
firebase

#firebase

Table of Contents

About 1

Chapter 1: Getting started with firebase 2

Remarks 2

Versions 2

Examples 2

Add Firebase to Your Android Project 2

Add Firebase to your app 2

Add the SDK 3

Setting up Firebase for IOS 4

Getting started in Firebase with a simple Hello World web app in JavaScript 12

Lets get started. 12

Chapter 2: Cloud Functions for Firebase 18

Introduction 18

Examples 18

Send welcome notification emails to the users for subscribing. 18

Now go to your Firebase Console 18

Install Firebase CLI in your computer 18

Set Google Cloud environment variables 19

Deploy the project and test 19

Chapter 3: Crash Reporting 21

Remarks 21

Official Documetantion 21

Examples 21

Setup Crash Reporting in Android 21

Report the error in Android 21

Chapter 4: Database Rules 23

Introduction 23

Remarks 23

Official Documentation 23

Examples 23

How to configure rules 23

The default rules 23

How to set your files publicly readable and writable 24

How to disable read and write access 24

How to grant access only to authenticated users 24

How to allow reading specific item from group, but prevent listing group members 25

Chapter 5: Email Verification after Sign Up 26

Syntax 26

Parameters 26

Remarks 26

Examples 26

Send-cum-Process Verification Action Code - AngularJS 26

Chapter 6: Firbase Realtime Database with Android 28

Examples 28

How to connect Realtime database with Android Application 28

Chapter 7: Firebase Console 30

Syntax 30

Parameters 30

Remarks 30

Examples 30

Firebase All In One 30

Chapter 8: Firebase Offline Capabilities 31

Introduction 31

Remarks 31

Examples 32

Enable disk persistence (Android / iOS only) 32

Keeping data fresh (Android/iOs Only) 32

Chapter 9: Firebase Queue 34

Examples 34

How to use firebase queue as a backend for your application 34

Prerequisites 34

Architecture 34

Chapter 10: FirebaseUI 38

Remarks 38

Examples 38

Getting Started with FirebaseUI 38

Chapter 11: FirebaseUI (Android) 40

Examples 40

Adding the dependencies 40

Populating a ListView 40

Chapter 12: How do I listen for errors when accessing the database? 42

Introduction 42

Examples 42

Detect errors when writing a value on Android 42

Detect errors when reading data on Android 42

Detect errors when writing a value on iOS 43

Detecting errors when reading data in JavaScript 43

Detecting errors when writing a value in JavaScript 44

Detect errors when reading data on iOS 44

Chapter 13: How to get push key value from Firebase Database? 46

Introduction 46

Examples 46

Android Example 46

Chapter 14: How to use FirebaseRecyclerAdapter instead of RecyclerAdapter? 47

Examples 47

Here is the Example for Use FirebaseUi component FirebaseRecyclerAdapter 47

Chapter 15: How to use the Firebase Database to keep a list of Firebase Authentication use 53

Examples 53

How to save user profile data 53

Why save user data in the database 53

Handling User Account Data in the Realtime Database 54

Chapter 16: Push notification from custom server 55

Introduction 55

Examples 55

Firebase Cloud Messaging HTTP Protocol 55

Using Admin SDK(Node js) 56

Chapter 17: Storage 58

Remarks 58

Examples 58

Getting started on iOS 58

Prerequisites 58

Add Firebase Storage to your app 58

Set up Firebase Storage 59

Chapter 18: Structuring Data 61

Introduction 61

Examples 61

Do's and Don'ts 61

Two-Way Relationships 62

Chapter 19: Using Firebase with Node 64

Examples 64

Hello World Firebase Realtime Database in Node 64

Firebase-queue and worker 66

Credits 69

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: firebase

It is an unofficial and free firebase ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official firebase.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/firebase
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with firebase

Remarks

Firebase is a Backend as a Service (Baas) very useful for mobile app development.

It provides many features like Authentication & Security, Realtime Database & File Storage,
Analytics, Push Notifications, AdMod and many others

It provides the SDK for Android, iOS, Web, NodeJS, C++ and Java Server

Versions

Platform SDK Version Release date

Firebase JavaScript SDK 3.7.0 2017-03-01

Firebase C++ SDK 3.0.0 2107-02-27

Firebase Unity SDK 3.0.0 2107-02-27

Firebase iOS SDK 3.14.0 2017-02-23

Firebase Android SDK 10.2 2017-02-15

Firebase Admin Node.js SDK 4.1.1 2017-02-14

Firebase Admin Java SDK 4.1.2 2017-02-14

Examples

Add Firebase to Your Android Project

Here the steps required to create a Firebase project and to connect with an Android app.

Add Firebase to your app

Create a Firebase project in the Firebase console and click Create New Project.1.

Click Add Firebase to your Android app and follow the setup steps.2.

When prompted, enter your app's package name.
It's important to enter the package name your app is using; this can only be set when you
add an app to your Firebase project.

3.

https://riptutorial.com/ 2

https://firebase.google.com/
https://firebase.google.com/features/
https://firebase.google.com/docs/
https://firebase.google.com/support/release-notes/js#3.7.0
https://firebase.google.com/support/release-notes/cpp-relnotes#3.0.0
https://firebase.google.com/support/release-notes/unity#3.0.0
https://firebase.google.com/support/release-notes/ios#3.14.0
https://firebase.google.com/support/release-notes/android#20170215
https://firebase.google.com/support/release-notes/admin/node#4.1.1
https://firebase.google.com/support/release-notes/admin/java#4.1.2
https://firebase.google.com/console/

To add debug signing certificate SHA1 which is required for Dynamic Links, Invites, and
Google Sign-In support in Auth, go to your project in Android Studio, click on Gradle tab on
the right side of your window, click on Refresh button, go to project(root) -> Tasks -> android -
> signingReport. This will generate MD5 and SHA1 both in Run tab. Copy paste SHA1 into
firebase console.

4.

At the end, you'll download a google-services.json file. You can download this file again at
any time.

5.

If you haven't done so already, copy this into your project's module folder, typically app/.6.

The next step is to Add the SDK to integrate the Firebase libraries in the project.

Add the SDK

To integrate the Firebase libraries into one of your own projects, you need to perform a few basic
tasks to prepare your Android Studio project. You may have already done this as part of adding
Firebase to your app.

Add rules to your root-level build.gradle file, to include the google-services plugin:1.

buildscript {
 // ...
 dependencies {
 // ...
 classpath 'com.google.gms:google-services:3.0.0'
 }
}

Then, in your module Gradle file (usually the app/build.gradle), add the apply plugin line at the
bottom of the file to enable the Gradle plugin:

apply plugin: 'com.android.application'

android {
 // ...
}

dependencies {
 // ...
 compile 'com.google.firebase:firebase-core:9.4.0'
}

// ADD THIS AT THE BOTTOM
apply plugin: 'com.google.gms.google-services'

The final step is to add the dependencies for the Firebase SDK using one or more libraries
available for the different Firebase features.

https://riptutorial.com/ 3

Gradle Dependency Line Service

com.google.firebase:firebase-core:9.4.0 Analytics

com.google.firebase:firebase-database:9.4.0 Realtime Database

com.google.firebase:firebase-storage:9.4.0 Storage

com.google.firebase:firebase-crash:9.4.0 Crash Reporting

com.google.firebase:firebase-auth:9.4.0 Authentication

com.google.firebase:firebase-messaging:9.4.0 Cloud Messaging / Notifications

com.google.firebase:firebase-config:9.4.0 Remote Config

com.google.firebase:firebase-invites:9.4.0 Invites / Dynamic Links

com.google.firebase:firebase-ads:9.4.0 AdMob

com.google.android.gms:play-services-appindexing:9.4.0 App Indexing

Setting up Firebase for IOS

Firstly, you want to go to firebase dashboard and create a new project using the 'Create New
Project' button.

1.

https://riptutorial.com/ 4

You want to create a new project by adding the name of your app for example I put mine as
'Cool app name' then choose your region and press 'Create Project'

2.

https://riptutorial.com/ 5

http://i.stack.imgur.com/54Gai.png

After creating project you will be directed to this page which is the dashboard and from here
you have to pick a platform which you want to install firebase to for this example we will
choose IOS.

3.

https://riptutorial.com/ 6

http://i.stack.imgur.com/bHBZe.png

After selecting IOS you should see the same pop up as the one from the image below asking
for the IOS Bundle and the app store id. You will only need to provide the IOS Bundle
because our app isn't on the app store yet.

4.

https://riptutorial.com/ 7

http://i.stack.imgur.com/s89CX.png

Get the bundle ID from xcode after creating a xcode project anyway you usually would after
that you can get the bundle id for your application on the app Genral view in xcode it will be
the first field at the top and once you get it paste it into the Bundle field in firebase for
example mine would be 'MauginInc.KIKOO'

5.

https://riptutorial.com/ 8

http://i.stack.imgur.com/4BOxn.png

After you have done that and pressed 'Next' a 'GoogleService-Info.plist' file will download
and what you will need to do is move that into the root folder of your app within xcode

6.

https://riptutorial.com/ 9

http://i.stack.imgur.com/RD9ic.png

You will want to initialise pods and install the firebase pods you need you cam do this by
going into your terminal and navigate to your xcode project folder and follow these
instructions given by firebase.

7.

https://riptutorial.com/ 10

http://i.stack.imgur.com/dSWoA.png

Finally you want to configure you app to let swift do what it does best and that is making app
development a whole lot more easier and efficient all you need to do is edit you
AppDelegate.swift files the same the pop up shows you.

8.

https://riptutorial.com/ 11

http://i.stack.imgur.com/Td9ho.png

That's all you now have firebase installed in your xcode project for IOS

Getting started in Firebase with a simple Hello World web app in JavaScript

This example will demonstrate how to get started with Firebase in your web apps with JavaScript.

We are going to add a text child in our Firebase Database and display it in realtime on our web
app.

Lets get started.

https://riptutorial.com/ 12

http://i.stack.imgur.com/oqSPQ.png

Go to the Firebase Console - https://console.firebase.google.com and create a new project.
Enter the project name, Country/region and click on create project.

•

Now create a file index.html on your computer. And add the following code to it.

