyCheck]
 public string AuthorName { get; set; }
}

From above example, ConcurrencyCheck attribute is applied to AuthorName property of the
Author class. So, Code-First will include AuthorName column in update command (where clause)
to check for optimistic concurrency.

https://riptutorial.com/ 45

http://i.stack.imgur.com/dJ4Y7.png

[InverseProperty(string)] attribute

using System.ComponentModel.DataAnnotations.Schema;

public class Department
{
 ...

 public virtual ICollection<Employee> PrimaryEmployees { get; set; }
 public virtual ICollection<Employee> SecondaryEmployees { get; set; }
}

public class Employee
{
 ...

 [InverseProperty("PrimaryEmployees")]
 public virtual Department PrimaryDepartment { get; set; }

 [InverseProperty("SecondaryEmployees")]
 public virtual Department SecondaryDepartment { get; set; }
}

InverseProperty can be used to identify two way relationships when multiple two way
relationships exist between two entities.

It tells Entity Framework which navigation properties it should match with properties on the other
side.

Entity Framework doesn't know which navigation property map with which properties on the other
side when multiple bidirectional relationships exist between two entities.

It needs the name of the corresponding navigation property in the related class as its parameter.

This can also be used for entities that have a relationship to other entities of the same type,
forming a recursive relationship.

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

public class TreeNode
{
 [Key]
 public int ID { get; set; }
 public int ParentID { get; set; }

 ...

 [ForeignKey("ParentID")]
 public TreeNode ParentNode { get; set; }
 [InverseProperty("ParentNode")]
 public virtual ICollection<TreeNode> ChildNodes { get; set; }
}

Note also the use of the ForeignKey attribute to specify the column that is used for the foreign key

https://riptutorial.com/ 46

on the table. In the first example, the two properties on the Employee class could have had the
ForeignKey attribute applied to define the column names.

[ComplexType] attribute

using System.ComponentModel.DataAnnotations.Schema;

[ComplexType]
public class BlogDetails
{
 public DateTime? DateCreated { get; set; }

 [MaxLength(250)]
 public string Description { get; set; }
}

public class Blog
{
 ...

 public BlogDetails BlogDetail { get; set; }
}

Mark the class as complex type in Entity Framework.

Complex Types (Or Value Objects In Domain Driven Design) cannot be tracked on their own but
they are tracked as part of an entity. This is why BlogDetails in the example does not have a key
property.

They can be useful when describing domain entities across multiple classes and layering those
classes into a complete entity.

Read Code First DataAnnotations online: https://riptutorial.com/entity-framework/topic/4161/code-
first-dataannotations

https://riptutorial.com/ 47

http://i.stack.imgur.com/Rqnr3.png
https://riptutorial.com/entity-framework/topic/4161/code-first-dataannotations
https://riptutorial.com/entity-framework/topic/4161/code-first-dataannotations

Chapter 8: Complex Types

Examples

Code First Complex Types

A complex type allows you to map selected fields of a database table into a single type that is a
child of the main type.

[ComplexType]
public class Address
{
 public string Street { get; set; }
 public string Street_2 { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
}

This complex type can then be used in multiple entity types. It can even be used more than once
in the same entity type.

public class Customer
{
 public int Id { get; set; }
 public string Name { get; set; }
 ...
 public Address ShippingAddress { get; set; }
 public Address BillingAddress { get; set; }
}

This entity type would then be stored in a table in the database that would look something like this.

Of course, in this case, a 1:n association (Customer-Address) would be the preferred model, but
the example shows how complex types can be used.

Read Complex Types online: https://riptutorial.com/entity-framework/topic/5527/complex-types

https://riptutorial.com/ 48

http://i.stack.imgur.com/DgIwf.png
https://riptutorial.com/entity-framework/topic/5527/complex-types

Chapter 9: Database first model generation

Examples

Generating model from database

In Visual Studio go to your Solution Explorer then click on Project you will be adding model Right
mouse. Choose ADO.NET Entity Data Model

Then choose Generate from database and click Next in next window click New Connection... and point
to the database you want to generate model from (Could be MSSQL, MySQL or Oracle)

https://riptutorial.com/ 49

http://i.stack.imgur.com/mCO7W.png

After you done this click Test Connection to see if you have configured connection properly (do not
go any further if it fails here).

Click Next then choose options that you want (like style for generating entity names or to add
foreign keys).

Click Next again, at this point you should have model generated from database.

Adding data annotations to the generated model

In T4 code-generation strategy used by Entity Framework 5 and higher, data annotation attributes
are not included by default. To include data annotations on top of certain property every model
regeneration, open template file included with EDMX (with .tt extension) then add a using
statement under UsingDirectives method like below:

foreach (var entity in typeMapper.GetItemsToGenerate<EntityType>

https://riptutorial.com/ 50

http://i.stack.imgur.com/JvFsr.png

(itemCollection))
{
 fileManager.StartNewFile(entity.Name + ".cs");
 BeginNamespace(code);
#>
<#=codeStringGenerator.UsingDirectives(inHeader: false)#>
using System.ComponentModel.DataAnnotations; // --> add this line

As an example, suppose the template should include KeyAttribute which indicates a primary key
property. To insert KeyAttribute automatically while regenerating model, find part of code
containing codeStringGenerator.Property as below:

var simpleProperties = typeMapper.GetSimpleProperties(entity);
 if (simpleProperties.Any())
 {
 foreach (var edmProperty in simpleProperties)
 {
#>
 <#=codeStringGenerator.Property(edmProperty)#>
<#
 }
 }

Then, insert an if-condition to check key property as this:

var simpleProperties = typeMapper.GetSimpleProperties(entity);
 if (simpleProperties.Any())
 {
 foreach (var edmProperty in simpleProperties)
 {
 if (ef.IsKey(edmProperty)) {
#> [Key]
<# }
#>
 <#=codeStringGenerator.Property(edmProperty)#>
<#
 }
 }

By applying changes above, all generated model classes will have KeyAttribute on their primary
key property after updating model from database.

Before

using System;

public class Example
{
 public int Id { get; set; }
 public string Name { get; set; }
}

After

using System;

https://riptutorial.com/ 51

using System.ComponentModel.DataAnnotations;

public class Example
{
 [Key]
 public int Id { get; set; }
 public string Name { get; set; }
}

Read Database first model generation online: https://riptutorial.com/entity-
framework/topic/4414/database-first-model-generation

https://riptutorial.com/ 52

https://riptutorial.com/entity-framework/topic/4414/database-first-model-generation
https://riptutorial.com/entity-framework/topic/4414/database-first-model-generation

Chapter 10: Database Initialisers

Examples

CreateDatabaseIfNotExists

Implementation of IDatabaseInitializer that is used in EntityFramework by default. As the name
implies, it creates the database if none exists. However when you change the model, it throws an
exception.

Usage:

public class MyContext : DbContext {
 public MyContext() {
 Database.SetInitializer(new CreateDatabaseIfNotExists<MyContext>());
 }
}

DropCreateDatabaseIfModelChanges

This implementation of IDatabaseInitializer drops and recreates the database if the model
changes automatically.

Usage:

public class MyContext : DbContext {
 public MyContext() {
 Database.SetInitializer(new DropCreateDatabaseIfModelChanges<MyContext>());
 }
}

DropCreateDatabaseAlways

This implementation of IDatabaseInitializer drops and recreates the database everytime your
context is used in applications app domain. Beware of the data loss due to the fact, that the
database is recreated.

Usage:

public class MyContext : DbContext {
 public MyContext() {
 Database.SetInitializer(new DropCreateDatabaseAlways<MyContext>());
 }
}

Custom database initializer

You can create your own implementation of IDatabaseInitializer.

https://riptutorial.com/ 53

Example implementation of an initializer, that will migrate the database to 0 and then migrate all
the way to the newest migration (usefull e.g. when running integration tests). In order to do that
you would need a DbMigrationsConfiguration type too.

public class RecreateFromScratch<TContext, TMigrationsConfiguration> :
IDatabaseInitializer<TContext>
where TContext : DbContext
where TMigrationsConfiguration : DbMigrationsConfiguration<TContext>, new()
{
 private readonly DbMigrationsConfiguration<TContext> _configuration;

 public RecreateFromScratch()
 {
 _configuration = new TMigrationsConfiguration();
 }

 public void InitializeDatabase(TContext context)
 {
 var migrator = new DbMigrator(_configuration);
 migrator.Update("0");
 migrator.Update();
 }
}

MigrateDatabaseToLatestVersion

An implementation of IDatabaseInitializer that will use Code First Migrations to update the
database to the latest version. To use this initializer you have to use DbMigrationsConfiguration
type too.

Usage:

public class MyContext : DbContext {
 public MyContext() {
 Database.SetInitializer(
 new MigrateDatabaseToLatestVersion<MyContext, Configuration>());
 }
}

Read Database Initialisers online: https://riptutorial.com/entity-framework/topic/5526/database-
initialisers

https://riptutorial.com/ 54

https://riptutorial.com/entity-framework/topic/5526/database-initialisers
https://riptutorial.com/entity-framework/topic/5526/database-initialisers

Chapter 11: Entity Framework Code First

Examples

Connect to an existing database

To achieve the simplest task in Entity Framework - to connect to an existing database
ExampleDatabase on your local instance of MSSQL you have to implement two classes only.

