
Flask

#flask

Table of Contents

About 1

Chapter 1: Getting started with Flask 2

Remarks 2

Versions 2

Examples 2

Installation - Stable 2

Hello World 3

Installation - Latest 3

Installation - Development 3

sphinx 3

py.test 4

tox 4

Chapter 2: Accessing request data 5

Introduction 5

Examples 5

Accessing query string 5

Combined form and query string 5

Accessing form fields 6

Chapter 3: Authorization and authentication 7

Examples 7

Using flask-login extension 7

General idea 7

Create a LoginManager 7

Specify a callback used for loading users 7

A class representing your user 8

Logging the users in 8

I have logged in a user, what now? 9

Logging users out 10

What happens if a user is not logged in and I access the current_user object? 10

What next? 10

Timing out the login session 11

Chapter 4: Blueprints 12

Introduction 12

Examples 12

A basic flask blueprints example 12

Chapter 5: Class-Based Views 14

Examples 14

Basic example 14

Chapter 6: Custom Jinja2 Template Filters 15

Syntax 15

Parameters 15

Examples 15

Format datetime in a Jinja2 template 15

Chapter 7: Deploying Flask application using uWSGI web server with Nginx 16

Examples 16

Using uWSGI to run a flask application 16

Installing nginx and setting it up for uWSGI 17

Enable streaming from flask 18

Set up Flask Application, uWGSI, Nginx - Server Configurations boiler template (default, p 19

Chapter 8: File Uploads 24

Syntax 24

Examples 24

Uploading Files 24

HTML Form 24

Python Requests 24

Save uploads on the server 25

Passing data to WTForms and Flask-WTF 25

PARSE CSV FILE UPLOAD AS LIST OF DICTIONARIES IN FLASK WITHOUT SAVING 26

Chapter 9: Flask on Apache with mod_wsgi 28

Examples 28

WSGI Application wrapper 28

Apache sites-enabled configuration for WSGI 28

Chapter 10: Flask-SQLAlchemy 30

Introduction 30

Examples 30

Installation and Initial Example 30

Relationships: One to Many 30

Chapter 11: Flask-WTF 32

Introduction 32

Examples 32

A simple Form 32

Chapter 12: Message Flashing 33

Introduction 33

Syntax 33

Parameters 33

Remarks 33

Examples 33

Simple Message Flashing 33

Flashing With Categories 34

Chapter 13: Pagination 35

Examples 35

Pagination Route Example with flask-sqlalchemy Paginate 35

Rendering pagination in Jinja 35

Chapter 14: Redirect 37

Syntax 37

Parameters 37

Remarks 37

Examples 37

Simple example 37

Passing along data 37

Chapter 15: Rendering Templates 39

Syntax 39

Examples 39

render_template Usage 39

Chapter 16: Routing 41

Examples 41

Basic Routes 41

Catch-all route 42

Routing and HTTP methods 43

Chapter 17: Sessions 44

Remarks 44

Examples 44

Using the sessions object within a view 44

Chapter 18: Signals 46

Remarks 46

Examples 46

Connecting to signals 46

Custom signals 46

Chapter 19: Static Files 48

Examples 48

Using Static Files 48

Static Files in Production (served by frontend webserver) 49

Chapter 20: Testing 52

Examples 52

Testing our Hello World app 52

Introduction 52

Defining the test 52

Running the test 53

Testing a JSON API implemented in Flask 53

Testing this API with pytest 53

Accessing and manipulating session variables in your tests using Flask-Testing 54

Chapter 21: Working with JSON 57

Examples 57

Return a JSON Response from Flask API 57

Try it with curl 57

Other ways to use jsonify() 57

Receiving JSON from an HTTP Request 57

Try it with curl 58

Credits 59

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: flask

It is an unofficial and free Flask ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Flask.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/flask
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Flask

Remarks

Flask is a Python web application micro-framework built on top of the Werkzeug WSGI library.
Flask may be "micro", but it’s ready for production use on a variety of needs.

The "micro" in micro-framework means Flask aims to keep the core simple but extensible. Flask
won’t make many decisions for you, such as what database to use, and the decisions that it does
make are easy to change. Everything is up to you, so that Flask can be everything you need and
nothing you don't.

The community supports a rich ecosystem of extensions to make your application more powerful
and even easier to develop. As your project grows you are free to make the design decisions
appropriate for your requirements.

Versions

Version Code Name Release Date

0.12 Punsch 2016-12-21

0.11 Absinthe 2016-05-29

0.10 Limoncello 2013-06-13

Examples

Installation - Stable

Use pip to install Flask in a virtualenv.

pip install flask

Step by step instructions for creating a virtualenv for your project:

mkdir project && cd project
python3 -m venv env
or `virtualenv env` for Python 2
source env/bin/activate
pip install flask

Never use sudo pip install unless you understand exactly what you're doing. Keep your project in
a local virtualenv, do not install to the system Python unless you are using the system package

https://riptutorial.com/ 2

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/werkzeug/

manager.

Hello World

Create hello.py:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
 return 'Hello, World!'

Then run it with:

export FLASK_APP=hello.py
flask run
 * Running on http://localhost:5000/

Adding the code below will allow running it directly with python hello.py.

if __name__ == '__main__':
 app.run()

Installation - Latest

If you want to use the latest code, you can install it from the repository. While you potentially get
new features and fixes, only numbered releases are officially supported.

pip install https://github.com/pallets/flask/tarball/master

Installation - Development

If you want to develop and contribute to the Flask project, clone the repository and install the code
in development mode.

git clone ssh://github.com/pallets/flask
cd flask
python3 -m venv env
source env/bin/activate
pip install -e .

There are some extra dependencies and tools to be aware of as well.

sphinx

https://riptutorial.com/ 3

Used to build the documentation.

pip install sphinx
cd docs
make html
firefox _build/html/index.html

py.test

Used to run the test suite.

pip install pytest
py.test tests

tox

Used to run the test suite against multiple Python versions.

pip install tox
tox

Note that tox only uses interpreters that are already installed, so if you don't have Python 3.3 installed on your path, it
won't be tested.

Read Getting started with Flask online: https://riptutorial.com/flask/topic/790/getting-started-with-
flask

https://riptutorial.com/ 4

https://riptutorial.com/flask/topic/790/getting-started-with-flask
https://riptutorial.com/flask/topic/790/getting-started-with-flask

Chapter 2: Accessing request data

Introduction

When working with an web application it's sometimes important to access data included in the
request, beyond the URL.

In Flask this is stored under the global request object, which you can access in your code via from
flask import request.

Examples

Accessing query string

The query string is the part of a request following the URL, preceded by a ? mark.

