
express

#express

Table of Contents

About 1

Chapter 1: Getting started with express 2

Remarks 2

Versions 2

Versions from here. 2

Examples 13

Installation 13

To create and run a new express server 13

Hello World App, using ExpressJS 4 and Node >= 4 13

Preface 13

Installation 14

Directory Contents 14

Code 14

Execution 14

Starting an application with the Express generator 15

Creating an EJS app 16

Chapter 2: Connect 17

Examples 17

Connect and Express 17

Middleware 17

Errors and error middleware 18

Chapter 3: Error handling 19

Syntax 19

Parameters 19

Examples 19

Basic sample 19

Chapter 4: Explain Routing in Express 20

Examples 20

Express Router 20

Chainable route handlers for a route path by using app.route 20

Chapter 5: Express Database Integration 21

Examples 21

Connect to MongoDB with Node & Express 21

Chapter 6: express-generator 23

Parameters 23

Remarks 23

Examples 23

Installing Express Generator 23

Creating an App 23

Start App 23

Chapter 7: Handling static files 25

Syntax 25

Remarks 25

Examples 25

Basic Example 25

Multiple Directories Example 25

Virtual Path Prefix Example 26

Absolute Path to Static Files Directory Example 26

Absolute Path to Directory & Virtual Path Prefix Example 26

Basic static files and favicon serve example 26

Chapter 8: How does ExpressJs work 28

Examples 28

Handling request/response 28

The syntactic sugar 28

The Express App 28

Middlewares Stack 28

Chapter 9: Logging 30

Remarks 30

Examples 30

Installation 30

Simple Express logging of all request to STDOUT 30

Write Express logs to a single file 30

Write Express logs to a rotating log file 31

Chapter 10: Routing 32

Examples 32

Routing Hello World 32

Routing middleware 32

Multiple Routes 33

Chapter 11: using https with express 35

Examples 35

Using https with express 35

Chapter 12: View engine setup 36

Introduction 36

Remarks 36

Examples 36

1:setting up the views 36

2.EJS file example(refer 1.setting up... before this) 36

3.rendering view with express(refer 2.EJS file... before this) 36

4.after rendering final HTML is created(refer 3.rendering... before this) 37

Chapter 13: Writing Express Middleware 38

Syntax 38

Parameters 38

Remarks 38

Examples 38

Logger Middleware 38

requestTime Middleware 39

CORS Middleware 40

Credits 42

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: express

It is an unofficial and free express ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official express.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/express
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with express

Remarks

Express.js is, in the words of the developers, a "fast, unopinionated, minimalist web framework for
Node.js."

Designed to be minimal and flexible, Express offers a set of features for creating web and mobile
applications. From HTTP methods to built-in middleware, Express is designed to provide you with
the features you need to build a web or mobile app on Node.js.

If you want to build an app on Node.js Express is a great choice, whether you use vanilla Express
or one of the many frameworks either based on Express or built on top of Express. A few of these
frameworks can be found here.

Versions

Versions from here.

Version Notes Release Date

4.15.3 2017-05-16

4.15.2 2017-03-06

4.15.1 2017-03-05

4.15.0 2017-03-01

4.14.1 2017-01-28

4.14.0 2016-06-16

4.13.4 2016-01-21

4.13.3 2015-08-02

4.13.2 2015-07-31

4.13.1 2015-07-05

4.13.0 2015-06-20

4.12.4 2015-05-17

4.12.3 2015-03-17

https://riptutorial.com/ 2

https://expressjs.com/en/resources/frameworks.html
https://github.com/expressjs/express/blob/master/History.md
https://github.com/expressjs/express/blob/master/History.md#4153--2017-05-16
https://github.com/expressjs/express/blob/master/History.md#4152--2017-03-06
https://github.com/expressjs/express/blob/master/History.md#4151--2017-03-05
https://github.com/expressjs/express/blob/master/History.md#4150--2017-03-01
https://github.com/expressjs/express/blob/master/History.md#4141--2017-01-28
https://github.com/expressjs/express/blob/master/History.md#4140--2016-06-16