First is the entity class, that will be mapped to our database table dbo.People.

 class Person
 {
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 }

The class will use Entity Framework's conventions and map to table dbo.People which is expected
to have primary key PersonId and a varchar(max) property FirstName.

Second is the context class which derives from System.Data.Entity.DbContext and which will
manage the entity objects during runtime, pupulate them from database, handle concurrency and
save them back to the database.

 class Context : DbContext
 {
 public Context(string connectionString) : base(connectionString)
 {
 Database.SetInitializer<Context>(null);
 }

 public DbSet<Person> People { get; set; }
 }

Please mind, that in the constructor of our context we need to set database initializer to null - we
don't want Entity Framework to create the database, we just want to access it.

Now you are able manipulate data from that table, e.g. change the FirstName of first person in the
database from a console application like this:

 class Program
 {
 static void Main(string[] args)
 {
 using (var ctx = new Context("DbConnectionString"))
 {
 var firstPerson = ctx.People.FirstOrDefault();
 if (firstPerson != null) {
 firstPerson.FirstName = "John";
 ctx.SaveChanges();
 }

https://riptutorial.com/ 55

 }
 }
 }

In the code above we created instance of Context with an argument "DbConnectionString". This
has to be specified in our app.config file like this:

 <connectionStrings>
 <add name="DbConnectionString"
 connectionString="Data Source=.;Initial Catalog=ExampleDatabase;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

Read Entity Framework Code First online: https://riptutorial.com/entity-
framework/topic/5337/entity-framework-code-first

https://riptutorial.com/ 56

https://riptutorial.com/entity-framework/topic/5337/entity-framework-code-first
https://riptutorial.com/entity-framework/topic/5337/entity-framework-code-first

Chapter 12: Entity Framework with SQLite

Introduction

SQLite is a self-contained, serverless, transactional SQL database. It can be used within a .NET
application by utilizing both a freely available .NET SQLite library and Entity Framework SQLite
provider. This topic will go into setup and usage of the Entity Framework SQLite provider.

Examples

Setting up a project to use Entity Framework with an SQLite provider

The Entity Framework library comes only with an SQL Server provider. To use SQLite will require
additional dependencies and configuration. All required dependencies are available on NuGet.

Install SQLite Managed Libraries

All of the mananged depedencies can be installed using the NuGet Package Manager Console.
Run the command Install-Package System.Data.SQLite.

https://riptutorial.com/ 57

https://www.sqlite.org/about.html
https://i.stack.imgur.com/gQayv.png

As shown above, when installing System.Data.SQLite, all related managed libraries are installed
with it. This includes System.Data.SQLite.EF6, the EF provider for SQLite. The project also now
references the assemblies required to use the SQLite provider.

Including Unmanaged Library

The SQLite managed libraries are dependent on an unmanaged assembly named
SQLite.Interop.dll. It is included with the package assemblies downloaded with the SQLite
package, and they are automatically copied into your build directory when you build the project.
However, because it's unmanaged, it will not be included in your reference list. But make note, this
assembly most be distributed with the application for the SQLite assemblies to work.

Note: This assembly is bit-dependent, meaning you will need to include a specific
assembly for each bitness you plan to support (x86/x64).

Editing the project's App.config

The app.config file will require some modifications before SQLite can be used as an Entity
Framework provider.

Required Fixes

When installing the package, the app.config file is automatically updated to include the necessary
entries for SQLite and SQLite EF. Unfortunately these entries contain some errors. They need to
be modified before it will work correctly.

First, locate the DbProviderFactorieselement in the config file. It is within the system.data element
and will contain the following

<DbProviderFactories>
 <remove invariant="System.Data.SQLite.EF6" />

https://riptutorial.com/ 58

https://i.stack.imgur.com/tgCyG.png

 <add name="SQLite Data Provider (Entity Framework 6)" invariant="System.Data.SQLite.EF6"
description=".NET Framework Data Provider for SQLite (Entity Framework 6)"
type="System.Data.SQLite.EF6.SQLiteProviderFactory, System.Data.SQLite.EF6" />
 <remove invariant="System.Data.SQLite" /><add name="SQLite Data Provider"
invariant="System.Data.SQLite" description=".NET Framework Data Provider for SQLite"
type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite" />
</DbProviderFactories>

This can be simplified to contain a single entry

<DbProviderFactories>
 <add name="SQLite Data Provider" invariant="System.Data.SQLite.EF6" description=".NET
Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory,
System.Data.SQLite" />
</DbProviderFactories>

With this, we have specified the EF6 SQLite providers should use the SQLite factory.

Add SQLite connection string

Connection strings can be added to the configuration file within the root element. Add a connection
string for accessing an SQLite database.

<connectionStrings>
 <add name="TestContext" connectionString="data source=testdb.sqlite;initial
catalog=Test;App=EntityFramework;" providerName="System.Data.SQLite.EF6"/>
</connectionStrings>

The important thing to note here is the provider. It has been set to System.Data.SQLite.EF6. This
tells EF that when we use this connection string, we want to use SQLite. The data source specified
is just an example and will be dependent on the location and name of your SQLite database.

Your first SQLite DbContext

With all the installation and configuration complete, you can now start using a DbContext that will
work on your SQLite database.

public class TestContext : DbContext
{
 public TestContext()
 : base("name=TestContext") { }
}

By specifying name=TestContext, I have indicating that the TestContext connection string located in
the app.configfile should be used to create the context. That connection string was configured to
use SQLite, so this context will use an SQLite database.

Read Entity Framework with SQLite online: https://riptutorial.com/entity-
framework/topic/9280/entity-framework-with-sqlite

https://riptutorial.com/ 59

https://riptutorial.com/entity-framework/topic/9280/entity-framework-with-sqlite
https://riptutorial.com/entity-framework/topic/9280/entity-framework-with-sqlite

Chapter 13: Entity-Framework with
Postgresql

Examples

Pre-Steps needed in order to use Entity Framework 6.1.3 with PostgresSql
using Npgsqlddexprovider

1)Took backup of Machine.config from locations
C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config and
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config

2)Copy them to different location and edit them as

a)locate and add under <system.data> <DbProviderFactories>

 <add name="Npgsql Data Provider" invariant="Npgsql" support="FF"
 description=".Net Framework Data Provider for Postgresql Server"
 type="Npgsql.NpgsqlFactory, Npgsql, Version=2.2.5.0, Culture=neutral,
PublicKeyToken=5d8b90d52f46fda7" />

b)if already exist above entry, check verison and update it.

Replace original files with changed ones.3.
run Developer Command Prompt for VS2013 as Administrator.4.
if Npgsql already installed use command " gacutil -u Npgsql " to uninstall then install new
version of Npgsql 2.5.0 by command " gacutil -i [path of dll] "

5.

Do above for Mono.Security 4.0.0.06.
Download NpgsqlDdexProvider-2.2.0-VS2013.zip and run NpgsqlDdexProvider.vsix from
it(Do close all instances of visual studio)

7.

Found EFTools6.1.3-beta1ForVS2013.msi and run it.8.
After crating new project, Install version of EntityFramework(6.1.3), NpgSql(2.5.0) and
NpgSql.EntityFramework(2.5.0) from Manage Nuget Packages.10)Its Done go ahead...Add
new Entity Data Model in your MVc project

9.

Read Entity-Framework with Postgresql online: https://riptutorial.com/entity-
framework/topic/7647/entity-framework--with-postgresql

https://riptutorial.com/ 60

https://riptutorial.com/entity-framework/topic/7647/entity-framework--with-postgresql
https://riptutorial.com/entity-framework/topic/7647/entity-framework--with-postgresql

Chapter 14: Entity-framework Code First
Migrations

Examples

Enable Migrations

To enable Code First Migrations in entity framework, use the command

Enable-Migrations

on the Package Manager Console.

You need to have a valid DbContext implementation containing your database objects managed by
EF. In this example the database context will contain to objects BlogPost and Author:

internal class DatabaseContext: DbContext
{
 public DbSet<Author> Authors { get; set; }

 public DbSet<BlogPost> BlogPosts { get; set; }
}

After executing the command, the following output should appear:

PM> Enable-Migrations
Checking if the context targets an existing database...
Code First Migrations enabled for project <YourProjectName>.
PM>

In addition, a new folder Migrations should appear with a single file Configuration.cs inside:

The next step would be to create your first database migration script which will create the initial
database (see next example).

Add your first migration

After you've enabled migrations (please refer to this example) you are now able to create your first
migration containing an initial creation of all database tables, indexes and connections.

https://riptutorial.com/ 61

https://i.stack.imgur.com/BIpPw.png
http://www.riptutorial.com/entity-framework/example/23961/enable-migrations

A migration can be created by using the command

Add-Migration <migration-name>

This command will create a new class containing two methods Up and Down that are used to apply
and remove the migration.