Example: https://encrypted.google.com/search?hl=en&q=stack%20overflow

For this example, we are making a simple echo webserver that echos back everything submitted
to it via the echo field in GET requests.

Example: localhost:5000/echo?echo=echo+this+back+to+me

Flask Example:

from flask import Flask, request

app = Flask(import_name=__name__)

@app.route("/echo")
def echo():

 to_echo = request.args.get("echo", "")
 response = "{}".format(to_echo)

 return response

if __name__ == "__main__":
 app.run()

Combined form and query string

Flask also allows access to a CombinedMultiDict that gives access to both the request.form and
request.args attributes under one variable.

This example pulls data from a form field name submitted along with the echo field in the query
string.

Flask Example:

https://riptutorial.com/ 5

from flask import Flask, request

app = Flask(import_name=__name__)

@app.route("/echo", methods=["POST"])
def echo():

 name = request.values.get("name", "")
 to_echo = request.values.get("echo", "")

 response = "Hey there {}! You said {}".format(name, to_echo)

 return response

app.run()

Accessing form fields

You can access the form data submitted via a POST or PUT request in Flask via the request.form
attribute.

from flask import Flask, request

app = Flask(import_name=__name__)

@app.route("/echo", methods=["POST"])
def echo():

 name = request.form.get("name", "")
 age = request.form.get("age", "")

 response = "Hey there {}! You said you are {} years old.".format(name, age)

 return response

app.run()

Read Accessing request data online: https://riptutorial.com/flask/topic/8622/accessing-request-
data

https://riptutorial.com/ 6

https://riptutorial.com/flask/topic/8622/accessing-request-data
https://riptutorial.com/flask/topic/8622/accessing-request-data

Chapter 3: Authorization and authentication

Examples

Using flask-login extension

One of the simpler ways of implementing an authorization system is using the flask-login
extension. The project's website contains a detailed and well-written quickstart, a shorter version
of which is available in this example.

General idea

The extension exposes a set of functions used for:

logging users in•
logging users out•
checking if a user is logged in or not and finding out which user is that•

What it doesn't do and what you have to do on your own:

doesn't provide a way of storing the users, for example in the database•
doesn't provide a way of checking user's credentials, for example username and password•

Below there is a minimal set of steps needed to get everything working.

I would recommend to place all auth related code in a separate module or package, for
example auth.py. That way you can create the necessary classes, objects or custom
functions separately.

Create a LoginManager

The extension uses a LoginManager class which has to be registered on your Flask application
object.

from flask_login import LoginManager
login_manager = LoginManager()
login_manager.init_app(app) # app is a Flask object

As mentioned earlier LoginManager can for example be a global variable in a separate file or
package. Then it can be imported in the file in which the Flask object is created or in your
application factory function and initialized.

Specify a callback used for loading users

https://riptutorial.com/ 7

https://flask-login.readthedocs.io/en/latest/
https://flask-login.readthedocs.io/en/latest/#flask_login.LoginManager
http://flask.pocoo.org/docs/dev/api/#application-object

A users will normally be loaded from a database. The callback must return an object which
represents a user corresponding to the provided ID. It should return None if the ID is not valid.

@login_manager.user_loader
def load_user(user_id):
 return User.get(user_id) # Fetch the user from the database

This can be done directly below creating your LoginManager.

A class representing your user

As mentioned the user_loader callback has to return an object which represent a user. What does
that mean exactly? That object can for example be a wrapper around user objects stored in your
database or simply directly a model from your database. That object has to implement the
following methods and properties. That means that if the callback returns your database model
you need to ensure that the mentioned properties and methods are added to your model.

is_authenticated

This property should return True if the user is authenticated, i.e. they have provided valid
credentials. You will want to ensure that the objects which represent your users returned by
the user_loader callback return True for that method.

•

is_active

This property should return True if this is an active user - in addition to being authenticated,
they also have activated their account, not been suspended, or any condition your
application has for rejecting an account. Inactive accounts may not log in. If you don't have
such a mechanism present return True from this method.

•

is_anonymous

This property should return True if this is an anonymous user. That means that your user
object returned by the user_loader callback should return True.

•

get_id()

This method must return a unicode that uniquely identifies this user, and can be used to load
the user from the user_loader callback. Note that this must be a unicode - if the ID is natively
an int or some other type, you will need to convert it to unicode. If the user_loader callback
returns objects from the database this method will most likely return the database ID of this
particular user. The same ID should of course cause the user_loader callback to return the
same user later on.

•

If you want to make things easier for yourself (**it is in fact recommended) you can inherit from
UserMixin in the object returned by the user_loader callback (presumably a database model). You
can see how those methods and properties are implemented by default in this mixin here.

https://riptutorial.com/ 8

https://flask-login.readthedocs.io/en/latest/#flask_login.UserMixin
https://flask-login.readthedocs.io/en/latest/_modules/flask_login/mixins.html#UserMixin

Logging the users in

The extension leaves the validation of the username and password entered by the user to you. In
fact the extension doesn't care if you use a username and password combo or other mechanism.
This is an example for logging users in using username and password.

@app.route('/login', methods=['GET', 'POST'])
def login():
 # Here we use a class of some kind to represent and validate our
 # client-side form data. For example, WTForms is a library that will
 # handle this for us, and we use a custom LoginForm to validate.
 form = LoginForm()
 if form.validate_on_submit():
 # Login and validate the user.
 # user should be an instance of your `User` class
 login_user(user)

 flask.flash('Logged in successfully.')

 next = flask.request.args.get('next')
 # is_safe_url should check if the url is safe for redirects.
 # See http://flask.pocoo.org/snippets/62/ for an example.
 if not is_safe_url(next):
 return flask.abort(400)

 return flask.redirect(next or flask.url_for('index'))
 return flask.render_template('login.html', form=form)

In general logging users in is accomplished by calling login_user and passing an instance of an
object representing your user mentioned earlier to it. As shown this will usually happen after
retrieving the user from the database and validating his credentials, however the user object just
magically appears in this example.

I have logged in a user, what now?

The object returned by the user_loader callback can be accessed in multiple ways.

In templates:

The extension automatically injects it under the name current_user using a template context
processor. To disable that behaviour and use your custom processor set
add_context_processor=False in your LoginManager constructor.

 {% if current_user.is_authenticated %}
 Hi {{ current_user.name }}!
 {% endif %}

•

In Python code:

The extension provides a request-bound object called current_user.