Version Notes Release Date

4.12.2 2015-03-02

4.12.1 2015-03-01

4.12.0 2015-02-23

4.11.2 2015-01-20

4.11.1 2015-01-20

4.11.0 2015-01-13

4.10.8 2015-01-13

4.10.7 2015-01-04

4.10.6 2014-12-12

4.10.5 2014-12-10

4.10.4 2014-11-24

4.10.3 2014-11-23

4.10.2 2014-11-09

4.10.1 2014-10-28

4.10.0 2014-10-23

4.9.8 2014-10-17

4.9.7 2014-10-10

4.9.6 2014-10-08

4.9.5 2014-09-24

4.9.4 2014-09-19

4.9.3 2014-09-18

4.9.2 2014-09-17

4.9.1 2014-09-16

4.9.0 2014-09-08

4.8.8 2014-09-04

https://riptutorial.com/ 3

Version Notes Release Date

4.8.7 2014-08-29

4.8.6 2014-08-27

4.8.5 2014-08-18

4.8.4 2014-08-14

4.8.3 2014-08-10

4.8.2 2014-08-07

4.8.1 2014-08-06

4.8.0 2014-08-05

4.7.4 2014-08-04

4.7.3 2014-08-04

4.7.2 2014-07-27

4.7.1 2014-07-26

4.7.0 2014-07-25

4.6.1 2014-07-12

4.6.0 2014-07-11

4.5.1 2014-07-06

4.5.0 2014-07-04

4.4.5 2014-06-26

4.4.4 2014-06-20

4.4.3 2014-06-11

4.4.2 2014-06-09

4.4.1 2014-06-02

4.4.0 2014-05-30

4.3.2 2014-05-28

4.3.1 2014-05-23

https://riptutorial.com/ 4

Version Notes Release Date

4.3.0 2014-05-21

4.2.0 2014-05-11

4.1.2 2014-05-08

4.1.1 2014-04-27

4.1.0 2014-04-24

4.0.0 2014-04-09

3.21.2 From here to 2015-07-31

3.21.1 3.18.6 dates 2015-07-05

3.21.0 seem wrong 2015-06-18

3.20.3 2015-05-17

3.20.2 2015-03-16

3.20.1 2015-02-28

3.20.0 2015-02-18

3.19.2 2015-02-01

3.19.1 2015-01-20

3.19.0 2015-01-09

3.18.6 2014-12-12

3.18.5 2014-12-11

3.18.4 2014-11-23

3.18.3 2014-11-09

3.18.2 2014-10-28

3.18.1 2014-10-22

3.18.0 2014-10-17

3.17.8 2014-10-15

3.17.7 2014-10-08

https://riptutorial.com/ 5

Version Notes Release Date

3.17.6 2014-10-02

3.17.5 2014-09-24

3.17.4 2014-09-19

3.17.3 2014-09-18

3.17.2 2014-09-15

3.17.1 2014-09-08

3.17.0 2014-09-08

3.16.10 2014-09-04

3.16.9 2014-08-29

3.16.8 2014-08-27

3.16.7 2014-08-18

3.16.6 2014-08-14

3.16.5 2014-08-11

3.16.4 2014-08-10

3.16.3 2014-08-07

3.16.2 2014-08-07

3.16.1 2014-08-06

3.16.0 2014-08-05

3.15.3 2014-08-04

3.15.2 2014-07-27

3.15.1 2014-07-26

3.15.0 2014-07-22

3.14.0 2014-07-11

3.13.0 2014-07-03

3.12.1 2014-06-26

https://riptutorial.com/ 6

Version Notes Release Date

3.12.0 2014-06-21

3.11.0 2014-06-19

3.10.5 2014-06-11

3.10.4 2014-06-09

3.10.3 2014-06-05

3.10.2 2014-06-03

3.10.1 2014-06-03

3.10.0 2014-06-02

3.9.0 2014-05-30

3.8.1 2014-05-27

3.8.0 2014-05-21

3.7.0 2014-05-18

3.6.0 2014-05-09

3.5.3 2014-05-08

3.5.2 2014-04-24

3.5.1 2014-03-25

3.5.0 2014-03-06

3.4.8 2014-01-13

3.4.7 2013-12-10

3.4.6 2013-12-01

3.4.5 2013-11-27

3.4.4 2013-10-29

3.4.3 2013-10-23

3.4.2 2013-10-18

3.4.1 2013-10-15

https://riptutorial.com/ 7

Version Notes Release Date

3.4.0 2013-09-07

3.3.8 2013-09-02

3.3.7 2013-08-28

3.3.6 2013-08-27

3.3.4 2013-07-08

3.3.3 2013-07-04

3.3.2 2013-07-03

3.3.1 2013-06-27

3.3.0 2013-06-27

3.2.6 2013-06-02

3.2.5 2013-05-21

3.2.4 2013-05-09

3.2.3 2013-05-07

3.2.2 2013-05-03

3.2.1 2013-04-29

3.2.0 2013-04-15

3.1.2 2013-04-12

3.1.1 2013-04-01

3.1.0 2013-01-25

3.0.6 2013-01-04

3.0.5 2012-12-19

3.0.4 2012-12-05

3.0.3 2012-11-13

3.0.2 2012-11-08

3.0.1 2012-11-01

https://riptutorial.com/ 8

Version Notes Release Date

3.0.0 2012-10-23

3.0.0rc5 2012-09-18

3.0.0rc4 2012-08-30

3.0.0rc3 2012-08-13

3.0.0rc2 2012-08-03

3.0.0rc1 2012-07-24

3.0.0beta7 2012-07-16

3.0.0beta6 2012-07-13

3.0.0beta5 2012-07-03

3.0.0beta4 2012-06-25

3.0.0beta3 2012-06-15

3.0.0beta2 2012-06-06

3.0.0beta1 2012-06-01

3.0.0alpha5 2012-05-30

3.0.0alpha4 2012-05-09

3.0.0alpha3 2012-05-04

3.0.0alpha2 2012-04-26

3.0.0alpha1 2012-04-15

2.5.9 2012-04-02

2.5.8 2012-02-08

2.5.7 2012-02-06

2.5.6 2012-01-13

2.5.5 2012-01-08

2.5.4 2012-01-02

2.5.3 2011-12-30

https://riptutorial.com/ 9

Version Notes Release Date

2.5.2 2011-12-10

2.5.1 2011-11-17

2.5.0 2011-10-24

2.4.7 2011-10-05

2.4.6 2011-08-22

2.4.5 2011-08-19

2.4.4 2011-08-05

2.4.3 2011-07-14

2.4.2 2011-07-06

2.4.1 2011-07-06

2.4.0 2011-06-28

2.3.12 2011-06-22

2.3.11 2011-06-04

2.3.10 2011-05-27

2.3.9 2011-05-25

2.3.8 2011-05-24

2.3.7 2011-05-23

2.3.6 2011-05-20

2.3.5 2011-05-20

2.3.4 2011-05-08

2.3.3 2011-05-03

2.3.2 2011-04-27

2.3.1 2011-04-26

2.3.0 2011-04-25

2.2.2 2011-04-12

https://riptutorial.com/ 10

Version Notes Release Date

2.2.1 2011-04-04

2.2.0 2011-03-30

2.1.1 2011-03-29

2.1.0 2011-03-24

2.0.0 2011-03-17

2.0.0rc3 2011-03-17

2.0.0rc2 2011-03-17

2.0.0rc 2011-03-14

2.0.0beta3 2011-03-09

2.0.0beta2 2011-03-07

2.0.0beta 2011-03-03

1.0.8 2011-03-01

1.0.7 2011-02-07

1.0.6 2011-02-07

1.0.5 2011-02-05

1.0.4 2011-02-05

1.0.3 2011-01-13

1.0.2 2011-01-10

1.0.1 2010-12-29

1.0.0 2010-11-16

1.0.0rc4 2010-10-14

1.0.0rc3 2010-09-20

1.0.0rc2 2010-08-17

1.0.0rc 2010-07-28

1.0.0beta2 2010-07-23

https://riptutorial.com/ 11

Version Notes Release Date

1.0.0beta 2010-07-15

0.14.0 2010-06-15

0.13.0 2010-06-01

0.12.0 2010-05-22

0.11.0 2010-05-06

0.10.1 2010-05-03

0.10.0 2010-04-30

0.9.0 2010-04-14