Now apply the command based on the example above to create a migration called Initial:

PM> Add-Migration Initial
Scaffolding migration 'Initial'.
The Designer Code for this migration file includes a snapshot of your current Code
First model. This snapshot is used to calculate the changes to your model when you
scaffold the next migration. If you make additional changes to your model that you
want to include in this migration, then you can re-scaffold it by running
'Add-Migration Initial' again.

A new file timestamp_Initial.cs is created (only the important stuff is shown here):

public override void Up()
{
 CreateTable(
 "dbo.Authors",
 c => new
 {
 AuthorId = c.Int(nullable: false, identity: true),
 Name = c.String(maxLength: 128),
 })
 .PrimaryKey(t => t.AuthorId);

 CreateTable(
 "dbo.BlogPosts",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 Title = c.String(nullable: false, maxLength: 128),
 Message = c.String(),
 Author_AuthorId = c.Int(),
 })
 .PrimaryKey(t => t.Id)
 .ForeignKey("dbo.Authors", t => t.Author_AuthorId)
 .Index(t => t.Author_AuthorId);
}

public override void Down()
{
 DropForeignKey("dbo.BlogPosts", "Author_AuthorId", "dbo.Authors");
 DropIndex("dbo.BlogPosts", new[] { "Author_AuthorId" });
 DropTable("dbo.BlogPosts");
 DropTable("dbo.Authors");
}

As you can see, in method Up() two tables Authors and BlogPosts are created and the fields are
created accordingly. In addition, the relation between the two tables is created by adding the field
Author_AuthorId. On the other side the method Down() tries to reverse the migration activities.

https://riptutorial.com/ 62

If you feel confident with your migration, you can apply the migration to the database by using the
command:

Update-Database

All pending migrations (in this case the Initial-migration) are applied to the database and
afterwards the seed method is applied (the appropriate example)

PM> update-database
Specify the '-Verbose' flag to view the SQL statements being applied to the target
database.
Applying explicit migrations: [201609302203541_Initial].
Applying explicit migration: 201609302203541_Initial.
Running Seed method.

You can see the results of the activities in the SQL explorer:

For the commands Add-Migration and Update-Database several options are available which can be
used to tweak the activities. To see all options, please use

get-help Add-Migration

and

get-help Update-Database

Seeding Data during migrations

After enabling and creating migrations there might be a need to initially fill or migrate data in your
database. There are several possibilities but for simple migrations you can use the method
'Seed()' in the file Configuration created after calling enable-migrations.

The Seed() function retrieves a database context as it's only parameter and you are able to
perform EF operations inside this function:

protected override void Seed(Model.DatabaseContext context);

You can perform all types of activities inside Seed(). In case of any failure the complete transaction
(even the applied patches) are being rolled back.

https://riptutorial.com/ 63

http://www.riptutorial.com/entity-framework/example/23961/enable-migrations

An example function that creates data only if a table is empty might look like this:

protected override void Seed(Model.DatabaseContext context)
{
 if (!context.Customers.Any()) {
 Customer c = new Customer{ Id = 1, Name = "Demo" };
 context.Customers.Add(c);
 context.SaveData();
 }
}

A nice feature provided by the EF developers is the extension method AddOrUpdate(). This method
allows to update data based on the primary key or to insert data if it does not exist already (the
example is taken from the generated source code of Configuration.cs):

protected override void Seed(Model.DatabaseContext context)
{
 context.People.AddOrUpdate(
 p => p.FullName,
 new Person { FullName = "Andrew Peters" },
 new Person { FullName = "Brice Lambson" },
 new Person { FullName = "Rowan Miller" }
);
}

Please be aware that Seed() is called after the last patch has been applied. If you need
to migration or seed data during patches, other approaches need to be used.

Using Sql() during migrations

For example: You are going to migrate an existing column from non-required to required. In this
case you might need to fill some default values in your migration for rows where the altered fields
are actually NULL. In case the default value is simple (e.g. "0") you might use a default or
defaultSql property in your column definition. In case it's not so easy, you may use the Sql()
function in Up() or Down() member functions of your migrations.

Here's an example. Assuming a class Author which contains an email-address as part of the data
set. Now we decide to have the email-address as a required field. To migrate existing columns the
business has the smart idea of creating dummy email-addresses like fullname@example.com, where
full name is the authors full name without spaces. Adding the [Required] attribute to the field Email
would create the following migration:

public partial class AuthorsEmailRequired : DbMigration
{
 public override void Up()
 {
 AlterColumn("dbo.Authors", "Email", c => c.String(nullable: false, maxLength: 512));
 }

 public override void Down()
 {
 AlterColumn("dbo.Authors", "Email", c => c.String(maxLength: 512));
 }

https://riptutorial.com/ 64

}

This would fail in case some NULL fields are inside the database:

Cannot insert the value NULL into column 'Email', table
'App.Model.DatabaseContext.dbo.Authors'; column does not allow nulls. UPDATE fails.

Adding the following like before the AlterColumn command will help:

Sql(@"Update dbo.Authors
 set Email = REPLACE(name, ' ', '') + N'@example.com'
 where Email is null");

The update-database call succeeds and the table looks like this (example data shown):

Other Usage

You may use the Sql() function for all types of DML and DDL actibities in your database. It is
executed as part of the migration transaction; If the SQL fails, the complete migration fails and a
rollback is done.

Doing "Update-Database" within your code

Applications running in non-development environments often require database updates. After
using the Add-Migration command to create your database patches there's the need to run the
updates on other environments, and then the test environment as well.

Challenges commonly faced are:

no Visual Studio installed on production environments, and•
no connections allowed to connection/customer environments in real life.•

A workaround is the following code sequence which checks for updates to be performed, and
executes them in order. Please ensure proper transactions & exception handling to ensure no data
gets lost in case of errors.

https://riptutorial.com/ 65

http://i.stack.imgur.com/WZC9s.png

void UpdateDatabase(MyDbConfiguration configuration) {
 DbMigrator dbMigrator = new DbMigrator(configuration);
 if (dbMigrator.GetPendingMigrations().Any())
 {
 // there are pending migrations run the migration job
 dbMigrator.Update();
 }
}

where MyDbConfiguration is your migration setup somewhere in your sources:

public class MyDbConfiguration : DbMigrationsConfiguration<ApplicationDbContext>

Initial Entity Framework Code First Migration Step by Step

Create a console application.1.
Install EntityFramework nuget package by running Install-Package EntityFramework in
"Package Manager Console"

2.

Add your connection string in app.config file , It's important to include
providerName="System.Data.SqlClient" in your connection.

3.

Create a public class as you wish , some thing like "Blog"4.
Create Your ContextClass which inherit from DbContext , some thing like "BlogContext"5.
Define a property in your context of DbSet type , some thing like this :6.

public class Blog
{
 public int Id { get; set; }

 public string Name { get; set; }
}
public class BlogContext: DbContext
{
 public BlogContext(): base("name=Your_Connection_Name")
 {
 }

 public virtual DbSet<Blog> Blogs{ get; set; }
}

It's important to pass the connection name in constructor (here Your_Connection_Name)7.
In Package Manager Console run Enable-Migration command , This will create a migration
folder in your project

8.

Run Add-Migration Your_Arbitrary_Migraiton_Name command , this will create a migration class
in migrations folder with two method Up() and Down()

9.

Run Update-Database command in order to create a database with a blog table10.

Read Entity-framework Code First Migrations online: https://riptutorial.com/entity-
framework/topic/7157/entity-framework-code-first-migrations

https://riptutorial.com/ 66

https://riptutorial.com/entity-framework/topic/7157/entity-framework-code-first-migrations
https://riptutorial.com/entity-framework/topic/7157/entity-framework-code-first-migrations

Chapter 15: Inheritance with EntityFramework
(Code First)

Examples

Table per hierarchy

This approach will generate one table on the database to represent all the inheritance structure.

Example:

public abstract class Person
{
 public int Id { get; set; }
 public string Name { get; set; }
 public DateTime BirthDate { get; set; }
}

public class Employee : Person
{
 public DateTime AdmissionDate { get; set; }
 public string JobDescription { get; set; }
}

public class Customer : Person
{
 public DateTime LastPurchaseDate { get; set; }
 public int TotalVisits { get; set; }
}

// On DbContext
public DbSet<Person> People { get; set; }
public DbSet<Employee> Employees { get; set; }
public DbSet<Customer> Customers { get; set; }

The table generated will be:

Table: People Fields: Id Name BirthDate Discrimitator AdmissionDate JobDescription
LastPurchaseDate TotalVisits

Where 'Discriminator' will hold the name of the subclass on the inheritance and 'AdmissionDate',
'JobDescription', 'LastPurchaseDate', 'TotalVisits' are nullable.

Advantages

Better performance since no joins are required although for to many columns the database
might require many paging operations.

•

Simple to use and create•
Easy to add more subclasses and fields•

https://riptutorial.com/ 67

Disadvantages

Violates the 3rd Normal Form Wikipedia: Third normal form•
Creates lots of nullable fields•

Table per type

This approach will generate (n+1) tables on the database to represent all the inheritance structure
where n is the number of subclasses.