•

https://riptutorial.com/ 9

https://flask-login.readthedocs.io/en/latest/#flask_login.login_user
https://flask-login.readthedocs.io/en/latest/#flask_login.current_user

 from flask_login import current_user

 @app.route("/hello")
 def hello():
 # Assuming that there is a name property on your user object
 # returned by the callback
 if current_user.is_authenticated:
 return 'Hello %s!' % current_user.name
 else:
 return 'You are not logged in!'

Limiting access quickly using a decorator A login_required decorator can be used to limit
access quickly.

 from flask_login import login_required

 @app.route("/settings")
 @login_required
 def settings():
 pass

•

Logging users out

Users can be logged out by calling logout_user(). It appears that it is safe to do so even if the user
is not logged in so the @login_required decorator can most likely be ommited.

@app.route("/logout")
@login_required
def logout():
 logout_user()
 return redirect(somewhere)

What happens if a user is not logged in and I
access the current_user object?

By defult an AnonymousUserMixin is returned:

is_active and is_authenticated are False•
is_anonymous is True•
get_id() returns None•

To use a different object for anonymous users provide a callable (either a class or factory function)
that creates anonymous users to your LoginManager with:

login_manager.anonymous_user = MyAnonymousUser

https://riptutorial.com/ 10

https://flask-login.readthedocs.io/en/latest/#flask_login.login_required
https://flask-login.readthedocs.io/en/latest/#flask_login.logout_user
https://flask-login.readthedocs.io/en/latest/#flask_login.AnonymousUserMixin

What next?

This concludes the basic introduction to the extension. To learn more about configuration and
additional options it is highly recommended to read the official guide.

Timing out the login session

Its good practice to time out logged in session after specific time, you can achieve that with Flask-
Login.

from flask import Flask, session
from datetime import timedelta
from flask_login import LoginManager, login_require, login_user, logout_user

Create Flask application

app = Flask(__name__)

Define Flask-login configuration

login_mgr = LoginManager(app)
login_mgr.login_view = 'login'
login_mgr.refresh_view = 'relogin'
login_mgr.needs_refresh_message = (u"Session timedout, please re-login")
login_mgr.needs_refresh_message_category = "info"

@app.before_request
def before_request():
 session.permanent = True
 app.permanent_session_lifetime = timedelta(minutes=5)

Default session lifetime is 31 days, user need to specify the login refresh view in case of timeout.

app.permanent_session_lifetime = timedelta(minutes=5)

Above line will force user to re-login every 5 minutes.

Read Authorization and authentication online: https://riptutorial.com/flask/topic/9053/authorization-
and-authentication

https://riptutorial.com/ 11

https://flask-login.readthedocs.io/en/latest/
https://riptutorial.com/flask/topic/9053/authorization-and-authentication
https://riptutorial.com/flask/topic/9053/authorization-and-authentication

Chapter 4: Blueprints

Introduction

Blueprints are a powerful concept in Flask application development that allow for flask applications
to be more modular and be able to follow multiple patterns. They make administration of very large
Flask applications easier and as such can be used to scale Flask applications. You can reuse
Blueprint applications however you cannot run a blueprint on its own as it has to be registered on
your main application.

Examples

A basic flask blueprints example

A minimal Flask application looks something like this:

from flask import Flask
app = Flask(__name__)

@app.route("/")
def index():
 return "Hello World!"

A large Flask application can separate one file into multiple files by blueprints.

Purpose

Make it easier for others to maintain the application.

Folder Structure of Large Application

/app
 /templates
 /static
 /views
 __init__.py
 index.py
 app.py

views/index.py

from flask import Blueprint, render_template

index_blueprint = Blueprint('index', __name__)

@index_blueprint.route("/")
def index():
 return "Hello World!"

https://riptutorial.com/ 12

app.py

from flask import Flask
from views.index import index_blueprint

application = Flask(__name__)
application.register_blueprint(index_blueprint)

Run application

$ export FLASK_APP=app.py
$ flask run

Read Blueprints online: https://riptutorial.com/flask/topic/6427/blueprints

https://riptutorial.com/ 13

https://riptutorial.com/flask/topic/6427/blueprints

Chapter 5: Class-Based Views

Examples

Basic example

With Class-Based Views, we use classes instead of methods to implement our views. A simple
example of using Class-Based Views looks as follows:

from flask import Flask
from flask.views import View

app = Flask(__name__)

class HelloWorld(View):

 def dispatch_request(self):
 return 'Hello World!'

class HelloUser(View):

 def dispatch_request(self, name):
 return 'Hello {}'.format(name)

app.add_url_rule('/hello', view_func=HelloWorld.as_view('hello_world'))
app.add_url_rule('/hello/<string:name>', view_func=HelloUser.as_view('hello_user'))

if __name__ == "__main__":
 app.run(host='0.0.0.0', debug=True)

Read Class-Based Views online: https://riptutorial.com/flask/topic/7494/class-based-views

https://riptutorial.com/ 14

https://riptutorial.com/flask/topic/7494/class-based-views

Chapter 6: Custom Jinja2 Template Filters

Syntax

{{ my_date_time|my_custom_filter }}•

{{ my_date_time|my_custom_filter(args) }}•

Parameters

Parameter Details

value The value passed in by Jinja, to be filtered

args Extra arguments to be passed into the filter function

Examples

Format datetime in a Jinja2 template

Filters can either be defined in a method and then added to Jinja's filters dictionary, or defined in a
method decorated with Flask.template_filter.

Defining and registering later:

def format_datetime(value, format="%d %b %Y %I:%M %p"):
 """Format a date time to (Default): d Mon YYYY HH:MM P"""
 if value is None:
 return ""
 return value.strftime(format)

Register the template filter with the Jinja Environment
app.jinja_env.filters['formatdatetime'] = format_datetime

Defining with decorator:

@app.template_filter('formatdatetime')
def format_datetime(value, format="%d %b %Y %I:%M %p"):
 """Format a date time to (Default): d Mon YYYY HH:MM P"""
 if value is None:
 return ""
 return value.strftime(format)

Read Custom Jinja2 Template Filters online: https://riptutorial.com/flask/topic/1465/custom-jinja2-
template-filters

https://riptutorial.com/ 15

https://riptutorial.com/flask/topic/1465/custom-jinja2-template-filters
https://riptutorial.com/flask/topic/1465/custom-jinja2-template-filters

Chapter 7: Deploying Flask application using
uWSGI web server with Nginx

Examples

Using uWSGI to run a flask application

The built-in werkzeug server certainly is not suitable for running production servers. The most
obvious reason is the fact that the werkzeug server is single-threaded and thus can only handle one
request at a time.

Because of this we want to use the uWSGI Server to serve our application instead. In this example
we will install uWSGI and run a simple test application with it.