0.8.0 2010-03-19

0.7.6 2010-03-19

0.7.5 2010-03-16

0.7.4 2010-03-16

0.7.3 2010-03-16

0.7.2 2010-03-16

0.7.1 2010-03-16

0.7.0 2010-03-15

0.6.0 2010-03-11

0.5.0 2010-03-10

0.4.0 2010-02-11

0.3.0 2010-02-11

0.2.1 2010-02-05

0.2.0 2010-02-03

0.1.0 2010-02-03

0.0.2 2010-01-10

0.0.1 Intial Release 2010-01-03

https://riptutorial.com/ 12

Examples

Installation

Express JS is the goto framework for developing Web Applications, APIs and almost any kind of
Backend using Node.

To install express, all you have to do is run the npm command

npm install express --save

And you're done.

To create and run a new express server

create a file app.js and add this code

// require express
var express = require('express');
var app = express();

// when "/" is opened in url, this function will be called.
app.get('/', function (req, res) {
 res.json({ code: 200, message: 'success' });
})

app.listen(3000, function () {
 console.log('Express server running at http://localhost:3000');
});

In your terminal, run node app.js and•
Open the url http://localhost:3000 in web browser to see your newly created express server.•

It's also a good idea to install body-parser and express-session along with express as most of the
time you will want to read the data sent in POST request and manage user sessions.

body-parser on github•
express-session on github•

Hello World App, using ExpressJS 4 and Node >= 4

Preface

You'll need node >= 4 and express 4 for this project. You can get the latest node distribution from
their download page.

Before this tutorial, you should initialize your node project by running

https://riptutorial.com/ 13

https://github.com/expressjs/body-parser
https://github.com/expressjs/session
https://nodejs.org/en/download/

$ npm init

from the command line and filling in the information you want. Note that you can change the info at
any time by editing the package.json file.

Installation

Install express with npm:

$ npm install --save express

After installing Express as a node module, we can create our entry point. This should be in the
same directory as our package.json

$ touch app.js

Directory Contents

The folder should have the following directory structure:

<project_root>
 |-> app.js
 |-> node_modules/
 '-> package.json

Code

Open app.js in your preferred editor and follow these four steps to create your first Express app:

// 1. Import the express library.
import express from 'express';

// 2. Create an Express instance.
const app = express();

// 3. Map a route. Let's map it to "/", so we can visit "[server]/".
app.get('/', function(req, res) {
 res.send('Hello World');
});

// 4. Listen on port 8080
app.listen(8080, function() {
 console.log('Server is running on port 8080...');
});

https://riptutorial.com/ 14

Execution

From the project directory, we can run our server using the command

$ node app.js

You should see the text

$ Our Express App Server is listening on 8080...

Now, visit http://localhost:8080/ and you'll see the text "Hello World!"

Congratulations, you've created your first Express app!

Starting an application with the Express generator

To get started quickly with Express, you can use the Express generator which will create an
application skeleton for you.

First, install it globally with npm:

npm install express-generator -g

You may need to put sudo before this command if you get a "permission denied" error.

Once the generator is installed, you can start a new project like this:

express my_app

The above command will create a folder called my_app with a package.json file, an app.js file, and a
few subfolders like bin, public, routes, views.

Now navigate to the folder and install the dependencies:

cd first_app
npm install

If you're on Linux or macOS, you can start the app like this:

DEBUG=myapp:* npm start

Or, if you're on Windows:

set DEBUG=myapp:* & npm start

Now, load http://localhost:3000/ in your web browser and you should see the words "Welcome to

https://riptutorial.com/ 15

http://expressjs.com/en/starter/generator.html
http://localhost:3000/

Express".

Creating an EJS app

a@coolbox:~/workspace$ express --ejs my-app
a@coolbox:~/workspace$ cd my-app
a@coolbox:~/workspace/my-app$ npm install
a@coolbox:~/workspace/my-app$ npm start

Read Getting started with express online: https://riptutorial.com/express/topic/1616/getting-started-
with-express

https://riptutorial.com/ 16

https://riptutorial.com/express/topic/1616/getting-started-with-express
https://riptutorial.com/express/topic/1616/getting-started-with-express

Chapter 2: Connect

Examples

Connect and Express

Express is based on Connect, which is what provides the middleware functionality of Express. To
understand what connect is, you can see that it provides the basic app structure that you use
when you use express

const connect = require('connect')

const app = connect()
app.listen(3000)

This will open a "empty" http server that will respond 404 to all requests.

