
Erlang Language

#erlang

Table of Contents

About 1

Chapter 1: Getting started with Erlang Language 2

Remarks 2

Start here 2

Links 2

Versions 2

Examples 3

Hello World 3

First the application source code: 3

Now, let's run our application: 4

Modules 4

Function 5

List Comprehension 6

Starting and Stopping the Erlang Shell 6

Pattern Matching 7

Chapter 2: Behaviours 9

Examples 9

Using a behaviour 9

Defining a behaviour 9

Optional callbacks in a custom behaviour 10

Chapter 3: Bit Syntax: Defaults 11

Introduction 11

Examples 11

Defaults explained 11

Chapter 4: Bit Syntax: Defaults 12

Introduction 12

Examples 12

Rewrite of the docs. 12

Chapter 5: Data Types 14

Remarks 14

Examples 14

Numbers 14

Atoms 14

Examples 15

Atoms that are used in most Erlang programs 15

Use as tags 15

Storage 15

Binaries and Bitstrings 16

Tuples 16

Lists 16

Prepending an element to a list 17

Concatenating lists 17

Strings 17

Processes Identifiers (Pid) 17

Funs 18

Maps 18

Bit Syntax: Defaults 19

Chapter 6: director 21

Introduction 21

Remarks 21

Warnings 21

Examples 22

Download 22

Compile 22

How it works 22

Can i debug director? 30

Generate API documentation 31

Chapter 7: External Term Format 32

Introduction 32

Examples 32

Using ETF with Erlang 32

Using ETF with C 32

Initializing data structure 32

Encoding number 32

Encoding atom 32

Encoding tuple 32

Encoding list 32

Encoding map 32

Chapter 8: File I/O 34

Examples 34

Reading from a file 34

Read the entire file at a time 34

Read one line at a time 34

Read with the random access 34

Writing to a file 35

Write one line at a time 35

Write the entire file at once 35

Write with random access 35

Chapter 9: Format Strings 37

Syntax 37

Examples 37

Common control sequences in format strings 37

~s 37

~w 37

~p 38

Chapter 10: gen_server behavior 39

Remarks 39

Examples 39

Greeter Service 39

Using gen_server behavior 40

gen_server behaviour 42

start_link/0 42

start_link/3,4 42

init/1 42

handle_call/3 42

handle_cast/2 43

handle_info/2 43

terminate/2 44

code_change/3 44

Starting This process 44

Simple Key/Value Database 45

Using our cache server 47

Chapter 11: Installation 48

Examples 48

Build and Install Erlang/OTP on Ubuntu 48

Method 1 - Pre-built Binary Package 48

Method 2 - Build and Install from Source 48

Build and Install Erlang/OTP on FreeBSD 49

Method 1 - Pre-built Binary Package 49

Method 2 - Build and install using the port collection (recommended) 50

Method 3 - Build and install from the release tarball 50

Build and install using kerl 51

Other releases 52

Reference 52

Build and Install Erlang/OTP on OpenBSD 52

Method 1 - Pre-built Binary Package 52

Method 2 - Build and install using ports 53

Method 3 - Build from source 54

References 54

Chapter 12: iolists 55

Introduction 55

Syntax 55

Remarks 55

Examples 55

IO lists are typically used to build output to a port e.g. a file or network socket. 56

Add the allowed data types to the front of an IO list, creating a new one. 56

IO data can be efficiently added to the end of a list. 56

Be careful with improper lists 56

Get IO list size 56

IO list can be converted to a binary 56

Chapter 13: Loop and Recursion 57

Syntax 57

Remarks 57

Why recursive functions? 57

Examples 57

List 57

Recursive loop with IO actions 58

Recursive loop over list returning modified list 58

Iolist and Bitstring 59

Recursive function over variable binary size 59

recursive function over variable binary size with actions 60

Recursive function over bitstring returning modified bitstring 61

Map 62

Managing State 62

Anonymous function 62

Chapter 14: NIFs 64

Examples 64

Definition 64

Example: current UNIX time 64

Erlang C API (C to Erlang) 66

Chapter 15: Processes 67

Examples 67

Creating Processes 67

Message Passing 67

Sending Messages 67

Receiving Messages 68

Example (Counter) 68

Register Processes 69

Chapter 16: Rebar3 70

Examples 70

Definition 70

Installing Rebar3 70

Installing from Source Code 70

Bootstrapping a new Erlang project 70

Chapter 17: Supervisors 72

Examples 72

Basic supervisor with one worker process 72

Credits 73

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: erlang-language

It is an unofficial and free Erlang Language ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Erlang
Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/erlang-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Erlang
Language

Remarks

"Erlang is a programming language originally developed at the Ericsson Computer Science
Laboratory. OTP (Open Telecom Platform) is a collection of middleware and libraries in Erlang.
Erlang/OTP has been battle tested in a number of Ericsson products for building robust fault-
tolerant distributed applications, for example AXD301 (ATM switch). Erlang/OTP is currently
maintained by the Erlang/OTP unit at Ericsson" (erlang.org)

Start here

For installation instructions see Installation topic.

Links

Official Erlang site: https://www.erlang.org1.
Popular package manager for both Erlang and Elixir: http://hex.pm2.
Erlang Patterns: http://www.erlangpatterns.org/3.

Versions

Version Release notes Release Date

19.2 http://erlang.org/download/otp_src_19.2.readme 2016-12-14

19.1 http://erlang.org/download/otp_src_19.1.readme 2016-09-21

19.0 http://erlang.org/download/otp_src_19.0.readme 2016-06-21

18.3 http://erlang.org/download/otp_src_18.3.readme 2016-03-15

18.2.1 http://erlang.org/download/otp_src_18.2.1.readme 2015-12-18

18.2 http://erlang.org/download/otp_src_18.2.readme 2015-12-16

18.1 http://erlang.org/download/otp_src_18.1.readme 2015-09-22

18.0 http://erlang.org/download/otp_src_18.0.readme 2015-06-24

17.5 http://erlang.org/download/otp_src_17.5.readme 2015-04-01

17.4 http://erlang.org/download/otp_src_17.4.readme 2014-12-10

https://riptutorial.com/ 2

https://www.erlang.org/about
http://www.riptutorial.com/erlang/topic/4483/installation
https://www.erlang.org
http://hex.pm
http://www.erlangpatterns.org/
http://erlang.org/download/otp_src_19.2.readme
http://erlang.org/download/otp_src_19.1.readme
http://erlang.org/download/otp_src_19.0.readme
http://erlang.org/download/otp_src_18.3.readme
http://erlang.org/download/otp_src_18.2.1.readme
http://erlang.org/download/otp_src_18.2.readme
http://erlang.org/download/otp_src_18.1.readme
http://erlang.org/download/otp_src_18.0.readme
http://erlang.org/download/otp_src_17.5.readme
http://erlang.org/download/otp_src_17.4.readme

Version Release notes Release Date

17.3 http://erlang.org/download/otp_src_17.3.readme 2014-09-17

17.1 http://erlang.org/download/otp_src_17.1.readme 2014-06-24

17.0 http://erlang.org/download/otp_src_17.0.readme 2014-04-07

R16B03-1 http://erlang.org/download/otp_src_R16B03-1.readme 2014-01-23

R16B03 http://erlang.org/download/otp_src_R16B03.readme 2013-12-09

R16B02 http://erlang.org/download/otp_src_R16B02.readme 2013-09-17

R16B01 http://erlang.org/download/otp_src_R16B01.readme 2013-06-18

R16B http://erlang.org/download/otp_src_R16B.readme 2013-02-25

Examples

Hello World

There are two things you will need to know when writing a "hello world" application in Erlang:

The source code is written in the erlang programming language using the text editor of your
choice

1.

The application is then executed in the erlang virtual machine. In this example we will
interact with the erlang VM thorugh the erlang shell.

2.

First the application source code:

Create a new file hello.erl containing the following:

-module(hello).
-export([hello_world/0]).

hello_world() ->
 io:format("Hello, World!~n", []).

Let's have a quick look at what this means:

-module(hello). All erlang functions exists inside a module. Modules are then used to build
applications, which are a collection of modules. This first line is to identify this module,
namely hello. Modules can be compared to Java's packages

•

-export([hello_world/0]). Tells the compiler which functions to make "public" (when
compared to OO languages), and the arity of the relevant function. The arity is the number of
arguments the function takes. Since in erlang a function with 1 argument is seen as a
different function than one with 2 arguments even though the name may be exactly the

•

https://riptutorial.com/ 3

http://erlang.org/download/otp_src_17.3.readme
http://erlang.org/download/otp_src_17.1.readme
http://erlang.org/download/otp_src_17.0.readme
http://erlang.org/download/otp_src_R16B03-1.readme
http://erlang.org/download/otp_src_R16B03.readme
http://erlang.org/download/otp_src_R16B02.readme
http://erlang.org/download/otp_src_R16B01.readme
http://erlang.org/download/otp_src_R16B.readme

same. Ie, hello_world/0 is a completely different function than hello_world/1 for example.
hello_world() This is the name of the function. The -> indicates the transitioning to the
implementation (body) of the function. This can be read as "hello_world() is defined as ...".
Take note that hello_world() (no arguments) is identified by hello_world/0 in the VM, and
hello_world(Some_Arg) as hello_world/1.

•

io:format("Hello, World!~n", []) From module io, the function format/2 function is called,
which is the function for standard output. ~n is a format specifier that means print a new line.
The [] is a list of variables to print indicated by format specifiers in the output string, which is
in this case nothing.

•

All erlang statements must end with a . (dot).•

In Erlang, the result of the last statement in a function is returned.

Now, let's run our application:

Start the erlang shell from same directory as the file hello.erl file:

$ erl

You should get a prompt that looks something like this (your version may be different):

Eshell V8.0 (abort with ^G)
1>

Now enter the following commands:

1> c(hello).
{ok,hello}
2> hello:hello_world().
Hello, World!
ok

Let's go through each line one by one:

c(hello) - this command calls the function c on an atom hello. This effectively tells Erlang to
find the file hello.erl, compile it into a module (a file named hello.beam will be generated in
the directory) and load it into the environment.

•

{ok, hello} - this is the result of calling the function c above. It is a tuple containing an atom
ok and an atom hello. Erlang functions usually return either {ok, Something} or {error,
Reason}.

•

hello:hello_world() - this calls a function hello_world() from the module hello.•
Hello, World! - this is what our function prints.•
ok - this is what our function returned. Since Erlang is a functional programming language,
every function returns something. In our case, even though we didn't return anything in
hello_world(), the last call in that function was to io:format(...) and that function returned ok,
which is in turn what our function returned.

•

Modules

https://riptutorial.com/ 4

An erlang module is a file with couple of functions grouped together. This file usually has .erl
extension.

A "Hello World" module with name hello.erl is shown below

-module(hello).
-export([hello_world/0]).

hello_world() ->
 io:format("Hello, World!~n", []).

In the file, it is required to declare the module name. As shown before in line 1. The module name
and file name before .erl extension must be same.

Function

Function is a set of instructions, which are grouped together. These grouped instructions together
perform certain task. In erlang, all the functions will return a value when they are called.

Below is an example of a function that adds two numbers

add(X, Y)-> X + Y.

This function performs an add operation with X and Y values and returns the result. Function can
be used as below

add(2,5).

Function declarations can consist of multiple clauses, separated by a semicolon. The Arguments
in each of these clauses are evaluated by pattern matching. The following function will return
'tuple' if the Argument is a tuple in the Form: {test, X} where X can be any value. It will return 'list',
if the Argument is a list of the length 2 in the form ["test", X], and It will return '{error, "Reason"}' in
any other case:

function({test, X}) -> tuple;
function(["test", X]) -> list;
function(_) -> {error, "Reason"}.

If the argument is not a tuple, the second clause will be evaluated. If the argument is not a list, the
third clause will be evaluated.

Function declarations can consist of so called 'Guards' or 'Guard Sequences'. These Guards are
expressions that limit the evaluation of a function. A function with Guards is only executed, when
all Guard Expressions yield a true value. Multiple Guards can be seperated by a semicolon.

function_name(Argument) when Guard1; Guard2; ... GuardN -> (...).

The function 'function_name' will only be evaluated, when the Guard Sequence is true. The
follwing function will return true only if the argument X is in the proper range (0..15):

https://riptutorial.com/ 5

in_range(X) when X>=0; X<16 -> true;
in_range(_) -> false.

List Comprehension

List comprehensions are a syntactic construct to create a list based on existing lists.
In erlang a list comprehension has the form [Expr || Qualifier1, ..., QualifierN].
Where qualifiers are either generators Pattern <- ListExpr or filter like integer(X) evaluating to
either true or false.

The following example shows a list comprehension with one generator and two filters.

[X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].

The result is a list containing only integers greater than 3.

[4,5,6]

Starting and Stopping the Erlang Shell

Starting the Erlang shell

On a UNIX system you start the Erlang shell from a command prompt with the command erl

Example:

$ erl
Erlang/OTP 18 [erts-7.0] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.0 (abort with ^G)
1>

The text that shows when you start the shell tells you information about which version of Erlang
you are running as well as other useful information about the erlang system.

To start the shell on Windows you click the Erlang-icon in the windows start menu.

Stopping the Erlang shell

For a controlled exit of the erlang shell you type:

Erlang/OTP 18 [erts-7.0] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.0 (abort with ^G)
1> q().

You can also exit the Erlang shell by pressing Ctrl+C on UNIX systems or Ctrl+Break on Windows,
which brings you to the following prompt:

https://riptutorial.com/ 6

Erlang/OTP 18 [erts-7.0] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.0 (abort with ^G)
1>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution

If you then press a (for abort) you will exit the shell directly.

Other ways of exiting the erlang shell are: init:stop() which does the same thing as q() or
erlang:halt().