Installing uWSGI:

pip install uwsgi

It is as simple as that. If you are unsure about the python version your pip uses make it explicit:

python3 -m pip install uwsgi # for python3
python2 -m pip install uwsgi # for python2

Now let's create a simple test application:

app.py

from flask import Flask
from sys import version

app = Flask(__name__)

@app.route("/")
def index():
 return "Hello uWSGI from python version:
" + version

application = app

In flask the conventional name for the application is app but uWSGI looks for application by
default. That's why we create an alias for our app in the last line.

Now it is time to run the app:

uwsgi --wsgi-file app.py --http :5000

You should see the message "Hello uWSGI ..." by pointing your browser to localhost:5000

https://riptutorial.com/ 16

In order not to type in the full command everytime we will create a uwsgi.ini file to store that
configuration:

uwsgi.ini

[uwsgi]
http = :9090
wsgi-file = app.py
single-interpreter = true
enable-threads = true
master = true

The http and wsgi-file options are the same as in the manual command. But there are three more
options:

single-interpreter: It is recommended to turn this on because it might interfere with the next
option

•

enable-threads: This needs to be turned on if you are using additional threads in your
application. We don't use them right now but now we don't have to worry about it.

•

master: Master mode should be enable for various reasons•

Now we can run the app with this command:

uwsgi --ini uwsgi.ini

Installing nginx and setting it up for uWSGI

Now we want to install nginx to serve our application.

sudo apt-get install nginx # on debian/ubuntu

Then we create a configuration for our website

cd /etc/nginx/site-available # go to the configuration for available sites
create a file flaskconfig with your favourite editor

flaskconfig

server {
 listen 80;
 server_name localhost;

 location / {
 include uwsgi_params;
 uwsgi_pass unix:///tmp/flask.sock;
 }
}

This tells nginx to listen on port 80 (default for http) and serve something at the root path (/). There

https://riptutorial.com/ 17

http://stackoverflow.com/questions/20197259/what-is-uwsgi-master-mode

we tell nginx to simply act as a proxy and pass every request to a socket called flask.sock located
in /tmp/.

Let's enable the site:

cd /etc/nginx/sites-enabled
sudo ln -s ../sites-available/flaskconfig .

You might want to remove the default configuration if it is enabled:

inside /etc/sites-enabled
sudo rm default

Then restart nginx:

sudo service nginx restart

Point your browser to localhost and you will see an error: 502 Bad Gateway.

This means that nginx is up and working but the socket is missing. So lets create that.

Go back to your uwsgi.ini file and open it. Then append these lines:

socket = /tmp/flask.sock
chmod-socket = 666

The first line tells uwsgi to create a socket at the given location. The socket will be used to receive
requests and send back the responses. In the last line we allow other users (including nginx) to be
able to read and write from that socket.

Start uwsgi again with uwsgi --ini uwsgi.ini. Now point your browser again to localhost and you
will see the "Hello uWSGI" greeting again.

Note that you still can see the response on localhost:5000 because uWSGI now serves the
application via http and the socket. So let's disable the http option in the ini file

http = :5000 # <-- remove this line and restart uwsgi

Now the app can only be accessed from nginx (or reading that socket directly :)).

Enable streaming from flask

Flask has that feature which lets you stream data from a view by using generators.

Let's change the app.py file

add from flask import Response•
add from datetime import datetime•
add from time import sleep•

https://riptutorial.com/ 18

create a new view:•

@app.route("/time/")
def time():
 def streamer():
 while True:
 yield "<p>{}</p>".format(datetime.now())
 sleep(1)

 return Response(streamer())

Now open your browser at localhost/time/. The site will load forever because nginx waits until the
response is complete. In this case the response will never be complete because it will send the
current date and time forever.

To prevent nginx from waiting we need to add a new line to the configuration.

Edit /etc/nginx/sites-available/flaskconfig

server {
 listen 80;
 server_name localhost;

 location / {
 include uwsgi_params;
 uwsgi_pass unix:///tmp/flask.sock;
 uwsgi_buffering off; # <-- this line is new
 }
}

The line uwsgi_buffering off; tells nginx not to wait until a response it complete.

Restart nginx: sudo service nginx restart and look at localhost/time/ again.

Now you will see that every second a new line pops up.

Set up Flask Application, uWGSI, Nginx - Server Configurations boiler
template (default, proxy and cache)

This is a porting of set up sourced from DigitalOcean's tutorial of How To Serve Flask Applications
with uWSGI and Nginx on Ubuntu 14.04

and some useful git resources for nginx servers.

Flask Application

This tutorial assume you use Ubuntu.

locate var/www/ folder.1.
Create your web app folder mkdir myexample2.
cd myexample3.

optional You may want to set up virtual environment for deploying web applications on production

https://riptutorial.com/ 19

https://www.digitalocean.com/community/tutorials/how-to-serve-flask-applications-with-uwsgi-and-nginx-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-serve-flask-applications-with-uwsgi-and-nginx-on-ubuntu-14-04

server.

sudo pip install virtualenv

to install virtual environment.

virtualenv myexample

to set up virtual environment for your app.

source myprojectenv/bin/activate

to activate your environment. Here you will install all python packages.

end optional but recommended

Set up flask and gateway uWSGI

Install flask and uSWGI gateway:

pip install uwsgi flask

Example of flask app in myexample.py:

from flask import Flask
application = Flask(__name__)

@application.route("/")
def hello():
 return "<h1>Hello World</h1>"

if __name__ == "__main__":
 application.run(host='0.0.0.0')

Create file to communicate between your web app and the web server: gateway interface [
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface]

nano wsgi.py

then import your webapp module and make it run from the gateway entry point.

from myexample import application

if __name__ == "__main__":
 application.run()

To test uWSGI:

uwsgi --socket 0.0.0.0:8000 --protocol=http -w wsgi

https://riptutorial.com/ 20

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface%5D

To configure uWSGI:

Create a configuration file .ini

nano myexample.ini

1.

Basic configuration for gateway uWSGI2.

include header for using uwsgi
[uwsgi]
point it to your python module wsgi.py
module = wsgi
tell uWSGI to start a master node to serve requests
master = true
spawn number of processes handling requests
processes = 5
use a Unix socket to communicate with Nginx. Nginx will pass connections to uWSGI through a
socket, instead of using ports. This is preferable because Nginx and uWSGI stays on the same
machine.
socket = myexample.sock
ensure file permission on socket to be readable and writable
chmod-socket = 660
clean the socket when processes stop
vacuum = true
use die-on-term to communicate with Ubuntu versions using Upstart initialisations: see:
http://uwsgi-docs.readthedocs.io/en/latest/Upstart.html?highlight=die%20on%20term
die-on-term = true

optional if you are using virtual env You can deactivate your virtual environment.