 <body>
 <p>Getting started with Firebase</p>
 <h1 id="bigOne"></h1>
 <script>
 // your firebase JavaScript code here
 </script>

 </body>

•

Now go to your project on Firebase Console and you can see this •

https://riptutorial.com/ 13

https://console.firebase.google.com
https://i.stack.imgur.com/R1ogK.png

Now click on Add Firebase to your web app. You will the following pop up, click on copy
button

•

https://riptutorial.com/ 14

https://i.stack.imgur.com/4Rnwv.png

Now go to your index.html file and add the snippet to the script section as following

 <body>

 <p>Getting started with Firebase</p>
 <h1 id="bigOne"></h1>

 <script src="https://www.gstatic.com/firebasejs/3.7.4/firebase.js"></script>
 <script>
 // Initialize Firebase
 var config = {
 apiKey: "apiKey",
 authDomain: "authDomain",
 databaseURL: "databaseURL",
 storageBucket: "storageBucket",
 messagingSenderId: "messagingSenderId"
 };
 firebase.initializeApp(config);
 </script>

•

https://riptutorial.com/ 15

https://i.stack.imgur.com/ckbS0.png

 </body>

Now you have completed adding Firebase initialization code. Now we need to get our text
value from the database.

•

To do that add the following code (Initialize Firebase already added in last step. Don't re-
add) inside the script in index.html

 <script>

 // Initialize Firebase
 var config = {
 apiKey: "apiKey",
 authDomain: "authDomain",
 databaseURL: "databaseURL",
 storageBucket: "storageBucket",
 messagingSenderId: "messagingSenderId"
 };
 firebase.initializeApp(config);

 // getting the text value from the database
 var bigOne = document.getElementById('bigOne');
 var dbRef = firebase.database().ref().child('text');
 dbRef.on('value', snap => bigOne.innerText = snap.val());

 </script>

•

Now we are all done with the index.html file and now let's go the Database in Firebase
Console.

•

You will see that its blank and empty right now. Lets add the a text child in the database
and add any value to it.

•

Now click on ADD button.•

Now go the RULES section in the Database. •

For development purpose right now, we will right now enable all the read and write queries.•

https://riptutorial.com/ 16

https://i.stack.imgur.com/RHRrW.jpg
https://i.stack.imgur.com/Vmuvo.png

 {
 "rules": {
 ".read": "true",
 ".write": "true"
 }
 }

Now open index.html in the browser•

You will see the text value on your page as following - •

Now if you go back to your database and change the text child value to something else, you
will see that the text in the browser also changes without any refresh or reload. This is how
realtime database works on Firebase.

•

Read Getting started with firebase online: https://riptutorial.com/firebase/topic/816/getting-started-
with-firebase

https://riptutorial.com/ 17

https://i.stack.imgur.com/nyYrf.png
https://i.stack.imgur.com/9eCVP.png
https://riptutorial.com/firebase/topic/816/getting-started-with-firebase
https://riptutorial.com/firebase/topic/816/getting-started-with-firebase

Chapter 2: Cloud Functions for Firebase

Introduction

Firebase launched its beta release of Cloud Functions for Firebase which is similar to using of
Cloud Functions on Google Cloud Platform.

Cloud Functions is a hosted, private, and scalable Node.js environment where you can run
JavaScript code. Firebase SDK for Cloud Functions integrates the Firebase platform by letting you
write code that responds to events and invokes functionality exposed by other Firebase features.

Examples

Send welcome notification emails to the users for subscribing.

Use the GitHub repository to get the entire code: https://github.com/firebase/functions-
samples/blob/master/quickstarts/email-users

Copy or clone the repository in your computer.•

Now go to your Firebase Console

Create a Firebase Project using the Firebase Console.•
Enable the Google Provider in the Auth section.•
Paste the Web initialization snippet from: Firebase Console > Overview > Add Firebase
to your web app in the public/index.html where the TODO is located.

•

 * TODO(DEVELOPER): Paste the initialization snippet from: Firebase Console > Overview > Add
Firebase to your web app. *

-->
 <script src="https://www.gstatic.com/firebasejs/3.7.3/firebase.js"></script>
 <script>
 // Initialize Firebase
 var config = {
 apiKey: "your apiKey",
 authDomain: "authDomain.firebaseapp.com",
 databaseURL: "https://databaseURL.firebaseio.com",
 storageBucket: "storageBucket.appspot.com",
 messagingSenderId: "messagingID"
 };
 firebase.initializeApp(config);
 </script>

Install Firebase CLI in your computer

https://riptutorial.com/ 18

https://github.com/firebase/functions-samples/blob/master/quickstarts/email-users
https://github.com/firebase/functions-samples/blob/master/quickstarts/email-users

If you don't have NodeJS installed already, install it from https://nodejs.org/en/ (Make sure to
have the updated version of NodeJS installed on your computer.)

•

Open command prompt/terminal and install it with npm install -g firebase-tools and then
configure it with firebase login

•

To choose your project you created now ==> Configure the CLI locally by using firebase
use --add and select your project in the list.

•

Install dependencies locally by running: cd functions; npm install; cd -•

Set Google Cloud environment variables

Set the gmail.email and gmail.password Google Cloud environment variables to match the
email and password of the Gmail account used to send emails. For this open the command
prompt or terminal and type the following Firebase CLI command:

firebase functions:config:set gmail.email="myusername@gmail.com"
gmail.password="secretpassword"

•

Deploy the project and test

To deploy the project open the cmd/terminal and use the command firebase deploy to
start the deployment.

•

https://riptutorial.com/ 19

https://nodejs.org/en/
https://i.stack.imgur.com/ChGX1.png

Once it gets done, use the command to open the site in browser firebase open hosting:site
or manually do it from the url displayed.

•

Read Cloud Functions for Firebase online: https://riptutorial.com/firebase/topic/9580/cloud-
functions-for-firebase

https://riptutorial.com/ 20

https://riptutorial.com/firebase/topic/9580/cloud-functions-for-firebase
https://riptutorial.com/firebase/topic/9580/cloud-functions-for-firebase

Chapter 3: Crash Reporting

Remarks

Crash Reporting creates detailed reports of the errors in your app.
Errors are grouped into clusters of similar stack traces and triaged by the severity of impact on
your users. In addition to automatic reports, you can log custom events to help capture the steps
leading up to a crash.

Crash Reporting is currently in beta release while we resolve some known issues on Android and
iOS.

Official Documetantion

https://firebase.google.com/docs/crash/

Examples

Setup Crash Reporting in Android

Complete the Installation and setup part to connect your app to Firebase.
This will create the project in Firebase.

1.

Add the dependency for Firebase CrashReporting to your module-level build.gradle file:2.

compile 'com.google.firebase:firebase-crash:9.4.0'

Report the error in Android

Firebase Crash Reporting automatically generates reports for fatal errors (or uncaught
exceptions).

You can create your custom report using:

FirebaseCrash.report(new Exception("My first Android non-fatal error"));

You can check in the log when FirebaseCrash initialized the module:

07–20 08:57:24.442 D/FirebaseCrashApiImpl: FirebaseCrash reporting API
initialized 07–20 08:57:24.442 I/FirebaseCrash: FirebaseCrash reporting initialized
com.google.firebase.crash.internal.zzg@3333d325 07–20 08:57:24.442
D/FirebaseApp: Initialized class com.google.firebase.crash.FirebaseCrash.

And then when it sent the exception:

https://riptutorial.com/ 21

https://firebase.google.com/docs/crash/
http://stackoverflow.com/documentation/firebase/816/introduction-to-firebase/2771/installation-or-setup#t=201607212346371035234

07–20 08:57:47.052 D/FirebaseCrashApiImpl: throwable java.lang.Exception: My
first Android non-fatal error 07–20 08:58:18.822
D/FirebaseCrashSenderServiceImpl: Response code: 200 07–20 08:58:18.822
D/FirebaseCrashSenderServiceImpl: Report sent

You can add custom logs to your report with

FirebaseCrash.log("Activity created");

Read Crash Reporting online: https://riptutorial.com/firebase/topic/4669/crash-reporting

https://riptutorial.com/ 22

https://riptutorial.com/firebase/topic/4669/crash-reporting

Chapter 4: Database Rules

Introduction

With Firebase Realtime Database, your Database rules is your server side security. You need to
be very careful and aware of who has access to your database. It is important that no one gains
access to your data that shouldn't.

By default, the Firebase Realtime Database rules allow any authenticated user to read and write
all the data, this is probably not what you want your app to do.

Take a look at the below examples for different scenarios.

Remarks

The Firebase Realtime Database provides a flexible, expression-based rules language with
JavaScript-like syntax to easily define how your data should be structured, how it should be
indexed, and when your data can be read from and written to. Combined with our authentication
services, you can define who has access to what data and protect your users' personal
information from unauthorized access.

By default, your database rules require Firebase Authentication and grant full read and write
permissions only to authenticated users. The default rules ensure your database isn't accessible
by just anyone before you get a chance to configure i

Official Documentation

https://firebase.google.com/docs/database/security/quickstart

Examples

How to configure rules

Go in the Firebase console.1.
Choose your project2.
Click on the Database section on the left, and then select the Rules tab.3.

If you would like to test your security rules before putting them into production, you can simulate
operations in the console using the Simulate button in the upper right of the rules editor.

The default rules

The default rules require Authentication.
They allow full read and write access to authenticated users of your app. They are useful if you

https://riptutorial.com/ 23

https://firebase.google.com/docs/database/security/quickstart

want data open to all users of your app but don't want it open to the world.

// These rules require authentication
{
 "rules": {
 ".read": "auth != null",
 ".write": "auth != null"
 }
}

How to set your files publicly readable and writable

Just define:

// These rules give anyone, even people who are not users of your app,
// read and write access to your database
{
 "rules": {
 ".read": true,
 ".write": true
 }
}

It can be useful during development but pay attention because This level of access means
anyone can read or write to your database.

How to disable read and write access

You can define a private rules to disable read and write access to your database by users. With
these rules, you can only access the database when you have administrative privileges
(which you can get by accessing the database through the Firebase console or by signing
in from a server).

// These rules don't allow anyone read or write access to your database
{
 "rules": {
 ".read": false,
 ".write": false
 }
}

How to grant access only to authenticated users

Here's an example of a rule that gives each authenticated user a personal node at /users/$user_id
where $user_id is the ID of the user obtained through Authentication.