Pattern Matching

One of the most common operations in erlang is pattern matching. It is used when assigning a
value to a variable, in function declarations and in control-flow structures like case and receive
statements. A pattern matching operation needs at least 2 parts: a pattern, and a term against
wich the pattern is matched.

A variable assignment in erlang looks like this:

X = 2.

In most programming language the semantics of this operation is straightforward: Bind a value (2)
to a name of your choice (the variable -- in this case X). Erlang has a slightly different approach:
Match the pattern on the left hand side (X) to the term on the right hand side (2). In this case, the
effect is the same: the variable X is now bound to the value 2. However, with pattern matching you
are able to perform more structured assignments.

{Type, Meta, Doc} = {document, {author, "Alice"}, {text, "Lorem Ipsum"}}.

This matching operation is performed, by analyzing the structure of the right hand side term, and
applying all variables on the left hand side to the appropriate values of the term, so that the left
side equals the right side. In this example Type is bound to the term: document, Meta to {author,
"Alice"} and Doc to {text, "Lorem Ipsum"}. In this particular example the variables: Type, Meta and
Doc are assumed to be unbound, so that each variable can be used.

Pattern matchings can also be built, using bound variables.

Identifier = error.

The variable Identifier is now bound to the value error. The following pattern matching operation
works, because the structure matches, and the bound variable Identifier has the same value like
the appropriate right hand side part of the term.

{Identifier, Reason} = {error, "Database connection timed out."}.

https://riptutorial.com/ 7

A pattern matching operation fails, when there is a mismatch between right hand side term and left
hand side pattern. The following match will fail, because Identifier is bound to the value error,
wich has no appropriate expression on the right hand side term.

{Identifier, Reason} = {fail, "Database connection timed out."}.
> ** exception error: no match of right hand side value {fail,"Database ..."}

Read Getting started with Erlang Language online: https://riptutorial.com/erlang/topic/825/getting-
started-with-erlang-language

https://riptutorial.com/ 8

https://riptutorial.com/erlang/topic/825/getting-started-with-erlang-language
https://riptutorial.com/erlang/topic/825/getting-started-with-erlang-language

Chapter 2: Behaviours

Examples

Using a behaviour

Add a -behaviour directive to your module to indicate that it follows a behaviour:

-behaviour(gen_server).

The American spelling is also accepted:

-behavior(gen_server).

Now the compiler will give a warning if you've forgotten to implement and export any of the
functions required by the behaviour, e.g.:

foo.erl:2: Warning: undefined callback function init/1 (behaviour 'gen_server')

Defining a behaviour

You can define your own behaviour by adding -callback directives in your module. For example, if
modules implementing your behaviour need to have a foo function that takes an integer and
returns an atom:

-module(my_behaviour).
-callback foo(integer()) -> atom().

If you use this behaviour in another module, the compiler will warn if it does not export foo/1, and
Dialyzer will warn if the types are not correct. With this module:

-module(bar).
-behaviour(my_behaviour).
-export([foo/1]).

foo([]) ->
 {}.

and running dialyzer --src bar.erl my_behaviour.erl, you get these warnings:

bar.erl:5: The inferred type for the 1st argument of foo/1 ([]) is not a supertype of
integer(), which is expected type for this argument in the callback of the my_behaviour
behaviour
bar.erl:5: The inferred return type of foo/1 ({}) has nothing in common with atom(), which is
the expected return type for the callback of my_behaviour behaviour

https://riptutorial.com/ 9

Optional callbacks in a custom behaviour

18.0

By default, any function specified in a -callback directive in a behaviour module must be exported
by a module that implements that behaviour. Otherwise, you'll get a compiler warning.

Sometimes, you want a callback function to be optional: the behaviour would use it if present and
exported, and otherwise fall back on a default implementation. To do that, write the -callback
directive as usual, and then list the callback function in an -optional_callbacks directive:

-callback bar() -> ok.
-optional_callbacks([bar/0]).

If the module exports bar/0, Dialyzer will still check the type spec, but if the function is absent, you
won't get a compiler warning.

In Erlang/OTP itself, this is done for the format_status callback function in the gen_server, gen_fsm
and gen_event behaviours.

Read Behaviours online: https://riptutorial.com/erlang/topic/7004/behaviours

https://riptutorial.com/ 10

https://riptutorial.com/erlang/topic/7004/behaviours

Chapter 3: Bit Syntax: Defaults

Introduction

The Erlang doc titled Bit Syntax has a section called Defaults that contains an error and the doc is
confusing as a whole. I rewrote it.

Examples

Defaults explained

4.4 Defaults
...
...
The default Size depends on the type. For integer it is 8. For float it is 64. For binary it
is the size of the specified binary:

1> Bin = << 17/integer, 3.2/float, <<97, 98, 99>>/binary >>.
<<17,64,9,153,153,153,153,153,154,97,98,99>>

2> size(Bin). % Returns the number of bytes:
12 % 8 bits + 64 bits + 3*8 bits = 96 bits => 96/8 = 12 bytes

In matching, a binary segment without a Size is only allowed at t

Read Bit Syntax: Defaults online: https://riptutorial.com/erlang/topic/10050/bit-syntax--defaults

https://riptutorial.com/ 11

https://riptutorial.com/erlang/topic/10050/bit-syntax--defaults

Chapter 4: Bit Syntax: Defaults

Introduction

Blah blah blah.

Examples

Rewrite of the docs.

4.4 Defaults

[Beginning omitted: <<3.14>> isn't even legal syntax.]

The default Size depends on the type. For integer it is 8. For float it is 64. For binary it
is the actual size of the specified binary:

1> Bin = << 17/integer, 3.2/float, <<97, 98, 99>>/binary >>.
<<17,64,9,153,153,153,153,153,154,97,98,99>>
 ^ |<-------------------------->|<------>|

 | float=64 binary=24
integer=8

2> size(Bin). % Returns the number of bytes:
12 % 8 bits + 64 bits + 3*8 bits = 96 bits => 96/8 = 12 bytes

In matching, a binary segment without a Size is only allowed at the end of the pattern,
and the default Size is the rest of the binary on the right hand side of the match:

25> Bin = <<97, 98, 99>>.
<<"abc">>

26> << X/integer, Rest/binary >> = Bin.
<<"abc">>

27> X.
97

28> Rest.
<<"bc">>

All other segments with type binary in a pattern must specify a Size:

12> Bin = <<97, 98, 99, 100>>.
<<"abcd">>

13> << B:1/binary, X/integer, Rest/binary >> = Bin. %'unit' defaults to 8 for

https://riptutorial.com/ 12

<<"abcd">> %binary type, total segment size is Size * unit

14> B.
<<"a">>

15> X.
98

16> Rest.
<<"cd">>

17> << B2/binary, X2/integer, Rest2/binary >> = Bin.
* 1: a binary field without size is only allowed at the end of a binary pattern

Read Bit Syntax: Defaults online: https://riptutorial.com/erlang/topic/10051/bit-syntax--defaults

https://riptutorial.com/ 13

https://riptutorial.com/erlang/topic/10051/bit-syntax--defaults

Chapter 5: Data Types

Remarks

Every data type in erlang is called Term. It is a generic name that means any data type.

Examples

Numbers

In Erlang, numbers are either integers or floats. Erlang uses arbitrary-precision for integers
(bignums), so their values are limited only by the memory size of your system.

1> 11.
11
2> -44.
-44
3> 0.1.
0.1
4> 5.1e-3.
0.0051
5> 5.2e2.
520.0

Numbers can be used in various bases:

1> 2#101.
5
2> 16#ffff.
65535

$-prefix notation yields the integer value of any ASCII/Unicode character:

3> $a.
97
4> $A.
65
5> $2.
50
6> $�.
129302

Atoms

An atom is an object with a name that is identified only by the name itself.

Atoms are defined in Erlang using atom literals which are either

an unquoted string that starts with a lowercase letter and contains only letters, digits, •

https://riptutorial.com/ 14

underscores or the @ character, or
A single quoted string•

Examples

1> hello.
hello

2> hello_world.
hello_world

3> world_Hello@.
world_Hello@

4> '1234'.
'1234'

5> '!@#$%% ä'.
'!@#$%% ä'

Atoms that are used in most Erlang programs

There are some atoms that appear in almost every Erlang program, in particular because of their
use in the Standard Library.

true and false are the used to denote the respective Boolean values•
ok is used usually as a return value of a function that is called only for its effect, or as part of
a return value, in both cases to signify a successful execution

•

In the same way error is used to signify an error condition that doesn't warrant an early
return from the upper functions

•

undefined is usually used as a placeholder for an unspecified value•

Use as tags

ok and error are quite often used as part of a tuple, in which the first element of the tuple signals
success while further elements contain the actual return value or error condition:

func(Input) ->
 case Input of
 magic_value ->
 {ok, got_it};
 _ ->
 {error, wrong_one}
 end.

{ok, _} = func(SomeValue).

https://riptutorial.com/ 15

Storage

One thing to keep in mind when using atoms is that they are stored in their own global table in
memory and this table is not garbage collected, so dynamically creating atoms, in particular when
a user can influence the atom name is heavily discouraged.

Binaries and Bitstrings

A binary is a sequence of unsigned 8-bit bytes.

1> <<1,2,3,255>>.
<<1,2,3,255>>
2> <<256,257,258>>.
<<0,1,2>>
3> <<"hello","world">>.
<<"helloworld">>

A bitstring is a generalized binary whose length in bits isn't necessarily a multiple of 8.

1> <<1:1, 0:2, 1:1>>.
<<9:4>> % 4 bits bitstring

Tuples

A tuple is a fixed length ordered sequence of other Erlang terms. Each element in the tuple can be
any type of term (any data type).

1> {1, 2, 3}.
{1,2,3}
2> {one, two, three}.
{one,two,three}
3> {mix, atom, 123, {<<1,2>>, [list]}}.
{mix,atom,123,{<<1,2>>,[list]}}

Lists

A list in Erlang is a sequence of zero or more Erlang terms, implemented as a singly linked list.
Each element in the list can be any type of term (any data type).

1> [1,2,3].
[1,2,3]
2> [wow,1,{a,b}].
[wow,1,{a,b}]

The list's head is the first element of the list.

The list's tail is the remainder of the list (without the head). It is also a list.
You can use hd/1 and tl/1 or match against [H|T] to get the head and tail of the list.

https://riptutorial.com/ 16

3> hd([1,2,3]).
1
4> tl([1,2,3]).
[2,3]
5> [H|T] = [1,2,3].
[1,2,3]
6> H.
1
7> T.
[2,3]

Prepending an element to a list

8> [new | [1,2,3]].
[new,1,2,3]

Concatenating lists

9> [concat,this] ++ [to,this].
[concat,this,to,this]

Strings

In Erlang, strings are not a separate data type: they're just lists of integers representing ASCII or
Unicode code points:

> [97,98,99].
"abc"
> [97,98,99] =:= "abc".
true
> hd("ABC").
65

When the Erlang shell is going to print a list, it tries to guess whether you actually meant it to be a
string. You can turn that behaviour off by calling shell:strings(false):

> [8].
"\b"
> shell:strings(false).
true
> [8].
[8]

In the above example, the integer 8 is interpreted as the ASCII control character for backspace,
which the shell considers to be a "valid" character in a string.

Processes Identifiers (Pid)

https://riptutorial.com/ 17

Each process in erlang has a process identifier (Pid) in this format <x.x.x>, x being a natural
number. Below is an example of a Pid

<0.1252.0>

Pid can be used to send messages to the process using 'bang' (!), also Pid can be bounded to a
variable, both are shown below

MyProcessId = self().
MyProcessId ! {"Say Hello"}.

Read more about creating processes and more in general about processes in erlang

Funs

Erlang is a functional programming language. One of the features in a function programming
language is handling functions as data (functional objects).

Pass a function as an argument to another function.•
Return function as a result of a function.•
Hold functions in some data structure.•

In Erlang those functions are called funs. Funs are anonymous functions.

1> Fun = fun(X) -> X*X end.
#Fun<erl_eval.6.52032458>
2> Fun(5).
25

Funs may also have several clauses.

3> AddOrMult = fun(add,X) -> X+X;
3> (mul,X) -> X*X
3> end.
#Fun<erl_eval.12.52032458>
4> AddOrMult(mul,5).
25
5> AddOrMult(add,5).
10

You may also use module functions as funs with the syntax: fun Module:Function/Arity.
For example, lets take the function max from lists module, which has arity 1.

6> Max = fun lists:max/1.
#Fun<lists.max.1>
7> Max([1,3,5,9,2]).
9

Maps

https://riptutorial.com/ 18

http://www.riptutorial.com/erlang/example/7502/creating-processes
http://erlang.org/doc/man/lists.html#max-1

A map is an associative array or dictionary composed of (key, value) pairs.

1> M0 = #{}.
#{}
2> M1 = #{ "name" => "john", "age" => "28" }.
#{"age" => "28","name" => "john"}
3> M2 = #{ a => {M0, M1} }.
#{a => {#{},#{"age" => "28","name" => "john"}}}

To update a map :

1> M = #{ 1 => x }.
2> M#{ 1 => c }.
#{1 => c}
3> M.
#{1 => x}

Only update some existing key:

1> M = #{ 1 => a, 2 => b}.
2> M#{ 1 := c, 2:= d }.
#{1 => c,2 => d}
3> M#{ 3 := c }.
** exception error: {badkey,3}

Pattern matching:

1> M = #{ name => "john", age => 28 }.
2> #{ name := Name, age := Age } = M.
3> Name.
"john"
4> Age.
28

Bit Syntax: Defaults

Clarification of Erlang doc on Bit Syntax:

4.4 Defaults

[Beginning omitted: <<3.14>> isn't even legal syntax.]