Nginx configuration We are gonna use nginx as:

default server to pass request to the socket, using uwsgi protocol1.
proxy-server in front of default server2.
cache server to cache successful requests (as example, you may want to cache GET
requests if your web application)

3.

Locate your sites-available directory and create a configuration file for your application:

sudo nano /etc/nginx/sites-available/myexample

Add following block, in comments what it does:

server {

 # setting up default server listening to port 80
 listen 8000 default_server;
 server_name myexample.com; #you can also use your IP

 # specify charset encoding, optional
 charset utf-8;

 # specify root of your folder directory
 root /var/www/myexample;

https://riptutorial.com/ 21

 # specify locations for your web apps.
 # here using /api endpoint as example
 location /api {
 # include parameters of wsgi.py and pass them to socket
 include uwsgi_params;
 uwsgi_pass unix:/var/www/myexample/myexample.sock;
 }

}

Here you will specify caching zones that will be used by your virtual server
Cache will be stored in /tmp/nginx folder
ensure nginx have permissions to write and read there!
See also:
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

proxy_cache_path /tmp/nginx levels=1:2 keys_zone=my_zone:10m inactive=60m;
proxy_cache_key "$scheme$request_method$host$request_uri";

set up the virtual host!
server {
 listen 80 default_server;

 # Now www.example.com will listen to port 80 and pass request to http://example.com
 server_name www.example.com;

 # Why not caching responses

 location /api {
 # set up headers for caching
 add_header X-Proxy-Cache $upstream_cache_status;

 # use zone specified above
 proxy_cache my_zone;
 proxy_cache_use_stale updating;
 proxy_cache_lock on;

 # cache all responses ?
 # proxy_cache_valid 30d;

 # better cache only 200 responses :)
 proxy_cache_valid 200 30d;

 # ignore headers to make cache expire
 proxy_ignore_headers X-Accel-Expires Expires Cache-Control;

 # pass requests to default server on port 8000
 proxy_pass http://example.com:8000/api;
 }
}

Finally, link the file to sites-enabled directory. For an explanation of available and enabled sites,
see answer: [http://serverfault.com/a/527644]

sudo ln -s /etc/nginx/sites-available/myproject /etc/nginx/sites-enabled

You are done now with nginx. However, you may want to check out this very precious boiler
template: [https://github.com/h5bp/server-configs-nginx]

https://riptutorial.com/ 22

http://serverfault.com/a/527644%5D
https://github.com/h5bp/server-configs-nginx%5D

Very useful for fine tuning.

Now test Nginx:

sudo nginx -t

Launch Nginx:

sudo service nginx restart

Automate Ubuntu to start uWSGI The last thing is to make Ubuntu start the wsgi gateway
communicating with your application, otherwise you should do it manually.

Locate directory for initialisation scripts in Ubuntu, and create a new script:1.

sudo nano /etc/init/myexample.conf

Add following block, comments in line to explain what it does

description for the purpose of this script
description "uWSGI server instance configured to serve myproject"

Tell to start on system runtime 2, 3, 4, 5. Stop at any other level (0,1,6).
Linux run levels: [http://www.debianadmin.com/debian-and-ubuntu-linux-run-levels.html]
start on runlevel [2345]
stop on runlevel [!2345]

Set up permissions! "User" will be the username of your user account on ubuntu.
setuid user
Allow www-data group to read and write from the socket file.
www-data is normally the group Nginx and your web applications belong to.
you may have all web application projects under /var/www/ that belongs to www-data
group
setgid www-data

tell Ubunutu which environment to use.
This is the path of your virtual environment: python will be in this path if you
installed virtualenv. Otherwise, use path of your python installation
env PATH=/var/www/myexample/myexample/bin
then tell to Ubuntu to change and locate your web application directory
chdir /var/www/myexample
finally execute initialisation script, that load your web app myexample.py
exec uwsgi --ini myexample.ini

2.

Now you can activate your script: sudo start myexample

Read Deploying Flask application using uWSGI web server with Nginx online:
https://riptutorial.com/flask/topic/4637/deploying-flask-application-using-uwsgi-web-server-with-
nginx

https://riptutorial.com/ 23

https://riptutorial.com/flask/topic/4637/deploying-flask-application-using-uwsgi-web-server-with-nginx
https://riptutorial.com/flask/topic/4637/deploying-flask-application-using-uwsgi-web-server-with-nginx

Chapter 8: File Uploads

Syntax

request.files['name'] # single required file•
request.files.get('name') # None if not posted•
request.files.getlist('name') # list of zero or more files posted•
CombinedMultiDict((request.files, request.form)) # combine form and file data•

Examples

Uploading Files

HTML Form

Use a file type input and the browser will provide a field that lets the user select a file to
upload.

•

Only forms with the post method can send file data.•
Make sure to set the form's enctype=multipart/form-data attribute. Otherwise the file's name
will be sent but not the file's data.

•

Use the multiple attribute on the input to allow selecting multiple files for the single field.•

<form method=post enctype=multipart/form-data>
 <!-- single file for the "profile" field -->
 <input type=file name=profile>
 <!-- multiple files for the "charts" field -->
 <input type=file multiple name=charts>
 <input type=submit>
</form>

Python Requests

Requests is a powerful Python library for making HTTP requests. You can use it (or other tools) to
post files without a browser.

Open the files to read in binary mode.•
There are multiple data structures that files takes. This demonstrates a list of (name, data)
tuples, which allows multiple files like the form above.

•

import requests

with open('profile.txt', 'rb') as f1, open('chart1.csv', 'rb') as f2, open('chart2.csv', 'rb')
as f3:
 files = [

https://riptutorial.com/ 24

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/master/user/quickstart/#post-a-multipart-encoded-file

 ('profile', f1),
 ('charts', f2),
 ('charts', f3)
]
 requests.post('http://localhost:5000/upload', files=files)

This is not meant to be an exhaustive list. For examples using your favorite tool or more complex scenarios, see the
docs for that tool.

Save uploads on the server

Uploaded files are available in request.files, a MultiDict mapping field names to file objects. Use
getlist — instead of [] or get — if multiple files were uploaded with the same field name.

request.files['profile'] # single file (even if multiple were sent)
request.files.getlist('charts') # list of files (even if one was sent)

The objects in request.files have a save method which saves the file locally. Create a common
directory to save the files to.