// These rules grant access to a node matching the authenticated
// user's ID from the Firebase auth token
{
 "rules": {
 "users": {
 "$user_id": {

https://riptutorial.com/ 24

https://firebase.google.com/docs/database/server/start
https://firebase.google.com/docs/database/server/start

 ".read": "$user_id === auth.uid",
 ".write": "$user_id === auth.uid"
 }
 }
 }
}

How to allow reading specific item from group, but prevent listing group
members

It is common practice to create groups of items by creating simple value nodes with item ID as
key. For example, we can add a user to the group "administrators" by creating a node at
/administrators/$user_id with a value true. We don't want anyone to know who administrators are,
for security reasons, but we still want to check if a Authenticated user is administrator. With these
rules we can do just that:

{
 "rules": {
 "administrators": {
 // No one can list administrators
 ".read": "false",
 "$uid": {
 // Authenticated user can check if they are in this group
 ".read": "$uid === auth.uid",
 // Administrators can write
 ".write": "data.parent().child(auth.uid).val() === true",
 // Allow only add or delete, no duplicates
 ".validate": "!data.exists() || !newData.exists() || newData.isBoolean()",
 }
 }
 }
}

Read Database Rules online: https://riptutorial.com/firebase/topic/3352/database-rules

https://riptutorial.com/ 25

https://riptutorial.com/firebase/topic/3352/database-rules

Chapter 5: Email Verification after Sign Up

Syntax

Send email verification to logged in user's email address on file. Firebase allows you to
customize what your email entails

•

When email hits user's email account, the user clicks on•
Using your Router of choice (used angular-ui-router in above example), intercept parameters
in the URL.

•

Chew the params using the applyCode function in Firebase.•
See below for the functions involved in the above process.•

Parameters

The Function... Does

sendEmailVerification() Sends a verification email to a user.

applyActionCode() Applies the action code which changes emailVerified from false to
true

Remarks

The above pretty much sums up how to use the email verification scheme with Firebase. So far, it
stands as one of the simplest ways to verify email I have seen.

There's a bit of an extended explanation of the above example available on Email Verification with
Firebase 3.0 SDK.

Examples

Send-cum-Process Verification Action Code - AngularJS

// thecontroller.js
$scope.sendVerifyEmail = function() {
 console.log('Email sent, whaaaaam!');
 currentAuth.sendEmailVerification();
 }

// where currentAuth came from something like this:
// routerconfig

....
templateUrl: 'bla.html',
resolve: {
 currentAuth:['Auth', function(Auth) {

https://riptutorial.com/ 26

https://console.firebase.google.com/project/your-project-name-here/authentication/emails
https://firebase.google.com/docs/reference/js/firebase.User#sendEmailVerification
https://firebase.google.com/docs/reference/js/firebase.auth.Auth.html#applyActionCode
https://blog.khophi.co/email-verification-firebase-3-0-sdk/
https://blog.khophi.co/email-verification-firebase-3-0-sdk/

 return Auth.$requireSignIn() // this throws an AUTH_REQUIRED broadcast
 }]
 }
...

// intercept the broadcast like so if you want:

....

$rootScope.$on("$stateChangeError", function(event, toState, toParams, fromState, fromParams,
error) {
 if (error === "AUTH_REQUIRED") {
 $state.go('login', { toWhere: toState });
 }
 });
....

// So user receives the email. How do you process the `oobCode` that returns?
// You may do something like this:

// catch the url with its mode and oobCode
.state('emailVerify', {
 url: '/verify-email?mode&oobCode',
 templateUrl: 'auth/verify-email.html',
 controller: 'emailVerifyController',
 resolve: {
 currentAuth:['Auth', function(Auth) {
 return Auth.$requireSignIn()
 }]
 }
})

// Then digest like so where each term is what they sound like:

.controller('emailVerifyController', ['$scope', '$stateParams', 'currentAuth', 'DatabaseRef',
 function($scope, $stateParams, currentAuth, DatabaseRef) {
 console.log(currentAuth);
 $scope.doVerify = function() {
 firebase.auth()
 .applyActionCode($stateParams.oobCode)
 .then(function(data) {
 // change emailVerified for logged in User
 toastr.success('Verification happened', 'Success!');
 })
 .catch(function(error) {
 $scope.error = error.message;
 toastr.error(error.message, error.reason, { timeOut: 0 });
 })
 };
 }
])

Read Email Verification after Sign Up online: https://riptutorial.com/firebase/topic/3380/email-
verification-after-sign-up

https://riptutorial.com/ 27

https://riptutorial.com/firebase/topic/3380/email-verification-after-sign-up
https://riptutorial.com/firebase/topic/3380/email-verification-after-sign-up

Chapter 6: Firbase Realtime Database with
Android

Examples

How to connect Realtime database with Android Application

How to implement FirebaseRealTime database in android application. Following is the steps for do
it.

First install firebase sdk, If you dont know how to install then following is the URL for help.
Install Firebase SDK

1.

After thet register your project in firbase console, URL of the firbase console is Firebase
Console Url

2.

After successfuly complet above to step add following dependency in you application level
gradel. compile 'com.google.firebase:firebase-database:9.2.1'

3.

Also one more thing configure your firebase database rules. If you dont how to configure
then following is the URL which help you. Configure firebase Rules

4.

Now after all thing done, Original code is start, First retrieve your database instance throw
FirebaseDatabase like following,

FirebaseDatabase database = FirebaseDatabase.getInstance(); DatabaseReference myRef
= database.getReference("message");

5.

You can now create different different object of DatabaseReference for the access different node,

Now you can save or retrieve data using DataBaseReference like following way, For the
save :

myRef.setValue("Demo for Save");

6.

Read data :

myRef.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot dataSnapshot) {
 // This method is called once with the initial value and again
 // whenever data at this location is updated.
 String value = dataSnapshot.getValue(String.class);
 Log.d(TAG, "Value is: " + value);
 }

 @Override
 public void onCancelled(DatabaseError error) {
 // Failed to read value

https://riptutorial.com/ 28

https://firebase.google.com/docs/android/setup
https://console.firebase.google.com/
https://console.firebase.google.com/
https://firebase.google.com/docs/database/security/quickstart#sample-rules

 Log.w(TAG, "Failed to read value.", error.toException());
 }
});

Note : This is the only introducation topic how to implement database in android application lost of
more thing available in FirebaseRealtime database,

Read Firbase Realtime Database with Android online:
https://riptutorial.com/firebase/topic/6482/firbase-realtime-database-with-android

https://riptutorial.com/ 29

https://riptutorial.com/firebase/topic/6482/firbase-realtime-database-with-android

Chapter 7: Firebase Console

Syntax

Firebase Analytics Example.1.
Firebase Console Explanation for each components.2.

Parameters

Firebase Analytics Firebase analytics & It's different components

Firebase Console How it works? & How are details shown in the dashboard?

Remarks

This document is very useful for those who are the beginner of the firebase analytics.This will be
very helpful to understand how's firebase analytics works in the diffrent scenario.

Examples

Firebase All In One

Firebase Console information in detail

Android : Firebase Analytics Example

Steps For Android :

Download code from the link•
Check FirebaseAnalyticsActivity•
That's all you will understand how's the firebase analytics works for the different scenario.•

Read Firebase Console online: https://riptutorial.com/firebase/topic/6660/firebase-console

https://riptutorial.com/ 30

https://goo.gl/C6m653
https://github.com/Priyankbhojak88/FirebaseAnalyticsDemo
https://riptutorial.com/firebase/topic/6660/firebase-console

Chapter 8: Firebase Offline Capabilities

Introduction

In this post you will find the different ways to implement offline capabilities when usingFirebase ,
information about when and why could be a good idea enable offline capabilities and examples of
it with Android platform.

Remarks

What should I use? Disk persistence or keepSynced calls?

From my experience I can say that it always depends of what your app is working, and how you
manage the transactions and database of your application. If for example you have an application
where the user is just writing and reading data but he is not able to delete or edit it, use
DiskPersistence would be the right choice.

Also, DiskPersistence will store data in cache, which means that your app will use more space in
the user's devices, which maybe is not the best idea in your case.

In other hand, if your application manages a lot of complex transactions and your data is updated
really often, possibly you should avoid DiskPersistence and use keepSynced in the references that
you want to keep fresh.

Why?

DiskPersistence stores the data retrieved in local, which sometimes can cause lot of
desynchronization showing your data if you don't use it together with continous
ListenerValueEvents. For example:

User A writes a message "Hello World" on your app, which is recieved for user B1.
User B download message from User A in his phone and see the message "Hello World"2.
User A edit's his message to "Firebase is cool".3.
User B will still watching "Hello World" message even if he updates the data cause the
snapshot ref is the same when Firebase filter for it.

4.

To avoid this the best idea is keep continous listeners in the references that you want to track all
time.

Can I use both together?

Of course you can, and in most of the apps possibly is the best idea to avoid download a lot of
data and give the user the possibility to work with your app even if he has no connection.

https://riptutorial.com/ 31

If you don't care about use cache space in the user device, I recommend you to enable
diskPersistence in your FirebaseDatabaseobject and also add a keepSync flags to each reference that
can have a lot of times in a short space time or you want to keep fresh all time.

Examples

Enable disk persistence (Android / iOS only)

To enable disk persistence you should enable the flag persistenceEnabled in the
FirebaseDatabaseInstance object of your application:

Android

FirebaseDatabase.getInstance().setPersistenceEnabled(true);

iOS

Database.database().isPersistenceEnabled = true //Swift
[FIRDatabase database].persistenceEnabled = YES; //Objetive-C

If you want to disable the persistence in some moment of your app lifecycle you should remember
to disable it in the same way:

Android

FirebaseDatabase.getInstance().setPersistenceEnabled(false);

iOS

Database.database().isPersistenceEnabled = false //Swift
[FIRDatabase database].persistenceEnabled = NO; //Objetive-C

Keeping data fresh (Android/iOs Only)

Firebase synchronizes and stores a local copy of the data for active listeners when used on mobile
devices. In addition, you can keep specific locations in sync.

Android :

DatabaseReference workoutsRef = FirebaseDatabase.getInstance().getReference("workouts");
scoresRef.keepSynced(true);

iOs:

//Objetive-c
FIRDatabaseReference *scoresRef = [[FIRDatabase database] referenceWithPath:@"scores"];
[scoresRef keepSynced:YES];
//Swift

https://riptutorial.com/ 32

let scoresRef = Database.database().reference(withPath: "scores")
scoresRef.keepSynced(true)

Firebase client automatically downloads the data at these locations and keeps it updated even if
the reference has no active listeners. You disable synchronization with the following line of code.