The default Size depends on the type. For integer it is 8. For float it is 64. For binary it
is the actual size of the specified binary:

 1> Bin = << 17/integer, 3.2/float, <<97, 98, 99>>/binary >>.
 <<17,64,9,153,153,153,153,153,154,97,98,99>>
 ^ |<-------------------------->|<------>|
 | float=64 binary=24
 integer=8

 2> size(Bin). % Returns the number of bytes:

https://riptutorial.com/ 19

http://erlang.org/doc/programming_examples/bit_syntax.html

 12 % 8 bits + 64 bits + 3*8 bits = 96 bits => 96/8 = 12 bytes

In matching, a binary segment without a Size is only allowed at the end of the pattern,
and the default Size is the rest of the binary on the right hand side of the match:

25> Bin = <<97, 98, 99>>.
<<"abc">>

26> << X/integer, Rest/binary >> = Bin.
<<"abc">>

27> X.
97

28> Rest.
<<"bc">>

All other segments with type binary in a pattern must specify a Size:

12> Bin = <<97, 98, 99, 100>>.
<<"abcd">>

13> << B:1/binary, X/integer, Rest/binary >> = Bin. %'unit' defaults to 8 for
<<"abcd">> %binary type, total segment size is Size * unit

14> B.
<<"a">>

15> X.
98

16> Rest.
<<"cd">>

17> << B2/binary, X2/integer, Rest2/binary >> = Bin.
* 1: a binary field without size is only allowed at the end of a binary pattern

Read Data Types online: https://riptutorial.com/erlang/topic/1128/data-types

https://riptutorial.com/ 20

https://riptutorial.com/erlang/topic/1128/data-types

Chapter 6: director

Introduction

Flexible, fast and powerful supervisor library for Erlang processes.

Remarks

Warnings

Do not use 'count'=>infinity and element restart in your plan.
like:

•

Childspec = #{id => foo
 ,start => {bar, baz, [arg1, arg2]}
 ,plan => [restart]
 ,count => infinity}.

If your process did not start after crash, director will lock and retries to restart your process
infinity times ! If you are using infinity for 'count', always use {restart, MiliSeconds} in 'plan'
instead of restart.

If you have plans like:•

Childspec1 = #{id => foo
 ,start => {bar, baz}
 ,plan => [restart,restart,delete,wait,wait, {restart, 4000}]
 ,count => infinity}.

Childspec2 = #{id => foo
 ,start => {bar, baz}
 ,plan => [restart,restart,stop,wait, {restart, 20000}, restart]
 ,count => infinity}.

Childspec3 = #{id => foo
 ,start => {bar, baz}
 ,plan => [restart,restart,stop,wait, {restart, 20000}, restart]
 ,count => 0}.

Childspec4 = #{id => foo
 ,start => {bar, baz}
 ,plan => []
 ,count => infinity}.

The rest of delete element in Childspec1 and the rest of stop element in Childspec2 will never
evaluate!
In Childspec3 you want to run your plan 0 times!
In ChildSpec4 you have not any plan to run infinity times!

https://riptutorial.com/ 21

When you upgrade a release using release_handler, release_handler calls
supervisor:get_callback_module/1 for fetching its callback module.
In OTP<19 get_callback_module/1 uses supervisor internal state record for giving its callback
module. Our director does not know about supervisor internal state record, then
supervisor:get_callback_module/1 does not work with directors.
Good news is that in OTP>=19 supervisor:get_callback_module/1 works perfectly with
directors :).

•

1> foo:start_link().
{ok,<0.105.0>}

2> supervisor:get_callback_module(foo_sup).
foo

3>

Examples

Download

Pouriya@Jahanbakhsh ~ $ git clone https://github.com/Pouriya-Jahanbakhsh/director.git

Compile

Note that OTP>=19 required (if you want to upgrade it using release_handler).
Go to director and use rebar or rebar3.

Pouriya@Jahanbakhsh ~ $ cd director

rebar

Pouriya@Jahanbakhsh ~/director $ rebar compile
==> director_test (compile)
Compiled src/director.erl
Pouriya@Jahanbakhsh ~/director $

rebar3

Pouriya@Jahanbakhsh ~/director $ rebar3 compile
===> Verifying dependencies...
===> Compiling director
Pouriya@Jahanbakhsh ~/director $

How it works

director needs a callback module (like OTP supervisor).
In callback module you should export function init/1.
What init/1 should return? wait, i'll explain step by step.

https://riptutorial.com/ 22

-module(foo).
-export([init/1]).

init(_InitArg) ->
 {ok, []}.

Save above code in foo.erl in director directory and go to the Erlang shell.
Use erl -pa ./ebin if you used rebar to compile it and use rebar3 shell if you used rebar3.

Erlang/OTP 19 [erts-8.3] [source-d5c06c6] [64-bit] [smp:8:8] [async-threads:0] [hipe] [kernel-
poll:false]

Eshell V8.3 (abort with ^G)
1> c(foo).
{ok,foo}

2> Mod = foo.
foo

3> InitArg = undefined. %% i don't need it yet.
undefined

4> {ok, Pid} = director:start_link(Mod, InitArg).
{ok,<0.112.0>}

5>

Now we have a supervisor without children.
Good news is that director comes with full OTP/supervisor API and it has its advanced features
and specific approach too.

5> director:which_children(Pid). %% You can use supervisor:which_children(Pid) too :)
[]

6> director:count_children(Pid). %% You can use supervisor:count_children(Pid) too :)
[{specs,0},{active,0},{supervisors,0},{workers,0}]

7> director:get_pids(Pid). %% You can NOT use supervisor:get_pids(Pid) because it hasn't :D
[]

OK, I'll make simple gen_server and give it to our director.

-module(bar).
-behaviour(gen_server).
-export([start_link/0
 ,init/1
 ,terminate/2]). %% i am not going to use handle_call, handle_cast ,etc.

start_link() ->
 gen_server:start_link(?MODULE, null, []).

init(_GenServerInitArg) ->
 {ok, state}.

terminate(_Reason, _State) ->

https://riptutorial.com/ 23

 ok.

Save above code in bar.erl and got back to the Shell.

8> c(bar).
bar.erl:2: Warning: undefined callback function code_change/3 (behaviour 'gen_server')
bar.erl:2: Warning: undefined callback function handle_call/3 (behaviour 'gen_server')
bar.erl:2: Warning: undefined callback function handle_cast/2 (behaviour 'gen_server')
bar.erl:2: Warning: undefined callback function handle_info/2 (behaviour 'gen_server')
{ok,bar}

%% You should define unique id for your process.
9> Id = bar_id.
bar_id

%% You should tell diector about start module and function for your process.
%% Should be tuple {Module, Function, Args}.
%% If your start function doesn't need arguments (like our example)
%% just use {Module, function}.
10> start = {bar, start_link}.
{bar,start_link}

%% What is your plan for your process?
%% I asked you some questions at the first of this README file.
%% Plan should be an empty list or list with n elemenst.
%% Every element can be one of
%% 'restart'
%% 'delete'
%% 'stop'
%% {'stop', Reason::term()}
%% {'restart', Time::pos_integer()}
%% for example my plan is:
%% [restart, {restart, 5000}, delete]
%% In first crash director will restart my process,
%% after next crash director will restart it after 5000 mili-seconds
%% and after third crash director will not restart it and will delete it
11> Plan = [restart, {restart, 5000}, delete].
[restart,{restart,5000},delete]

%% What if i want to restart my process 500 times?
%% Do i need a list with 500 'restart's?
%% No, you just need a list with one element, I'll explain it later.

12> Childspec = #{id => Id
 ,start => Start
 ,plan => Plan}.
#{id => bar_id,
 plan => [restart,{restart,5000},delete],
 start => {bar,start_link}}

13> director:start_child(Pid, Childspec). %% You can use supervisor:start_child(Pid,
ChildSpec) too :)
{ok,<0.160.0>}

14>

Lets check it

14> director:which_children(Pid).

https://riptutorial.com/ 24

[{bar_id,<0.160.0>,worker,[bar]}]

15> director:count_children(Pid).
[{specs,1},{active,1},{supervisors,0},{workers,1}]

%% What was get_pids/1?
%% It will returns all RUNNING ids with their pids.
16> director:get_pids(Pid).
[{bar_id,<0.160.0>}]

%% We can get Pid for specific RUNNING id too
17> {ok, BarPid1} = director:get_pid(Pid, bar_id).
{ok,<0.160.0>}

%% I want to kill that process
18> erlang:exit(BarPid1, kill).
true

%% Check all running pids again
19> director:get_pids(Pid).
[{bar_id,<0.174.0>}] %% changed (restarted)

%% I want to kill that process again
%% and i will check children before spending time
20> {ok, BarPid2} = director:get_pid(Pid, bar_id), erlang:exit(BarPid2, kill).
true

21> director:get_pids(Pid).
[]

22> director:which_children(Pid).
[{bar_id,restarting,worker,[bar]}] %% restarting

23> director:get_pid(Pid, bare_id).
{error,not_found}

%% after 5000 ms
24> director:get_pids(Pid).
[{bar_id,<0.181.0>}]

25> %% Yoooohoooooo

I mentioned advanced features, what are they? Lets see other acceptable keys for Childspec
map.

-type childspec() :: #{'id' => id()
 ,'start' => start()
 ,'plan' => plan()
 ,'count' => count()
 ,'terminate_timeout' => terminate_timeout()
 ,'type' => type()
 ,'modules' => modules()
 ,'append' => append()}.

%% 'id' is mandatory and can be any Erlang term
-type id() :: term().

%% Sometimes 'start' is optional ! just wait and read carefully
-type start() :: {module(), function()} % default Args is []

https://riptutorial.com/ 25

 | mfa().

%% I explained 'restart', 'delete' and {'restart', MiliSeconds}
%% 'stop': director will crash with reason {stop, [info about process crash]}.
%% {'stop', Reason}: director exactly will crash with reason Reason.
%% 'wait': director will not restart process,
%% but you can restart it using director:restart_child/2 and you can use
supervisor:restart_child/2 too.
%% fun/2: director will execute fun with 2 arguments.
%% First argument is crash reason for process and second argument is restart count for
process.
%% Fun should return terms like other plan elements.
%% Default plan is:
%% [fun
%% (normal, _RestartCount) ->
%% delete;
%% (shutdown, _RestartCount) ->
%% delete;
%% ({shutdown, _Reason}, _RestartCount) ->
%% delete;
%% (_Reason, _RestartCount) ->
%% restart
%% end]
-type plan() :: [plan_element()] | [].
-type plan_element() :: 'restart'
 | {'restart', pos_integer()}
 | 'wait'
 | 'stop'
 | {'stop', Reason::term()}
 | fun((Reason::term()
 ,RestartCount::pos_integer()) ->
 'restart'
 | {'restart', pos_integer()}
 | 'wait'
 | 'stop'
 | {'stop', Reason::term()}).

%% How much time you want to run plan?
%% Default value of 'count' is 1.
%% Again, What if i want to restart my process 500 times?
%% Do i need a list with 500 'restart's?
%% You just need plan ['restart'] and 'count' 500 :)
-type count() :: 'infinity' | non_neg_integer().

%% How much time director should wait for process termination?
%% 0 means brutal kill and director will kill your process using erlang:exit(YourProcess,
kill).
%% For workers default value is 1000 mili-seconds and for supervisors default value is
'infinity'.
-type terminate_timeout() :: 'infinity' | non_neg_integer().

%% default is 'worker'
-type type() :: 'worker' | 'supervisor'.

%% Default is first element of 'start' (process start module)
-type modules() :: [module()] | 'dynamic'.

%% :)
%% Default value is 'false'
%% I'll explan it
-type append() :: boolean().

https://riptutorial.com/ 26

Edit foo module:

-module(foo).
-export([start_link/0
 ,init/1]).

start_link() ->
 director:start_link({local, foo_sup}, ?MODULE, null).

init(_InitArg) ->
 Childspec = #{id => bar_id
 ,plan => [wait]
 ,start => {bar,start_link}
 ,count => 1
 ,terminate_timeout => 2000},
 {ok, [Childspec]}.

Go to the Erlang shell again:

1> c(foo).
{ok,foo}

2> foo:start_link().
{ok,<0.121.0>}

3> director:get_childspec(foo_sup, bar_id).
{ok,#{append => false,count => 1,id => bar_id,
 modules => [bar],
 plan => [wait],
 start => {bar,start_link,[]},
 terminate_timeout => 2000,type => worker}}

4> {ok, Pid} = director:get_pid(foo_sup, bar_id), erlang:exit(Pid, kill).
true

5> director:which_children(foo_sup).
[{bar_id,undefined,worker,[bar]}] %% undefined

6> director:count_children(foo_sup).
[{specs,1},{active,0},{supervisors,0},{workers,1}]

7> director:get_plan(foo_sup, bar_id).
{ok,[wait]}

%% I can change process plan
%% I killed process one time.
%% If i kill it again, entire supervisor will crash with reason {reached_max_restart_plan...
because 'count' is 1
%% But after changing plan, its counter will restart from 0.
8> director:change_plan(foo_sup, bar_id, [restart]).
ok

9> director:get_childspec(foo_sup, bar_id).
{ok,#{append => false,count => 1,id => bar_id,
 modules => [bar],
 plan => [restart], %% here
 start => {bar,start_link,[]},
 terminate_timeout => 2000,type => worker}}

https://riptutorial.com/ 27

10> director:get_pids(foo_sup).
[]

11> director:restart_child(foo_sup, bar_id).
{ok,<0.111.0>}

12> {ok, Pid2} = director:get_pid(foo_sup, bar_id), erlang:exit(Pid2, kill).
true

13> director:get_pid(foo_sup, bar_id).
{ok,<0.113.0>}

14> %% Hold on

Finally what the append key is?

actually always we have one DefaultChildspec.