Middleware

Middleware are attached to the app object, usually before listen is called. Example of a simple
logging middleware:

app.use(function (req, res, next) {
 console.log(`${req.method}: ${req.url}`)
 next()
})

All this will do is log GET: /example if you where to GET localhost:3000/example. All requests will still
return 404 since you are not responding with any data.

The next middleware in the chain will be run as soon as the previous one calls next(), so we can
go ahead and respond to the requests by adding yet another middleware like this:

app.use(function (req, res, next) {
 res.end(`You requested ${req.url}`)
})

Now when you request ´localhost:3000/exampleyou will be greeted with "You requested
/example". There is no need to callnext` this time since this middleware is the last in the chain
(but nothing bad will happen if you did),

Complete program this far:

const connect = require('connect')

const app = connect()

app.use(function (req, res, next) {

https://riptutorial.com/ 17

 console.log(`${req.method}: ${req.url}`)
 next()
})

app.use(function (req, res, next) {
 res.end(`You requested ${req.url}`)
 next()
})

app.listen(3000)

Errors and error middleware

If we would like to limit the access to our app, we could write a middleware for that too! This
example only grants you access on thrusdays, but a real world example could, for example, be
user authentication. A good place to put this would be after the logging middleware but before any
content is sent.

app.use(function (req, res, next) {
 if (new Date().getDay() !== 4) {
 next('Access is only granted on thursdays')
 } else {
 next()
 }
})

As you can see in this example, sending an error is as easy as providing a prameter to the next()
function.

Now, if we visit the website on any day different than a thursday we would be greeted with a 500
error and the string 'Access is only granted on thursdays'.

Now, this isn't good enough for our site. We would rather send the user a HTML message in
another middleware:

app.use(function (err, req, res, next) {
 res.end(`<h1>Error</h1><p>${err}</p>`)
})

This works kind of like a catch block: any error in the middleware prior to the error middleware will
be sent to the former. An error middleware is identified by its 4 parameters.

You could also use the error middleware to recover from the error by calling the next method
again:

app.use(function (err, req, res, next) {
 // Just joking, everybody is allowed access to the website!
 next()
})

Read Connect online: https://riptutorial.com/express/topic/4031/connect

https://riptutorial.com/ 18

https://riptutorial.com/express/topic/4031/connect

Chapter 3: Error handling

Syntax

app.use(function(err, req, res, next) {}) // Basic middleware•

Parameters

Name Description

err Object with error information

req HTTP request object

res HTTP response object

next function used to start next middleware execution

Examples

Basic sample

Unlike other middleware functions error-handling middleware functions have four arguments
instead of three: (err, req, res, next).

Sample:

app.use(function(err, req, res, next) {
 console.error(err.stack);
 res.status(500).send('Error found!');
});

Read Error handling online: https://riptutorial.com/express/topic/2739/error-handling

https://riptutorial.com/ 19

https://riptutorial.com/express/topic/2739/error-handling

Chapter 4: Explain Routing in Express

Examples

Express Router

Express router allows you to create multiple "mini apps" so you can namespace your api, public,
auth and other routes into separate routing systems.

var express = require('express');
var app = express();
var router = express.Router();

router.get('/', function(req, res){
 res.send('Get request received');
});

router.post('/', function(req, res){
 res.send('Post requestreceived');
});

app.use('/', router);

app.listen(8080);

Chainable route handlers for a route path by using app.route

var express = require('express');
var app = express();
var router = express.Router();

app.route('/user')
 .get(function (req, res) {
 res.send('Get a random user')
 })
 .post(function (req, res) {
 res.send('Add a user')
 })
 .put(function (req, res) {
 res.send('Update the user details')
 })
 .delete(function (req, res) {
 res.send('Delete a user')
 });

Read Explain Routing in Express online: https://riptutorial.com/express/topic/6536/explain-routing-
in-express

https://riptutorial.com/ 20

https://riptutorial.com/express/topic/6536/explain-routing-in-express
https://riptutorial.com/express/topic/6536/explain-routing-in-express

Chapter 5: Express Database Integration

Examples

Connect to MongoDB with Node & Express

First, ensure you have installed mongodb and express via npm. Then, in a file conventionally titled
db.js, use the following code:

var MongoClient = require('mongodb').MongoClient

var state = {
 db: null,
}

exports.connect = function(url, done) {
 if (state.db) return done()

 MongoClient.connect(url, function(err, db) {
 if(err) return done(err)
 state.db = db
 done()
 })
}

exports.get = function() {
 return state.db
}

exports.close = function(done) {
 if (state.db) {
 state.db.close(function(err, result) {
 state.db = null;
 state.mode = null;
 done(err);
 })
 }
}

This file will connect to the database and then you can just use the db object returned by the get
method.

Now you need to include the db file by requiring it in you app.js file. Assuming your db.js file is in
the same directory as app.js you can insert the line:

var db = require('./db');

This, however, does not actually connect you to your MongoDB instance. To do that insert the
following code before your app.listen method is called. In our example we integrate error handling
and the app.listen method into the database connection. Please note this code only works if you
are running your mongo instance on the same machine you Express app is located on.

https://riptutorial.com/ 21

db.connect('mongodb://localhost:27017/databasename', function(err) {
 if (err) {
 console.log('Unable to connect to Mongo.');
 process.exit(1);
 } else {
 app.listen(3000, function() {
 console.log('Listening on port 3000...');
 });
 }
});

There you go, your Express app should now be connected to your Mongo DB. Congrats!

