
firebase-database

#firebase-

database

Table of Contents

About 1

Chapter 1: Getting started with firebase-database 2

Remarks 2

Versions 2

Examples 2

Add Firebase to Your Android Project 2

Add Firebase to your app 2

Add the SDK 3

Writing simple value into database 4

Automatically map custom model to data structure 4

Chapter 2: Firebase Query 7

Introduction 7

Examples 7

Firebase Query Example 7

Chapter 3: Firebase Realtime Database Rules 8

Remarks 8

Examples 8

Authorization 8

Data validation 9

Defining database indexes 9

Chapter 4: Firebase Realtime Database Transactions 11

Introduction 11

Examples 11

A distributed counter 11

Chapter 5: Firebase Real-Time Database with Android 12

Examples 12

Integrate Firebase Real-Time database with an Android application 12

Chapter 6: FirebaseRealtime database with Android 14

Examples 14

Add the Realtime Database in Android 14

Using setValue to save data 14

Example for data insert or data retrieve from Firebase 15

Get value/s from firebase 16

Chapter 7: Hello World! 19

Examples 19

Hello World in Android 19

Hello World in IOS 19

Chapter 8: Reading data 21

Examples 21

Understanding which data referenced by getReference() 21

Understanding which data is inside dataSnapshot object 22

Credits 24

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: firebase-database

It is an unofficial and free firebase-database ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official firebase-
database.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/firebase-database
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with firebase-
database

Remarks

This section provides an overview of what firebase-database is, and why a developer might want
to use it.

It should also mention any large subjects within firebase-database, and link out to the related
topics. Since the Documentation for firebase-database is new, you may need to create initial
versions of those related topics.

Versions

Platform SDK Version Release date

Firebase JavaScript SDK 3.7.0 2017-03-01

Firebase C++ SDK 3.0.0 2107-02-27

Firebase Unity SDK 3.0.0 2107-02-27

Firebase iOS SDK 3.14.0 2017-02-23

Firebase Android SDK 10.2 2017-02-15

Firebase Admin Node.js SDK 4.1.1 2017-02-14

Firebase Admin Java SDK 4.1.2 2017-02-14

Examples

Add Firebase to Your Android Project

Here the steps required to create a Firebase project and to connect it with an Android app.

Add Firebase to your app

Create a Firebase project in the Firebase console and click Create New Project.1.

Click Add Firebase to your Android app and follow the setup steps.2.

When prompted, enter your app's package name. 3.

https://riptutorial.com/ 2

https://firebase.google.com/support/release-notes/js#3.7.0
https://firebase.google.com/support/release-notes/cpp-relnotes#3.0.0
https://firebase.google.com/support/release-notes/unity#3.0.0
https://firebase.google.com/support/release-notes/ios#3.14.0
https://firebase.google.com/support/release-notes/android#20170215
https://firebase.google.com/support/release-notes/admin/node#4.1.1
https://firebase.google.com/support/release-notes/admin/java#4.1.2
https://firebase.google.com/console/

It's important to enter the package name your app is using; this can only be set when you
add an app to your Firebase project.

At the end, you'll download a google-services.json file. You can download this file again at
any time. (this file is located under project setting in Firebase console).

4.

Switch android studio View to Project and paste google-service.json file under app folder5.

The next step is to Add the SDK to integrate the Firebase libraries in the project.

Add the SDK

To integrate the Firebase libraries into one of your own projects, you need to perform a few basic
tasks to prepare your Android Studio project. You may have already done this as part of adding
Firebase to your app.

Add rules to your root-level build.gradle file, to include the google-services plugin:1.

buildscript {
 // ...
 dependencies {
 // ...
 classpath 'com.google.gms:google-services:3.1.1'
 }
}

Then, in your module Gradle file (usually the app/build.gradle), add the apply plugin line at the
bottom of the file to enable the Gradle plugin:

apply plugin: 'com.android.application'

android {
 // ...
}

dependencies {
 // ...
 compile 'com.google.firebase:firebase-core:9.4.0'//THIS IS FOR ANALYTICS
 compile "com.google.firebase:firebase-database:11.0.2"
}

// BELOW STATEMENT MUST BE WRITTEN IN BOTTOM
apply plugin: 'com.google.gms.google-services'

Notes:

Data cannot be read/write without Authenticating. If you want it without authentication.
Change rules in Database firebase console.