14> director:get_default_childspec(foo_sup).
{ok,#{count => 0,modules => [],plan => [],terminate_timeout => 0}}

15>

DefaultChildspec is like normal childspecs except that it can't accept id and append keys.
If i change append value to true in my Childspec:
My terminate_timeout will be added to terminate_timeout of DefaultChildspec.
My count will be added to count of DefaultChildspec.
My modules will be added to modules of DefaultChildspec.
My plan will be added to plan of DefaultChildspec.
And if i have start key with value {ModX, FuncX, ArgsX} in DefaultChildspec and start key with value
{ModY, FunY, ArgsY} in Childspec, final value will be {ModY, FuncY, ArgsX ++ ArgsY}.
And finally if i have start key with value {Mod, Func, Args} in DefaultChildspec, start key in
Childspec is optional for me.
You can return your own DefaultChildspec as third element of tuple in init/1.
Edit foo.erl:

-module(foo).
-behaviour(director). %% Yes, this is a behaviour
-export([start_link/0
 ,init/1]).

start_link() ->
 director:start_link({local, foo_sup}, ?MODULE, null).

init(_InitArg) ->
 Childspec = #{id => bar_id
 ,plan => [wait]
 ,start => {bar,start_link}
 ,count => 1
 ,terminate_timeout => 2000},
 DefaultChildspec = #{start => {bar, start_link}
 ,terminate_timeout => 1000
 ,plan => [restart]
 ,count => 5},
 {ok, [Childspec], DefaultChildspec}.

https://riptutorial.com/ 28

Restart the shell:

1> c(foo).
{ok,foo}

2> foo:start_link().
{ok,<0.111.0>}

3> director:get_pids(foo_sup).
[{bar_id,<0.112.0>}]

4> director:get_default_childspec(foo_sup).
{ok,#{count => 5,
 plan => [restart],
 start => {bar,start_link,[]},
 terminate_timeout => 1000}}

5> Childspec1 = #{id => 1, append => true},
%% Default 'plan' is [Fun], so 'plan' will be [restart] ++ [Fun] or [restart, Fun].
%% Default 'count' is 1, so 'count' will be 1 + 5 or 6.
%% Args in above Childspec is [], so Args will be [] ++ [] or [].
%% Default 'terminate_timeout' is 1000, so 'terminate_timeout' will be 1000 + 1000 or 2000.
%% Default 'modules' is [bar], so 'modules' will be [bar] ++ [] or [bar].
5> director:start_child(foo_sup, Childspec1).
{ok,<0.116.0>}

%% Test
6> director:get_childspec(foo_sup, 1).
{ok,#{append => true,
 count => 6,
 id => 1,
 modules => [bar],
 plan => [restart,#Fun<director.default_plan_element_fun.2>],
 start => {bar,start_link,[]},
 terminate_timeout => 2000,
 type => worker}}

7> director:get_pids(foo_sup).
[{bar_id,<0.112.0>},{1,<0.116.0>}]

%% I want to have 9 more children like that
8> [director:start_child(foo_sup
 ,#{id => Count, append => true})
 || Count <- lists:seq(2, 10)].
[{ok,<0.126.0>},
 {ok,<0.127.0>},
 {ok,<0.128.0>},
 {ok,<0.129.0>},
 {ok,<0.130.0>},
 {ok,<0.131.0>},
 {ok,<0.132.0>},
 {ok,<0.133.0>},
 {ok,<0.134.0>}]

10> director:count_children(foo_sup).
[{specs,11},{active,11},{supervisors,0},{workers,11}]

11>

You can change defaultChildspec dynamically using change_default_childspec/2 !

https://riptutorial.com/ 29

And you can change Childspec of children dynamically too and set their append to true !
But with changing them in different parts of code, you will make spaghetti code

Can i debug director?

Yessssss, diorector has its own debug and accepts standard sys:dbg_opt/0.
director sends valid logs to sasl and error_logger in different states too.

1> Name = {local, dname},
 Mod = foo,
 InitArg = undefined,
 DbgOpts = [trace],
 Opts = [{debug, DbgOpts}].
[{debug,[trace]}]

2> director:start_link(Name, Mod, InitArg, Opts).
{ok,<0.106.0>}
3>
3> director:count_children(dname).
DBG director "dname" got request "count_children" from "<0.102.0>"
DBG director "dname" sent "[{specs,1},
 {active,1},
 {supervisors,0},
 {workers,1}]" to "<0.102.0>"
[{specs,1},{active,1},{supervisors,0},{workers,1}]

4> director:change_plan(dname, bar_id, [{restart, 5000}]).
DBG director "dname" got request "{change_plan,bar_id,[{restart,5000}]}" from "<0.102.0>"
DBG director "dname" sent "ok" to "<0.102.0>"
ok

5> {ok, Pid} = director:get_pid(dname, bar_id).
DBG director "dname" got request "{get_pid,bar_id}" from "<0.102.0>"
DBG director "dname" sent "{ok,<0.107.0>}" to "<0.102.0>"
{ok,<0.107.0>}

%% Start SASL
6> application:start(sasl).
ok
... %% Log about starting SASL

7> erlang:exit(Pid, kill).
DBG director "dname" got exit signal for pid "<0.107.0>" with reason "killed"
true

=SUPERVISOR REPORT==== 4-May-2017::12:37:41 ===
 Supervisor: dname
 Context: child_terminated
 Reason: killed
 Offender: [{id,bar_id},
 {pid,<0.107.0>},
 {plan,[{restart,5000}]},
 {count,1},
 {count2,0},
 {restart_count,0},
 {mfargs,{bar,start_link,[]}},
 {plan_element_index,1},
 {plan_length,1},
 {timer_reference,undefined},

https://riptutorial.com/ 30

https://en.wikipedia.org/wiki/Spaghetti_code

 {terminate_timeout,2000},
 {extra,undefined},
 {modules,[bar]},
 {type,worker},
 {append,false}]
8>

%% After 5000 mili-seconds
DBG director "dname" got timer event for child-id "bar_id" with timer reference
"#Ref<0.0.1.176>"

=PROGRESS REPORT==== 4-May-2017::12:37:46 ===
 supervisor: dname
 started: [{id,bar_id},
 {pid,<0.122.0>},
 {plan,[{restart,5000}]},
 {count,1},
 {count2,1},
 {restart_count,1},
 {mfargs,{bar,start_link,[]}},
 {plan_element_index,1},
 {plan_length,1},
 {timer_reference,#Ref<0.0.1.176>},
 {terminate_timeout,2000},
 {extra,undefined},
 {modules,[bar]},
 {type,worker},
 {append,false}]
8>

Generate API documentation

rebar:

Pouriya@Jahanbakhsh ~/director $ rebar doc

rebar3:

Pouriya@Jahanbakhsh ~/director $ rebar3 edoc

erl

Pouriya@Jahanbakhsh ~/director $ mkdir -p doc &&
 erl -noshell\
 -eval "edoc:file(\"./src/director.erl\", [{dir,
\"./doc\"}]),init:stop()."

After running one of the above commands, HTML documentation should be in doc directory.

Read director online: https://riptutorial.com/erlang/topic/9878/director

https://riptutorial.com/ 31

https://riptutorial.com/erlang/topic/9878/director

Chapter 7: External Term Format

Introduction

External Term Format is a binary format used to communicate to outside world. You can use it
with any language through ports, drivers or NIF. BERT (Binary ERlang Term) can be used in other
languages.

Examples

Using ETF with Erlang

binary_to_term().

Using ETF with C

Initializing data structure

#include <stdio.h>
#include <string.h>
#include <ei.h>

Encoding number

#include <stdio.h>
#include <ei.h>

int
main() {
}

Encoding atom

Encoding tuple

Encoding list

https://riptutorial.com/ 32

http://bert-rpc.org/

Encoding map

Read External Term Format online: https://riptutorial.com/erlang/topic/10731/external-term-format

https://riptutorial.com/ 33

https://riptutorial.com/erlang/topic/10731/external-term-format

Chapter 8: File I/O

Examples

Reading from a file

Let's assume you have a file lyrics.txt which contains the following data:

summer has come and passed
the innocent can never last
wake me up when september ends

Read the entire file at a time

By using file:read_file(File), you can read the entire file. It's an atomic operation:

1> file:read_file("lyrics.txt").
{ok,<<"summer has come and passed\r\nthe innocent can never last\r\nWake me up w
hen september ends\r\n">>}

Read one line at a time

io:get_line reads the text until the newline or the end of file.

1> {ok, S} = file:open("lyrics.txt", read).
{ok,<0.57.0>}
2> io:get_line(S, '').
"summer has come and passed\n"
3> io:get_line(S, '').
"the innocent can never last\n"
4> io:get_line(S, '').
"wake me up when september ends\n"
5> io:get_line(S, '').
eof
6> file:close(S).
ok

Read with the random access

file:pread(IoDevice, Start, Len) reads from Start as much as Len from IoDevice.

1> {ok, S} = file:open("lyrics.txt", read).
{ok,<0.57.0>}
2> file:pread(S, 0, 6).
{ok,"summer"}

https://riptutorial.com/ 34

3> file:pread(S, 7, 3).
{ok,"has"}

Writing to a file

Write one line at a time

Open a file with write mode and use io:format/2:

1> {ok, S} = file:open("fruit_count.txt", [write]).
{ok,<0.57.0>}
2> io:format(S, "~s~n", ["Mango 5"]).
ok
3> io:format(S, "~s~n", ["Olive 12"]).
ok
4> io:format(S, "~s~n", ["Watermelon 3"]).
ok
5>

The result will be a file named fruit_count.txt with the following contents:

Mango 5
Olive 12
Watermelon 3

Note that opening a file in write mode will created it, if not already existent in the file system.

Note also that using the write option with file:open/2 will truncate the file (even if you don't write
anything into it). To prevent this, open the file in [read,write] or [append] mode.

Write the entire file at once

file:write_file(Filename, IO) is the simplest function for writing a file at once. If the file already
exists, it will overwritten, otherwise it will be created.

1> file:write_file("fruit_count.txt", ["Mango 5\nOlive 12\nWatermelon 3\n"
]).
ok
2> file:read_file("fruit_count.txt").
{ok,<<"Mango 5\nOlive 12\nWatermelon 3\n">>}
3>

Write with random access

For random access writing, file:pwrite(IoDevice, Location, Bytes) is used. If you want to replace
some string in the file, this method is useful.

https://riptutorial.com/ 35

Let's assume you want to change "Olive 12" to "Apple 15" in the file created above.

1> {ok, S} = file:open("fruit_count.txt", [read, write]).
{ok,{file_descriptor,prim_file,{#Port<0.412>,676}}}
2> file:pwrite(S, 8, ["Apple 15\n"]).
ok
3> file:read_file("fruit_count.txt").
{ok,<<"Mango 5\nApple 15\nWatermelon 3">>}
4> file:close(S).
ok
5>

Read File I/O online: https://riptutorial.com/erlang/topic/5232/file-i-o

https://riptutorial.com/ 36

https://riptutorial.com/erlang/topic/5232/file-i-o

Chapter 9: Format Strings

Syntax

io:format(FormatString, Args) % write to standard output•
io:format(standard_error, FormatString, Args) % write to standard error•
io:format(F, FormatString, Args) % write to open file•
io_lib:format(FormatString, Args) % return an iolist•

Examples

Common control sequences in format strings

While there are many different control sequences for io:format and io_lib:format, most of the time
you'll use only three different ones: ~s, ~p and ~w.

~s

The ~s is for strings.

It prints strings, binaries and atoms. (Anything else will cause a badarg error.) It doesn't quote or
escape anything; it just prints the string itself:

%% Printing a string:
> io:format("~s\n", ["hello world"]).
hello world

%% Printing a binary:
> io:format("~s\n", [<<"hello world">>]).
hello world

%% Printing an atom:
> io:format("~s\n", ['hello world']).
hello world

~w

The ~w is for writing with standard syntax.

It can can print any Erlang term. The output can be parsed to return the original Erlang term,
unless it contained terms that don't have a parsable written representation, i.e. pids, ports and
references. It doesn't insert any newlines or indentation, and strings are always interpreted as
lists:

> io:format("~w\n", ["abc"]).

https://riptutorial.com/ 37

http://erlang.org/doc/man/io.html#format-1

[97,98,99]

~p

The ~p is for pretty-printing.

It can can print any Erlang term. The output differs from ~w in the following ways:

Newlines are inserted if the line would otherwise be too long.•
When newlines are inserted, the next line is indented to line up with a previous term on the
same level.

•

If a list of integers looks like a printable string, it is interpreted as one.•

> io:format("~p\n",
[{this,is,a,tuple,with,many,elements,'and',a,list,'of',numbers,[97,98,99],that,'end',up,making,the,line,too,long}]).

{this,is,a,tuple,with,many,elements,'and',a,list,'of',numbers,"abc",that,
 'end',up,making,the,line,too,long}

If you don't want lists of integers to be printed as strings, you can use the ~lp sequence (insert a
lowercase letter L before p):

> io:format("~lp\n", [[97,98,99]]).
[97,98,99]

> io:format("~lp\n", ["abc"]).
[97,98,99]

Read Format Strings online: https://riptutorial.com/erlang/topic/3722/format-strings

https://riptutorial.com/ 38

https://riptutorial.com/erlang/topic/3722/format-strings

Chapter 10: gen_server behavior

Remarks

gen_server is an important feature of Erlang, and require some prerequisite to understand every
aspect of this functionality:

Loop, recursion and state•
Spawning processes•
Message passing•
OTP principles•

A good way to learn more about a feature in Erlang is to directly read the source code from official
github repository. gen_server behavior embed lot of useful information and interesting structure in
its core.

gen_server is defined in gen_server.erl and its associated documentation can be find in stdlib
Erlang documentation. gen_server is an OTP feature and more information can be also found in
OTP Design Principles and User's Guide.