Android :

scoresRef.keepSynced(false);

iOS:

[scoresRef keepSynced:NO]; //Objetive-C
scoresRef.keepSynced(false) //Swift

Read Firebase Offline Capabilities online: https://riptutorial.com/firebase/topic/10777/firebase-
offline-capabilities

https://riptutorial.com/ 33

https://riptutorial.com/firebase/topic/10777/firebase-offline-capabilities
https://riptutorial.com/firebase/topic/10777/firebase-offline-capabilities

Chapter 9: Firebase Queue

Examples

How to use firebase queue as a backend for your application

Firebase provides backend as a service, as applciation developer you do not have an option to
have backend code.

This example shows how using firebase queue, create backend which will operate on the top of
firebase database and serve as a backend for your frontend application.

Before getting into the code lets understand the architecture, how it will work. For brevity lets
suppose that we are using web site as a frontend and NodeJs server as a backend

Prerequisites

Create firebase application using your google account1.

Add firebase to your web page. Use bower install firebase --save2.

Create service account using your new created firebase account (Settings->Permissions ->
Service Accounts -> CREATE SERVICE ACCOUNT -> (specify name and check this
"Furnish a new private key" checkbox) -> save the json file, we will need that later.

3.

Configure NodeJs server which can be hosted in your prefered environment4.

Create following endpoint inside queue/specs

"request_response":

 {
 "error_state": "request_error_processing",
 "finished_state": "finished_state",
 "in_progress_state": "request_in_progress",
 "start_state": "request_started"
 }

5.

Inside NodeJs server install firebase server side version, npm install firebase --save, and
intialize your service account using the json file which we got from the step 3, it look like this

firebase.initializeApp({ serviceAccount: './your_file.json', databaseURL:
'get_from_firebase_account' });

6.

Architecture

Here is the whole cycle how it works.

https://riptutorial.com/ 34

On the frontend side you gonna do these steps

Using firebase web sdk you are writing your requests directly into firebase database in the
endpoint 'queue/tasks', lets call that your request which you are sending to the backend.

1.

after inserting your task you are registering listener on the endpoint queue/tasks/{taskKey}
which would be called when backend finishes processing your request, writing response
inside above task

2.

In the backend side you gonna do these steps

Create server which infinitely listens endpoint 'queue/tasks'1.
Processes your tasks and writing back response data inside queue/tasks/response2.
Remove the task3.

First of all create this helper function, which provides a way of handling callbacks and promises
together

function createPromiseCallback() {
 var cb;
 var promise = new Promise(function (resolve, reject) {
 cb = function (err, data) {
 if (err) return reject(err);
 return resolve(data);
 };
 });
 cb.promise = promise;
 return cb;
}

In the frontend side you gonna have this function

function sendRequest(kind, params, cb) {

 cb = cb || createPromiseCallback();
 var requestObject = {
 kind: kind,
 params: params
 };
 var tasksRef = firebase.database().ref('queue/tasks');

 var requestKey = tasksRef.push().key;

 var requestRef = tasksRef.child(requestKey);

 function requestHandshake(snap) {
 if (snap && snap.exists() && (snap.val().response || snap.val()._state ===
config.firebase.task.finishState || snap.val()._error_details)) {
 var snapVal = snap.val();
 if (snapVal._error_details) {
 cb(snapVal._error_details.error);
 } else {
 cb(null, snapVal.response);
 }
 requestRef.off('value', requestHandshake);
 }
 }

https://riptutorial.com/ 35

 var bulkUpdate = {};
 bulkUpdate['queue/tasks/' + requestKey + '/request'] = requestObject;
 bulkUpdate['queue/tasks/' + requestKey + '/_state'] = config.firebase.task.startState;

 firebase.database().ref().update(bulkUpdate)
 .then(function (snap) {
 requestRef.on('value', requestHandshake);
 }).catch(function (err) {
 cb(err);
 });

 return cb.promise;
 }

you can use this function like sendRequest('CreateHouseFacade', {houseName:'Test'}).

Kind parameter is for backend, to know what method to call for processing request. Params is for
passing additional parameter information.

And here is the backend code

const database = firebase.database();
const queueRef = database.ref('queue');

const queueOptions = {
 'specId': 'request_response',
 'sanitize': false,
 'suppressStack': false,
 'numWorkers': 3
};

function removeTask(task) {
 var taskRef = queueRef.child(`tasks/${task._id}`);
 return taskRef.remove();
}

function processTask(data, progress, resolve, reject) {
 try {
 requestHandler(data.request).then(response => {
 data.response = response || null;
 return resolve(data);
 }).catch(err => {
 return reject(err);
 }).then(snap => {
 removeTask(data);
 });
 } catch (err) {
 reject(err).then(snap => removeTask(data));
 }
}

function requestHandler(request) {
 if (!request || !request.kind) throw new Error('Absent Request or Kind');
 var deferredResponse = requestHandlerFactory(request.kind, request.params);
 return deferredResponse;
}

function requestHandlerFactory(kind, params) {

https://riptutorial.com/ 36

 // It includes mapping all your backend services
 switch (kind) {
 case 'CreateHouseFacade': return myService(params)
 default: throw new Error(`Invalid kind ${kind} was specified`);
 }
}

The function myService contains your business logic code which gonna accomplishing
CreateHouseFacade request.

Read Firebase Queue online: https://riptutorial.com/firebase/topic/7619/firebase-queue

https://riptutorial.com/ 37

https://riptutorial.com/firebase/topic/7619/firebase-queue

Chapter 10: FirebaseUI

Remarks

Firebase is a suite of integrated products designed to help you develop your application, grow an
engaged user base, and earn more money. It includes tools that help you build your app, such as
a realtime database, file storage, and user authentication, as well as tools to help you grow and
monetize your app, such as push notifications, analytics, crash reporting, and dynamic links.

You can think of Firebase as a set of Lego bricks that you can use to build your masterpiece. Just
like bricks, Firebase is relatively unopinionated, since there are an infinite number of ways to
combine the pieces and we're not going to tell you that certain ways are wrong :)

FirebaseUI is built on Firebase and provides developers simple, customizable, and production-
ready native mobile bindings on top of Firebase primitives to eliminate boilerplate code and
promote Google best practices

In the Lego analogy, FirebaseUI is a set of pre-built kits with instructions that you can take off the
shelf and tweak to suit your needs. You can see how we used the individual components of
Firebase to build FirebaseUI because FirebaseUI is open source. FirebaseUI has to be
opinionated--we're telling you how we think the bricks should go together, so we make some
choices. But because FirebaseUI is open source, you can go in and change what we're doing to
better suit your individual needs.

If you're building a Lego city, you'd rather pull a bunch of houses from a pre-build collection and
modify slightly to suit your needs than start from scratch and design each building by hand, right?

FirebaseUI let's you do exactly this, which is why we include it in our sample apps and examples.
Developers (ourselves included) are lazy--we want the best reuse of our code and the most
concise examples, and FirebaseUI allows us to provide really high quality examples that translate
to really good user experiences at a fraction of the development cost.

Examples

Getting Started with FirebaseUI

FirebaseUI offers Android, iOS, and Web clients. You can get started with them like so:

Android:

// app/build.gradle

dependencies {
 // Single target that includes all FirebaseUI libraries
 compile 'com.firebaseui:firebase-ui:0.5.2'

 // FirebaseUI Database only

https://riptutorial.com/ 38

https://github.com/firebase/FirebaseUI-Android
https://github.com/firebase/FirebaseUI-iOS
https://github.com/firebase/FirebaseUI-Web

 compile 'com.firebaseui:firebase-ui-database:0.5.2'

 // FirebaseUI Auth only
 compile 'com.firebaseui:firebase-ui-auth:0.5.2'
}

iOS:

Podfile

Pull in all Firebase UI features
pod 'FirebaseUI', '~> 0.5'

Only pull in the "Database" FirebaseUI features
pod 'FirebaseUI/Database', '~> 0.5'

Only pull in the "Auth" FirebaseUI features (including Facebook and Google)
pod 'FirebaseUI/Auth', '~> 0.5'

Only pull in the "Facebook" login features
pod 'FirebaseUI/Facebook', '~> 0.5'

Only pull in the "Google" login features
pod 'FirebaseUI/Google', '~> 0.5'

Web:

<!--Include FirebaseUI sources in HTML-->

<script src="https://www.gstatic.com/firebasejs/ui/live/0.5/firebase-ui-auth.js"></script>
<link type="text/css" rel="stylesheet"
href="https://www.gstatic.com/firebasejs/ui/live/0.5/firebase-ui-auth.css" />

Read FirebaseUI online: https://riptutorial.com/firebase/topic/6418/firebaseui

https://riptutorial.com/ 39

https://riptutorial.com/firebase/topic/6418/firebaseui

Chapter 11: FirebaseUI (Android)

Examples

Adding the dependencies

FirebaseUI is just an open-source library by Google that provides easy UI bindings for Firebase
Auth and Firebase Database.

To begin adding FirebaseUI to your app, add these dependencies in your app's build.gradle file:

android {
 // ...
}

dependencies {
 // Required for FirebaseUI Database
 compile 'com.google.firebase:firebase-database:9.4.0'
 compile 'com.firebaseui:firebase-ui-database:0.5.1'

 // FirebaseUI Auth only
 compile 'com.google.firebase:firebase-auth:9.4.0'
 compile 'com.firebaseui:firebase-ui-auth:0.5.1'

 // Single dependency if you're using both
 compile 'com.firebaseui:firebase-ui:0.5.1'
}

apply plugin: 'com.google.gms.google-services'

Populating a ListView

Assuming you have already set up an app in Android Studio, add a ListView to a layout (or skip if
that's already done):

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

<!-- Your toolbar, etc -->

<ListView
 android:id="@+id/list_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

</android.support.design.widget.CoordinatorLayout>

Now let's create a model for the data we're going to populate our ListView with:

https://riptutorial.com/ 40

https://github.com/firebase/FirebaseUI-Android

public class Person {

 private String name

 public Person() {
 // Constructor required for Firebase Database
 }

 public String getName() {
 return name;
 }

}

Make sure your ListView has an id, then create a reference to it in your Activity and set its adapter
to a new FirebaseListAdapter:

public class MainActivity extends AppCompatActivity {

 // ...

 private ListView mListView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Find the ListView
 mListView = (ListView) findViewById(R.id.list_view);

 /*
 * Create a DatabaseReference to the data; works with standard DatabaseReference
methods
 * like limitToLast() and etc.
 */
 DatabaseReference peopleReference = FirebaseDatabase.getInstance().getReference()
 .child("people");

 // Now set the adapter with a given layout
 mListView.setAdapter(new FirebaseListAdapter<Person>(this, Person.class,
 android.R.layout.one_line_list_item, peopleReference) {

 // Populate view as needed
 @Override
 protected void populateView(View view, Person person, int position) {
 ((TextView) view.findViewById(android.R.id.text1)).setText(person.getName());
 }
 });
 }
}

After you've done that, add some data to your database and watch the ListView populate itself.