How to:

public abstract class Person
{
 public int Id { get; set; }
 public string Name { get; set; }
 public DateTime BirthDate { get; set; }
}

[Table("Employees")]
public class Employee : Person
{
 public DateTime AdmissionDate { get; set; }
 public string JobDescription { get; set; }
}

[Table("Customers")]
public class Customer : Person
{
 public DateTime LastPurchaseDate { get; set; }
 public int TotalVisits { get; set; }
}

// On DbContext
public DbSet<Person> People { get; set; }
public DbSet<Employee> Employees { get; set; }
public DbSet<Customer> Customers { get; set; }

The table generated will be:

Table: People Fields: Id Name BirthDate

Table: Employees Fields: PersonId AdmissionDate JobDescription

Table: Customers: Fields: PersonId LastPurchaseDate TotalVisits

Where 'PersonId' on all tables will be a primary key and a constraint to People.Id

Advantages

Normalized tables•
Easy to add columns and subclasses•
No nullable columns•

Disadvantages

https://riptutorial.com/ 68

https://en.wikipedia.org/wiki/Third_normal_form

Join is required to retrieve the data•
Subclass inference is more expensive•

Read Inheritance with EntityFramework (Code First) online: https://riptutorial.com/entity-
framework/topic/7715/inheritance-with-entityframework--code-first-

https://riptutorial.com/ 69

https://riptutorial.com/entity-framework/topic/7715/inheritance-with-entityframework--code-first-
https://riptutorial.com/entity-framework/topic/7715/inheritance-with-entityframework--code-first-

Chapter 16: Loading related entities

Remarks

If models are correctly related you can easily load related data using EntityFramework. You have
three options to chose from: lazy loading, eager loading and explicit loading.

Models used in examples:

public class Company
{
 public int Id { get; set; }
 public string FullName { get; set; }
 public string ShortName { get; set; }

 // Navigation properties
 public virtual Person Founder { get; set; }
 public virtual ICollection<Address> Addresses { get; set; }
}

public class Address
{
 public int Id { get; set; }
 public int CompanyId { get; set; }
 public int CountryId { get; set; }
 public int CityId { get; set; }
 public string Street { get; set; }

 // Navigation properties
 public virtual Company Company { get; set; }
 public virtual Country Country { get; set; }
 public virtual City City { get; set; }
}

Examples

Lazy loading

Lazy loading is enabled by default. Lazy loading is achieved by creating derived proxy classes and
overriding virtual navigation proeprties. Lazy loading occurs when property is accessed for the first
time.

int companyId = ...;
Company company = context.Companies
 .First(m => m.Id == companyId);
Person founder = company.Founder; // Founder is loaded
foreach (Address address in company.Addresses)
{
 // Address details are loaded one by one.
}

To turn Lazy loading off for specific navigation properties just remove virtual keyword from

https://riptutorial.com/ 70

property declaration:

public Person Founder { get; set; } // "virtual" keyword has been removed

If you want to completely turn off Lazy loading, then you have to change Configuration, for
example, at Context constructor:

public class MyContext : DbContext
{
 public MyContext(): base("Name=ConnectionString")
 {
 this.Configuration.LazyLoadingEnabled = false;
 }
}

Note: Please remember to turn off Lazy loading if your are using serialization. Because serializers
access every property you are going to load all of them from database. Additionally, you can run
into loop between navigation properties.

Eager loading

Eager loading lets you load all your needed entities at once. If you prefer to get all your entities to
work on in one database call, then Eager loading is the way to go. It also lets you load multiple
levels.

You have two options to load related entities, you can choose either strongly typed or string
overloads of the Include method.

Strongly typed.

// Load one company with founder and address details
int companyId = ...;
Company company = context.Companies
 .Include(m => m.Founder)
 .Include(m => m.Addresses)
 .SingleOrDefault(m => m.Id == companyId);

// Load 5 companies with address details, also retrieve country and city
// information of addresses
List<Company> companies = context.Companies
 .Include(m => m.Addresses.Select(a => a.Country));
 .Include(m => m.Addresses.Select(a => a.City))
 .Take(5).ToList();

This method is available since Entity Framework 4.1. Make sure you have the reference using
System.Data.Entity; set.

String overload.

// Load one company with founder and address details

https://riptutorial.com/ 71

int companyId = ...;
Company company = context.Companies
 .Include("Founder")
 .Include("Addresses")
 .SingleOrDefault(m => m.Id == companyId);

// Load 5 companies with address details, also retrieve country and city
// information of addresses
List<Company> companies = context.Companies
 .Include("Addresses.Country");
 .Include("Addresses.City"))
 .Take(5).ToList();

Explicit loading

After turning Lazy loading off you can lazily load entities by explicitly calling Load method for
entries. Reference is used to load single navigation properties, whereas Collection is used to get
collections.

Company company = context.Companies.FirstOrDefault();
// Load founder
context.Entry(company).Reference(m => m.Founder).Load();
// Load addresses
context.Entry(company).Collection(m => m.Addresses).Load();

As it is on Eager loading you can use overloads of above methods to load entiteis by their names:

Company company = context.Companies.FirstOrDefault();
// Load founder
context.Entry(company).Reference("Founder").Load();
// Load addresses
context.Entry(company).Collection("Addresses").Load();

Filter related entities.

Using Query method we can filter loaded related entities:

Company company = context.Companies.FirstOrDefault();
// Load addresses which are in Baku
context.Entry(company)
 .Collection(m => m.Addresses)
 .Query()
 .Where(a => a.City.Name == "Baku")
 .Load();

Projection Queries

If one needs related data in a denormalized type, or e.g. only a subset of columns one can use
projection queries. If there is no reason for using an extra type, there is the possibility to join the
values into an anonymous type.

https://riptutorial.com/ 72

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types

var dbContext = new MyDbContext();
var denormalizedType = from company in dbContext.Company
 where company.Name == "MyFavoriteCompany"
 join founder in dbContext.Founder
 on company.FounderId equals founder.Id
 select new
 {
 CompanyName = company.Name,
 CompanyId = company.Id,
 FounderName = founder.Name,
 FounderId = founder.Id
 };

Or with query-syntax:

var dbContext = new MyDbContext();
var denormalizedType = dbContext.Company
 .Join(dbContext.Founder,
 c => c.FounderId,
 f => f.Id ,
 (c, f) => new
 {
 CompanyName = c.Name,
 CompanyId = c.Id,
 FounderName = f.Name,
 FounderId = f.Id
 })
 .Select(cf => cf);

Read Loading related entities online: https://riptutorial.com/entity-framework/topic/4678/loading-
related-entities

https://riptutorial.com/ 73

https://riptutorial.com/entity-framework/topic/4678/loading-related-entities
https://riptutorial.com/entity-framework/topic/4678/loading-related-entities

Chapter 17: Managing entity state

Remarks

Entities in Entity Framework can have various states that are listed by the
System.Data.Entity.EntityState enumeration. These states are:

Added
Deleted
Detached
Modified
Unchanged

Entity Framework works with POCOs. That means that entities are simple classes that have no
properties and methods to manage their own state. Entity state is managed by a context itself, in
the ObjectStateManager.

This topic covers various ways to set entity state.

Examples

Setting state Added of a single entity

EntityState.Added can be set in two fully equivalent ways:

By setting the state of its entry in the context:

 context.Entry(entity).State = EntityState.Added;

1.

By adding it to a DbSet of the context:

 context.Entities.Add(entity);

2.

When calling SaveChanges, the entity will be inserted into the database. When it's got an identity
column (an auto-set, auto-incrementing primary key), then after SaveChanges, the primary key
property of the entity will contain the newly generated value, even when this property already had
a value.

Setting state Added of an object graph

Setting the state of an object graph (a collection of related entities) to Added is different than setting
a single entity as Added (see this example).

In the example, we store planets and their moons:

Class model

https://riptutorial.com/ 74

https://msdn.microsoft.com/en-us/library/system.data.entity.entitystate(v=vs.113).aspx
http://www.riptutorial.com/entity-framework/example/18713/setting-state-added-of-a-single-entity

public class Planet
{
 public Planet()
 {
 Moons = new HashSet<Moon>();
 }
 public int ID { get; set; }
 public string Name { get; set; }
 public ICollection<Moon> Moons { get; set; }
}

public class Moon
{
 public int ID { get; set; }
 public int PlanetID { get; set; }
 public string Name { get; set; }
}

Context

public class PlanetDb : DbContext
{
 public property DbSet<Planet> Planets { get; set; }
}

We use an instance of this context to add planets and their moons:

Example

var mars = new Planet { Name = "Mars" };
mars.Moons.Add(new Moon { Name = "Phobos" });
mars.Moons.Add(new Moon { Name = "Deimos" });

context.Planets.Add(mars);

Console.WriteLine(context.Entry(mars).State);
Console.WriteLine(context.Entry(mars.Moons.First()).State);

Output:

Added
Added

What we see here is that adding a Planet also sets the state of a moon to Added.