Frank Hebert give you also another good introduction to gen_server from its free online book Learn
You Some Erlang for great good!

Official documentation for gen_server callback:

code_change/3•
handle_call/3•
handle_cast/2•
handle_info/2•
init/1•
terminate/2•

Examples

Greeter Service

Here is an example of a service that greets people by the given name, and keeps track of how
many users it encountered. See usage below.

%% greeter.erl
%% Greets people and counts number of times it did so.
-module(greeter).
-behaviour(gen_server).
%% Export API Functions
-export([start_link/0, greet/1, get_count/0]).
%% Required gen server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2, code_change/3]).

-record(state, {count::integer()}).

https://riptutorial.com/ 39

http://erlang.org/doc/efficiency_guide/listHandling.html
http://erlang.org/doc/reference_manual/processes.html
http://erlang.org/doc/getting_started/conc_prog.html#id68696
http://erlang.org/doc/design_principles/des_princ.html
https://github.com/erlang/otp
https://github.com/erlang/otp
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/gen_server.erl
http://erlang.org/doc/man/gen_server.html
http://erlang.org/doc/man/gen_server.html
http://erlang.org/doc/man/gen_server.html
http://erlang.org/doc/design_principles/gen_server_concepts.html
http://learnyousomeerlang.com/clients-and-servers
http://learnyousomeerlang.com/clients-and-servers
http://erlang.org/doc/man/gen_server.html#Module:code_change-3
http://erlang.org/doc/man/gen_server.html#Module:handle_call-3
http://erlang.org/doc/man/gen_server.html#Module:handle_cast-2
http://erlang.org/doc/man/gen_server.html#Module:handle_info-2
http://erlang.org/doc/man/gen_server.html#Module:init-1
http://erlang.org/doc/man/gen_server.html#Module:terminate-2

%% Public API
start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, {}, []).

greet(Name) ->
 gen_server:cast(?MODULE, {greet, Name}).

get_count() ->
 gen_server:call(?MODULE, {get_count}).

%% Private
init({}) ->
 {ok, #state{count=0}}.

handle_cast({greet, Name}, #state{count = Count} = State) ->
 io:format("Greetings ~s!~n", [Name]),
 {noreply, State#state{count = Count + 1}};

handle_cast(Msg, State) ->
 error_logger:warning_msg("Bad message: ~p~n", [Msg]),
 {noreply, State}.

handle_call({get_count}, _From, State) ->
 {reply, {ok, State#state.count}, State};

handle_call(Request, _From, State) ->
 error_logger:warning_msg("Bad message: ~p~n", [Request]),
 {reply, {error, unknown_call}, State}.

%% Other gen_server callbacks
handle_info(Info, State) ->
 error_logger:warning_msg("Bad message: ~p~n", [Info]),
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Here is a sample usage of this service in the erlang shell:

1> c(greeter).
{ok,greeter}
2> greeter:start_link().
{ok,<0.62.0>}
3> greeter:greet("Andriy").
Greetings Andriy!
ok
4> greeter:greet("Mike").
Greetings Mike!
ok
5> greeter:get_count().
{ok,2}

Using gen_server behavior

https://riptutorial.com/ 40

A gen_server is a specific finite state machine working like a server. gen_server can handle different
type of event:

synchronous request with handle_call•
asynchronous request with handle_cast•
other message (not defined in OTP specification) with handle_info•

Synchronous and asynchronous message are specified in OTP and are simple tagged tuples with
any kind of data on it.

A simple gen_server is defined like this:

-module(simple_gen_server).
-behaviour(gen_server).
-export([start_link/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

start_link() ->
 Return = gen_server:start_link({local, ?MODULE}, ?MODULE, [], []),
 io:format("start_link: ~p~n", [Return]),
 Return.

init([]) ->
 State = [],
 Return = {ok, State},
 io:format("init: ~p~n", [State]),
 Return.

handle_call(_Request, _From, State) ->
 Reply = ok,
 Return = {reply, Reply, State},
 io:format("handle_call: ~p~n", [Return]),
 Return.

handle_cast(_Msg, State) ->
 Return = {noreply, State},
 io:format("handle_cast: ~p~n", [Return]),
 Return.

handle_info(_Info, State) ->
 Return = {noreply, State},
 io:format("handle_info: ~p~n", [Return]),
 Return.

terminate(_Reason, _State) ->
 Return = ok,
 io:format("terminate: ~p~n", [Return]),
 ok.

code_change(_OldVsn, State, _Extra) ->
 Return = {ok, State},
 io:format("code_change: ~p~n", [Return]),
 Return.

This code is simple: every message received is printed to standard output.

https://riptutorial.com/ 41

gen_server behaviour

To define a gen_server, you need to explicitly declare it in your source code with -
behaviour(gen_server). Note, behaviour can be written in US (behavior) or UK (behaviour).

start_link/0

This function is a simple shortcut to call another function: gen_server:start_link/3,4.

start_link/3,4

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

This function is called when you want to start your server linked to a supervisor or another
process. start_link/3,4 can register automatically your process (if you think your process need to
be unique) or can simply spawn it like simple process. When called, this function execute init/1.

This function can return these define values:

{ok,Pid}•
ignore•
{error,Error}•

init/1

init([]) ->
 State = [],
 {ok, State}.

init/1 is the first executed function when your server will be launched. This one initialize all
prerequisite of your application and return state to newly created process.

This function can return only these defined values:

{ok,State}•
{ok,State,Timeout}•
{ok,State,hibernate}•
{stop,Reason}•
ignore•

State variable can be everything, (e.g. list, tuple, proplists, map, record) and remain accessible to
all function inside spawned process.

handle_call/3

handle_call(_Request, _From, State) ->

https://riptutorial.com/ 42

https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L116
https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L119

 Reply = ok,
 {reply, Reply, State}.

gen_server:call/2 execute this callback. The first argument is your message (_Request), the second
is the origin of the request (_From) and the last one is the current state (State) of your running
gen_server behaviour.

If you want a reply to caller, handle_call/3 need to return one of these data structure:

{reply,Reply,NewState}•
{reply,Reply,NewState,Timeout}•
{reply,Reply,NewState,hibernate}•

If you want no reply to caller, handle_call/3 need to return one of these data structure:

{noreply,NewState}•
{noreply,NewState,Timeout}•
{noreply,NewState,hibernate}•

If you want to stop the current execution of your current gen_server, handle_call/3 need to return
one of these data structure:

{stop,Reason,Reply,NewState}•
{stop,Reason,NewState}•

handle_cast/2

handle_cast(_Msg, State) ->
 {noreply, State}.

gen_server:cast/2 execute this callback. The first argument is your message (_Msg), and the second
the current state of your running gen_server behaviour.

By default, this function can't data to the caller, so, you have only two choices, continue current
execution:

{noreply,NewState}•
{noreply,NewState,Timeout}•
{noreply,NewState,hibernate}•

Or stop your current gen_server process:

{stop,Reason,NewState}•

handle_info/2

handle_info(_Info, State) ->
 {noreply, State}.

handle_info/2 is executed when non-standard OTP message come from outside world. This one

https://riptutorial.com/ 43

https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L127
https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L131

can't reply and, like handle_cast/2 can do only 2 actions, continuing current execution:

{noreply,NewState}•
{noreply,NewState,Timeout}•
{noreply,NewState,hibernate}•

Or stop the current running gen_server process:

{stop,Reason,NewState}•

terminate/2

terminate(_Reason, _State) ->
 ok.

terminate/2 is called when an error occur or when you want to shutdown your gen_server process.

code_change/3

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

code_change/3 function is called when you want to upgrade your running code.

This function can return only these defined values:

{ok, NewState}•
{error, Reason}•

Starting This process

You can compile your code and start simple_gen_server:

simple_gen_server:start_link().

If you want to send message to your server, you can use these functions:

% will use handle_call as callback and print:
% handle_call: mymessage
gen_server:call(simple_gen_server, mymessage).

% will use handle_cast as callback and print:
% handle_cast: mymessage
gen_server:cast(simple_gen_server, mymessage).

% will use handle_info as callback and print:
% handle_info: mymessage
erlang:send(whereis(simple_gen_server), mymessage).

https://riptutorial.com/ 44

https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L135
https://github.com/erlang/otp/blob/OTP-19.0/lib/stdlib/src/gen_server.erl#L139

Simple Key/Value Database

This source code create a simple key/value store service based on map Erlang datastructure.
Firstly, we need to define all information concerning our gen_server:

-module(cache).
-behaviour(gen_server).

% our API
-export([start_link/0]).
-export([get/1, put/2, state/0, delete/1, stop/0]).

% our handlers
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

% Defining our function to start `cache` process:

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

%%%%%%%%%%%%%%
% API

% Key/Value database is a simple store, value indexed by an unique key.
% This implementation is based on map, this datastructure is like hash
in Perl or dictionaries in Python.

% put/2
% put a value indexed by a key. We assume the link is stable
% and the data will be written, so, we use an asynchronous call with
% gen_server:cast/2.

put(Key, Value) ->
 gen_server:cast(?MODULE, {put, {Key, Value}}).

% get/1
% take one argument, a key and will a return the value indexed
% by this same key. We use a synchronous call with gen_server:call/2.

get(Key) ->
 gen_server:call(?MODULE, {get, Key}).

% delete/1
% like `put/1`, we assume the data will be removed. So, we use an
% asynchronous call with gen_server:cast/2.

delete(Key) ->
 gen_server:cast(?MODULE, {delete, Key}).

% state/0
% This function will return the current state (here the map who contain all
% indexed values), we need a synchronous call.

state() ->
 gen_server:call(?MODULE, {get_state}).

% stop/0
% This function stop cache server process.

https://riptutorial.com/ 45

https://en.wikipedia.org/wiki/Key-value_database
http://erlang.org/doc/man/maps.html

stop() ->
 gen_server:stop(?MODULE).

%%%%%%%%%%%%%%%
% Handlers

% init/1
% Here init/1 will initialize state with simple empty map datastructure.

init([]) ->
 {ok, #{}}.

% handle_call/3
% Now, we need to define our handle. In a cache server we need to get our
% value from a key, this feature need to be synchronous, so, using
% handle_call seems a good choice:

handle_call({get, Key}, From, State) ->
 Response = maps:get(Key, State, undefined),
 {reply, Response, State};

% We need to check our current state, like get_fea

handle_call({get_state}, From, State) ->
 Response = {current_state, State},
 {reply, Response, State};

% All other messages will be dropped here.

handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

% handle_cast/2
% put/2 will execute this function.

handle_cast({put, {Key, Value}}, State) ->
 NewState = maps:put(Key, Value, State),
 {noreply, NewState};

% delete/1 will execute this function.

handle_cast({delete, Key}, State) ->
 NewState = maps:remove(Key, State),
 {noreply, NewState};

% All other messages are dropped here.

handle_cast(_Msg, State) ->
 {noreply, State}.

%%%%%%%%%%%%%%%%
% other handlers

% We don't need other features, other handlers do nothing.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->

https://riptutorial.com/ 46

 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Using our cache server

We can now compile our code and start using it with erl.

% compile cache
c(cache).

% starting cache server
cache:start_link().

% get current store
% will return:
% #{}
cache:state().

% put some data
cache:put(1, one).
cache:put(hello, bonjour).
cache:put(list, []).

% get current store
% will return:
% #{1 => one,hello => bonjour,list => []}
cache:state().

% delete a value
cache:delete(1).
cache:state().
% #{1 => one,hello => bonjour,list => []}

% stopping cache server
cache:stop().

Read gen_server behavior online: https://riptutorial.com/erlang/topic/7481/gen-server-behavior

https://riptutorial.com/ 47

https://riptutorial.com/erlang/topic/7481/gen-server-behavior

Chapter 11: Installation

Examples

Build and Install Erlang/OTP on Ubuntu

The following examples show two main methods for installing Erlang/OTP on Ubuntu.

Method 1 - Pre-built Binary Package

Simply run this command and it will download and install the latest stable Erlang release from
Erlang Solutions.

$ sudo apt-get install erlang

Method 2 - Build and Install from Source

Download the tar file:

$ wget http://erlang.org/download/otp_src_19.0.tar.gz

Extract the tar file:

$ tar -zxf otp_src_19.0.tar.gz

Enter the extracted directory and set ERL_TOP to be the current path:

$ cd otp_src_19.0
$ export ERL_TOP=`pwd`

Now before configuring the build, you want to make sure you have all the dependencies you need
in order to install Erlang:

Basic dependencies:

$ sudo apt-get install autoconf libncurses-dev build-essential

Other applications dependencies

Application Dependency install

HiPE $ sudo apt-get install m4

https://riptutorial.com/ 48

https://www.erlang-solutions.com/resources/download.html

Application Dependency install

ODBC $ sudo apt-get install unixodbc-dev

OpenSSL $ sudo apt-get install libssl-dev

wxWidgets $ sudo apt-get install libwxgtk3.0-dev libglu-dev

Documentation $ sudo apt-get install fop xsltproc

Orber and other C++ projects $ sudo apt-get install g++

jinterface $ sudo apt-get install default-jdk

Configure and build:
You can set your own options, or leave it blank to run the default configuration. Advanced
configuration and build for Erlang/OTP.

$./configure [options]
$ make

Testing the build:

$ make release_tests
$ cd release/tests/test_server
$ $ERL_TOP/bin/erl -s ts install -s ts smoke_test batch -s init stop

After running these commands, open $ERL_TOP/release/tests/test_server/index.html with your web
browser and check that you don't have any fails. If all tests passed we're ok to continue to the
installation.

Installing:

$ make install

Build and Install Erlang/OTP on FreeBSD

The following examples show 3 main methods for installing Erlang/OTP on FreeBSD.