Read FirebaseUI (Android) online: https://riptutorial.com/firebase/topic/6610/firebaseui--android-

https://riptutorial.com/ 41

https://riptutorial.com/firebase/topic/6610/firebaseui--android-

Chapter 12: How do I listen for errors when
accessing the database?

Introduction

There are many reasons a read or write operation may fail. A frequent one is because your
security rules reject the operation, for example because you're not authenticated (by default a
database can only be accessed by an authenticated user) or because you're writing/listening at a
location where you don't have permission.

Examples

Detect errors when writing a value on Android

There are many reasons a write operation may fail. A frequent one is because your security rules
reject the operation, for example because you're not authenticated (by default a database can only
be accessed by an authenticated user).

You can see these security rule violations in the logcat output. But it's easy to overlook these. You
can also handle them in your own code and make them more prominently visible, which is
especially useful during development (since your JSON, rules and code change often).

To detect a failed write on Android you attach a completion callback to setValue:

ref.setValue("My new value", new DatabaseReference.CompletionListener() {
 public void onComplete(DatabaseError databaseError, DatabaseReference databaseReference) {
 throw databaseError.toException();
 }
});

Throwing an exception like this ensures that it will be very difficult to overlook such an error next
time.

Detect errors when reading data on Android

A frequent reason why your read operation may not work is because your security rules reject the
operation, for example because you're not authenticated (by default a database can only be
accessed by an authenticated user).

You can see these security rule violations in the logcat output. But it's easy to overlook these. You
can also handle them in your own code and make them more prominently visible, which is
especially useful during development (since your JSON, rules and code change often).

To detect a failed read on Android you must implement the onCancelled method of your
ChildEventListener:

https://riptutorial.com/ 42

https://firebase.google.com/docs/reference/android/com/google/firebase/database/DatabaseReference.html#setValue
https://firebase.google.com/docs/reference/android/com/google/firebase/database/DatabaseReference.html#setValue

databaseRef.addChildEventListener(new ChildEventListener() {
 public void onChildAdded(DataSnapshot dataSnapshot, String s) { ... }
 public void onChildChanged(DataSnapshot dataSnapshot, String s) { ... }
 public void onChildRemoved(DataSnapshot dataSnapshot) { ... }
 public void onChildMoved(DataSnapshot dataSnapshot, String s) { ... }
 public void onCancelled(DatabaseError databaseError) {
 throw databaseError.toException();
 }
});

Or if you have a ValueEventListener:

databaseRef.addValueEventListener(new ValueEventListener() {
 public void onDataChange(DataSnapshot dataSnapshot, String s) { ... }
 public void onCancelled(DatabaseError databaseError) {
 throw databaseError.toException();
 }
});

With this code in place it will be pretty hard to overlook a security error when reading data on
Android.

Detect errors when writing a value on iOS

There are many reasons a write operation may fail. A frequent one is because your security rules
reject the operation, for example because you're not authenticated (by default a database can only
be accessed by an authenticated user).

You can see these security rule violations in the output of your program. But it's easy to overlook
these. You can also handle them in your own code and make them more prominently visible,
which is especially useful during development (since your JSON, rules and code change often).

To detect a failed write on iOS you attach a completion block to setValue:

let message = ["name": "puf", "text": "Hello from iOS"]
ref!.childByAutoId().setValue(message) { (error) in
 print("Error while writing message \(error)")
}

Throwing an exception like this ensures that it will be very difficult to overlook such an error next
time.

Detecting errors when reading data in JavaScript

A frequent reason why your read operation may not work is because your security rules reject the
operation, for example because you're not authenticated (by default a database can only be
accessed by an authenticated user).

You can see these security rule violations in the JavaScript console of your browser. But it's easy
to overlook these. You can also handle them in your own code and make them more prominently
visible, which is especially useful during development (since your JSON, rules and code change

https://riptutorial.com/ 43

https://firebase.google.com/docs/reference/ios/firebasedatabase/interface_f_i_r_database_reference.html#a1107cae145ab12e1ef58ab9f8713b84d

often).

To detect a failed read in JavaScript you must implement add a second callback to your on()
clause:

ref.on('value', function(snapshot) {
 console.log(snapshot.key, snapshot.val());
}, function(error) {
 alert(error);
})

With this code in place it will be pretty hard to overlook a security error when reading data in
JavaScript.

Detecting errors when writing a value in JavaScript

There are many reasons a write operation may fail. A frequent one is because your security rules
reject the operation, for example because you're not authenticated (by default a database can only
be accessed by an authenticated user).

You can see these security rule violations in the console output. But it's easy to overlook these.
You can also handle them in your own code and make them more prominently visible, which is
especially useful during development (since your JSON, rules and code change often).

To detect a failed write in JavaScript you attach a completion callback to set:

ref.set("My new value").catch(function(error)
 console.error(error);
 alert(error);
});

Showing an alert like this ensures that it will be very difficult to overlook such an error next time.

Detect errors when reading data on iOS

A frequent reason why your read operation may not work is because your security rules reject the
operation, for example because you're not authenticated (by default a database can only be
accessed by an authenticated user).

You can see these security rule violations in the Console output. But it's easy to overlook these.
You can also handle them in your own code and make them more prominently visible, which is
especially useful during development (since your JSON, rules and code change often).

To detect a failed read on iOS you must implement the withCancel block of your observer:

 ref!.child("notAllowed").observe(.value, with: { (snapshot) in
 print("Got non-existing value: \(snapshot.key)")
 }, withCancel: { (error) in
 print(error)
 })

https://riptutorial.com/ 44

Read How do I listen for errors when accessing the database? online:
https://riptutorial.com/firebase/topic/5548/how-do-i-listen-for-errors-when-accessing-the-database-

https://riptutorial.com/ 45

https://riptutorial.com/firebase/topic/5548/how-do-i-listen-for-errors-when-accessing-the-database-

Chapter 13: How to get push key value from
Firebase Database?

Introduction

In Firebase Database everything is a node, that follows the pattern key: value. Firebase Database
provides us with a simple way to generate unique keys. Unique keys create new items while
uploading data to a previously stored key will update.

Examples

Android Example

Let's assume we have a Dogs application, then our model will be a Dog class.

DatabaseReference reference = FirebaseDatabase.getInstance().getReference().child("dogs");

This is how to send a Dog to the database, a new unique dog and set the dog with the key.

String key = reference.push().getKey();
Dog dog = new Dog("Spike");
dog.setKey(key);
reference.child(key).setValue(dog);

The reference.child(key).setValue(dog); is equivalent of reference.push().setValue(dog); And add
the benefit of getting the key inside the Dog object.

Read How to get push key value from Firebase Database? online:
https://riptutorial.com/firebase/topic/10839/how-to-get-push-key-value-from-firebase-database-

https://riptutorial.com/ 46

https://riptutorial.com/firebase/topic/10839/how-to-get-push-key-value-from-firebase-database-

Chapter 14: How to use
FirebaseRecyclerAdapter instead of
RecyclerAdapter?

Examples

Here is the Example for Use FirebaseUi component FirebaseRecyclerAdapter

Hello friends before start code we have need to declare dependency for access firebase ui
component, so here is the dependency which you can put it in your gradel other wise you can add
dependency as jar also.

compile 'com.firebaseui:firebase-ui-database:0.4.0'

Then after we are querying in firebase database for data like following way

DatabaseReference databaseReference = database.getReference().child("users");
Query query = databaseReference.limitToFirst(50);

Then after we pass query inside of FirebaseRecyclerAdapter like following way

private void setUpFirebaseAdapter(Query query) {

 mFirebaseAdapter = new FirebaseRecyclerAdapter<UserModel, FirebaseUserViewHolder>
 (UserModel.class, R.layout.row_user_list, FirebaseUserViewHolder.class, query)
{
 @Override
 protected void populateViewHolder(FirebaseUserViewHolder viewHolder, UserModel
model, int position) {
 customeLoaderDialog.hide();
 viewHolder.bindUser(model);
 }
 };

 my_recycler_view.setHasFixedSize(true);
 my_recycler_view.setLayoutManager(new LinearLayoutManager(this));
 my_recycler_view.setAdapter(mFirebaseAdapter);

 }

ChatUserModel.java (Model Class)

public class ChatUserModel {
private long badge;
private String chat_id;
private String isDelete;
private String latestactivity;
private double timestamp;

https://riptutorial.com/ 47

private String user_id;
private String profilePic;
private String displayName;
private boolean isGroup;
String groupId;
private String creatorId;

public String getGroupId() {
 return groupId;
}

public void setGroupId(String groupId) {
 this.groupId = groupId;
}

public String getCreatorId() {
 return creatorId;
}

public void setCreatorId(String creatorId) {
 this.creatorId = creatorId;
}

public boolean isGroup() {
 return isGroup;
}

public void setGroup(boolean group) {
 isGroup = group;
}

public ChatUserModel() {

}

public long getBadge() {
 return badge;
}

public void setBadge(long badge) {
 this.badge = badge;
}

public String getChat_id() {
 return chat_id;
}

public void setChat_id(String chat_id) {
 this.chat_id = chat_id;
}

public String getIsDelete() {
 return isDelete;
}

public void setIsDelete(String isDelete) {
 this.isDelete = isDelete;
}

public String getLatestactivity() {

https://riptutorial.com/ 48

 return latestactivity;
}

public void setLatestactivity(String latestactivity) {
 this.latestactivity = latestactivity;
}

public double getTimestamp() {
 return timestamp;
}

public void setTimestamp(double timestamp) {
 this.timestamp = timestamp;
}

public String getUser_id() {
 return user_id;
}

public void setUser_id(String user_id) {
 this.user_id = user_id;
}

public String getProfilePic() {
 return profilePic;
}

public void setProfilePic(String profilePic) {
 this.profilePic = profilePic;
}

public String getDisplayName() {
 return displayName;
}

public void setDisplayName(String displayName) {
 this.displayName = displayName;
}}