The filename attribute is the name the file was uploaded with. This can be set arbitrarily by the
client, so pass it through the secure_filename method to generate a valid and safe name to save
as. This doesn't ensure that the name is unique, so existing files will be overwritten unless you do extra work to
detect that.

import os
from flask import render_template, request, redirect, url_for
from werkzeug import secure_filename

Create a directory in a known location to save files to.
uploads_dir = os.path.join(app.instance_path, 'uploads')
os.makedirs(uploads_dir, exists_ok=True)

@app.route('/upload', methods=['GET', 'POST'])
def upload():
 if request.method == 'POST':
 # save the single "profile" file
 profile = request.files['profile']
 profile.save(os.path.join(uploads_dir, secure_filename(profile.filename)))

 # save each "charts" file
 for file in request.files.getlist('charts'):
 file.save(os.path.join(uploads_dir, secure_filename(file.name)))

 return redirect(url_for('upload'))

 return render_template('upload.html')

Passing data to WTForms and Flask-WTF

WTForms provides a FileField to render a file type input. It doesn't do anything special with the
uploaded data. However, since Flask splits the form data (request.form) and the file data (
request.files), you need to make sure to pass the correct data when creating the form. You can

https://riptutorial.com/ 25

http://werkzeug.pocoo.org/docs/0.11/datastructures/#werkzeug.datastructures.MultiDict

use a CombinedMultiDict to combine the two into a single structure that WTForms understands.

form = ProfileForm(CombinedMultiDict((request.files, request.form)))

If you're using Flask-WTF, an extension to integrate Flask and WTForms, passing the correct data
will be handled for you automatically.

Due to a bug in WTForms, only one file will be present for each field, even if multiple were
uploaded. See this issue for more details. It will be fixed in 3.0.

PARSE CSV FILE UPLOAD AS LIST OF DICTIONARIES IN FLASK WITHOUT
SAVING

Developers often need to design web sites that allow users to upload a CSV file. Usually there is
no reason to save the actual CSV file since the data will processed and/or stored in a database
once uploaded. However, many if not most, PYTHON methods of parsing CSV data requires the
data to be read in as a file. This may present a bit of a headache if you are using FLASK for web
development.

Suppose our CSV has a header row and looks like the following:

h1,h2,h3
'yellow','orange','blue'
'green','white','black'
'orange','pink','purple'

Now, suppose the html form to upload a file is as follows:

<form action="upload.html" method="post" enctype="multipart/form-data">
 <input type="file" name="fileupload" id="fileToUpload">
 <input type="submit" value="Upload File" name="submit">
</form>

Since no one wants to reinvent the wheel you decide to IMPORT csv into your FLASK script.
There is no guarantee that people will upload the csv file with the columns in the correct order. If
the csv file has a header row, then with the help of the csv.DictReader method you can read the
CSV file as a list of dictionaries, keyed by the entries in the header row. However, csv.DictReader
needs a file and does not directly accept strings. You may think you need to use FLASK methods
to first save the uploaded file, get the new file name and location, open it using csv.DictReader,
and then delete the file. Seems like a bit of a waste.

Luckily, we can get the file contents as a string and then split the string up by terminated lines. The
csv method csv.DictReader will accept this as a substitute to a file. The following code
demonstrates how this can be accomplished without temporarily saving the file.

@application.route('upload.html',methods = ['POST'])
def upload_route_summary():
 if request.method == 'POST':

https://riptutorial.com/ 26

http://flask-wtf.readthedocs.io/en/latest/
https://github.com/wtforms/wtforms/pull/281

 # Create variable for uploaded file
 f = request.files['fileupload']

 #store the file contents as a string
 fstring = f.read()

 #create list of dictionaries keyed by header row
 csv_dicts = [{k: v for k, v in row.items()} for row in
csv.DictReader(fstring.splitlines(), skipinitialspace=True)]

 #do something list of dictionaries
 return "success"

The variable csv_dicts is now the following list of dictionaries:

 csv_dicts =
 [
 {'h1':'yellow','h2':'orange','h3':'blue'},
 {'h1':'green','h2':'white','h3':'black'},
 {'h1':'orange','h2':'pink','h3':'purple'}
]

In case you are new to PYTHON, you can access data like the following:

csv_dicts[1]['h2'] = 'white'
csv_dicts[0]['h3'] = 'blue'

Other solutions involve importing the io module and use the io.Stream method. I feel that this is a
more straightforward approach. I believe the code is a little easier to follow than using the io
method. This approach is specific to the example of parsing an uploaded CSV file.

Read File Uploads online: https://riptutorial.com/flask/topic/5459/file-uploads

https://riptutorial.com/ 27

https://riptutorial.com/flask/topic/5459/file-uploads

Chapter 9: Flask on Apache with mod_wsgi

Examples

WSGI Application wrapper

Many Flask applications are developed in a virtualenv to keep dependencies for each application
separate from the system-wide Python installation. Make sure that mod-wsgi is installed in your
virtualenv:

pip install mod-wsgi

Then create a wsgi wrapper for your Flask application. Usually it's kept in the root directory of your
application.

my-application.wsgi

activate_this = '/path/to/my-application/venv/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))
import sys
sys.path.insert(0, '/path/to/my-application')

from app import app as application

This wrapper activates the virtual environment and all of its installed modules and dependencies
when run from Apache, and makes sure the application path is first in the search paths. By
convention, WSGI application objects are called application.

Apache sites-enabled configuration for WSGI

The advantage of using Apache over the builtin werkzeug server is that Apache is multi-threaded,
meaning that multiple connections to the application can be made simultaneously. This is
especially useful in applications that make use of XmlHttpRequest (AJAX) on the front-end.

/etc/apache2/sites-available/050-my-application.conf (or default apache configuration if not
hosted on a shared webserver)

<VirtualHost *:80>
 ServerName my-application.org

 ServerAdmin admin@my-application.org

 # Must be set, but can be anything unless you want to serve static files
 DocumentRoot /var/www/html

 # Logs for your application will go to the directory as specified:

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

https://riptutorial.com/ 28

 # WSGI applications run as a daemon process, and need a specified user, group
 # and an allocated number of thread workers. This will determine the number
 # of simultaneous connections available.
 WSGIDaemonProcess my-application user=username group=username threads=12

 # The WSGIScriptAlias should redirect / to your application wrapper:
 WSGIScriptAlias / /path/to/my-application/my-application.wsgi
 # and set up Directory access permissions for the application:
 <Directory /path/to/my-application>
 WSGIProcessGroup my-application
 WSGIApplicationGroup %{GLOBAL}

 AllowOverride none
 Require all granted
 </Directory>
</VirtualHost>

Read Flask on Apache with mod_wsgi online: https://riptutorial.com/flask/topic/6851/flask-on-
apache-with-mod-wsgi

https://riptutorial.com/ 29

https://riptutorial.com/flask/topic/6851/flask-on-apache-with-mod-wsgi
https://riptutorial.com/flask/topic/6851/flask-on-apache-with-mod-wsgi

Chapter 10: Flask-SQLAlchemy

Introduction

Flask-SQLAlchemy is a Flask extension that adds support for the popular Python object relational
mapper(ORM) SQLAlchemy to Flask applications. It aims to simplify SQLAlchemy with Flask by
providing some default implementations to common tasks.