Method 1 - Pre-built Binary Package

Use pkg to install the pre-built binary package:

$ pkg install erlang

Test your new installation:

https://riptutorial.com/ 49

http://erlang.org/doc/installation_guide/INSTALL.html#id64709
http://erlang.org/doc/installation_guide/INSTALL.html#id64709

$ erl
Erlang/OTP 18 [erts-7.3.1] [source] [64-bit] [smp:2:2] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.3.1 (abort with ^G)

Method 2 - Build and install using the port
collection (recommended)

Build and install the port as usual:

$ make -C /usr/ports/lang/erlang install clean

Test your new installation:

$ erl
Erlang/OTP 18 [erts-7.3.1] [source] [64-bit] [smp:2:2] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.3.1 (abort with ^G)

This will fetch the release tarball from the official website, apply a few patches if needed, build the
release and install it. Obviously, it will take some time.

Method 3 - Build and install from the release
tarball

Note: building the release manually works, but using the two above methods should be preferred,
since the port collection embeds patches that render the release more FreeBSD friendly.

Download the release file:

$ fetch 'http://erlang.org/download/otp_src_18.3.tar.gz'

Check that its MD5 sum is correct:

$ fetch 'http://erlang.org/download/MD5'
MD5 100% of 24 kB 266 kBps 00m00s

$ grep otp_src_18.3.tar.gz MD5
MD5(otp_src_18.3.tar.gz)= 7e4ff32f97c36fb3dab736f8d481830b

$ md5 otp_src_18.3.tar.gz
MD5 (otp_src_18.3.tar.gz) = 7e4ff32f97c36fb3dab736f8d481830b

Extract the tarball:

https://riptutorial.com/ 50

$ tar xzf otp_src_18.3.tar.gz

Configure:

$./configure --disable-hipe

If you want to build Erlang with HiPe, you will need to apply the patches from the port collection.

Build:

$ gmake

Install:

$ gmake install

Test your new installation:

$ erl
Erlang/OTP 18 [erts-7.3] [source] [64-bit] [smp:2:2] [async-threads:10] [kernel-poll:false]

Eshell V7.3 (abort with ^G)

Build and install using kerl

kerl is a tool that helps you build and install Erlang/OTP releases.

Install curl:

$ make -C /usr/ports/ftp/curl install clean

Download kerl:

$ fetch 'https://raw.githubusercontent.com/kerl/kerl/master/kerl'
$ chmod +x kerl

Update the list of available releases:

$./kerl update releases
The available releases are:
R10B-0 R10B-10 R10B-1a R10B-2 R10B-3 R10B-4 R10B-5 R10B-6 R10B-7 R10B-8 R10B-9 R11B-0 R11B-1
R11B-2 R11B-3 R11B-4 R11B-5 R12B-0 R12B-1 R12B-2 R12B-3 R12B-4 R12B-5 R13A R13B01 R13B02-1
R13B02 R13B03 R13B04 R13B R14A R14B01 R14B02 R14B03 R14B04 R14B R14B_erts-5.8.1.1 R15B01
R15B02 R15B02_with_MSVCR100_installer_fix R15B03-1 R15B03 R15B R16A_RELEASE_CANDIDATE R16B01
R16B02 R16B03-1 R16B03 R16B 17.0-rc1 17.0-rc2 17.0 17.1 17.3 17.4 17.5 18.0 18.1 18.2 18.2.1
18.3 19.0

Build the required release:

https://riptutorial.com/ 51

https://github.com/kerl/kerl

$./kerl build 18.3 erlang-18.3

Check that the build is present in the build list:

$./kerl list builds
18.3,erlang-18.3

Install the build somewhere:

$./kerl install erlang-18.3 ./erlang-18.3

Source the activate file if you're running bash or the fish shell. If you're running a cshell, add the
build bin directory to the PATH:

$ setenv PATH "/some/where/erlang-18.3/bin/:$PATH"

Test your new installation:

$ which erl
/some/where/erlang-18.3/bin//erl

$ erl
Erlang/OTP 18 [erts-7.3] [source] [64-bit] [smp:2:2] [async-threads:10] [hipe] [kernel-
poll:false]

Eshell V7.3 (abort with ^G)

Other releases

If you want to build another version of Erlang/OTP, look for the other ports in the collection:

lang/erlang-runtime15•
lang/erlang-runtime16•
lang/erlang-runtime17•
lang/erlang-runtime18•

Reference

FreeBSD Handbook -> Chapter 4. Installing Applications: Packages and Ports•
Erlang on FreshPorts•
Kerl documentation on GitHub•

Build and Install Erlang/OTP on OpenBSD

Erlang on OpenBSD is currently broken on alpha, sparc and hppa architectures.

https://riptutorial.com/ 52

https://www.freshports.org/lang/erlang-runtime15/
https://www.freshports.org/lang/erlang-runtime16/
https://www.freshports.org/lang/erlang-runtime17/
https://www.freshports.org/lang/erlang-runtime18/
https://www.freebsd.org/doc/handbook/ports.html
https://www.freshports.org/lang/erlang/
https://github.com/kerl/kerl

Method 1 - Pre-built Binary Package

OpenBSD let you choose desired version you want to install on your system:

free-choice:

$ pkg_add erlang
a 0: <None>
1: erlang-16b.03p10v0
2: erlang-17.5p6v0
3: erlang-18.1p1v0
4: erlang-19.0v0

manual-choice:

pkg_add erlang%${version}
example:
pkg_add erlang%19

OpenBSD can support multiple version of Erlang. To make thinks easier to use, each binaries are
installed Erlang version in its name. So, if you have installed erlang-19.0v0, your erl binary will be
erl19.

If you want to use erl, you can create a symlink:

ln -s /usr/local/bin/erl19 /usr/local/bin/erl

or create an alias in your shell configuration file or in .profile file:

echo 'alias erl="erl19"' >> ~/.profile
or
echo 'alias erl="erl19"' >> ~/.shrc

You can now run erl:

erl19
or if you have an alias or symlink
erl
Erlang/OTP 19 [erts-8.0] [source] [async-threads:10] [kernel-poll:false]

Eshell V8.0 (abort with ^G)

Method 2 - Build and install using ports

 RELEASE=OPENBSD_$(uname -r | sed 's/\./_/g')
 cd /usr
 cvs -qz3 -danoncvs@anoncvs.openbsd.org:/cvs co -r${RELEASE}
 cd /usr/ports/lang/erlang

https://riptutorial.com/ 53

 ls -p
 # 16/ 17/ 18/ 19/ CVS/ Makefile Makefile.inc erlang.port.mk
 cd 19
 make && make install

Method 3 - Build from source

Build from source require additional packages:

git•
gmake•
autoconf-2.59•

pkg_add git gmake autoconf%2.59
git clone https://github.com/erlang/otp.git
cd otp
AUTOCONF_VERSION="2.59" ./build_build all

References

http://openports.se/lang/erlang•
http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/lang/erlang/•
https://www.openbsd.org/faq/faq15.html•
http://man.openbsd.org/OpenBSD-current/man1/pkg_add.1•

Read Installation online: https://riptutorial.com/erlang/topic/4483/installation

https://riptutorial.com/ 54

http://openports.se/lang/erlang
http://cvsweb.openbsd.org/cgi-bin/cvsweb/ports/lang/erlang/
https://www.openbsd.org/faq/faq15.html
http://man.openbsd.org/OpenBSD-current/man1/pkg_add.1
https://riptutorial.com/erlang/topic/4483/installation

Chapter 12: iolists

Introduction

While an Erlang string is a list of integers, an "iolist" is a list whose elements are either integers,
binaries or other iolists, e.g. ["foo", $b, $a, $r, <<"baz">>]. That iolist represents the string
"foobarbaz".

While you can convert an iolist to a binary with iolist_to_binary/1, you often don't need to, since
Erlang library functions such as file:write_file/2 and gen_tcp:send/2 accept iolists as well as
strings and binaries.

Syntax

-type iolist() :: maybe_improper_list(byte() | binary() | iolist(), binary() | []).•

Remarks

What is an iolist?

It's any binary. Or any list containing integers between 0 and 255. Or any arbitrarily nested list
containing either of those two things.

Original article

Use deeply nested lists of integers and binaries to represent IO data to avoid copying when
concatenating strings or binaries.

They are efficient even when combining large amounts of data. For example combining two fifty
kilobyte binaries using binary syntax <<B1/binary, B2/binary>> would typically require reallocating
both into a new 100kb binary. Using IO lists [B1, B2] only allocates the list, in this case three
words. A list uses one word and another word per element, see here for more information.

Using the ++ operator would have created a whole new list, instead of just a new two element list.
Recreating lists to add elements to the end can become expensive when the list is long.

In cases where the binary data is small, allocating IO lists can be greater than appending the
binaries. If the binary data can either be small or large it is often better to accept the consistent
cost of IO lists.

Note that appending binaries is optimised as described here. In short, a binary can have extra,
hidden space allocated. This will be filled if another binary is appended to it that fits in the free
space. This means that not every binary append will cause a full copy of both binaries.

Examples

https://riptutorial.com/ 55

http://www.erlangpatterns.org/iolist.html
http://www.erlang.org/doc/efficiency_guide/advanced.html#id68923
http://www.erlang.org/doc/efficiency_guide/binaryhandling.html

IO lists are typically used to build output to a port e.g. a file or network socket.

file:write_file("myfile.txt", ["Hi " [<<"there">>], $\n]).

Add the allowed data types to the front of an IO list, creating a new one.

["Guten Tag " | [<<"Hello">>]].
[<<"Guten Tag ">> | [<<"Hello">>]].
[$G, $u, $t, $e, $n , $T, $a, $g | [<<"Hello">>]].
[71,117,116,101,110,84,97,103,<<"Hello">>].

IO data can be efficiently added to the end of a list.

Data_1 = [<<"Hello">>].
Data_2 = [Data_1,<<" Guten Tag ">>].

Be careful with improper lists

["Guten tag " | <<"Hello">>].

In the shell this will be printed as ["Guten tag "|<<"Hello">>] instead of ["Guten tag ",<<"Hello">>].
The pipe operator will create an improper list if the last element on the right is not a list. While an
improper list whose "tail" is a binary is still a valid iolist, improper lists can cause issues because
many recursive functions expect an empty list to be the last element, and not, as in this case a
binary.

Get IO list size

Data = ["Guten tag ",<<"Hello">>],
Len = iolist_size(Data),
[<<Len:32>> | Data].

The size of an iolist can be calculated using the iolist_size/1. This snippet calculates the size of a
message and creates and appends it to the front as a four byte binary. This is a typical operation
in messaging protocols.

IO list can be converted to a binary

<<"Guten tag, Hello">> = iolist_to_binary(["Guten tag, ",<<"Hello">>]).

An IO list can be converted to a binary using the iolist_to_binary/1 function. If the data is going to
be stored for a long period or sent as a message to other processes then it may make sense to
convert it to a binary. The one off cost of converting to a binary can be cheaper than copying the
IO list many times, in garbage collection of a single process or in message passing to others.

Read iolists online: https://riptutorial.com/erlang/topic/5677/iolists

https://riptutorial.com/ 56

https://riptutorial.com/erlang/topic/5677/iolists

Chapter 13: Loop and Recursion

Syntax

function (list | iolist | tuple) -> function(tail).•

Remarks

Why recursive functions?

Erlang is a functional programming language and don't any kind of loop structure. Everything in
functional programming is based on data, type and functions. If you want a loop, you need to
create a function who call itself.

Traditional while or for loop in imperative and object oriented language can be represented like
that in Erlang:

loop() ->
 % do something here
 loop().

Good method to understand this concept is to expand all function calls. We'll see that on other
examples.

Examples

List

Here the simplest recursive function over list type. This function only navigate into a list from its
start to its end and do nothing more.

-spec loop(list()) -> ok.
loop([]) ->
 ok;
loop([H|T]) ->
 loop(T).

You can call it like this:

loop([1,2,3]). % will return ok.

Here the recursive function expansion:

loop([1|2,3]) ->

https://riptutorial.com/ 57

http://erlang.org/doc/reference_manual/data_types.html#id70770

 loop([2|3]) ->
 loop([3|]) ->
 loop([]) ->
 ok.

Recursive loop with IO actions

Previous code do nothing, and is pretty useless. So, we will create now a recursive function who
execute some actions. This code is similar to lists:foreach/2.

-spec loop(list(), fun()) -> ok.
loop([], _) ->
 ok;
loop([H|T], Fun)
 when is_function(Fun) ->
 Fun(H),
 loop(T, Fun).

You can call it in like this:

Fun = fun(X) -> io:format("~p", [X]) end.
loop([1,2,3]).

Here the recursive function expansion:

loop([1|2,3], Fun(1)) ->
 loop([2|3], Fun(2)) ->
 loop([3|], Fun(3)) ->
 loop([], _) ->
 ok.

You can compare with lists:foreach/2 output:

lists:foreach(Fun, [1,2,3]).

Recursive loop over list returning modified
list

Another useful example, similar to lists:map/2. This function will take one list and one anonymous
function. Each time a value in list is matched, we apply function on it.

-spec loop(A :: list(), fun()) -> list().
loop(List, Fun)
 when is_list(List), is_function(Fun) ->
 loop(List, Fun, []).

-spec loop(list(), fun(), list()) -> list() | {error, list()}.

https://riptutorial.com/ 58

http://erlang.org/doc/man/lists.html#foreach-2
http://erlang.org/doc/man/lists.html#foreach-2
http://erlang.org/doc/man/lists.html#map-2

loop([], _, Buffer)
 when is_list(Buffer) ->
 lists:reverse(Buffer);
loop([H|T], Fun, Buffer)
 when is_function(Fun), is_list(Buffer) ->
 BufferReturn = [Fun(H)] ++ Buffer,
 loop(T, Fun, BufferReturn).