{ "rules": { ".read": true, ".write": true } }

•

Add internet permission in Manifest•

https://riptutorial.com/ 3

Upgrade Google Play Services and Google Repository•

Writing simple value into database

First, complete the installation and setup to connect your app to Firebase. Then from anywhere in
your class, you can write:

// Write a message to the database
FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference myRef = database.getReference("message");

myRef.setValue("Hello, World!");

It will write Hello, Wold! into message node, like seen below:

"your-project-parent" : {
 "message" : "Hello, World!"
}

Explanation

FirebaseDatabase database = FirebaseDatabase.getInstance();

Above code will assign FirebaseDatabase instance into database object for further use.

DatabaseReference myRef = database.getReference("message");

Above code will reference myRef object into "message" child of your project's parent (in this example,
it is "your-project-parent"). So it is "your-project-parent/message"

myRef.setValue("Hello, World!");

Above code will set "Hello, World!" into path referenced by myRef

Automatically map custom model to data structure

After you have set a few data to database and have get a structure consisting of several nodes
like this;

"user" : {
 "-KdbKcU2ptfYF2xKb5aO" : {
 "firstName" : "Arthur",
 "lastName" : "Schopenhauer",
 "userName" : "AphorismMan",
 "phone" : "+9022-02-1778",
 "gender": "M",
 "age" : 25
 },
 "-KdbQFjs9BDviuqQVHjY" : {
 "firstName" : "Werner",
 "lastName" : "Heisenberg",

https://riptutorial.com/ 4

http://www.riptutorial.com/firebase-database/example/17719/add-firebase-to-your-android-project

 "userName" : "whereAmI",
 "phone" : "+9005-12-1901",
 "gender": "M",
 "age" : 75
 }
 }

you can categorize data structures.

Creating Class

Create a model class to set to database.

@IgnoreExtraProperties
public class User {
 public String firstName;
 public String lastName;
 public String userName;
 public String phone;
 public String gender;
 public int age;

 public User() {
 }

 public User(String firstName, String lastName, String userName, String phone, String
gender, int age) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.userName = userName;
 this.phone = phone;
 this.gender = gender;
 this.age = age;
 }
}

Some things to remember when creating a model class that you want to map to your data:

You have to have an empty constructor1.
Scope of Variables/Fields must be public, so that the DataSnapshot returning from the
firebase can access these fields. If you don't do that, when you want to get data,
DataSnapshot can't access to your model in callback and that will cause an exception.

2.

Names of Variables/Fields should match to those in your data structure.3.

Sending to Firebase

Create a User object

User user = new User ("Arthur","Schopenhauer","AphorismMan","+9022-02-1778","M",25)

and reference

DatabaseReference databaseReference = FirebaseDatabase.getInstance().getReference();

https://riptutorial.com/ 5

https://firebase.google.com/docs/reference/js/firebase.database.DataSnapshot

Now you have the reference of your database. Create an user node with
databaseReference.child("user"). If you do .push() your models will locate under randomly created
unique ids like above, "-KdbKcU2ptfYF2xKb5aO", "-KdbQFjs9BDviuqQVHjY".

databaseReference.child("user").push().setValue(user, new
DatabaseReference.CompletionListener() {
 @Override
 public void onComplete(DatabaseError databaseError, DatabaseReference
databaseReference) {
 Toast.makeText(getActivity(), "User added.", Toast.LENGTH_SHORT).show();

 }
 });

If you want to set your datas under your specific key, do it with .child("yourSpecificKey") instead
of .push().

databaseReference.child("user").child("yourSpecificKey").setValue(user,...