Read Express Database Integration online: https://riptutorial.com/express/topic/7002/express-
database-integration

https://riptutorial.com/ 22

https://riptutorial.com/express/topic/7002/express-database-integration
https://riptutorial.com/express/topic/7002/express-database-integration

Chapter 6: express-generator

Parameters

Parameter Definition

-h, --help output usage information

-V, --version output the version number

-e, --ejs
add pjs (Embedded JavaScript) templating engine support (defaults to
jade, which has been renamed to Pug)

--hbs add handlebars templating engine support

-H, --hogan add hogan.js engine support

--git add .gitignore

-f, --force force on non-empty directory

-c <engine>, --css
<engine>

add stylesheet <engine> support (less, stylus ,compass, sass)
(default is css)

Remarks

Express generator is a great tool for getting a project up and rolling quickly. Once you understand
the organization it implements, it's a real time saver.

Examples

Installing Express Generator

npm --install express-generator -g

Creating an App

express my-app

Start App

Using start option

npm start

Using Nodemon

https://riptutorial.com/ 23

nodemon

Using forever

forever start 'js file name'

To stop in forever

forever stop ''js file name'

To restart in forever

forever restart 'js filename'

List the server ruuning using forever

forever list

Read express-generator online: https://riptutorial.com/express/topic/4512/express-generator

https://riptutorial.com/ 24

https://riptutorial.com/express/topic/4512/express-generator

Chapter 7: Handling static files

Syntax

To serve static files (Images, CSS, JS files, etc.) use the express.static middleware
function.

1.

Pass the name of the directory that contains the assets to express.static to serve the files
directly. (Look to the Basic Example)

2.

You can use multiple directories, simply call the express.static multiple times. Remember,
Express looks up files in the order you set the directories with express.static. (Look to the
Multiple Directories Example)

3.

You can create a virtual path prefix (i.e. one where the path does not actually exist in the file
system) with express.static, just specify a mount path. (Look to the Virtual Path Prefix
Example)

4.

All of the preceding paths have been relative to the directory from where you launch the
node process. So, it is generally safer to use the absolute path of the directory you want to
serve. (Look to the Absolute Path to Static Files Directory Example)

5.

You can mix and match the options of this method, as seen in the Absolute Path to Directory
& Virtual Path Prefix Example

6.

Remarks

All of the examples can be run in node. Simply copy and paste into a node project with Express
installed and run them with node filename. For an example of how to install express click here
and ensure you have npm installed then follow the instructions on installing packages to install
"express."

Examples

Basic Example

// Basic code for Express Instance
var express = require('express');
var app = express();

// Serve static files from directory 'public'
app.use(express.static('public'));

// Start Express server
app.listen(3030);

Multiple Directories Example

// Set up Express
var express = require('express');

https://riptutorial.com/ 25

http://www.riptutorial.com/npm/topic/2061/getting-started-with-npm

var app = express();

// Serve static assets from both 'public' and 'files' directory
app.use(express.static('public');
app.use(express.static('files');

// Start Express server
app.listen(3030);

Virtual Path Prefix Example

// Set up Express
var express = require('express');
var app = express();

// Specify mount path, '/static', for the static directory
app.use('/static', express.static('public'));

// Start Express server
app.listen(3030);

Absolute Path to Static Files Directory Example

// Set up Express
var express = require('express');
var app = express();

// Serve files from the absolute path of the directory
app.use(express.static(__dirname + '/public'));

// Start Express server
app.listen(3030);

Absolute Path to Directory & Virtual Path Prefix Example

// Set up Express
var express = require('express');
var app = express();

/* Serve from the absolute path of the directory that you want to serve with a
 */ virtual path prefix
app.use('/static', express.static(__dirname + '/public'));

// Start Express server
app.listen(3030);

Basic static files and favicon serve example

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');

var app = express();

https://riptutorial.com/ 26

app.use(favicon(__dirname + '/public/img/favicon.ico'));
app.use(express.static(path.join(__dirname, 'public')));

app.listen(3000, function() {
 console.log("Express App listening on port 3000");
})

Read Handling static files online: https://riptutorial.com/express/topic/6954/handling-static-files

https://riptutorial.com/ 27

https://riptutorial.com/express/topic/6954/handling-static-files

Chapter 8: How does ExpressJs work

Examples

Handling request/response

The syntactic sugar

Most of the getting started examples of ExpressJs include this piece of code

var express = require('express');
var app = express();
...
app.listen(1337);

Well, app.listen is just a shortcut for:

var express = require('express');
var app = express();
var http = require('http');
http.createServer(app).listen(1337);

The Express App

The famous http.createServer accept a function which is known as the handler. The handler takes
2 parameters request and response as inputs, then manipulating them inside it's scope to do
various things.

So basically app = express() is a function, taking place as the handler and dealing with request,
response through a set of special components referred as middlewares.

Middlewares Stack

A basic middleware is a function that takes 3 arguments request, response and next.

Then by app.use, a middleware is mounted to the Express App Middlewares Stack. Request and
response are manipulated in each middleware then piped to the next one through the call of next()
.