Examples

Installation and Initial Example

Installation

pip install Flask-SQLAlchemy

Simple Model

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(80))
 email = db.Column(db.String(120), unique=True)

The code example above shows a simple Flask-SQLAlchemy model, we can add an optional
tablename to the model declaration however it is often not necessary as Flask-SQLAlchemy will
automatically use the class name as the table name during database creation.

Our class will inherit from the baseclass Model which is a configured declarative base hence there
is no need for us to explicitly define the base as we would when using SQLAlchemy.

Reference

Pypi URL: [https://pypi.python.org/pypi/Flask-SQLAlchemy][1]•
Documentation URL: [http://flask-sqlalchemy.pocoo.org/2.1/][1]•

Relationships: One to Many

 class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(80))
 email = db.Column(db.String(120), unique=True)
 posts = db.relationship('Post', backref='user')

 class Post(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 content = db.Column(db.Text)
 user_id = db.Column(db.Integer, db.ForeignKey('user.id')

https://riptutorial.com/ 30

https://pypi.python.org/pypi/Flask-SQLAlchemy%5D%5B1%5D
http://flask-sqlalchemy.pocoo.org/2.1/%5D%5B1%5D

In this example we have two class the User class and the Post class, the User class will be our
parent and the Post will be our post as only post can belong to one user but one user can have
multiple posts. In order to achieve that we place a Foreign key on the child referencing the parent
that is from our example we place a foreign key on Post class to reference the User class. We
then use relationship() on the parent which we access via our SQLAlchemy object db. That then
allows us to reference a collection of items represented by the Post class which is our child.

To create a bidirectional relationship we usebackref, this will allow the child to reference the
parent.

Read Flask-SQLAlchemy online: https://riptutorial.com/flask/topic/10577/flask-sqlalchemy

https://riptutorial.com/ 31

https://riptutorial.com/flask/topic/10577/flask-sqlalchemy

Chapter 11: Flask-WTF

Introduction

It is a simple integration of Flask and WTForms. It allows for the easier creation and management
of web forms, it automatically generates a CRSF token hidden field in your templates. It also
features easy form validation functions

Examples

A simple Form

from flask_wtf import FlaskForm
from wtforms import StringField, IntegerField
from wtforms.validators import DataRequired

class MyForm(FlaskForm):
 name = StringField('name', validators=[DataRequired()])
 age = InterField('age', validators=[DataRequired()])

To render the template you will use something like this:

<form method="POST" action="/">
 {{ form.hidden_tag() }}
 {{ form.name.label }} {{ form.name(size=20) }}

 {{ form.age.label }} {{ form.age(size=3) }}
 <input type="submit" value="Go">
</form>

The above simple code will generate our very simple flask-wtf web form with a hidden CRSF token
field.

Read Flask-WTF online: https://riptutorial.com/flask/topic/10579/flask-wtf

https://riptutorial.com/ 32

https://riptutorial.com/flask/topic/10579/flask-wtf

Chapter 12: Message Flashing

Introduction

Flashing message to the template by flash() function.

Syntax

flash(message, category='message')•
flash('hello, world!')•
flash('This is a warning message', 'warning')•

Parameters

message the message to be flashed.

category the message's category, the default is message.

Remarks

Template Inheritance•
API•

Examples

Simple Message Flashing

Set SECKET_KEY, then flashing message in view function:

from flask import Flask, flash, render_template

app = Flask(__name__)
app.secret_key = 'some_secret'

@app.route('/')
def index():
 flash('Hello, I'm a message.')
 return render_template('index.html')

Then render the messages in layout.html (which the index.html extended from):

{% with messages = get_flashed_messages() %}
 {% if messages %}
 <ul class=flashes>
 {% for message in messages %}

https://riptutorial.com/ 33

http://flask.pocoo.org/docs/0.12/patterns/templateinheritance/
http://flask.pocoo.org/docs/0.12/api/#message-flashing

 {{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}
{% block body %}{% endblock %}

Flashing With Categories

Set second argument when use flash() in view function:

flash('Something was wrong!', 'error')

In the template, set with_categories=true in get_flashed_messages(), then you get a list of tuples in
the form of (message, category), so you can use category as a HTML class.

{% with messages = get_flashed_messages(with_categories=true) %}
 {% if messages %}
 <ul class=flashes>
 {% for category, message in messages %}
 <li class="{{ category }}">{{ message }}
 {% endfor %}

 {% endif %}
{% endwith %}

Read Message Flashing online: https://riptutorial.com/flask/topic/10756/message-flashing

https://riptutorial.com/ 34

https://riptutorial.com/flask/topic/10756/message-flashing

Chapter 13: Pagination

Examples

Pagination Route Example with flask-sqlalchemy Paginate

In this example we use a parameter in the route to specify the page number. We set a default of 1
in the function parameter page=1. We have a User object in the database and we query it, ordering
in descending order, showing latest users first. We then use the paginate method of the query
object in flask-sqlalchemy. We then pass this to render_template to be rendered.

@app.route('/users')
@app.route('/users/page/<int:page>')
def all_users(page=1):
 try:
 users_list = User.query.order_by(
 User.id.desc()
).paginate(page, per_page=USERS_PER_PAGE)
 except OperationalError:
 flash("No users in the database.")
 users_list = None

 return render_template(
 'users.html',
 users_list=users_list,
 form=form
)

Rendering pagination in Jinja

Here we use the object that we passed to render_template to display the pages, the current active
page, and also a previous and next buttons if you can go to the previous/next page.

<!-- previous page -->
{% if users_list.has_prev %}

 Previous

{% endif %}

<!-- all page numbers -->
{% for page_num in users_list.iter_pages() %}
 {% if page_num %}
 {% if page_num != users_list.page %}

 {{ page_num }}

 {% else %}
 <li class="active">
 {{ page_num }}

 {% endif %}
 {% else %}

https://riptutorial.com/ 35

http://flask-sqlalchemy.pocoo.org/2.1/api/#flask.ext.sqlalchemy.BaseQuery.paginate

 <span class="ellipsis" style="white-space; nowrap; overflow: hidden; text-overflow:
ellipsis">…

 {% endif %}
{% endfor %}

<!-- next page -->
{% if users_list.has_next %}

 Next
{% endif %}
{% endif %}

Read Pagination online: https://riptutorial.com/flask/topic/6460/pagination

https://riptutorial.com/ 36

https://riptutorial.com/flask/topic/6460/pagination

Chapter 14: Redirect

Syntax

redirect(location, code, Response)•

Parameters

Parameter Details

location The location the response should redirect to.

code
(Optional) The redirect status code, 302 by default. Supported codes are 301,
302, 303, 305, and 307.