Read Getting started with firebase-database online: https://riptutorial.com/firebase-
database/topic/3044/getting-started-with-firebase-database

https://riptutorial.com/ 6

https://riptutorial.com/firebase-database/topic/3044/getting-started-with-firebase-database
https://riptutorial.com/firebase-database/topic/3044/getting-started-with-firebase-database

Chapter 2: Firebase Query

Introduction

Firebase Query can be used to order a collection of data based on some attributes as well as
restricted to the large list of items (for like chat data) down to a number suitable for synchronizing
to the client.

Just as with a Reference, you can receive data from a Query by using the on() method. You will
only receive events and DataSnapshots for the subset of the data that matches your query.

Examples

Firebase Query Example

private void loadData(){
 DatabaseReference dbRef = FirebaseDatabase.getInstance().getReference();

 Query dataQuery = dbRef.child("chat").orderByChild("id").equalTo("user1");
 dataQuery.addListenerForSingleValueEvent(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 if (dataSnapshot.exists()) {
 // dataSnapshot is the "issue" node with all children with id 0
 for (DataSnapshot issue : dataSnapshot.getChildren()) {
 // do something with the individual "issues"
 }
 }
 }

 @Override
 public void onCancelled(DatabaseError databaseError) {

 }
 });
 }

Read Firebase Query online: https://riptutorial.com/firebase-database/topic/10100/firebase-query

https://riptutorial.com/ 7

https://riptutorial.com/firebase-database/topic/10100/firebase-query

Chapter 3: Firebase Realtime Database Rules

Remarks

Firebase Realtime Database Rules determine who has read and write access to your database,
how your data is structured, and what indexes exist. These rules live on the Firebase servers and
are enforced automatically at all times. Every read and write request will only be completed if your
rules allow it. By default, your rules are set to allow only authenticated users full read and write
access to your database. This is to protect your database from abuse until you have time to
customize your rules or set up authentication.

Firebase Database Rules have a JavaScript-like syntax and come in four types:

Examples

Authorization

Identifying your user is only part of security. Once you know who they are, you need a way to
control their access to data in your database. Firebase Database Rules allow you to control
access for each user. For example, here's a set of security rules that allows anyone to read the
path /foo/, but no one to write to it:

{
 "rules": {
 "foo": {
 ".read": true,
 ".write": false
 }
 }
}

.read and .write rules cascade, so this ruleset grants read access to any data at path /foo/ as well
as any deeper paths such as /foo/bar/baz. Note that .read and .write rules that permit access will

https://riptutorial.com/ 8

http://i.stack.imgur.com/OJDOQ.jpg

override other rules in the database that do not allow access; in other words all applicable, .read
and .write rules are ORed together). So read access to /foo/bar/baz would still be granted in this
example even if a rule at the path /foo/bar/baz evaluated to false.

The Firebase Database Rules include built-in variables and functions that allow you to refer to
other paths, server-side timestamps, authentication information, and more. Here's an example of a
rule that grants write access for authenticated users to /users/<uid>/, where is the ID of the user
obtained through Firebase Authentication.

{
 "rules": {
 "users": {
 "$uid": {
 ".write": "$uid === auth.uid"
 }
 }
 }
}

Data validation

The Firebase Realtime Database is schemaless. This makes it easy to change things as you
develop, but once your app is ready to distribute, it's important for data to stay consistent. The
rules language includes a .validate rule which allows you to apply validation logic using the same
expressions used for .read and .write rules. The only difference is that all relevant validation rules
must evaluate to true in order for the write to be allowed (in other words, all applicable .validate
rules are ANDed together to allow a database write).

These rule enforce that data written to /foo/ must be a string less than 100 characters:

{
 "rules": {
 "foo": {
 ".validate": "newData.isString() && newData.val().length < 100"
 }
 }
}

Validation rules have access to all of the same built-in functions and variables as .read and .write
rules. You can use these to create validation rules that are aware of data elsewhere in your
database, your user's identity, server time, and much more.