When setting an entity's state to Added, all entities in its navigation properties (properties that
"navigate" to other entities, like Planet.Moons) are also marked as Added, unless they already are
attached to the context.

Read Managing entity state online: https://riptutorial.com/entity-framework/topic/5256/managing-
entity-state

https://riptutorial.com/ 75

https://riptutorial.com/entity-framework/topic/5256/managing-entity-state
https://riptutorial.com/entity-framework/topic/5256/managing-entity-state

Chapter 18: Mapping relationship with Entity
Framework Code First: One-to-many and
Many-to-many

Introduction

The topic discusses how you can map one-to-many and many-to-many relationships using Entity
Framework Code First.

Examples

Mapping one-to-many

So let's say you have two different entities, something like this:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
}

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
}

public class MyDemoContext : DbContext
{
 public DbSet<Person> People { get; set; }
 public DbSet<Car> Cars { get; set; }
}

And you want to setup a one-to-many relationship between them, that is, one person can have
zero, one or more cars, and one car belongs to one person exactly. Every relationship is
bidirectional, so if a person has a car, the car belongs to that person.

To do this just modify your model classes:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public virtual ICollection<Car> Cars { get; set; } // don't forget to initialize (use
HashSet)
}

public class Car

https://riptutorial.com/ 76

{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public int PersonId { get; set; }
 public virtual Person Person { get; set; }
}

And that's it :) You already have your relationship set up. In the database, this is represented with
foreign keys, of course.

Mapping one-to-many: against the convention

In the last example, you can see that EF figures out which column is the foreign key and where
should it point to. How? By using conventions. Having a property of type Person that is named
Person with a PersonId property leads EF to conclude that PersonId is a foreign key, and it points to
the primary key of the table represented by the type Person.

But what if you were to change PersonId to OwnerId and Person to Owner in the Car type?

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public int OwnerId { get; set; }
 public virtual Person Owner { get; set; }
}

Well, unfortunately in this case, the conventions are not enough to produce the correct DB

https://riptutorial.com/ 77

schema:

No worries; you can help EF with some hints about your relationships and keys in the model.
Simply configure your Car type to use the OwnerId property as the FK. Create an entity type
configuration and apply it in your OnModelCreating():

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasRequired(c => c.Owner).WithMany(p => p.Cars).HasForeignKey(c => c.OwnerId);
 }
}

This basically says that Car has a required property, Owner (HasRequired()) and in the type of Owner,
the Cars property is used to refer back to the car entities (WithMany()). And finally the property
representing the foreign key is specified (HasForeignKey()). This gives us the schema we want:

https://riptutorial.com/ 78

https://msdn.microsoft.com/en-us/library/gg671317(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/gg696499(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/mt137400(v=vs.113).aspx

You could configure the relationship from the Person side as well:

public class PersonEntityTypeConfiguration : EntityTypeConfiguration<Person>
{
 public PersonEntityTypeConfiguration()
 {
 this.HasMany(p => p.Cars).WithRequired(c => c.Owner).HasForeignKey(c => c.OwnerId);
 }
}

The idea is the same, just the sides are different (note how you can read the whole thing: 'this
person has many cars, each car with a required owner'). Doesn't matter if you configure the
relationship from the Person side or the Car side. You can even include both, but in this case be
careful to specify the same relationship on both sides!

Mapping zero or one-to-many

In the previous examples a car cannot exist without a person. What if you wanted the person to be
optional from the car side? Well, it's kind of easy, knowing how to do one-to-many. Just change
the PersonId in Car to be nullable:

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public int? PersonId { get; set; }
 public virtual Person Person { get; set; }
}

And then use the HasOptional() (or WithOptional(), depending from which side you do the
configuration):

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasOptional(c => c.Owner).WithMany(p => p.Cars).HasForeignKey(c => c.OwnerId);
 }
}

Many-to-many

Let's move on to the other scenario, where every person can have multiple cars and every car can
have multiple owners (but again, the relationship is bidirectional). This is a many-to-many
relationship. The easiest way is to let EF do it's magic using conventions.

Just change the model like this:

 public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }

https://riptutorial.com/ 79

https://msdn.microsoft.com/en-us/library/gg671230(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/gg696231(v=vs.113).aspx

 public virtual ICollection<Car> Cars { get; set; }
}

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public virtual ICollection<Person> Owners { get; set; }
}

And the schema:

 Almost perfect. As you can
see, EF recognized the need for a join table, where you can keep track of person-car pairings.

Many-to-many: customizing the join table

You might want to rename the fields in the join table to be a little more friendly. You can do this by
using the usual configuration methods (again, it doesn't matter which side you do the configuration

https://riptutorial.com/ 80

from):

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasMany(c => c.Owners).WithMany(p => p.Cars)
 .Map(m =>
 {
 m.MapLeftKey("OwnerId");
 m.MapRightKey("CarId");
 m.ToTable("PersonCars");
 }
);
 }
}

Quite easy to read even: this car has many owners (HasMany()), with each owner having many
cars (WithMany()). Map this so that you map the left key to OwnerId (MapLeftKey()), the right key
to CarId (MapRightKey()) and the whole thing to the table PersonCars (ToTable()). And this gives
you exactly that schema:

https://riptutorial.com/ 81

https://msdn.microsoft.com/en-us/library/gg671281(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/gg696499(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.modelconfiguration.configuration.manytomanyassociationmappingconfiguration.mapleftkey(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/system.data.entity.modelconfiguration.configuration.manytomanyassociationmappingconfiguration.maprightkey(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/gg679488(v=vs.113).aspx

Many-to-many: custom join entity

I have to admit, I'm not really a fan of letting EF infer the join table wihtout a join entity. You cannot
track extra information to a person-car association (let's say the date from which it is valid),
because you can't modify the table.

Also, the CarId in the join table is part of the primary key, so if the family buys a new car, you have
to first delete the old associations and add new ones. EF hides this from you, but this means that
you have to do these two operations instead of a simple update (not to mention that frequent
inserts/deletes might lead to index fragmentation — good thing there is an easy fix for that).

In this case what you can do is create a join entity that has a reference to both one specific car
and one specific person. Basically you look at your many-to-many association as a combinations
of two one-to-many associations:

https://riptutorial.com/ 82

http://www.dotnetfalcon.com/azure-automation-job-for-index-maintenance/

public class PersonToCar
{
 public int PersonToCarId { get; set; }
 public int CarId { get; set; }
 public virtual Car Car { get; set; }
 public int PersonId { get; set; }
 public virtual Person Person { get; set; }
 public DateTime ValidFrom { get; set; }
}

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public virtual ICollection<PersonToCar> CarOwnerShips { get; set; }
}

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
 public virtual ICollection<PersonToCar> Ownerships { get; set; }
}

public class MyDemoContext : DbContext
{
 public DbSet<Person> People { get; set; }
 public DbSet<Car> Cars { get; set; }
 public DbSet<PersonToCar> PersonToCars { get; set; }
}

This gives me much more control and it's a lot more flexible. I can now add custom data to the
association and every association has its own primary key, so I can update the car or the owner
reference in them.

https://riptutorial.com/ 83

Note that this really is just a combination of two one-to-many relationships, so you can use all the
configuration options discussed in the previous examples.

Read Mapping relationship with Entity Framework Code First: One-to-many and Many-to-many
online: https://riptutorial.com/entity-framework/topic/9413/mapping-relationship-with-entity-
framework-code-first--one-to-many-and-many-to-many

https://riptutorial.com/ 84

https://riptutorial.com/entity-framework/topic/9413/mapping-relationship-with-entity-framework-code-first--one-to-many-and-many-to-many
https://riptutorial.com/entity-framework/topic/9413/mapping-relationship-with-entity-framework-code-first--one-to-many-and-many-to-many

Chapter 19: Mapping relationship with Entity
Framework Code First: One-to-one and
variations

Introduction

This topic discusses how to map one-to-one type relationships using Entity Framework.

Examples

Mapping one-to-zero or one

So let's say again that you have the following model:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
}

public class Car
{
 public int CarId { get; set; }
 public string LicensePlate { get; set; }
}

public class MyDemoContext : DbContext
{
 public DbSet<Person> People { get; set; }
 public DbSet<Car> Cars { get; set; }
}

And now you want to set it up so that you can express the following specification: one person can
have one or zero car, and every car belongs to one person exactly (relationships are bidirectional,
so if CarA belongs to PersonA, then PersonA 'owns' CarA).