FirebaseChatUserViewHolder.java (Recycler ViewHolder)

public class FirebaseChatUserViewHolder extends RecyclerView.ViewHolder implements
View.OnClickListener {

 private static final int MAX_WIDTH = 200;
 private static final int MAX_HEIGHT = 200;
 View mView;
 Context mContext;
 ChatUserModel userModel;

 public FirebaseChatUserViewHolder(View itemView) {
 super(itemView);
 mView = itemView;
 mContext = itemView.getContext();
 itemView.setOnClickListener(this);
 }

 public void bindUser(ChatUserModel userModel) {
 this.userModel = userModel;
 ImageView imgUser = (ImageView) mView.findViewById(R.id.imgUser);

https://riptutorial.com/ 49

 TextView tvName = (TextView) mView.findViewById(R.id.tvName);
 TextView tvStatus = (TextView) mView.findViewById(R.id.tvStatus);
 BadgeView badgeChat = (BadgeView) mView.findViewById(R.id.badgeChat);
 if (userModel.isGroup()) {
 //
imgUser.setImageDrawable(mContext.getResources().getDrawable(R.drawable.create_group));
 } else {
 Picasso.with(mContext)
 .load(userModel.getProfilePic())
 .resize(MAX_WIDTH, MAX_HEIGHT)
 .centerCrop()
 .into(imgUser);
 }

 tvName.setText(userModel.getDisplayName());
 tvStatus.setText(userModel.getLatestactivity());
 if (userModel.getBadge() > 0) {
 badgeChat.setVisibility(View.VISIBLE);
 badgeChat.setText("" + userModel.getBadge());
 } else {
 badgeChat.setVisibility(View.GONE);
 }

 }

 @Override
 public void onClick(View view) {
 if (!userModel.isGroup()) {
 Intent intent = new Intent(mContext, ChatConverstion.class);
 intent.putExtra("chat_id", "" + userModel.getChat_id());
 intent.putExtra("reciverUserName", "" + userModel.getDisplayName());
 intent.putExtra("reciverProfilePic", "" + userModel.getProfilePic());
 intent.putExtra("reciverUid", "" + userModel.getUser_id());
 mContext.startActivity(intent);
 }
 }
}

row_user_list.xml (layout for row in recycler view)

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@android:color/white"
 android:orientation="horizontal"
 >

 <LinearLayout
 android:gravity="center_vertical"
 android:layout_width="match_parent"
 android:id="@+id/llMainChat"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:paddingTop="@dimen/margin_small"
 android:paddingLeft="@dimen/margin_small"
 android:paddingBottom="@dimen/margin_small"
 android:paddingRight="@dimen/margin_small"
 >

https://riptutorial.com/ 50

 <com.tristate.firebasechat.custome_view.CircleImageView
 android:id="@+id/imgUser"
 android:layout_width="@dimen/tab_top_height"
 android:layout_height="@dimen/tab_top_height"

 app:civ_border_color="@color/dark_white"
 app:civ_border_width="2dp" />

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:layout_marginLeft="@dimen/margin_medium"
 >

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:layout_toLeftOf="@+id/badgeChat"
 android:layout_toStartOf="@+id/badgeChat"
 android:id="@+id/linearLayout">

 <TextView
 android:id="@+id/tvName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ellipsize="marquee"
 android:singleLine="true"
 android:text="Dhaval Solanki"
 android:textSize="@dimen/textsize_midle" />

 <TextView
 android:id="@+id/tvStatus"
 android:ems="3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_vertical"
 android:lines="1"
 android:text="Online"
 android:textColor="@color/greenStatusBar"
 android:textSize="@dimen/textsize_small" />
 </LinearLayout>
 <com.tristate.firebasechat.custome_view.BadgeView
 android:id="@+id/badgeChat"
 android:layout_width="@dimen/margin_very_big"
 android:layout_height="@dimen/margin_very_big"
 android:layout_alignParentRight="true"
 android:layout_centerVertical="true"
 android:background="@drawable/badge_bg"
 android:gravity="center"
 android:padding="@dimen/corner_radius"
 android:text="999"
 android:textColor="@color/white"
 android:textSize="@dimen/textsize_verysmall"
 android:visibility="gone" />

 </RelativeLayout>

https://riptutorial.com/ 51

 </LinearLayout>
 <View
 android:layout_alignBottom="@id/llMainChat"
 android:layout_marginTop="@dimen/margin_small"
 android:layout_marginLeft="@dimen/margin_small"
 android:layout_marginRight="@dimen/margin_small"
 android:layout_width="match_parent"
 android:background="@color/avatar_back_color"
 android:layout_height="1dp"
 ></View>
</RelativeLayout>

Read How to use FirebaseRecyclerAdapter instead of RecyclerAdapter? online:
https://riptutorial.com/firebase/topic/8982/how-to-use-firebaserecycleradapter-instead-of-
recycleradapter-

https://riptutorial.com/ 52

https://riptutorial.com/firebase/topic/8982/how-to-use-firebaserecycleradapter-instead-of-recycleradapter-
https://riptutorial.com/firebase/topic/8982/how-to-use-firebaserecycleradapter-instead-of-recycleradapter-

Chapter 15: How to use the Firebase
Database to keep a list of Firebase
Authentication users

Examples

How to save user profile data

Every authenticated user has a Firebase uid that's unique across all providers and is returned in
the result of every authentication method.

A good way to store your user's data is to create a node to keep all the users's data and to protect
it using your security rules

- Database

{
 "users": {
 "uid1" : {
 "name": "Steve",
 "surname": "Jobs"
 },
 "uid2" : {
 "name": "Bill",
 "surname": "Gates"
 }
 }
}

- Security

{
 "rules": {
 "users": {
 "$uid": {
 // If node's key matches the id of the auth user
 ".write": "$uid == auth.uid"
 }
 }
 }
}

The $uid in the above rules is a so-called "dollar variable", which ensures that the rules under it
are applied to all child nodes of users. For more information see the documentation on Using $
Variables to Capture Path Segments.

Why save user data in the database

https://riptutorial.com/ 53

https://firebase.google.com/docs/database/security/securing-data#using_variables_to_capture_path_segments
https://firebase.google.com/docs/database/security/securing-data#using_variables_to_capture_path_segments

Firebase Authentication allows the users of your app to sign-in with social providers or their
email+password. But what if you want to store additional information about a user, beyond what
Firebase Authentication allows you to specify?

Or what if you want to display a list of the users in your app? Firebase Authentication doesn't have
an API for this.

Most developers solve this problem by storing the additional information in a separate database.
This topic covers how to store such information in the Firebase Realtime Database.

Handling User Account Data in the Realtime Database

The Firebase auth system is the source of a users uid, displayName, photoURL, and maybe email.
Password based accounts set these persistent values in the auth system via the .updateProfile
method. Storing these values in the Realtime Database, rDB, users node poses the issue of stale
data. Display names, for example, may change. To keep these values in synch use local storage
in concert with .onAuthStateChange.

on every .onAuthStateChange

getItem('displayName') and getItem('photoURL')•
compare to user.displayName and user.photoURL•
if different

setItem('displayName') and setItem('photoURL')○

db.ref.child('users').update the values of displayName and/or photoURL○

•

.onAuthStateChange fires on every page load or reload, as well as on every auth state change. It
potentially fires often, e.g. multi page apps. However reading and writing to local storage is
synchronous and very fast so there will be no noticeable impact on app performance.

Read How to use the Firebase Database to keep a list of Firebase Authentication users online:
https://riptutorial.com/firebase/topic/1729/how-to-use-the-firebase-database-to-keep-a-list-of-
firebase-authentication-users

https://riptutorial.com/ 54

https://firebase.google.com/docs/auth/
https://firebase.google.com/docs/database/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://riptutorial.com/firebase/topic/1729/how-to-use-the-firebase-database-to-keep-a-list-of-firebase-authentication-users
https://riptutorial.com/firebase/topic/1729/how-to-use-the-firebase-database-to-keep-a-list-of-firebase-authentication-users

Chapter 16: Push notification from custom
server

Introduction

This can be done using 2 methods with HTTP Post request, With Firebase admin SDK running
on your server. Here I will discuss both of them.

Examples

Firebase Cloud Messaging HTTP Protocol

From your server request to the the link below to send the notification with some request
parameters

https://fcm.googleapis.com/fcm/send

While requesting add headers as follows

Authorization key=<Your_key_from_the_console>
Content-Type application/json

The body of the request varies

{
 "to" : <tokens or the topic>,
 "notification" : {
 "title":"This is a test title",
 "body":"This is the body"
 },
 "data": {
 //whatever key value payer you need to send
 }
}

The to parameters takes Array of tokens like

["token1","token2",..........]

or a single token like

"token"

or a topic name starting with /topic/ like

https://riptutorial.com/ 55

"/topic_name/"

For multiple topic use conditions using || and && operators like

"/topic_name/ && /topic2/"

Using Admin SDK(Node js)

At first initilize the firebase sdk and admin SDK

const functions = require('firebase-functions');
const admin = require('firebase-admin');

admin.initializeApp({
 credential: admin.credential.cert({
 //your admin credential certificate generated from the console. Follow this [link][1].
 }),
 databaseURL: "https:///<PROJECT_NAME>.firebaseio.com"
});

Create a payload JSON string as in the first example.

var payload = {
 notification: {
 title: "Title of the notification,
 body: "Body of the notification",
 },
 data:{
 //required key value pair
 }
 };

Then call different send methods to send the notification.

For Topic

admin.messaging().sendToTopic("/topic/", payload)
 .then(function(response) {
 console.log("Successfully sent message:", response);
 })
 .catch(function(error) {
 console.log("Error sending message:", error);
 });
 });

For device

admin.messaging().sendToDevice(token, payload).then(response=>{
 response.results.forEach((result, index) => {
 const error = result.error;
 if (error) {
 console.error('Failure sending notification to', tokens, error);
 } else{

https://riptutorial.com/ 56

 console.log('Sucessfully sent to '+tokens);
 }
 });

Read Push notification from custom server online:
https://riptutorial.com/firebase/topic/10548/push-notification-from-custom-server

https://riptutorial.com/ 57

https://riptutorial.com/firebase/topic/10548/push-notification-from-custom-server

Chapter 17: Storage

Remarks

Firebase Storage provides secure file uploads and downloads for your Firebase apps, regardless
of network quality. You can use it to store images, audio, video, or other user-generated content.
Firebase Storage is backed by Google Cloud Storage, a powerful, simple, and cost-effective
object storage service.