Defining database indexes

The Firebase Realtime Database allows ordering and querying data. For small data sizes, the
database supports ad hoc querying, so indexes are generally not required during development.
Before launching your app though, it is important to specify indexes for any queries you have to
ensure they continue to work as your app grows.

Indexes are specified using the .indexOn rule. Here is an example index declaration that would

https://riptutorial.com/ 9

index the height and length fields for a list of dinosaurs:

{
 "rules": {
 "dinosaurs": {
 ".indexOn": ["height", "length"]
 }
 }
}

Read Firebase Realtime Database Rules online: https://riptutorial.com/firebase-
database/topic/3348/firebase-realtime-database-rules

https://riptutorial.com/ 10

https://riptutorial.com/firebase-database/topic/3348/firebase-realtime-database-rules
https://riptutorial.com/firebase-database/topic/3348/firebase-realtime-database-rules

Chapter 4: Firebase Realtime Database
Transactions

Introduction

Transactions provide a mechanism to coordinate between multiple parties that might be accessing
the same data at the same time. These "parties" might be different instances of the same code like
different users running the same application or nodes in a server cluster, parts of the same
program or event different programs like an administration application, a "end user" application
and/or "backend" server logic.

Examples

A distributed counter

Imagine many users all running a web application that is trying to increment a counter in the
database. Each user must read the current count, add one and write out the updated value. To
make sure no one reads the counter while someone else is is adding one we use a transaction:

ref.transaction(function(value){
 if (value === null) {
 // the counter doesn't exist yet, start at one
 return 1;
 } else if (typeof value === 'number') {
 // increment - the normal case
 return value + 1;
 } else {
 // we can't increment non-numeric values
 console.log('The counter has a non-numeric value: ' + value)
 // letting the callback return undefined cancels the transaction
 }
});

Read Firebase Realtime Database Transactions online: https://riptutorial.com/firebase-
database/topic/9612/firebase-realtime-database-transactions

https://riptutorial.com/ 11

https://riptutorial.com/firebase-database/topic/9612/firebase-realtime-database-transactions
https://riptutorial.com/firebase-database/topic/9612/firebase-realtime-database-transactions

Chapter 5: Firebase Real-Time Database with
Android

Examples

Integrate Firebase Real-Time database with an Android application

How to implement Firebase Real-Time database in Android applications.

Setup/Installation:

First, install the Firebase SDK (guide)1.

Register your project using the Firebase console2.

After successfuly completing the two steps above, add the following dependency in your
application level gradel.

compile 'com.google.firebase:firebase-database:9.2.1'

3.

[Optional] Configure your database security rules (reference).4.

Implementation Sample:

Declare and initialize the database reference

FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference myRef = database.getReference("message");

1.

You can later create different references to access different nodes

Write new data to the database

myRef.setValue("Writing Demo");

6.

Read data from the database

 myRef.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 // This method is called once with the initial value and again
 // whenever data at this location is updated.
 String value = dataSnapshot.getValue(String.class);
 Log.d(TAG, "Value is: " + value);
 }

 @Override
 public void onCancelled(DatabaseError error) {

7.

https://riptutorial.com/ 12

http://%20%20https://firebase.google.com/docs/android/setup
https://console.firebase.google.com/
http://%20https://firebase.google.com/docs/database/security/quickstart#sample-rules

 // Failed to read value
 Log.w(TAG, "Failed to read value.", error.toException());
 }
});

Read Firebase Real-Time Database with Android online: https://riptutorial.com/firebase-
database/topic/6341/firebase-real-time-database-with-android

https://riptutorial.com/ 13

https://riptutorial.com/firebase-database/topic/6341/firebase-real-time-database-with-android
https://riptutorial.com/firebase-database/topic/6341/firebase-real-time-database-with-android

Chapter 6: FirebaseRealtime database with
Android

Examples

Add the Realtime Database in Android

Complete the Installation and setup to connect your app to Firebase.
This will create the project in Firebase.

1.

Add the dependency for Firebase Realtime Database to your module-level build.gradle file:2.

compile 'com.google.firebase:firebase-database:9.2.1'

Configure Firebase Database Rules3.