You can call it like this:

Fun(X) -> X+1 end.
loop([1,2,3], Fun).

Here the recursive function expansion:

loop([1|2,3], Fun(1), [2]) ->
 loop([2|3], Fun(2), [3,2]) ->
 loop([3|], Fun(3), [4,3,2]) ->
 loop([], _, [4,3,2]) ->
 list:reverse([4,3,2]) ->
 [2,3,4].

This function is also called "tail recursive function", because we use a variable like an accumulator
to pass modified data over multiple execution context.

Iolist and Bitstring

Like list, simplest function over iolist and bitstring is:

-spec loop(iolist()) -> ok | {ok, iolist} .
loop(<<>>) ->
 ok;
loop(<<Head, Tail/bitstring>>) ->
 loop(Tail);
loop(<<Rest/bitstring>>) ->
 {ok, Rest}

You can call it like this:

loop(<<"abc">>).

Here the recursive function expansion:

loop(<<"a"/bitstring, "bc"/bitstring>>) ->
 loop(<<"b"/bitstring, "c"/bitstring>>) ->
 loop(<<"c"/bitstring>>) ->
 loop(<<>>) ->
 ok.

Recursive function over variable binary size

https://riptutorial.com/ 59

http://erlang.org/doc/reference_manual/data_types.html#id70915

This code take bitstring and dynamically define binary size of it. So if, if we set a size of 4, every 4
bits, a data will be matched. This loop do nothing interesting, its just our pillar.

loop(Bitstring, Size)
 when is_bitstring(Bitstring), is_integer(Size) ->
 case Bitstring of
 <<>> ->
 ok;
 <<Head:Size/bitstring,Tail/bitstring>> ->
 loop(Tail, Size);
 <<Rest/bitstring>> ->
 {ok, Rest}
 end.

You can call it like this:

loop(<<"abc">>, 4).

Here the recursive function expansion:

loop(<<6:4/bitstring, 22, 38, 3:4>>, 4) ->
 loop(<<1:4/bitstring, "bc">>, 4) ->
 loop(<<6:4/bitstring, 38,3:4>>, 4) ->
 loop(<<2:4/bitstring, "c">>, 4) ->
 loop(<<6:4/bitstring, 3:4>>, 4) ->
 loop(<<3:4/bitstring>>, 4) ->
 loop(<<>>, 4) ->
 ok.

Our bitstring is splitted over 7 patterns. Why? Because by default, Erlang use binary size of 8 bits,
if we split it in two, we have 4 bits. Our string is 8*3=24 bits. 24/4=6 patterns. Last pattern is <<>>.
loop/2 function is called 7 times.

recursive function over variable binary size
with actions

Now, we can do more interesting thing. This function take one more argument, an anonymous
function. Everytime we match a pattern, this one will be passed to it.

-spec loop(iolist(), integer(), function()) -> ok.
loop(Bitstring, Size, Fun) ->
 when is_bitstring(Bitstring), is_integer(Size), is_function(Fun) ->
 case Bitstring of
 <<>> ->
 ok;
 <<Head:Size/bitstring,Tail/bitstring>> ->
 Fun(Head),
 loop(Tail, Size, Fun);
 <<Rest/bitstring>> ->
 Fun(Rest),
 {ok, Rest}

https://riptutorial.com/ 60

 end.

You can call it like this:

Fun = fun(X) -> io:format("~p~n", [X]) end.
loop(<<"abc">>, 4, Fun).

Here the recursive function expansion:

loop(<<6:4/bitstring, 22, 38, 3:4>>, 4, Fun(<<6:4>>) ->
 loop(<<1:4/bitstring, "bc">>, 4, Fun(<<1:4>>)) ->
 loop(<<6:4/bitstring, 38,3:4>>, 4, Fun(<<6:4>>)) ->
 loop(<<2:4/bitstring, "c">>, 4, Fun(<<2:4>>)) ->
 loop(<<6:4/bitstring, 3:4>>, 4, Fun(<<6:4>>) ->
 loop(<<3:4/bitstring>>, 4, Fun(<<3:4>>) ->
 loop(<<>>, 4) ->
 ok.

Recursive function over bitstring returning
modified bitstring

This one is similar to lists:map/2 but for bitstring and iolist.

% public function (interface).
-spec loop(iolist(), fun()) -> iolist() | {iolist(), iolist()}.
loop(Bitstring, Fun) ->
 loop(Bitstring, 8, Fun).

% public function (interface).
-spec loop(iolist(), integer(), fun()) -> iolist() | {iolist(), iolist()}.
loop(Bitstring, Size, Fun) ->
 loop(Bitstring, Size, Fun, <<>>)

% private function.
-spec loop(iolist(), integer(), fun(), iolist()) -> iolist() | {iolist(), iolist()}.
loop(<<>>, _, _, Buffer) ->
 Buffer;
loop(Bitstring, Size, Fun, Buffer) ->
 when is_bitstring(Bitstring), is_integer(Size), is_function(Fun) ->
 case Bitstring of
 <<>> ->
 Buffer;
 <<Head:Size/bitstring,Tail/bitstring>> ->
 Data = Fun(Head),
 BufferReturn = <<Buffer/bitstring, Data/bitstring>>,
 loop(Tail, Size, Fun, BufferReturn);
 <<Rest/bitstring>> ->
 {Buffer, Rest}
 end.

This code seems more complexe. Two functions were added: loop/2 and loop/3. These two
functions are simple interface to loop/4.

https://riptutorial.com/ 61

http://erlang.org/doc/man/lists.html#map-2

You can execute it like this:

Fun = fun(<<X>>) -> << (X+1) >> end.
loop(<<"abc">>, Fun).
% will return <<"bcd">>

Fun = fun(<<X:4>>) -> << (X+1) >> end.
loop(<<"abc">>, 4, Fun).
% will return <<7,2,7,3,7,4>>

loop(<<"abc">>, 4, Fun, <<>>).
% will return <<7,2,7,3,7,4>>

Map

Map in Erlang is equivalent of hashes in Perl or dictionaries in Python, its a key/value store. To list
every value stored in, you can list every key, and return key/value pair. This first loop give you an
idea:

loop(Map) when is_map(Map) ->
 Keys = maps:keys(Map),
 loop(Map, Keys).

loop(_ , []) ->
 ok;
loop(Map, [Head|Tail]) ->
 Value = maps:get(Head, Map),
 io:format("~p: ~p~n", [Head, Value]),
 loop(Map, Tail).

You can execute it like that:

Map = #{1 => "one", 2 => "two", 3 => "three"}.
loop(Map).
% will return:
% 1: "one"
% 2: "two"
% 3: "three"

Managing State

Recursive function use their states to loop. When you spawn new process, this process will be
simply a loop with some defined state.

Anonymous function

Here 2 examples of recursive anonymous functions based on previous example. Firstly, simple
infinite loop:

InfiniteLoop = fun
 R() ->
 R() end.

https://riptutorial.com/ 62

http://erlang.org/doc/reference_manual/data_types.html#id70076
http://perldoc.perl.org/perldata.html
https://docs.python.org/2/tutorial/datastructures.html#dictionaries
http://erlang.org/doc/reference_manual/data_types.html#id67636

Secondly, anonymous function doing loop over list:

LoopOverList = fun
 R([]) -> ok;
 R([H|T]) ->
 R(T) end.

These two functions could be rewritten as:

InfiniteLoop = fun loop/0.

In this case, loop/0 is a reference to loop/0 from remarks. Secondly, with little more complex:

LoopOverLlist = fun loop/2.

Here, loop/2 is a reference to loop/2 from list example. These two notations are syntactic sugar.

Read Loop and Recursion online: https://riptutorial.com/erlang/topic/10720/loop-and-recursion

https://riptutorial.com/ 63

https://riptutorial.com/erlang/topic/10720/loop-and-recursion

Chapter 14: NIFs

Examples

Definition

Official documentation: http://erlang.org/doc/tutorial/nif.html

NIFs were introduced in Erlang/OTP R13B03 as an experimental feature. The purpose is to allow
calling C-code from inside Erlang code.

NIFs are implemented in C instead of Erlang, but they appear as any other functions in the scope
of Erlang code as they belong to the module where the include happened. NIF libraries are linked
on compilation and loaded in runtime.

Because NIF libraries are dynamically linked into the emulator process, they are fast, but also
dangerous, because crashing in a NIF brings the emulator down too.

Example: current UNIX time

Here is a very simple example to illustrate how to write a NIF.

Directory structure:

nif_test
├── c_src
│ ├── Makefile
│ └── nif_test.c
├── rebar.config
└── src
 ├── nif_test.app.src
 └── nif_test.erl

This structure can be easily initialized using Rebar3:

$ rebar3 new lib nif_test && cd nif_test && rebar3 new cmake

Contents of nif_test.c:

#include "erl_nif.h"
#include "time.h"

static ERL_NIF_TERM now(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {
 return enif_make_int(env, time(0));
}

static ErlNifFunc nif_funcs[] = {
 {"now", 0, now}
};

https://riptutorial.com/ 64

http://erlang.org/doc/tutorial/nif.html

ERL_NIF_INIT(nif_test,nif_funcs,NULL,NULL,NULL,NULL);

Contents of nif_test.erl:

-module(nif_test).
-on_load(init/0).
-export([now/0]).

-define(APPNAME, nif_test).
-define(LIBNAME, nif_test).

%%==
%% API functions
%%==

now() -> nif_not_loaded.

%%==
%% Internal functions
%%==

init() ->
 SoName = case code:priv_dir(?APPNAME) of
 {error, bad_name} ->
 case filelib:is_dir(filename:join(["..", priv])) of
 true -> filename:join(["..", priv, ?LIBNAME]);
 _ -> filename:join([priv, ?LIBNAME])
 end;
 Dir -> filename:join(Dir, ?LIBNAME)
 end,
 erlang:load_nif(SoName, 0).

Contents of rebar.config:

{erl_opts, [debug_info]}.
{deps, []}.

{pre_hooks, [
 {"(linux|darwin|solaris)", compile, "make -C c_src"},
 {"(freebsd)", compile, "gmake -C c_src"}
]}.
{post_hooks, [
 {"(linux|darwin|solaris)", clean, "make -C c_src clean"},
 {"(freebsd)", clean, "gmake -C c_src clean"}
]}.

Now you can run the example:

$ rebar3 shell

===> Verifying dependencies...
===> Compiling nif_test
make: Entering directory '/home/vschroeder/Projects/nif_test/c_src'
cc -O3 -std=c99 -finline-functions -Wall -Wmissing-prototypes -fPIC -I
/usr/local/lib/erlang/erts-7.3.1/include/ -I /usr/local/lib/erlang/lib/erl_interface-
3.8.2/include -c -o /home/vschroeder/Projects/nif_test/c_src/nif_test.o
/home/vschroeder/Projects/nif_test/c_src/nif_test.c

https://riptutorial.com/ 65

cc /home/vschroeder/Projects/nif_test/c_src/nif_test.o -shared -L
/usr/local/lib/erlang/lib/erl_interface-3.8.2/lib -lerl_interface -lei -o
/home/vschroeder/Projects/nif_test/c_src/../priv/nif_test.so
make: Leaving directory '/home/vschroeder/Projects/nif_test/c_src'
Erlang/OTP 18 [erts-7.3.1] [source] [64-bit] [smp:4:4] [async-threads:0] [hipe] [kernel-
poll:false]

Eshell V7.3.1 (abort with ^G)
1> nif_test:now().
1469732239
2> nif_test:now().
1469732264
3>

Erlang C API (C to Erlang)

Official documentation: http://erlang.org/doc/man/erl_nif.html

The most important structs, types and macros of the Erlang C API are the following:

ERL_NIF_TERM: the type for Erlang terms. This is the return type that NIF functions must follow.•
ERL_NIF_INIT(MODULE, ErlNifFunc funcs[], load, reload, upgrade, unload): This is the macro
that actually creates the NIFs defined in a certain C file. It must be evaluated in the global
scope. Normally it will be the last line in the C file.

•

ErlNifFunc: the type with which each NIF is passed to ERL_NIF_INIT to be exported. This struct
is composed of name, arity, a poiter to the C function and flags. An array of this type with all
NIF definitions should be created to be passed to ERL_NIF_INIT.

•

ErlNifEnv: the Erlang environment where the NIF is being executed. It's mandatory to pass
the environment as the first argument for every NIF. This type is opaque and can only be
manipulated using the functions that the Erlang C API offers.

•

Read NIFs online: https://riptutorial.com/erlang/topic/5274/nifs

https://riptutorial.com/ 66

http://erlang.org/doc/man/erl_nif.html
https://riptutorial.com/erlang/topic/5274/nifs

Chapter 15: Processes

Examples

Creating Processes

We create a new concurrent process by calling the spawn function. The spawn function will get as
parameter a function Fun that the process will evaluate. The return value of the spawn function is the
created process identifier (pid).

1> Fun = fun() -> 2+2 end.
#Fun<erl_eval.20.52032458>
2> Pid = spawn(Fun).
<0.60.0>

You can also use spawn/3 to start a process that will execute a specific function from a module:
spawn(Module, Function, Args).
Or use spawn/2 or spawn/4 similarly to start a process in a different node: spawn(Node, Fun) or
spawn(Node, Module, Function, Args).

Message Passing

Two erlang processes can communicate with each other, wich is also known as message passing.
This procedure is asynchronous in the form that the sending process will not halt after sending the
message.

Sending Messages

This can be achieved with the construct Pid ! Message, where Pid is a valid process identifier (pid)
and Message is a value of any data type.

Each process has a "mailbox" that contains the received messages in the received order. This
"mailbox" can be emptied with the build in flush/0 function.

If a message is send to a non existing process, the message will be discarded without any error!

An example might look like the following, where self/0 returns the pid of the current process and
pid/3 creates a pid.