So let's modify the model a bit: add the navigation properties and the foreign key properties:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public int CarId { get; set; }
 public virtual Car Car { get; set; }
}

public class Car
{
 public int CarId { get; set; }

https://riptutorial.com/ 85

 public string LicensePlate { get; set; }
 public int PersonId { get; set; }
 public virtual Person Person { get; set; }
}

And the configuration:

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasRequired(c => c.Person).WithOptional(p => p.Car);
 }
}

By this time this should be self-explanatory. The car has a required person (HasRequired()), with
the person having an optional car (WithOptional()). Again, it doesn't matter which side you
configure this relationship from, just be careful when you use the right combination of Has/With
and Required/Optional. From the Person side, it would look like this:

public class PersonEntityTypeConfiguration : EntityTypeConfiguration<Person>
{
 public PersonEntityTypeConfiguration()
 {
 this.HasOptional(p => p.Car).WithOptional(c => c.Person);
 }
}

Now let's check out the db schema:

https://riptutorial.com/ 86

https://msdn.microsoft.com/en-us/library/gg671317(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/gg696231(v=vs.113).aspx

Look closely: you can see that there is no FK in People to refer to Car. Also, the FK in Car is not the
PersonId, but the CarId. Here's the actual script for the FK:

ALTER TABLE [dbo].[Cars] WITH CHECK ADD CONSTRAINT [FK_dbo.Cars_dbo.People_CarId] FOREIGN
KEY([CarId])
REFERENCES [dbo].[People] ([PersonId])

So this means that the CarId and PersonId foregn key properties we have in the model are basically
ignored. They are in the database, but they are not foreign keys, as it might be expected. That's
because one-to-one mappings does not support adding the FK into your EF model. And that's
because one-to-one mappings are quite problematic in a relational database.

The idea is that every person can have exactly one car, and that car can only belong to that
person. Or there might be person records, which do not have cars associated with them.

So how could this be represented with foreign keys? Obviously, there could be a PersonId in Car,
and a CarId in People. To enforce that every person can have only one car, PersonId would have to
be unique in Car. But if PersonId is unique in People, then how can you add two or more records
where PersonId is NULL(more than one car that don't have owners)? Answer: you can't (well
actually, you can create a filtered unique index in SQL Server 2008 and newer, but let's forget
about this technicality for a moment; not to mention other RDBMS). Not to mention the case where
you specify both ends of the relationship...

The only real way to enforce this rule if the People and the Car tables have the 'same' primary key
(same values in the connected records). And to do this, CarId in Car must be both a PK and an FK

https://riptutorial.com/ 87

to the PK of People. And this makes the whole schema a mess. When I use this I rather name the
PK/FK in Car PersonId, and configure it accordingly:

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public virtual Car Car { get; set; }
}

public class Car
{
 public string LicensePlate { get; set; }
 public int PersonId { get; set; }
 public virtual Person Person { get; set; }
}

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasRequired(c => c.Person).WithOptional(p => p.Car);
 this.HasKey(c => c.PersonId);
 }
}

Not ideal, but maybe a bit better. Still, you have to be alert when using this solution, because it
goes against the usual naming conventions, which might lead you astray. Here's the schema
generated from this model:

So this relationship is not enforced by the database schema, but by Entity Framework itself. That's
why you have to be very careful when you use this, not to let anybody temper directly with the
database.

https://riptutorial.com/ 88

Mapping one-to-one

Mapping one-to-one (when both sides are required) is also a tricky thing.

Let's imagine how this could be represented with foreign keys. Again, a CarId in People that refers
to CarId in Car, and a PersonId in Car that refers to the PersonId in People.

Now what happens if you want to insert a car record? In order for this to succeed, there must be a
PersonId specified in this car record, because it is required. And for this PersonId to be valid, the
corresponding record in People must exist. OK, so let's go ahead and insert the person record. But
for this to succeed, a valid CarId must be in the person record — but that car is not inserted yet! It
cannot be, because we have to insert the referred person record first. But we cannot insert the
referred person record, because it refers back to the car record, so that must be inserted first
(foreign key-ception :)).

So this cannot be represented the 'logical' way either. Again, you have to drop one of the foreign
keys. Which one you drop is up to you. The side that is left with a foreign key is called the
'dependent', the side that is left without a foreign key is called the 'principal'. And again, to ensure
the uniqueness in the dependent, the PK has to be the FK, so adding an FK column and importing
that to your model is not supported.

So here's the configuration:

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasRequired(c => c.Person).WithRequiredDependent(p => p.Car);
 this.HasKey(c => c.PersonId);
 }
}

By now you really should have gotten the logic of it :) Just remember that you can choose the
other side as well, just be careful to use the Dependent/Principal versions of WithRequired (and
you still have to configure the PK in Car).

public class PersonEntityTypeConfiguration : EntityTypeConfiguration<Person>
{
 public PersonEntityTypeConfiguration()
 {
 this.HasRequired(p => p.Car).WithRequiredPrincipal(c => c.Person);
 }
}

If you check the DB schema, you'll find that it's exactly the same as it was in the case of the one-
to-one or zero solution. That's because again, this is not enforced by the schema, but by EF itself.
So again, be careful :)

Mapping one or zero-to-one or zero

https://riptutorial.com/ 89

And to finish off, let's briefly look at the case when both sides are optional.

By now you should be really bored with these examples :), so I'm not going into the details and
play with the idea of having two FK-s and the potential problems and warn you about the dangers
of not enforcing these rules in the schema but in just EF itself.

Here's the config you need to apply:

public class CarEntityTypeConfiguration : EntityTypeConfiguration<Car>
{
 public CarEntityTypeConfiguration()
 {
 this.HasOptional(c => c.Person).WithOptionalPrincipal(p => p.Car);
 this.HasKey(c => c.PersonId);
 }
}

Again, you can configure from the other side as well, just be careful to use the right methods :)

Read Mapping relationship with Entity Framework Code First: One-to-one and variations online:
https://riptutorial.com/entity-framework/topic/9412/mapping-relationship-with-entity-framework-
code-first--one-to-one-and-variations

https://riptutorial.com/ 90

https://riptutorial.com/entity-framework/topic/9412/mapping-relationship-with-entity-framework-code-first--one-to-one-and-variations
https://riptutorial.com/entity-framework/topic/9412/mapping-relationship-with-entity-framework-code-first--one-to-one-and-variations

Chapter 20: Model Restraints

Examples

One-to-many relationships

UserType belongs to many Users <-> Users have one UserType

One way navigation property with required

public class UserType
{
 public int UserTypeId {get; set;}
}
public class User
{
 public int UserId {get; set;}
 public int UserTypeId {get; set;}
 public virtual UserType UserType {get; set;}
}

Entity<User>().HasRequired(u => u.UserType).WithMany().HasForeignKey(u => u.UserTypeId);

One way navigation property with optional (foreign key must be Nullable type)

public class UserType
{
 public int UserTypeId {get; set;}
}
public class User
{
 public int UserId {get; set;}
 public int? UserTypeId {get; set;}
 public virtual UserType UserType {get; set;}
}

Entity<User>().HasOptional(u => u.UserType).WithMany().HasForeignKey(u => u.UserTypeId);

Two way navigation property with (required/optional change the foreign key property as needed)

public class UserType
{
 public int UserTypeId {get; set;}
 public virtual ICollection<User> Users {get; set;}
}
public class User
{
 public int UserId {get; set;}
 public int UserTypeId {get; set;}
 public virtual UserType UserType {get; set;}
}

Required

https://riptutorial.com/ 91

Entity<User>().HasRequired(u => u.UserType).WithMany(ut => ut.Users).HasForeignKey(u =>
u.UserTypeId);

Optional

Entity<User>().HasOptional(u => u.UserType).WithMany(ut => ut.Users).HasForeignKey(u =>
u.UserTypeId);

Read Model Restraints online: https://riptutorial.com/entity-framework/topic/4528/model-restraints

https://riptutorial.com/ 92

https://riptutorial.com/entity-framework/topic/4528/model-restraints

Chapter 21: Optimization Techniques in EF

Examples

Using AsNoTracking

Bad Example:

var location = dbContext.Location
 .Where(l => l.Location.ID == location_ID)
 .SingleOrDefault();

return location;

Since the above code is simply returning an entity without modifying or adding it, we can avoid
tracking cost.

Good Example:

var location = dbContext.Location.AsNoTracking()
 .Where(l => l.Location.ID == location_ID)
 .SingleOrDefault();

return location;

When we use function AsNoTracking() we are explicitly telling Entity Framework that the entities are
not tracked by the context. This can be especially useful when retrieving large amounts of data
from your data store. If you want to make changes to un-tracked entities however, you must
remember to attach them before calling SaveChanges.

Loading Only Required Data

One problem often seen in code is loading all the data. This will greatly increase the load on the
server.

Let's say I have a model called "location" that has 10 fields in it, but not all the fields are required
at the same time. Let's say I only want the 'LocationName' parameter of that model.

Bad Example

var location = dbContext.Location.AsNoTracking()
 .Where(l => l.Location.ID == location_ID)
 .SingleOrDefault();

return location.Name;

Good Example

https://riptutorial.com/ 93

var location = dbContext.Location
 .Where(l => l.Location.ID == location_ID)
 .Select(l => l.LocationName);
 .SingleOrDefault();

return location;

The code in the "good example" will only fetch 'LocationName' and nothing else.

Note that since no entity is materialized in this example, AsNoTracking() isn't necessary. There's
nothing to be tracked anyway.