Now you are ready to work with the Realtime Database in Android.

For example you write a Hello World message to the database under the message key.

// Write a message to the database
FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference myRef = database.getReference("message");

myRef.setValue("Hello, World!");

Using setValue to save data

ThesetValue() method overwrites data at the specified location, including any child nodes.

You can use this method to:

Pass types that correspond to the available JSON types as follows:1.

String•
Long•
Double•
Boolean•
Map<String, Object>•
List•

Pass a custom Java object, if the class that defines it has a default constructor that takes no
arguments and has public getters for the properties to be assigned.

2.

This is an example with a CustomObject.
First define the object.

https://riptutorial.com/ 14

http://www.riptutorial.com/firebase-database/topic/3044/getting-started-with-firebase-database
http://www.riptutorial.com/firebase-database/topic/3348/firebase-realtime-database-rules

@IgnoreExtraProperties
public class User {

 public String username;
 public String email;

 public User() {
 // Default constructor required for calls to DataSnapshot.getValue(User.class)
 }

 public User(String username, String email) {
 this.username = username;
 this.email = email;
 }

Then get the Database reference and set the value:

 User user = new User(name, email);
 DatabaseReference mDatabase mDatabase = FirebaseDatabase.getInstance().getReference();
 mDatabase.child("users").child(userId).setValue(user);

Example for data insert or data retrieve from Firebase

Before understand require to follow some setup for project integrate with firebase.

Create your project in Firebase Console and download google-service.json file from console
and put it in app level module of your project, Follow link for Create Project in console

1.

After this we require to add some dependency in our project,2.

First add class path in our project level gradle,

classpath 'com.google.gms:google-services:3.0.0'

•

And after that apply plugin in app level gradel,write it below of dependancy section,

apply plugin: 'com.google.gms.google-services

•

There are to more dependancy which require to add in app level gradle in dependancy
section

compile 'com.google.firebase:firebase-core:9.0.2'

compile 'com.google.firebase:firebase-database:9.0.2'

•

Now start to insert data in firebase database, First require to create instance of

FirebaseDatabase database = FirebaseDatabase.getInstance();

after creation of FirebaseDatabase object we going to create our DatabaseReference for
insert data in database,

DatabaseReference databaseReference = database.getReference().child("student");

Here student is the table name if table is exist in database then insert data into table

•

https://riptutorial.com/ 15

https://firebase.google.com/docs/android/setup

otherwise create new one with student name, after this you can insert data using
databaseReference.setValue(); function like following,

HashMap<String,String> student=new HashMap<>();

student.put("RollNo","1");

student.put("Name","Jayesh");

databaseReference.setValue(student);

Here I am inserting data as hasmap But you can set as model class also,

Start how to retrieve data from firebase, We are using here addListenerForSingleValueEvent
for read value from database,

 senderRefrence.addListenerForSingleValueEvent(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 if(dataSnapshot!=null && dataSnapshot.exists()){
 HashMap<String,String>
studentData=dataSnapshot.getValue(HashMap.class);
 Log.d("Student Roll Num "," : "+studentData.get("RollNo"));
 Log.d("Student Name "," : "+studentData.get("Name"));
 }
 }

 @Override
 public void onCancelled(DatabaseError databaseError) {

 }
 });

•

Get value/s from firebase

Create class and add imports to parse information:1.

import com.google.firebase.database.FirebaseDatabase;
import com.google.firebase.database.IgnoreExtraProperties;

//Declaration of firebase references
private DatabaseReference mDatabase;

//Declaration of firebase atributtes
public String uID;
public String username;
public String email;

@IgnoreExtraProperties
public class User {

 //Default constructor
 public User() {

 //Default constructor required for calls to DataSnapshot.getValue(User.class)
 mDatabase = FirebaseDatabase.getInstance().getReference();

https://riptutorial.com/ 16

 //...
 }

 //...
}

Add addListenerForSingleValueEvent() to our database reference:2.