For example, the below code:

var express = require('express');
var app = express();

app.use((request, response, next) => {

https://riptutorial.com/ 28

 request.propA = "blah blah";
 next();
});

app.use('/special-path', (request, response, next) => {
 request.propB = request.propA + " blah";
 if (request.propB === "blah blah blah")
 next();
 else
 response.end('invalid');
});

app.use((request, response, next) => {
 response.end(request.propB);
});

app.listen(1337);

Can roughly be translated to:

var http = require('http');
http.createServer((request, response) => {

 //Middleware 1
 if (isMatch(request.url, '*')) {
 request.propA = "blah blah";
 }

 //Middleware 2
 if (isMatch(request.url, "/special-path")) {
 request.propB = request.propA + " blah";
 if (request.propB !== "blah blah blah")
 return response.end('invalid');
 }

 //Middleware 3
 if (isMatch(request.url, "*")) {
 return response.end(request.propB);
 }
});

server.listen(1337);

Read How does ExpressJs work online: https://riptutorial.com/express/topic/7815/how-does-
expressjs-work

https://riptutorial.com/ 29

https://riptutorial.com/express/topic/7815/how-does-expressjs-work
https://riptutorial.com/express/topic/7815/how-does-expressjs-work

Chapter 9: Logging

Remarks

morgan is an HTTP request logger middleware for node.js

Examples

Installation

First, install the morgan Middleware in your project

npm install --save morgan

Simple Express logging of all request to STDOUT

Add the following code to your app.js file:

var express = require('express')
var morgan = require('morgan')

var app = express()

app.use(morgan('combined'))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

Now when you access your website you will see in the console you used to start the server that
the requests are logged

Write Express logs to a single file

First, install fs and path in your project

npm install --save fs path

Add the following code to your app.js file:

var express = require('express')
var fs = require('fs')
var morgan = require('morgan')
var path = require('path')

var app = express()

// create a write stream (in append mode)

https://riptutorial.com/ 30

var accessLogStream = fs.createWriteStream(path.join(__dirname, 'access.log'), {flags: 'a'})

// setup the logger
app.use(morgan('combined', {stream: accessLogStream}))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

Now when you access your website you will see a access.log file was created in your project
directory

Write Express logs to a rotating log file

First, install fs, file-stream-rotator and path in your project

npm install --save fs file-stream-rotator path

Add the following code to your app.js file:

var FileStreamRotator = require('file-stream-rotator')
var express = require('express')
var fs = require('fs')
var morgan = require('morgan')
var path = require('path')

var app = express()
var logDirectory = path.join(__dirname, 'log')

// ensure log directory exists
fs.existsSync(logDirectory) || fs.mkdirSync(logDirectory)

// create a rotating write stream
var accessLogStream = FileStreamRotator.getStream({
 date_format: 'YYYYMMDD',
 filename: path.join(logDirectory, 'access-%DATE%.log'),
 frequency: 'daily',
 verbose: false
})

// setup the logger
app.use(morgan('combined', {stream: accessLogStream}))

app.get('/', function (req, res) {
 res.send('hello, world!')
})

Now when you access your website you will see a log directory was created and a log file with a
name format of access-%DATE%.log was created in your log directory

Read Logging online: https://riptutorial.com/express/topic/7191/logging

https://riptutorial.com/ 31

https://riptutorial.com/express/topic/7191/logging

Chapter 10: Routing

Examples

Routing Hello World

The main app file loads the routes file where routes are defined.

app.js

var express = require('express');
var app = express();

app.use('/', require('./routes'));

app.listen('3000');

routes.js

var router = require('express').Router();

router.get('/', function(req, res) {
 res.send('Hello World!');
});

module.exports = router;

Routing middleware

Middleware is executed prior to the route execution and can decide whether to execute the router
according to the URL.

var router = require('express').Router();

router.use(function (req, res, next) {
 var weekDay = new Date().getDay();
 if (weekDay === 0) {
 res.send('Web is closed on Sundays!');
 } else {
 next();
 }
})

router.get('/', function(req, res) {
 res.send('Sunday is closed!');
});

module.exports = router;

Specific middleware can also be sent to each router handler.

https://riptutorial.com/ 32

var closedOnSundays = function (req, res, next) {
 var weekDay = new Date().getDay();
 if (weekDay === 0) {
 res.send('Web is closed on Sundays!');
 } else {
 next();
 }
}

router.get('/', closedOnSundays, function(req, res) {
 res.send('Web is open');
});

router.get('/open', function(req, res) {
 res.send('Open all days of the week!');
});

Multiple Routes

The main app file loads any routes files in which you would like to define routes. To do so we need
the following directory structure: app.js routes/index.js routes/users.js

app.js

var express = require('express');
var app = express();

app.use('/', require('./routes/index'));
app.use('/users', require('./routes/users'))

app.listen('3000');

routes/index.js

var router = require('express').Router();

router.get('/', function(req, res) {
 res.send('Index Page');
});

router.get('/about', function(req, res) {
 res.send('About Page');
});

module.exports = router;

routes/users.js

var router = require('express').Router();

router.get('/', function(req, res) {
 res.send('Users Index Page');
});

router.get('/list', function(req, res) {
 res.send('Users List Page');

https://riptutorial.com/ 33

});

module.exports = router;

Running $ node app.js there should now be pages at the following urls:

localhost:3000/ - Displays "Index Page"•
localhost:3000/about - Displays "About Page"•
localhost:3000/users - Displays "Users Index Page"•
localhost:3000/users/list - Displays "Users List Page"•

Read Routing online: https://riptutorial.com/express/topic/2589/routing

https://riptutorial.com/ 34

https://riptutorial.com/express/topic/2589/routing

Chapter 11: using https with express

Examples

Using https with express

First you have to generate public and private keys using OpenSSL(tutorial).

var express = require("express");
var http =require ("http");
var https=require ("https");
var fs=require("fs");
var app=express();
var httpsKeys={
key:fs.readFileSync("<key.pem>");
crtifcte:fs.readFileSync("<certificate.pem>");
};
http.createserver(app).listen(3000);
https.createserver(httpsKeys,app).listen(3030);

Read using https with express online: https://riptutorial.com/express/topic/7844/using-https-with-
express

https://riptutorial.com/ 35

https://matoski.com/article/node-express-generate-ssl/
https://riptutorial.com/express/topic/7844/using-https-with-express
https://riptutorial.com/express/topic/7844/using-https-with-express

Chapter 12: View engine setup

Introduction

Often the server needs to serve pages dynamically.For an example an user Mr.X visits the page
and sees some thing like "Welcome Mr. X to my homepage".In this case views can be
helpful.Even to populate a table view can be handy. Variables can be injected into HTML
dynamically using view engine.View engine is something that renders the views.One can keep
views to be served in a folder called view and serve upon request .The path of the folder can be
shown to Express using path.resolve method .