Fetching more fields with Anonymous Types

var location = dbContext.Location
 .Where(l => l.Location.ID == location_ID)
 .Select(l => new { Name = l.LocationName, Area = l.LocationArea })
 .SingleOrDefault();

return location.Name + " has an area of " + location.Area;

Same as the example before, only the fields 'LocationName' and 'LocationArea' will be retrieved
from the database, the Anonymous Type can hold as many values you want.

Execute queries in the database when possible, not in memory.

Suppose we want to count how many counties are there in Texas:

var counties = dbContext.States.Single(s => s.Code == "tx").Counties.Count();

The query is correct, but inefficient. States.Single(…) loads a state from the database. Next,
Counties loads all 254 counties with all of their fields in a second query. .Count() is then performed
in memory on the loaded Counties collection.
We've loaded a lot of data we don't need, and we can do better:

var counties = dbContext.Counties.Count(c => c.State.Code == "tx");

Here we only do one query, which in SQL translates to a count and a join. We return only the
count from the database - we've saved returning rows, fields, and creation of objects.

It is easy to see where the query is made by looking at the collection type: IQueryable<T> vs.
IEnumerable<T>.

Execute multiple queries async and in parallel

When using async queries, you can execute multiple queries at the same time, but not on the
same context. If the execution time of one query is 10s, the time for the bad example will be 20s,
while the time for the good example will be 10s.

https://riptutorial.com/ 94

Bad Example

IEnumerable<TResult1> result1;
IEnumerable<TResult2> result2;

using(var context = new Context())
{
 result1 = await context.Set<TResult1>().ToListAsync().ConfigureAwait(false);
 result2 = await context.Set<TResult1>().ToListAsync().ConfigureAwait(false);
}

Good Example

public async Task<IEnumerable<TResult>> GetResult<TResult>()
{
 using(var context = new Context())
 {
 return await context.Set<TResult1>().ToListAsync().ConfigureAwait(false);
 }
}

IEnumerable<TResult1> result1;
IEnumerable<TResult2> result2;

var result1Task = GetResult<TResult1>();
var result2Task = GetResult<TResult2>();

await Task.WhenAll(result1Task, result2Task).ConfigureAwait(false);

var result1 = result1Task.Result;
var result2 = result2Task.Result;

Disable change tracking and proxy generation

If you just want to get data, but not modify anything, you can turn off change tracking and proxy
creation. This will improve your performance and also prevent lazy loading.

Bad Example:

using(var context = new Context())
{
 return await context.Set<MyEntity>().ToListAsync().ConfigureAwait(false);
}

Good Example:

using(var context = new Context())
{
 context.Configuration.AutoDetectChangesEnabled = false;

https://riptutorial.com/ 95

 context.Configuration.ProxyCreationEnabled = false;

 return await context.Set<MyEntity>().ToListAsync().ConfigureAwait(false);
}

It is particularly common to turn these off from within the constructor of your context, especially if
you wish these to be set across your solution:

public class MyContext : DbContext
{
 public MyContext()
 : base("MyContext")
 {
 Configuration.AutoDetectChangesEnabled = false;
 Configuration.ProxyCreationEnabled = false;
 }

 //snip
}

Working with stub entities

Say we have Products and Categorys in a many-to-many relationship:

public class Product
{
 public Product()
 {
 Categories = new HashSet<Category>();
 }
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public virtual ICollection<Category> Categories { get; private set; }
}

public class Category
{
 public Category()
 {
 Products = new HashSet<Product>();
 }
 public int CategoryId { get; set; }
 public string CategoryName { get; set; }
 public virtual ICollection<Product> Products { get; set; }
}

If we want to add a Category to a Product, we have to load the product and add the category to its
Categories, for example:

Bad Example:

var product = db.Products.Find(1);
var category = db.Categories.Find(2);
product.Categories.Add(category);
db.SaveChanges();

https://riptutorial.com/ 96

(where db is a DbContext subclass).

This creates one record in the junction table between Product and Category. However, this table
only contains two Id values. It's a waste of resources to load two full entities in order to create one
tiny record.

A more efficient way is to use stub entities, i.e. entity objects, created in memory, containing only
the bare minimum of data, usually only an Id value. This is what it looks like:

Good example:

// Create two stub entities
var product = new Product { ProductId = 1 };
var category = new Category { CategoryId = 2 };

// Attach the stub entities to the context
db.Entry(product).State = System.Data.Entity.EntityState.Unchanged;
db.Entry(category).State = System.Data.Entity.EntityState.Unchanged;

product.Categories.Add(category);
db.SaveChanges();

The end result is the same, but it avoids two roundtrips to the database.

Prevent duplicates

It you want to check if the association already exists, a cheap query suffices. For example:

var exists = db.Categories.Any(c => c.Id == 1 && c.Products.Any(p => p.Id == 14));

Again, this won't load full entities into memory. It effectively queries the junction table and only
returns a boolean.

Read Optimization Techniques in EF online: https://riptutorial.com/entity-
framework/topic/2714/optimization-techniques-in-ef

https://riptutorial.com/ 97

https://riptutorial.com/entity-framework/topic/2714/optimization-techniques-in-ef
https://riptutorial.com/entity-framework/topic/2714/optimization-techniques-in-ef

Chapter 22: Tracking vs. No-Tracking

Remarks

Tracking behavior controls whether or not Entity Framework will keep information about an entity
instance in its change tracker. If an entity is tracked, any changes detected in the entity will be
persisted to the database during SaveChanges().

Examples

Tracking queries

By default, queries that return entity types are tracking•
This means you can make changes to those entity instances and have those changes
persisted by SaveChanges()

•

Example :

The change to the book rating will be detected and persisted to the database during
SaveChanges().

•

 using (var context = new BookContext())
 {
 var book = context.Books.FirstOrDefault(b => b.BookId == 1);
 book.Rating = 5;
 context.SaveChanges();
 }

No-tracking queries

No tracking queries are useful when the results are used in a read-only scenario•
They are quicker to execute because there is no need to setup change tracking information•

Example :

using (var context = new BookContext())
{
 var books = context.Books.AsNoTracking().ToList();
}

With EF Core 1.0 you are also able to change the default tracking behavior at the context instance
level.

Example :

using (var context = new BookContext())
{

https://riptutorial.com/ 98

 context.ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;

 var books = context.Books.ToList();
}

Tracking and projections

Even if the result type of the query isn’t an entity type, if the result contains entity types they
will still be tracked by default

•

Example :

In the following query, which returns an anonymous type, the instances of Book in the result set
will be tracked

 using (var context = new BookContext())
 {
 var book = context.Books.Select(b => new { Book = b, Authors = b.Authors.Count() });
 }

•

If the result set does not contain any entity types, then no tracking is performed•

Example :

In the following query, which returns an anonymous type with some of the values from the
entity (but no instances of the actual entity type), there is no tracking performed.

using (var context = new BookContext())
{
 var book = context.Books.Select(b => new { Id = b.BookId, PublishedDate = b.Date });
}

•

Read Tracking vs. No-Tracking online: https://riptutorial.com/entity-framework/topic/6836/tracking-
vs--no-tracking

https://riptutorial.com/ 99

https://riptutorial.com/entity-framework/topic/6836/tracking-vs--no-tracking
https://riptutorial.com/entity-framework/topic/6836/tracking-vs--no-tracking

Chapter 23: Transactions

Examples

Database.BeginTransaction()

Multiple operations can be executed against a single transaction so that changes can be rolled
back if any of the operations fail.

using (var context = new PlanetContext())
{
 using (var transaction = context.Database.BeginTransaction())
 {
 try
 {
 //Lets assume this works
 var jupiter = new Planet { Name = "Jupiter" };
 context.Planets.Add(jupiter);
 context.SaveChanges();

 //And then this will throw an exception
 var neptune = new Planet { Name = "Neptune" };
 context.Planets.Add(neptune);
 context.SaveChanges();

 //Without this line, no changes will get applied to the database
 transaction.Commit();
 }
 catch (Exception ex)
 {
 //There is no need to call transaction.Rollback() here as the transaction object
 //will go out of scope and disposing will roll back automatically
 }
 }
}

Note that it may be a developers' convention to call transaction.Rollback() explicitly, because it
makes the code more self-explanatory. Also, there may be (less well-known) query providers for
Entity Framework out there that don't implement Dipsose correctly, which would also require an
explicit transaction.Rollback() call.