Firebase Storage stores your files in a Google Cloud Storage bucket shared with the default
Google App Engine app, making them accessible through both Firebase and Google Cloud APIs.
This allows you the flexibility to upload and download files from mobile clients via Firebase and do
server-side processing such as image filtering or video transcoding using Google Cloud Platform.
Firebase Storage scales automatically, meaning that there's no need to migrate from Firebase
Storage to Google Cloud Storage or any other provider.

This integration makes files accessible directly from the Google Cloud Storage gcloud client
libraries, so you can use Firebase Storage with your favorite server-side languages. For more
control, you can also use the Google Cloud Storage XML and JSON APIs.

Firebase Storage integrates seamlessly with Firebase Authentication to identify users, and
provides a declarative security language that lets you set access controls on individual files or
groups of files, so you can make files as public or private as you want.

See the public docs for Firebase Storage for the most up to date APIs, samples, and example
apps.

Examples

Getting started on iOS

Prerequisites

Create a new project and add an iOS app to that project in the Firebase Console.1.
Download and include GoogleServices-Info.plist in your application.2.

Add Firebase Storage to your app

Add the following dependency to your project's Podfile:

pod 'Firebase/Storage'

Run pod install and open the created .xcworkspace file.

https://riptutorial.com/ 58

https://firebase.google.com/docs/storage/
http://console.firebase.google.com

Follow these instructions to install Firebase without CocoaPods

Set up Firebase Storage

You must initialize Firebase before any Firebase app reference is created or used. If you have
already done this for another Firebase feature, you can skip the following two steps.

Import the Firebase module:

// Obj-C
@import Firebase;

// Swift
import Firebase

Configure a FIRApp shared instance, typically in your application's
application:didFinishLaunchingWithOptions: method:

// Obj-C
[FIRApp configure];

// Swift
FIRApp.configure()

Get a reference to the storage service, using the default Firebase App:

// Obj-C
FIRStorage *storage = [FIRStorage storage];

// Swift
let storage = FIRStorage.storage()

Create a reference to a file in Firebase Storage:

// Obj-C
FIRStorageReference *reference = [[storage reference] child:@"path/to/file.txt"];

// Swift
let reference = storage.reference().child("path/to/file.txt")

Upload a file to Firebase Storage:

// Obj-C
NSData *data = ...
FIRStorageUploadTask *uploadTask = [riversRef putData:data metadata:nil
completion:^(FIRStorageMetadata *metadata, NSError *error) {
 if (error != nil) {
 // Uh-oh, an error occurred!
 } else {
 // Metadata contains file metadata such as size, content-type, and download URL.

https://riptutorial.com/ 59

 NSURL downloadURL = metadata.downloadURL;
 }
}];

// Swift
let data: NSData! = ...
let uploadTask = riversRef.putData(data, metadata: nil) { metadata, error in
 if (error != nil) {
 // Uh-oh, an error occurred!
 } else {
 // Metadata contains file metadata such as size, content-type, and download URL.
 let downloadURL = metadata!.downloadURL
 }
}

Read Storage online: https://riptutorial.com/firebase/topic/4281/storage

https://riptutorial.com/ 60

https://riptutorial.com/firebase/topic/4281/storage

Chapter 18: Structuring Data

Introduction

Firebase database is a NoSQL database that stores its data in the form of hierarchal JSON
objects. There are no tables or records of any form as an SQL database would normally have, just
nodes that make up a key-value structure.

Data Normalization

In order to have a properly designed database structure, the data requirements must be
thoroughly outlined and forethought. The structure in this case should be normalized; the more flat
the JSON tree, the faster data-access is.

Examples

Do's and Don'ts

The Wrong Way

Consider the following structure

{
 "users": {

 // Uniquely generated IDs for children is common practice,
 // it's actually really useful for automating child creation.
 // Auto-incrementing an integer for a key can be problematic when a child is removed.

 "-KH3Cx0KFvSQELIYZezv": {
 "name": "Jon Snow",
 "aboutMe": "I know nothing...",
 "posts": {
 "post1": {
 "body": "Different roads sometimes leads to the same castle",
 "isHidden": false
 },
 "post2": { ... },
 // Possibly more posts
 }
 },
 "-KH3Dx2KFdSLErIYZcgk": { ... }, // Another user
 // A lot more users here
 }
}

This is a great example of what NOT to do. Multi-nested structures such as the one above can be
very problematic and could cause a huge performance setback.

The way Firebase accesses a node is by downloading all the children's data, then iterating over all
same-level nodes (all parents' children). Now, imagine a database with several users, each having

https://riptutorial.com/ 61

hundreds (or even thousands) of posts. Accessing a post in this case could potentially load
hundreds of megabytes of unused data. In a more complicated application, the nesting could be
deeper than just 4 layers, which would result in more useless downloads and iterations.

The Right Way

Flattening the same structure would look like this

{
 // "users" should not contain any of the posts' data
 "users": {
 "-KH3Cx0KFvSQELIYZezv": {
 "name": "Jon Snow",
 "aboutMe": "I know nothing..."
 },
 "-KH3Dx2KFdSLErIYZcgk": { ... },
 // More users
 },

 // Posts can be accessed provided a user key
 "posts": {
 "-KH3Cx0KFvSQELIYZezv": { // Jon Snow's posts
 "post1": {
 "body": "Different roads sometimes leads to the same castle",
 "isHidden": false
 },
 "post2": { ... },
 // Possibly more posts
 },
 "-KH3Dx2KFdSLErIYZcgk": { ... },
 // other users' posts
 }
}

This spares a huge amount of overhead by iterating over less nodes to access a target object. All
users that do not have any posts would not exist in the posts branch, and so iterating over those
users in the wrong way above is completely useless.

Two-Way Relationships

The following is an example of a simple and minimal college database that uses two-way
relationships

{
 "students": {
 "-SL3Cs0KFvDMQLIYZEzv": {
 "name": "Godric Gryffindor",
 "id": "900130309",
 "courses": {
 "potions": true,
 "charms": true,
 "transfiguration": true,
 }
 },
 "-SL3ws2KvZQLTYMqzSas": {
 "name": "Salazar Slytherin",

https://riptutorial.com/ 62

 "id": "900132319",
 "courses": {
 "potions": true,
 "herbs": true,
 "muggleStudies": true,
 }
 },
 "-SL3ns2OtARSTUMywqWt": { ... },
 // More students here
 },

 "courses": {
 "potions": {
 "code": "CHEM305",
 "enrolledStudents": {
 "-SL3Cs0KFvDMQLIYZEzv": true, // Godric Gryffindor
 "-SL3ws2KvZQLTYMqzSas": true, // Salazar Slytherin
 // More students
 }
 },
 "muggleStuddies": {
 "code": "SOC215",
 "enrolledStudents": {
 "-SL3ws2KvZQLTYMqzSas": true, // Salazar Slytherin
 "-SL3ns2OtARSTUMywqWt": true, // Some other student
 // More students
 }
 },
 // More courses
 }
}

Note that each student has a list of courses and each course has a list of enrolled students.

Redundancy is not always a bad approach. It's true that it costs storage space and having to deal
with multiple entries' updating when deleting or editing a duplicated node; however, in some
scenarios where data is not updated often, having two-way relationships could ease the
fetching/writing process significantly.

In most scenarios where an SQL-like query seems needed, inverting the data and creating two-
way relationships is usually the solution.

Consider an application using the database above that requires the ability to:

List the courses a certain student is taking and...1.
List all the students in a certain course2.

If the database structure had been one-directional, it would incredibly slower to scan or query for
one of the two requirements above. In some scenarios, redundancy makes frequent operations
faster and much more efficient which, on the long run, makes the duplications' cost negligible.

Read Structuring Data online: https://riptutorial.com/firebase/topic/8912/structuring-data

https://riptutorial.com/ 63

https://riptutorial.com/firebase/topic/8912/structuring-data

Chapter 19: Using Firebase with Node

Examples

Hello World Firebase Realtime Database in Node

System Requirements:

Node JS•

Getting Started

First Go to Firebase Console and Create New Project.1.
After Creating the project, in project click on settings icon besides project Name in left
sidebar and select Permissions.

2.

On Permissions Page Click on Service accounts in left sidebar then click on Create Service
Account

3.

In the popup window enter your service account name and choose Account Role and select
Furnish a new private key and after that select JSON and click Create(Leave Enable Google
App Domain-wide Delegation Unchecked).

4.

When you click create it will download a JSON file with your Account Credentials, just save
the file Anywhere in your System.

5.

Next step is to Create a Database in your Firebase Console for which Go to Firebase
Console and click on Database in left-sidebar. After that just create a new Database Object
with Name user_data with some dummy value.

6.

Now your Firebase Database project is setup now simply copy following code in your project
directory.

7.

//Loading Firebase Package
var firebase = require("firebase");

/**
* Update your Firebase Project
* Credentials and Firebase Database
* URL
*/
firebase.initializeApp({
 serviceAccount: "<path to Firebase Credentials Json File>",
 databaseURL: "<Firebase Database URL>"
}); //by adding your credentials, you get authorized to read and write from the database

/**
* Loading Firebase Database and refering
* to user_data Object from the Database
*/
var db = firebase.database();
var ref = db.ref("/user_data"); //Set the current directory you are working in

/**
* Setting Data Object Value

https://riptutorial.com/ 64

https://nodejs.org/en/
https://console.firebase.google.com/

*/
ref.set([
{
 id:20,
 name:"Jane Doe",
 email:"jane@doe.com",
 website:"https://jane.foo.bar"
},
{
 id:21,
 name:"John doe",
 email:"john@doe.com",
 website:"https://foo.bar"
}
]);

/**
* Pushing New Value
* in the Database Object
*/
ref.push({
 id:22,
 name:"Jane Doe",
 email:"jane@doe.com",
 website:"https://jane.foo.bar"
});

/**
* Reading Value from
* Firebase Data Object
*/
ref.once("value", function(snapshot) {
 var data = snapshot.val(); //Data is in JSON format.
 console.log(data);
});

Just change with the JSON Credentials file URL(For starters just copy the credentials file in
Same folder and in index.js file just add the credentials File Name).

8.

Next step is to change the in index.js with actual Firebase Database URL, you will be able to
find this URL in Firebase Console in Database Tab, The URL will be like
https://.firebaseio.com/.

9.

The final step is to do10.

npm install firebase

After Executing above command NPM will install necessary packages required for Firebase.
Finally to run and test project execute

11.

node index.js

What does the project actually do?