Remarks

install ejs using the following(I know it's obvious)

sudo npm install ejs --save

Examples

1:setting up the views

var express=require("express"); //express is included
var path=require("path"); //path is included

var app=express(); //app is an Express type of application

app.set("views",path.resolve(__dirname,"views")); //tells express about the location of the
views in views folder
app.set("view engine","ejs"); //tells express that ejs template engine is used

2.EJS file example(refer 1.setting up... before this)

the following is an ejs file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
 </head>
 <body>
 <%= message %>
 </body>
</html>

3.rendering view with express(refer 2.EJS file... before this)

https://riptutorial.com/ 36

app.get("/",function(req,res){
response.render("index",{ //render the index when root(/) is requested
 message:"rendered view with ejs"
 });
});

4.after rendering final HTML is created(refer 3.rendering... before this)

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Hello, world!</title>
</head>
<body>
 message:"rendered view with ejs"
</body>
</html>

Read View engine setup online: https://riptutorial.com/express/topic/8104/view-engine-setup

https://riptutorial.com/ 37

https://riptutorial.com/express/topic/8104/view-engine-setup

Chapter 13: Writing Express Middleware

Syntax

Specify the instance of express you want to use. This is commonly app.1.
Define the HTTP method for which the function applies. In the example, this is get.2.
Define the path to which the function applies. In the example, this is '/'.3.
Define as a function with the function keyword.4.
Add the required parameters: req, res, next. (See note in remarks section)5.
Put some code in the function to do whatever you want6.

Parameters

Parameter Details

req The request object.

res The response object.

next The next() middleware call.

Remarks

A middleware function is a function with access to the request object (req), the response object (
res), and the next() middleware function in the application's request-response cycle. The next()
middleware function is commonly denoted by a variable named next.

Middleware functions are designed to perform the following tasks:

Execute any code.•
Make changes to the request and response objects. (See the requestTime example)•
End the request-response cycle.•
Call the next middleware in the stack. (By calling the next() middleware)•

Note: It doesn't have to be named next. But if you use something else no one will know what you
mean and you will be fired. And your code won't work. So, just name it next. This rule applies to
the request and response object. Some people will use request and response instead of req and
res, respectively. That's fine. It wastes keystrokes, but it's fine.

Examples

Logger Middleware

If you are new to middleware in Express check out the Overview in the Remarks section.

https://riptutorial.com/ 38

First, we are going to setup a simple Hello World app that will be referenced and added to during
the examples.

var express = require('express');
var app = express();

app.get('/', function(req, res) {
 res.send('Hello World!');
});

app.listen(3000);

Here is a simple middleware function that will log "LOGGED" when it is called.

var myLogger = function (req,res,next) {
 console.log('LOGGED');
 next();
};

Calling next() invokes the next middleware function in the app.

To load the function call app.use() and specify the function you wish to call. This is done in the
following code block that is an extension of the Hello World block.

var express = require('express');
var app = express();

var myLogger = function (req, res, next) {
 console.log('LOGGED');
 next();
};

app.use(myLogger);

app.get('/', function(req, res) {
 res.send('Hello World!');
});

app.listen(3000);

Now every time the app receives a request it prints the message "LOGGED" to the terminal. So,
how do we add more specific conditions to when middleware is called? Look at the next example
and see.

requestTime Middleware

Let's create middleware that adds a property called requestTime to the request object.

var requestTime = function (req, res, next) {
 req.requestTime = Date.now();
 next();
};

https://riptutorial.com/ 39

Now let's modify the logging function from the previous example to utilize the requestTime
middleware.

myLogger = function (req, res, next, requestTime) {
 console.log('LOGGED at ' + requestTime);
 next();
};

Let's add the middleware to our app:

var express = require('express');
var app = express();

myLogger = function (req, res, next) {
 console.log('LOGGED at ' + req.requestTime);
 next();
};

var requestTime = function(req, res, next) {
 req.requestTime = Date.now();
 next();
};

app.use(requestTime);

app.use(myLogger);

app.get('/', function(req, res) {
 res.send('Hello World!');
});

app.listen(3000);

Now the app will log the time at which the request was made. This covers the basics of writing and
using Express middleware. For more information see Using Express Middleware.

!!!TODO: Create Using Express Middleware Section!!!

CORS Middleware

This example demonstrates how a cross origin http request can be handled using a middleware.

CORS Background

CORS is an access control method adopted by all major browsers to avert Cross Scripting
Vulnerabilities inherent by them. In general browser security, scripts should maintain that all XHR
requests has to be made only to the source the same scripts are served from. If an XHR request is
made outside the domain the scripts are belonging to, the response will be rejected.

However if the browser supports CORS, it would make an exception to this rule if appropriate
headers in the response indicate that the domain which the request is originated from is allowed.
The following header indicates that any domain is allowed:

https://riptutorial.com/ 40

http://stackoverflow.com

Access-Control-Allow-Origin: *

Example

Following example shows how Express middleware can include these headers in it's response.

app.use(function(request, response, next){

 response.header('Access-Control-Allow-Origin', '*');
 response.header('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS');
 response.header('Access-Control-Allow-Headers', 'Content-Type, Authorization, Content-
Length, X-Requested-With');

 //Handle Preflight
 if (reqest.method === 'OPTIONS') {
 response.status(200).send();
 }
 else {
 next();
 }

});

Handling Preflight

The latter part of the above example handles Preflight. Preflight is a special OPTIONS request the
browser send to test CORS if the request contain custom headers.