//Add new imports
import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;
import com.google.firebase.database.ValueEventListener;

//...

public void getUser(String uID){

 //The uID it's unique id generated by firebase database
 mDatabase.child("users").child(uID).addListenerForSingleValueEvent(
 new ValueEventListener () {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 // ...
 }

 @Override
 public void onCancelled(DatabaseError databaseError) {
 // Getting Post failed, log a message
 }
 });
}

Inflate our class with firebase information in onDataChange() event:3.

 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {

 //Inflate class with dataSnapShot
 Users user = dataSnapshot.getValue(Users.class);

 //...
 }

Finally we can get diferent atributtes from firebase class as normally:4.

//User inflated
Users user = dataSnapshot.getValue(Users.class);

//Get information
this.uID = user.uID;
this.username = user.username;
this.email = user.email;

Best practices

https://riptutorial.com/ 17

The firebase supports 32 different child levels, then is simple to write wrong a references, to
evade this create a final private references:

1.

//Declaration of firebase references
//...
final private DatabaseReference userRef =
mDatabase.child("users").child("premium").child("normal").getRef();

//...

public void getUser(String uID){

 //Call our reference
 userRef.child(uID).addListenerForSingleValueEvent(
 new ValueEventListener () {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 // ...
 }

 @Override
 public void onCancelled(DatabaseError databaseError) {
 // Getting Post failed, log a message
 }
 });
}

The onCancelled() event is called when the user doesn't have access this reference by
database rules. Add pertinent code to control this exception if you need.

2.

For more information visit official documentation

Read FirebaseRealtime database with Android online: https://riptutorial.com/firebase-
database/topic/6220/firebaserealtime-database-with-android

https://riptutorial.com/ 18

https://firebase.google.com/docs/database/android/start/
https://riptutorial.com/firebase-database/topic/6220/firebaserealtime-database-with-android
https://riptutorial.com/firebase-database/topic/6220/firebaserealtime-database-with-android

Chapter 7: Hello World!

Examples

Hello World in Android

Complete the Installation and setup part. This will create the project in Firebase console and
will also install the base SDK in your Android App.

1.

Add the dependency for Firebase Realtime Database to your app-level build.gradle file:2.

compile 'com.google.firebase:firebase-database:9.4.0'

Now write a Hello World message to the database under the message key.3.

// Write a message to the database
FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference myRef = database.getReference("message");

myRef.setValue("Hello, World!");

Check to see if the message showed up in the Realtime Database.4.

Hello World in IOS

After you have set up Firebase to your IOS Project following the documentation for setting up
firebase for IOS in other firebase related documentation you can get going with firebase.

1.

If you haven't already added the database pod to your Podfile do so now by adding pod
Firebase/Database in order to get Database functionality for Firebase

2.

Push 'Hello World' to the database but first you have to go and edit the Rules for your
database in the Dashboard of your app in firebase and change it to

 {
 "rules": {
 ".read": true,
 ".write": true
 }
 }

NOTE: Make sure you change this beofre you go into production because this means
anyone can read and write into your database which is a major security flaw

3.

Now all you have to do is import Firebase into the file you are using firbase in using import
Firebase write the following line and you should see a 'Test' node in the database, expand it
and it should have a child of "Hello World"!!!!!!

4.

https://riptutorial.com/ 19

http://stackoverflow.com/documentation/firebase/816/introduction-to-firebase/2771/installation-or-setup#t=201607212346371035234

FIRDatabase.database().reference().child("Test").setValue("Hello World")

CONGRATS ON YOUR FIRST DATABASE PUSH

Read Hello World! online: https://riptutorial.com/firebase-database/topic/8885/hello-world-

https://riptutorial.com/ 20

https://riptutorial.com/firebase-database/topic/8885/hello-world-

Chapter 8: Reading data

Examples

Understanding which data referenced by getReference()

In this example, we use this database:

"your-project-name" : {
 "users" : {
 "randomUserId1" : {
 "display-name" : "John Doe",
 "gender" : "male"
 }
 "randomUserId2" : {
 "display-name" : "Jane Dae",
 "gender" : "female"
 }
 },
 "books" {
 "bookId1" : {
 "title" : "Adventure of Someone"
 },
 "bookId1" : {
 "title" : "Harry Potter"
 },
 "bookId1" : {
 "title" : "Game of Throne"
 }
 }
}

If you use above database then:

FirebaseDatabase.getInstance().getReference()

will point at your project's parent, "your-project-name" data. So the dataSnapshot you acquired
will contain all of data inside it, including all of "users" data and "books" data.