The project loads the Data from cloud based Firebase Database. The project also demonstrates
how to Write and Read data from a Firebase Data Object.

https://riptutorial.com/ 65

In order to view your data get updated in realtime, go to your console click on the project you
made, and on the left, hit Database. There, you can see your data get updated in real-time, along
with their values.

Firebase-queue and worker

You can push tasks or data to the firebase realtime database and run a worker which listens to the
firebase queue to run some background processess

Setup firebase

Create a Firebase project in the Firebase console, if you don't already have one. If you
already have an existing Google project associated with your app, click Import Google
Project. Otherwise, click Create New Project..

1.

Click settings icon and select Permissions.2.

Select Service accounts from the menu on the left.3.

Click Create service account.

Enter a name for your service account.

You can optionally customize the ID from the one automatically generated from the name.

Choose Project > Editor from the Role dropdown.

Select Furnish a new private key and leave the Key type as JSON.

Leave Enable Google Apps Domain-wide Delegation unselected.

Click Create

4.

When you create the service account, a JSON file containing your service account's
credentials is downloaded for you. You'll need this to initialize the SDK in the server.

5.

Setup server

Install firebase-queue using npm in your nodejs app

npm install firebase firebase-queue --save

Once you've installed firebase and firebase-queue, you can get started by creating a new Queue
and passing it your Firebase reference and a processing function.

Now lets create a firebase queue task from the app when a new user is created and set worker to
listen for firebase-queue task and send an email to the created users mail.

*server.js

https://riptutorial.com/ 66

https://console.firebase.google.com/

var app=express();
var Queue = require('firebase-queue'),
 Firebase = require('firebase');

Update your Firebase Project Credentials and Firebase Database URL

var firebase = Firebase.initializeApp({
 serviceAccount: "path/to/serviceAccountCredentials.json",
 databaseURL: "https://databaseName.firebaseio.com"
});

or you can input firebase credentials directly as below

var firebase = Firebase.initializeApp({
 serviceAccount: {
 projectId: "projectId",
 clientEmail: "foo@projectId.iam.gserviceaccount.com",
 privateKey: "-----BEGIN PRIVATE KEY-----\nkey\n-----END PRIVATE KEY-----\n"
 },
 databaseURL: "https://databaseName.firebaseio.com"
});

var refQueue = firebase.database().ref("queue/tasks");

createUser = funtion(email, password){
 var user = {
 username: email,
 password: password
 };
 user = new db.users(user);
 user.save(function(err, user){
 if(!err){
 refQueue.push({case: "NEW_USER", data: user});
 }
 })
}

createUser("abc@abc.com", "password");

*worker.js

var Queue = require('firebase-queue'),
 Firebase = require('firebase');

//Update your Firebase Project Credentials and Firebase Database URL by one of the way
specified in server.js
var firebase = Firebase.initializeApp({
 serviceAccount: "path/to/serviceAccountCredentials.json",
 databaseURL: "https://databaseName.firebaseio.com"
});

var refQueue = firebase.database().ref("queue");

var queue = new Queue(refQueue, function(data, progress, resolve, reject) {
 switch(data.case){
 case "NEW_USER":

https://riptutorial.com/ 67

 sendMail(data.data.email);
 console.log("user created");
 //sendMail function is not an inbuilt function and will not work unless you define
and implement the function
 break;

 // Finish the task asynchronously
 setTimeout(function() {
 resolve();
 }, 1000);
});

run server and worker seperately and test around with firebase queue

node server.js

node worker.js

Read Using Firebase with Node online: https://riptutorial.com/firebase/topic/6443/using-firebase-
with-node

https://riptutorial.com/ 68

https://riptutorial.com/firebase/topic/6443/using-firebase-with-node
https://riptutorial.com/firebase/topic/6443/using-firebase-with-node

Credits

S.
No

Chapters Contributors

1
Getting started with
firebase

Ami Hollander, Community, Dan Levy, Devid Farinelli,
ErstwhileIII, Gabriele Mariotti, RyanM, Sneh Pandya,
TwiterZX, Vishal Vishwakarma

2
Cloud Functions for
Firebase

Vishal Vishwakarma

3 Crash Reporting Gabriele Mariotti

4 Database Rules
Frank van Puffelen, Gabriele Mariotti, riggaroo, Sasxa,
Velko Ivanov

5
Email Verification after
Sign Up

Rexford

6
Firbase Realtime
Database with Android

Dhaval Solanki, Frank van Puffelen

7 Firebase Console Priyank Bhojak

8
Firebase Offline
Capabilities

Francisco Durdin Garcia

9 Firebase Queue Vladimir Gabrielyan

10 FirebaseUI Mike McDonald

11 FirebaseUI (Android) Willie Chalmers III

12
How do I listen for errors
when accessing the
database?

Frank van Puffelen, ThunderStruct

13
How to get push key
value from Firebase
Database?

cutiko

14

How to use
FirebaseRecyclerAdapter
instead of
RecyclerAdapter?

Dhaval Solanki

How to use the Firebase 15 Devid Farinelli, eikooc, Frank van Puffelen, Ron Royston

https://riptutorial.com/ 69

https://riptutorial.com/contributor/6203078/ami-hollander
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6063755/dan-levy
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/2036397/erstwhileiii
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/5476495/ryanm
https://riptutorial.com/contributor/6248491/sneh-pandya
https://riptutorial.com/contributor/735994/twiterzx
https://riptutorial.com/contributor/7662788/vishal-vishwakarma
https://riptutorial.com/contributor/7662788/vishal-vishwakarma
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/209103/frank-van-puffelen
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/1291714/riggaroo
https://riptutorial.com/contributor/1876949/sasxa
https://riptutorial.com/contributor/7224290/velko-ivanov
https://riptutorial.com/contributor/1757321/rexford
https://riptutorial.com/contributor/3894930/dhaval-solanki
https://riptutorial.com/contributor/209103/frank-van-puffelen
https://riptutorial.com/contributor/1414160/priyank-bhojak
https://riptutorial.com/contributor/5631145/francisco-durdin-garcia
https://riptutorial.com/contributor/4983595/vladimir-gabrielyan
https://riptutorial.com/contributor/3875023/mike-mcdonald
https://riptutorial.com/contributor/5742625/willie-chalmers-iii
https://riptutorial.com/contributor/209103/frank-van-puffelen
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/4017501/cutiko
https://riptutorial.com/contributor/3894930/dhaval-solanki
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/1336244/eikooc
https://riptutorial.com/contributor/209103/frank-van-puffelen
https://riptutorial.com/contributor/4797603/ron-royston

Database to keep a list
of Firebase
Authentication users

16
Push notification from
custom server

Aawaz Gyawali

17 Storage Mike McDonald

18 Structuring Data ThunderStruct

19
Using Firebase with
Node

Akshay Khale, Laurel, Noushad PP, Shiven

https://riptutorial.com/ 70

https://riptutorial.com/contributor/3931968/aawaz-gyawali
https://riptutorial.com/contributor/3875023/mike-mcdonald
https://riptutorial.com/contributor/3551916/thunderstruct
https://riptutorial.com/contributor/2541634/akshay-khale
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/5466933/noushad-pp
https://riptutorial.com/contributor/3543416/shiven

	About
	Chapter 1: Getting started with firebase
	Remarks
	Versions
	Examples
	Add Firebase to Your Android Project

	Add Firebase to your app
	Add the SDK
	Setting up Firebase for IOS
	Getting started in Firebase with a simple Hello World web app in JavaScript

	Lets get started.
	Chapter 2: Cloud Functions for Firebase
	Introduction
	Examples
	Send welcome notification emails to the users for subscribing.

	Now go to your Firebase Console
	Install Firebase CLI in your computer
	Set Google Cloud environment variables
	Deploy the project and test
	Chapter 3: Crash Reporting
	Remarks
	Official Documetantion
	Examples
	Setup Crash Reporting in Android
	Report the error in Android

	Chapter 4: Database Rules
	Introduction
	Remarks
	Official Documentation
	Examples
	How to configure rules
	The default rules
	How to set your files publicly readable and writable
	How to disable read and write access
	How to grant access only to authenticated users
	How to allow reading specific item from group, but prevent listing group members

	Chapter 5: Email Verification after Sign Up
	Syntax
	Parameters
	Remarks
	Examples
	Send-cum-Process Verification Action Code - AngularJS

	Chapter 6: Firbase Realtime Database with Android
	Examples
	How to connect Realtime database with Android Application

	Chapter 7: Firebase Console
	Syntax
	Parameters
	Remarks
	Examples
	Firebase All In One

	Chapter 8: Firebase Offline Capabilities
	Introduction
	Remarks
	Examples
	Enable disk persistence (Android / iOS only)
	Keeping data fresh (Android/iOs Only)

	Chapter 9: Firebase Queue
	Examples
	How to use firebase queue as a backend for your application

	Prerequisites
	Architecture

	Chapter 10: FirebaseUI
	Remarks
	Examples
	Getting Started with FirebaseUI

	Chapter 11: FirebaseUI (Android)
	Examples
	Adding the dependencies
	Populating a ListView

	Chapter 12: How do I listen for errors when accessing the database?
	Introduction
	Examples
	Detect errors when writing a value on Android
	Detect errors when reading data on Android
	Detect errors when writing a value on iOS
	Detecting errors when reading data in JavaScript
	Detecting errors when writing a value in JavaScript
	Detect errors when reading data on iOS

	Chapter 13: How to get push key value from Firebase Database?
	Introduction
	Examples
	Android Example

	Chapter 14: How to use FirebaseRecyclerAdapter instead of RecyclerAdapter?
	Examples
	Here is the Example for Use FirebaseUi component FirebaseRecyclerAdapter

	Chapter 15: How to use the Firebase Database to keep a list of Firebase Authentication users
	Examples
	How to save user profile data
	Why save user data in the database
	Handling User Account Data in the Realtime Database

	Chapter 16: Push notification from custom server
	Introduction
	Examples
	Firebase Cloud Messaging HTTP Protocol
	Using Admin SDK(Node js)

	Chapter 17: Storage
	Remarks
	Examples
	Getting started on iOS

	Prerequisites
	Add Firebase Storage to your app
	Set up Firebase Storage

	Chapter 18: Structuring Data
	Introduction
	Examples
	Do's and Don'ts
	Two-Way Relationships

	Chapter 19: Using Firebase with Node
	Examples
	Hello World Firebase Realtime Database in Node
	Firebase-queue and worker

	Credits