Useful References

MDN - CORS Http Tutorial

Read Writing Express Middleware online: https://riptutorial.com/express/topic/6993/writing-
express-middleware

https://riptutorial.com/ 41

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://www.tutorialspoint.com/http/
https://riptutorial.com/express/topic/6993/writing-express-middleware
https://riptutorial.com/express/topic/6993/writing-express-middleware

Credits

S.
No

Chapters Contributors

1
Getting started with
express

Akshay Khale, Community, David Vogel, Dima Grossman,
dkimot, Everettss, Gregory Worrall, Guillaume Lrv, Jared
Hooper, jawadhoot, Kilmazing, Random User, Sumner Evans,
user6939352

2 Connect Henrik Karlsson, Overflowh

3 Error handling gevorg, jawadhoot, Kilmazing

4
Explain Routing in
Express

Dima Grossman, Sujithrao

5
Express Database
Integration

dkimot

6 express-generator rickrizzo, Rupali Pemare

7 Handling static files dkimot, Sujithrao

8
How does ExpressJs
work

rocketspacer

9 Logging Mor Paz

10 Routing jawadhoot, Kelvin, phobos, S.L. Barth, zurfyx

11
using https with
express

nilakantha singh deo

12 View engine setup Daniele Giussani, nilakantha singh deo

13
Writing Express
Middleware

Charlie H, dkimot

https://riptutorial.com/ 42

https://riptutorial.com/contributor/2541634/akshay-khale
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5956863/david-vogel
https://riptutorial.com/contributor/3719805/dima-grossman
https://riptutorial.com/contributor/6697273/dkimot
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/3248304/gregory-worrall
https://riptutorial.com/contributor/6564445/guillaume-lrv
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/5155237/jawadhoot
https://riptutorial.com/contributor/643463/kilmazing
https://riptutorial.com/contributor/414002/random-user
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/6939352/user6939352
https://riptutorial.com/contributor/502126/henrik-karlsson
https://riptutorial.com/contributor/740700/overflowh
https://riptutorial.com/contributor/972240/gevorg
https://riptutorial.com/contributor/5155237/jawadhoot
https://riptutorial.com/contributor/643463/kilmazing
https://riptutorial.com/contributor/3719805/dima-grossman
https://riptutorial.com/contributor/4566493/sujithrao
https://riptutorial.com/contributor/6697273/dkimot
https://riptutorial.com/contributor/4062901/rickrizzo
https://riptutorial.com/contributor/7342110/rupali-pemare
https://riptutorial.com/contributor/6697273/dkimot
https://riptutorial.com/contributor/4566493/sujithrao
https://riptutorial.com/contributor/4318281/rocketspacer
https://riptutorial.com/contributor/4259027/mor-paz
https://riptutorial.com/contributor/5155237/jawadhoot
https://riptutorial.com/contributor/6512290/kelvin
https://riptutorial.com/contributor/4778069/phobos
https://riptutorial.com/contributor/812149/s-l--barth
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/4353189/nilakantha-singh-deo
https://riptutorial.com/contributor/7384265/daniele-giussani
https://riptutorial.com/contributor/4353189/nilakantha-singh-deo
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/6697273/dkimot

	About
	Chapter 1: Getting started with express
	Remarks
	Versions
	Versions from here.

	Examples
	Installation

	To create and run a new express server
	Hello World App, using ExpressJS 4 and Node >= 4

	Preface
	Installation
	Directory Contents
	Code
	Execution
	Starting an application with the Express generator
	Creating an EJS app

	Chapter 2: Connect
	Examples
	Connect and Express
	Middleware
	Errors and error middleware

	Chapter 3: Error handling
	Syntax
	Parameters
	Examples
	Basic sample

	Chapter 4: Explain Routing in Express
	Examples
	Express Router
	Chainable route handlers for a route path by using app.route

	Chapter 5: Express Database Integration
	Examples
	Connect to MongoDB with Node & Express

	Chapter 6: express-generator
	Parameters
	Remarks
	Examples
	Installing Express Generator
	Creating an App
	Start App

	Chapter 7: Handling static files
	Syntax
	Remarks
	Examples
	Basic Example
	Multiple Directories Example
	Virtual Path Prefix Example
	Absolute Path to Static Files Directory Example
	Absolute Path to Directory & Virtual Path Prefix Example
	Basic static files and favicon serve example

	Chapter 8: How does ExpressJs work
	Examples
	Handling request/response

	The syntactic sugar
	The Express App
	Middlewares Stack

	Chapter 9: Logging
	Remarks
	Examples
	Installation
	Simple Express logging of all request to STDOUT
	Write Express logs to a single file
	Write Express logs to a rotating log file

	Chapter 10: Routing
	Examples
	Routing Hello World
	Routing middleware
	Multiple Routes

	Chapter 11: using https with express
	Examples
	Using https with express

	Chapter 12: View engine setup
	Introduction
	Remarks
	Examples
	1:setting up the views
	2.EJS file example(refer 1.setting up... before this)
	3.rendering view with express(refer 2.EJS file... before this)
	4.after rendering final HTML is created(refer 3.rendering... before this)

	Chapter 13: Writing Express Middleware
	Syntax
	Parameters
	Remarks
	Examples
	Logger Middleware
	requestTime Middleware
	CORS Middleware

	Credits