•

FirebaseDatabase.getInstance().getReference("users") and
FirebaseDatabase.getInstance().getReference().child("users")

will have the same result, pointing at "your-project-name/users"

•

FirebaseDatabase.getInstance().getReference("users/randomUserId1") and
FirebaseDatabase.getInstance().getReference().child("users/randomUserId1") and
FirebaseDatabase.getInstance().getReference().child("users").child("randomUserId1")

will have the same result, pointing at "your-project-name/users/randomUserId1"

•

Note: this example is needed to fully understand which data is inside dataSnapshot
object

https://riptutorial.com/ 21

http://www.riptutorial.com/firebase-database/example/28682/understanding-which-data-is-inside-datasnapshot-object
http://www.riptutorial.com/firebase-database/example/28682/understanding-which-data-is-inside-datasnapshot-object

Understanding which data is inside dataSnapshot object

Note: You need to know which data referenced by getReference() first before you can
completely understand this example.

There are three common method to get your data from Firebase Realtime Database:

addValueEventListener()•
addListenerForSingleValueEvent()•
addChildEventListener()•

When we talk about which data is inside dataSnapshot object, then addValueEventListener() and
addListenerForSingleValueEvent() is basically the same. The only difference is
addValueEventListener() keep listen to changes made in the referenced data while
addListenerForSingleValueEvent() is not.

So consider we have this database:

"your-project-name" : {
 "users" : {
 "randomUserId1" : {
 "display-name" : "John Doe",
 "gender" : "male"
 }
 "randomUserId2" : {
 "display-name" : "Jane Dae",
 "gender" : "female"
 }
 },
 "books" {
 "bookId1" : {
 "title" : "Adventure of Someone"
 },
 "bookId1" : {
 "title" : "Harry Potter"
 },
 "bookId1" : {
 "title" : "Game of Throne"
 }
 }
}

DataSnapshot produced by addValueEventListener and addListenerForSingleValueEvent

dataSnapshot produced by addValueEventListener() and addListenerForSingleValueEvent() will
contain value(s) of the exact data it is referenced into. Like when ref is point to "your-project-name"
then dataSnapshot should be :

... onDataChange(DataSnapshot dataSnapshot) {
 dataSnapshot.getKey(); // will have value of String: "your-project-name"
 for (DataSnapshot snapshot : dataSnapshot) {
 snapshot.getKey(); // will have value of String: "users", then "books"
 for (DataSnapshot deeperSnapshot : dataSnapshot) {

https://riptutorial.com/ 22

http://www.riptutorial.com/firebase-database/example/28681/understanding-which-data-referenced-by-getreference--

 snapshot.getKey();
 // if snapshot.getKey() is "users", this will have value of String:
"randomUserId1", then "randomUserId2"
 // If snapshot.getKey() is "books", this will have value of String: "bookId1",
then "bookId2"
 }
 }
}

DataSnapshot produced by addChildEventListener

dataSnapshot produced by addChildEventListener() will contain value(s) of data one level deeper
inside the data it is referenced into. Like in these cases:

When ref is point to "your-project-name" then dataSnapshot should be :