Read Transactions online: https://riptutorial.com/entity-framework/topic/4944/transactions

https://riptutorial.com/ 100

https://riptutorial.com/entity-framework/topic/4944/transactions

Credits

S.
No

Chapters Contributors

1
Getting started with
Entity Framework

Adil Mammadov, Community, DavidG, Eldho, Jacob Linney,
Martin4ndersen, Matas Vaitkevicius, Nasreddine, NovaDev,
Parth Patel, Stephen Reindl, tmg

2
.t4 templates in
entity-framework

Matas Vaitkevicius, Tetsuya Yamamoto

3

Advanced mapping
scenarios: entity
splitting, table
splitting

Akos Nagy

4

Best Practices For
Entity Framework
(Simple &
Professional)

Braiam, Mina Matta

5
Code First - Fluent
API

Adil Mammadov, Daniel Lemke, Jason Tyler, tmg

6
Code First
Conventions

MacakM, Parth Patel, Sivanantham Padikkasu, Stephen Reindl,
tmg

7
Code First
DataAnnotations

bubi, CptRobby, Daniel A. White, Daniel Lemke, DavidG, Diego,
Gert Arnold, Jozef Lačný, Mark Shevchenko, Matas Vaitkevicius
, Parth Patel, Piotrek, tmg, Tushar patel

8 Complex Types CptRobby, Gert Arnold

9
Database first model
generation

Matas Vaitkevicius, Tetsuya Yamamoto

10 Database Initialisers Jozef Lačný

11
Entity Framework
Code First

Balázs Nagy, Jozef Lačný

12
Entity Framework
with SQLite

Jason Tyler

13
Entity-Framework
with Postgresql

skj123

https://riptutorial.com/ 101

https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/1876572/eldho
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/441292/martin4ndersen
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/162671/nasreddine
https://riptutorial.com/contributor/3845390/novadev
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/2298807/stephen-reindl
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/7614076/akos-nagy
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/6683715/mina-matta
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/2131717/daniel-lemke
https://riptutorial.com/contributor/1162986/jason-tyler
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/7026647/macakm
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/3615796/sivanantham-padikkasu
https://riptutorial.com/contributor/2298807/stephen-reindl
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/3464614/bubi
https://riptutorial.com/contributor/1260200/cptrobby
https://riptutorial.com/contributor/23528/daniel-a--white
https://riptutorial.com/contributor/2131717/daniel-lemke
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/1948498/diego
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1051621/mark-shevchenko
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/4414656/parth-patel
https://riptutorial.com/contributor/1804027/piotrek
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/1260200/cptrobby
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/6378815/tetsuya-yamamoto
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1305475/balazs-nagy
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1712948/jozef-lacny
https://riptutorial.com/contributor/1162986/jason-tyler
https://riptutorial.com/contributor/6038797/skj123

14
Entity-framework
Code First
Migrations

CGritton, hasan, Joshit, Mostafa, RamenChef, Stephen Reindl

15
Inheritance with
EntityFramework
(Code First)

lucavgobbi

16
Loading related
entities

Adil Mammadov, Florian Haider, Gert Arnold, hasan, Joshit,
Matas Vaitkevicius, tmg

17
Managing entity
state

Gert Arnold

18

Mapping relationship
with Entity
Framework Code
First: One-to-many
and Many-to-many

Akos Nagy

19

Mapping relationship
with Entity
Framework Code
First: One-to-one
and variations

Akos Nagy

20 Model Restraints SOfanatic, Tushar patel

21
Optimization
Techniques in EF

Amit Shahani, Anshul Nigam, DavidG, Gert Arnold, Jacob
Linney, Kobi, lucavgobbi, Stephen Reindl, tmg, wertzui

22
Tracking vs. No-
Tracking

hasan, Sampath, Stephen Reindl, tmg

23 Transactions CptRobby, DavidG, Gert Arnold

https://riptutorial.com/ 102

https://riptutorial.com/contributor/4520025/cgritton
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/6271472/joshit
https://riptutorial.com/contributor/1904217/mostafa
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2298807/stephen-reindl
https://riptutorial.com/contributor/6580210/lucavgobbi
https://riptutorial.com/contributor/1380428/adil-mammadov
https://riptutorial.com/contributor/1230302/florian-haider
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/6271472/joshit
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/7614076/akos-nagy
https://riptutorial.com/contributor/7614076/akos-nagy
https://riptutorial.com/contributor/1799237/sofanatic
https://riptutorial.com/contributor/5614523/tushar-patel
https://riptutorial.com/contributor/1802271/amit-shahani
https://riptutorial.com/contributor/2567548/anshul-nigam
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/861716/gert-arnold
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/7586/kobi
https://riptutorial.com/contributor/6580210/lucavgobbi
https://riptutorial.com/contributor/2298807/stephen-reindl
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/1378307/wertzui
https://riptutorial.com/contributor/3089009/hasan
https://riptutorial.com/contributor/1077309/sampath
https://riptutorial.com/contributor/2298807/stephen-reindl
https://riptutorial.com/contributor/3805023/tmg
https://riptutorial.com/contributor/1260200/cptrobby
https://riptutorial.com/contributor/1663001/davidg
https://riptutorial.com/contributor/861716/gert-arnold

	About
	Chapter 1: Getting started with Entity Framework
	Remarks
	Versions
	Examples
	Using Entity Framework from C# (Code First)
	Installing The Entity Framework NuGet Package
	What is Entity Framework ?

	Chapter 2: .t4 templates in entity-framework
	Examples
	Dynamically adding Interfaces to model
	Adding XML Documentation to Entity Classes

	Chapter 3: Advanced mapping scenarios: entity splitting, table splitting
	Introduction
	Examples
	Entity splitting
	Table splitting

	Chapter 4: Best Practices For Entity Framework (Simple & Professional)
	Introduction
	Examples
	1- Entity Framework @ Data layer (Basics)
	2- Entity Framework @ Business layer
	3- Using Business layer @ Presentation layer (MVC)
	4- Entity Framework @ Unit Test Layer

	Chapter 5: Code First - Fluent API
	Remarks
	Examples
	Mapping models

	Step one: Create model.
	Step two: Create mapper class
	Step three: Add mapping class to configurations.
	Primary Key
	Composite Primary Key
	Maximum Length
	Required properties (NOT NULL)
	Explict Foreign Key naming

	Chapter 6: Code First Conventions
	Remarks
	Examples
	Primary Key Convention
	Removing Conventions
	Type Discovery
	DecimalPropertyConvention
	Relationship Convention
	Foreign Key Convention

	Chapter 7: Code First DataAnnotations
	Remarks
	Examples
	[Key] attribute
	[Required] attribute
	[MaxLength] and [MinLength] attributes
	[Range(min,max)] attribute
	[DatabaseGenerated] attribute
	[NotMapped] attribute
	[Table] attribute
	[Column] attribute
	[Index] attribute
	[ForeignKey(string)] attribute
	[StringLength(int)] attribute
	[Timestamp] attribute
	[ConcurrencyCheck] Attribute
	[InverseProperty(string)] attribute
	[ComplexType] attribute

	Chapter 8: Complex Types
	Examples
	Code First Complex Types

	Chapter 9: Database first model generation
	Examples
	Generating model from database
	Adding data annotations to the generated model

	Chapter 10: Database Initialisers
	Examples
	CreateDatabaseIfNotExists
	DropCreateDatabaseIfModelChanges
	DropCreateDatabaseAlways
	Custom database initializer
	MigrateDatabaseToLatestVersion

	Chapter 11: Entity Framework Code First
	Examples
	Connect to an existing database

	Chapter 12: Entity Framework with SQLite
	Introduction
	Examples
	Setting up a project to use Entity Framework with an SQLite provider

	Install SQLite Managed Libraries
	Including Unmanaged Library
	Editing the project's App.config
	Required Fixes
	Add SQLite connection string

	Your first SQLite DbContext
	Chapter 13: Entity-Framework with Postgresql
	Examples
	Pre-Steps needed in order to use Entity Framework 6.1.3 with PostgresSql using Npgsqlddexprovider

	Chapter 14: Entity-framework Code First Migrations
	Examples
	Enable Migrations
	Add your first migration
	Seeding Data during migrations
	Using Sql() during migrations

	Other Usage
	Doing "Update-Database" within your code
	Initial Entity Framework Code First Migration Step by Step

	Chapter 15: Inheritance with EntityFramework (Code First)
	Examples
	Table per hierarchy
	Table per type

	Chapter 16: Loading related entities
	Remarks
	Examples
	Lazy loading
	Eager loading

	Strongly typed.
	String overload.
	Explicit loading

	Filter related entities.
	Projection Queries

	Chapter 17: Managing entity state
	Remarks
	Examples
	Setting state Added of a single entity
	Setting state Added of an object graph

	Example

	Chapter 18: Mapping relationship with Entity Framework Code First: One-to-many and Many-to-many
	Introduction
	Examples
	Mapping one-to-many
	Mapping one-to-many: against the convention
	Mapping zero or one-to-many
	Many-to-many
	Many-to-many: customizing the join table
	Many-to-many: custom join entity

	Chapter 19: Mapping relationship with Entity Framework Code First: One-to-one and variations
	Introduction
	Examples
	Mapping one-to-zero or one
	Mapping one-to-one
	Mapping one or zero-to-one or zero

	Chapter 20: Model Restraints
	Examples
	One-to-many relationships

	Chapter 21: Optimization Techniques in EF
	Examples
	Using AsNoTracking
	Loading Only Required Data
	Execute queries in the database when possible, not in memory.
	Execute multiple queries async and in parallel

	Bad Example
	Good Example
	Disable change tracking and proxy generation
	Working with stub entities

	Chapter 22: Tracking vs. No-Tracking
	Remarks
	Examples
	Tracking queries
	No-tracking queries
	Tracking and projections

	Chapter 23: Transactions
	Examples
	Database.BeginTransaction()

	Credits