1> Pidsh = self().
<0.32.0>
2> Pidsh ! hello.
hello
3> flush().
Shell got hello
ok
4> <0.32.0> ! hello.
* 1: syntax error before: ’<’

https://riptutorial.com/ 67

5> Pidsh2 = pid(0,32,0).
<0.32.0>
6> Pidsh2 ! hello2.
hello2
7> flush().
Shell got hello2
ok

It is also possible to send a message to multiple processes at once, with Pid3!Pid2!Pid1!Msg.

Receiving Messages

Received messages can be processed with the receive construct.

receive
 Pattern1 -> exp11, .., exp1n1;
 Pattern2 when Guard -> exp21, .., exp2n2;
 ...
 Other -> exp31, .., exp3n3;
 ...
 after Timeout -> exp41, .., exp4n4
end

The Pattern will be compared to the messages in the "mailbox" starting with the first and oldest
message.
If a pattern matches, the matched message is removed from the "mailbox" and the clause body is
evaluated.

It is also possible to define timeouts with the after construct.
A Timeout is either the waiting time in milliseconds or the atom infinity.

The return value of receive is the last evaluated clause body.

Example (Counter)

A (very) simple counter with message passing might look like in the following.

-module(counter0).
-export([start/0,loop/1]).

% Creating the counter process.
start() ->
 spawn(counter0, loop, [0]).

% The counter loop.
loop(Val) ->
 receive
 increment ->
 loop(Val + 1)
 end.

Interaction with the counter.

https://riptutorial.com/ 68

1> C0 = counter0:start().
<0.39.0>
2> C0!increment.
increment
3> C0!increment.
increment

Register Processes

It is possible to register a process (pid) to a global alias.
This can be achieved with the build in register(Alias, Pid) function, where Alias is the atom to
access the process as and Pid is the process id.

The alias will be globally available!
It is very easy to create shared state, wich is usually not preferable. (See also here)

It is possible to unregister a process with unregister(Pid) and receive the pid from an alias with
whereis(Alias).

Use registered() for a list of all registered aliases.

The example registers the Atom foo to the pid of the current process and sends a message using
the registered Atom.

1> register(foo, self()).
true
2> foo ! 'hello world'.
'hello world'

Read Processes online: https://riptutorial.com/erlang/topic/2285/processes

https://riptutorial.com/ 69

https://stackoverflow.com/questions/2312577/in-erlang-how-is-using-registered-processes-different-from-global-variables-in-a#2319050
https://riptutorial.com/erlang/topic/2285/processes

Chapter 16: Rebar3

Examples

Definition

Official page: https://www.rebar3.org/

Source code: https://github.com/erlang/rebar3

Rebar3 is mainly a dependency manager for Erlang and Elixir projects, but it also offers several
other features, like bootstrapping projects (according to several templates, following the OTP
principles), task executor, build tool, test runner and is extensible by using plugins.

Installing Rebar3

Rebar3 is written in Erlang, so you need Erlang to run it. It is available as a binary that you can
download and run. Just fetch the nightly build and give it execution permissions:

$ wget https://s3.amazonaws.com/rebar3/rebar3 && chmod +x rebar3

Place this binary in a convenient place and add it to your path. For example, in a bin directory in
your home:

$ mkdir ~/bin && mv rebar3 ~/bin
$ export PATH=~/bin:$PATH

This last line should be put in your .bashrc. As an alternative, one can also link the binary to
/usr/local/bin directory, making it available as a normal command.

$ sudo ln -s /path/to/your/rebar3 /usr/local/bin

Installing from Source Code

As Rebar3 is free, open source and written in Erlang, it's possible to simply clone and build it from
the source code.

$ git clone https://github.com/erlang/rebar3.git
$ cd rebar3
$./bootstrap

This will create the rebar3 script, which you can put on your PATH or link to /usr/local/bin as
explained in the section "Installing Rebar3" above.

Bootstrapping a new Erlang project

https://riptutorial.com/ 70

https://www.rebar3.org/
https://github.com/erlang/rebar3

To bootstrap a new Erlang project, simply choose the template you want to use from the list. The
available templates can be retrieved by the following command:

$ rebar3 new

app (built-in): Complete OTP Application structure
cmake (built-in): Standalone Makefile for building C/C++ in c_src
escript (built-in): Complete escriptized application structure
lib (built-in): Complete OTP Library application (no processes) structure
plugin (built-in): Rebar3 plugin project structure
release (built-in): OTP Release structure for executable programs

Once you have chosen the appropriate template, bootstrap it with the following command (rebar3
will create a new directory for your project):

$ rebar3 new lib libname

===> Writing libname/src/libname.erl
===> Writing libname/src/libname.app.src
===> Writing libname/rebar.config
===> Writing libname/.gitignore
===> Writing libname/LICENSE
===> Writing libname/README.md

OBS: Although you can run rebar3 new <template> . to create the new project in the current
directory, this is not recommended, because the bootstrapped files will use . (dot) as application
and module names and also in the rebar.config, which will cause you syntax problems.

Read Rebar3 online: https://riptutorial.com/erlang/topic/4480/rebar3

https://riptutorial.com/ 71

https://riptutorial.com/erlang/topic/4480/rebar3

Chapter 17: Supervisors

Examples

Basic supervisor with one worker process

This example uses the map format introduced in Erlang/OTP 18.0.

%% A module implementing a supervisor usually has a name ending with `_sup`.
-module(my_sup).

-behaviour(supervisor).

%% API exports
-export([start_link/0]).

%% Behaviour exports
-export([init/1]).

start_link() ->
 %% If needed, we can pass an argument to the init callback function.
 Args = [],
 supervisor:start_link({local, ?MODULE}, ?MODULE, Args).

%% The init callback function is called by the 'supervisor' module.
init(_Args) ->
 %% Configuration options common to all children.
 %% If a child process crashes, restart only that one (one_for_one).
 %% If there is more than 1 crash ('intensity') in
 %% 5 seconds ('period'), the entire supervisor crashes
 %% with all its children.
 SupFlags = #{strategy => one_for_one,
 intensity => 1,
 period => 5},

 %% Specify a child process, including a start function.
 %% Normally the module my_worker would be a gen_server
 %% or a gen_fsm.
 Child = #{id => my_worker,
 start => {my_worker, start_link, []}},

 %% In this case, there is only one child.
 Children = [Child],

 %% Return the supervisor flags and the child specifications
 %% to the 'supervisor' module.
 {ok, {SupFlags, Children}}.

Read Supervisors online: https://riptutorial.com/erlang/topic/6996/supervisors

https://riptutorial.com/ 72

https://riptutorial.com/erlang/topic/6996/supervisors

Credits

S.
No

Chapters Contributors

1
Getting started with
Erlang Language

A. Sarid, CodeWarrior, Community, drozzy, Efraim Weiss, evnu,
Gokul, legoscia, Limmen, maze-le, YsenGrimm, ZeWaren

2 Behaviours legoscia

3 Bit Syntax: Defaults 7stud

4 Data Types
7stud, A. Sarid, Ali Sabil, Atomic_alarm, bigo, drozzy, Eddie
Antonio Santos, Evgeny Levenets, filmor, gabriel14, Gokul,
Gootik, halfelf, legoscia

5 director Pouriya

6
External Term
Format

M. Kerjouan

7 File I/O CodeDreamer, drozzy, Victor Schröder

8 Format Strings drozzy, legoscia

9 gen_server behavior drozzy, legoscia, M. Kerjouan, Steve Pallen

10 Installation A. Sarid, drozzy, M. Kerjouan, ZeWaren

11 iolists Dennis Y. Parygin, legoscia

12 Loop and Recursion M. Kerjouan

13 NIFs Victor Schröder

14 Processes A. Sarid, YsenGrimm

15 Rebar3 drozzy, Victor Schröder

16 Supervisors legoscia

https://riptutorial.com/ 73

https://riptutorial.com/contributor/3132173/a--sarid
https://riptutorial.com/contributor/1658480/codewarrior
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/5516068/efraim-weiss
https://riptutorial.com/contributor/436853/evnu
https://riptutorial.com/contributor/722094/gokul
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/4180392/limmen
https://riptutorial.com/contributor/2320744/maze-le
https://riptutorial.com/contributor/2005366/ysengrimm
https://riptutorial.com/contributor/307692/zewaren
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/926143/7stud
https://riptutorial.com/contributor/926143/7stud
https://riptutorial.com/contributor/3132173/a--sarid
https://riptutorial.com/contributor/634131/ali-sabil
https://riptutorial.com/contributor/4651282/atomic-alarm
https://riptutorial.com/contributor/1399933/bigo
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/6626414/eddie-antonio-santos
https://riptutorial.com/contributor/6626414/eddie-antonio-santos
https://riptutorial.com/contributor/5794703/evgeny-levenets
https://riptutorial.com/contributor/542190/filmor
https://riptutorial.com/contributor/1387378/gabriel14
https://riptutorial.com/contributor/722094/gokul
https://riptutorial.com/contributor/306703/gootik
https://riptutorial.com/contributor/958529/halfelf
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/7224387/pouriya
https://riptutorial.com/contributor/6782635/m--kerjouan
https://riptutorial.com/contributor/2231098/codedreamer
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/6782635/m--kerjouan
https://riptutorial.com/contributor/7863380/steve-pallen
https://riptutorial.com/contributor/3132173/a--sarid
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/6782635/m--kerjouan
https://riptutorial.com/contributor/307692/zewaren
https://riptutorial.com/contributor/5528144/dennis-y--parygin
https://riptutorial.com/contributor/113848/legoscia
https://riptutorial.com/contributor/6782635/m--kerjouan
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/3132173/a--sarid
https://riptutorial.com/contributor/2005366/ysengrimm
https://riptutorial.com/contributor/74865/drozzy
https://riptutorial.com/contributor/1240001/victor-schroder
https://riptutorial.com/contributor/113848/legoscia

	About
	Chapter 1: Getting started with Erlang Language
	Remarks
	Start here
	Links
	Versions
	Examples
	Hello World

	First the application source code:
	Now, let's run our application:
	Modules
	Function
	List Comprehension
	Starting and Stopping the Erlang Shell
	Pattern Matching

	Chapter 2: Behaviours
	Examples
	Using a behaviour
	Defining a behaviour
	Optional callbacks in a custom behaviour

	Chapter 3: Bit Syntax: Defaults
	Introduction
	Examples
	Defaults explained

	Chapter 4: Bit Syntax: Defaults
	Introduction
	Examples
	Rewrite of the docs.

	Chapter 5: Data Types
	Remarks
	Examples
	Numbers
	Atoms

	Examples
	Atoms that are used in most Erlang programs
	Use as tags
	Storage
	Binaries and Bitstrings
	Tuples
	Lists

	Prepending an element to a list
	Concatenating lists
	Strings
	Processes Identifiers (Pid)
	Funs
	Maps
	Bit Syntax: Defaults

	Chapter 6: director
	Introduction
	Remarks
	Warnings
	Examples
	Download
	Compile
	How it works
	Can i debug director?
	Generate API documentation

	Chapter 7: External Term Format
	Introduction
	Examples
	Using ETF with Erlang
	Using ETF with C

	Initializing data structure
	Encoding number
	Encoding atom
	Encoding tuple
	Encoding list
	Encoding map
	Chapter 8: File I/O
	Examples
	Reading from a file

	Read the entire file at a time
	Read one line at a time
	Read with the random access
	Writing to a file

	Write one line at a time
	Write the entire file at once
	Write with random access
	Chapter 9: Format Strings
	Syntax
	Examples
	Common control sequences in format strings

	~s
	~w
	~p
	Chapter 10: gen_server behavior
	Remarks
	Examples
	Greeter Service
	Using gen_server behavior

	gen_server behaviour
	start_link/0
	start_link/3,4
	init/1
	handle_call/3
	handle_cast/2
	handle_info/2
	terminate/2
	code_change/3

	Starting This process
	Simple Key/Value Database
	Using our cache server

	Chapter 11: Installation
	Examples
	Build and Install Erlang/OTP on Ubuntu

	Method 1 - Pre-built Binary Package
	Method 2 - Build and Install from Source
	Build and Install Erlang/OTP on FreeBSD

	Method 1 - Pre-built Binary Package
	Method 2 - Build and install using the port collection (recommended)
	Method 3 - Build and install from the release tarball
	Build and install using kerl
	Other releases
	Reference
	Build and Install Erlang/OTP on OpenBSD

	Method 1 - Pre-built Binary Package
	Method 2 - Build and install using ports
	Method 3 - Build from source
	References
	Chapter 12: iolists
	Introduction
	Syntax
	Remarks
	Examples
	IO lists are typically used to build output to a port e.g. a file or network socket.
	Add the allowed data types to the front of an IO list, creating a new one.
	IO data can be efficiently added to the end of a list.
	Be careful with improper lists
	Get IO list size
	IO list can be converted to a binary

	Chapter 13: Loop and Recursion
	Syntax
	Remarks

	Why recursive functions?
	Examples
	List

	Recursive loop with IO actions
	Recursive loop over list returning modified list
	Iolist and Bitstring

	Recursive function over variable binary size
	recursive function over variable binary size with actions
	Recursive function over bitstring returning modified bitstring
	Map
	Managing State
	Anonymous function

	Chapter 14: NIFs
	Examples
	Definition
	Example: current UNIX time
	Erlang C API (C to Erlang)

	Chapter 15: Processes
	Examples
	Creating Processes
	Message Passing

	Sending Messages
	Receiving Messages
	Example (Counter)
	Register Processes

	Chapter 16: Rebar3
	Examples
	Definition
	Installing Rebar3
	Installing from Source Code
	Bootstrapping a new Erlang project

	Chapter 17: Supervisors
	Examples
	Basic supervisor with one worker process

	Credits