... onChildAdded(DataSnapshot dataSnapshot, String s) {
 dataSnapshot.getKey(); // will have value of String: "users", then "books"
 for (DataSnapshot snapshot : dataSnapshot) {
 snapshot.getKey();
 // if dataSnapshot.getKey() is "users", this will have value of String:
"randomUserId1", then "randomUserId2"
 // If dataSnapshot.getKey() is "books", this will have value of String: "bookId1",
then "bookId2"
 for (DataSnapshot deeperSnapshot : dataSnapshot) {
 snapshot.getKey();
 // if snapshot.getKey() is "randomUserId1" or "randomUserId1", this will have
value of String: "display-name", then "gender"
 // But the value will be different based on key
 // If snapshot.getKey() is "books", this will have value of String: "title", but
the value will be different based on key
 }
 }
}
// dataSnapshot inside onChildChanged, onChildMoved, and onChildRemoved will have the same
data as onChildAdded

I know most likely we will want to use .getValue() instead of getKey(). But in here we use getKey
because it will always contain one String and no need to convert into custom object, or Map, or
other. Basically, when you know which key dataSnapshot is pointing into, you can easily know which
value it contains and parse it into your own custom obeject (or anything)

Read Reading data online: https://riptutorial.com/firebase-database/topic/9242/reading-data

https://riptutorial.com/ 23

https://riptutorial.com/firebase-database/topic/9242/reading-data

Credits

S.
No

Chapters Contributors

1
Getting started with
firebase-database

Abdul Wasae, Adarsh Madrecha, AtaerCaner , Community,
ErstwhileIII, Gabriele Mariotti, koceeng, Nepster, Shiven,
TwiterZX, Veeresh Charantimath

2 Firebase Query Dhaval Solanki

3
Firebase Realtime
Database Rules

Adarsh Madrecha, mckoss

4
Firebase Realtime
Database
Transactions

Mike

5
Firebase Real-Time
Database with
Android

Dhaval Solanki, Krishna Kumar, ThunderStruct

6
FirebaseRealtime
database with
Android

Dhaval Solanki, Gabriele Mariotti, Merlí Escarpenter Pérez,
ThunderStruct

7 Hello World! noob, RyanM, ThunderStruct

8 Reading data koceeng

https://riptutorial.com/ 24

https://riptutorial.com/contributor/3570517/abdul-wasae
https://riptutorial.com/contributor/4050261/adarsh-madrecha
https://riptutorial.com/contributor/4589419/ataercaner
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2036397/erstwhileiii
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/4112725/koceeng
https://riptutorial.com/contributor/3496570/nepster
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/735994/twiterzx
https://riptutorial.com/contributor/4644853/veeresh-charantimath
https://riptutorial.com/contributor/3894930/dhaval-solanki
https://riptutorial.com/contributor/4050261/adarsh-madrecha
https://riptutorial.com/contributor/178521/mckoss
https://riptutorial.com/contributor/370746/mike
https://riptutorial.com/contributor/3894930/dhaval-solanki
https://riptutorial.com/contributor/4935623/krishna-kumar
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/3894930/dhaval-solanki
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/3996257/merli-escarpenter-perez
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/1079901/noob
https://riptutorial.com/contributor/5476495/ryanm
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/4112725/koceeng

	About
	Chapter 1: Getting started with firebase-database
	Remarks
	Versions
	Examples
	Add Firebase to Your Android Project

	Add Firebase to your app
	Add the SDK
	Writing simple value into database
	Automatically map custom model to data structure

	Chapter 2: Firebase Query
	Introduction
	Examples
	Firebase Query Example

	Chapter 3: Firebase Realtime Database Rules
	Remarks
	Examples
	Authorization
	Data validation
	Defining database indexes

	Chapter 4: Firebase Realtime Database Transactions
	Introduction
	Examples
	A distributed counter

	Chapter 5: Firebase Real-Time Database with Android
	Examples
	Integrate Firebase Real-Time database with an Android application

	Chapter 6: FirebaseRealtime database with Android
	Examples
	Add the Realtime Database in Android
	Using setValue to save data
	Example for data insert or data retrieve from Firebase
	Get value/s from firebase

	Chapter 7: Hello World!
	Examples
	Hello World in Android
	Hello World in IOS

	Chapter 8: Reading data
	Examples
	Understanding which data referenced by getReference()
	Understanding which data is inside dataSnapshot object

	Credits