Response
(Optional) A Response class to use when instantiating a response. The default
is werkzeug.wrappers.Response if unspecified.

Remarks

The location parameter must be a URL. It can be input raw, such as 'http://www.webpage.com' or
it can be built with the url_for() function.

Examples

Simple example

from flask import Flask, render_template, redirect, url_for

app = Flask(__name__)

@app.route('/')
def main_page():
 return render_template('main.html')

@app.route('/main')
def go_to_main():
 return redirect(url_for('main_page'))

Passing along data

...
same as above

@app.route('/welcome/<name>')
def welcome(name):

https://riptutorial.com/ 37

http://www.webpage.com

 return render_template('main.html', name=name)

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 # ...
 # check for valid login, assign username
 if valid:
 return redirect(url_for('main_page', name=username))
 else:
 return redirect(url_for('login_error'))
 else:
 return render_template('login.html')

Read Redirect online: https://riptutorial.com/flask/topic/6856/redirect

https://riptutorial.com/ 38

https://riptutorial.com/flask/topic/6856/redirect

Chapter 15: Rendering Templates

Syntax

render_template(template_name_or_list, **context)•

Examples

render_template Usage

Flask lets you use templates for dynamic web page content. An example project structure for
using templates is as follows:

myproject/
 /app/
 /templates/
 /index.html
 /views.py

views.py:

from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")
def index():
 pagetitle = "HomePage"
 return render_template("index.html",
 mytitle=pagetitle,
 mycontent="Hello World")

Note that you can pass dynamic content from your route handler to the template by appending
key/value pairs to the render_templates function. In the above example, the "pagetitle" and
"mycontent" variables will be passed to the template for inclusion in the rendered page. Include
these variables in the template by enclosing them in double braces: {{mytitle}}

index.html:

<html>
 <head>
 <title>{{ mytitle }}</title>
 </head>
 <body>
 <p>{{ mycontent }}</p>
 </body>
</html>

When executed same as the first example, http://localhost:5000/ will have the title "HomePage"

https://riptutorial.com/ 39

and a paragraph with the content "Hello World".

Read Rendering Templates online: https://riptutorial.com/flask/topic/1641/rendering-templates

https://riptutorial.com/ 40

https://riptutorial.com/flask/topic/1641/rendering-templates

Chapter 16: Routing

Examples

Basic Routes

Routes in Flask can be defined using the route decorator of the Flask application instance:

app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello Flask'

The route decorator takes a string which is the URL to match. When a request for a URL that
matches this string is received by the application, the function decorated (also called a view
function) will be invoked. So for an about route we would have:

@app.route('/about')
def about():
 return 'About page'

It's important to note that these routes are not regular expressions like they are in Django.

You can also define variable rules to extract URL segment values into variables:

@app.route('/blog/posts/<post_id>')
def get_blog_post(post_id):
 # look up the blog post with id post_id
 # return some kind of HTML

Here the variable rule is in the last segment of the URL. Whatever value is in the last segment of
the URL will be passed to the view function (get_blog_post) as the post_id parameter. So a request
to /blog/posts/42 will retrieve (or attempt to retrieve) the blog post with an id of 42.

It is also common to reuse URLs. For example maybe we want to have /blog/posts return a list of
all blog posts. So we could have two routes for the same view function:

@app.route('/blog/posts')
@app.route('/blog/posts/<post_id>')
def get_blog_post(post_id=None):
 # get the post or list of posts

Note here that we also have to supply the default value of None for the post_id in get_blog_post.
When the first route is matched, there will be no value to pass to the view function.

Also note that by default the type of a variable rule is a string. However, you can specify several
different types such as int and float by prefixing the variable:

https://riptutorial.com/ 41

@app.route('/blog/post/<int:post_id>')

Flask's built-in URL-converters are:

string | Accepts any text without a slash (the default).
int | Accepts integers.
float | Like int but for floating point values.
path | Like string but accepts slashes.
any | Matches one of the items provided
uuid | Accepts UUID strings

Should we try to visit the URL /blog/post/foo with a value in the last URL segment that cannot be
converted to an integer, the application would return a 404 error. This is the correct action
because there is not a rule with /blog/post and a string in the last segment.

Finally, routes can be configured to accept HTTP methods as well. The route decorator takes a
methods keyword argument which is a list of string representing the acceptable HTTP methods for
this route. As you might have assumed, the default is GET only. If we had a form to add a new blog
post and wanted to return the HTML for the GET request and parse the form data for the POST
request, the route would look something like this:

@app.route('/blog/new', methods=['GET', 'POST'])
def new_post():
 if request.method == 'GET':
 # return the form
 elif request.method == 'POST':
 # get the data from the form values

The request is found in the flask package. Note that when using the methods keyword argument,
we must be explicit about the HTTP methods to accept. If we had listed only POST, the route would
no longer respond to GET requests and return a 405 error.

Catch-all route

It may be useful to have one catch-all view where you handle complex logic yourself based on the
path. This example uses two rules: The first rule specifically catches / and the second rule catches
arbitrary paths with the built-in path converter. The path converter matches any string (including
slashes) See Flask Variable-Rules

@app.route('/', defaults={'u_path': ''})
@app.route('/<path:u_path>')
def catch_all(u_path):
 print(repr(u_path))
 ...

c = app.test_client()
c.get('/') # u_path = ''
c.get('/hello') # u_path = 'hello'
c.get('/hello/stack/overflow/') # u_path = 'hello/stack/overflow/'

https://riptutorial.com/ 42

http://flask.pocoo.org/docs/0.12/quickstart/#variable-rules

Routing and HTTP methods

By default, routes only respond to GET requests. You can change this behavior by supplying the
methods argument to the route() decorator.

from flask import request

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 do_the_login()
 else:
 show_the_login_form()

You can also map different functions to the same endpoint based on the HTTP method used.

@app.route('/endpoint', methods=['GET'])
def get_endpoint():
 #respond to GET requests for '/endpoint'

@app.route('/endpoint', methods=['POST', 'PUT', 'DELETE'])
def post_or_put():
 #respond to POST, PUT, or DELETE requests for '/endpoint'

Read Routing online: https://riptutorial.com/flask/topic/2415/routing

https://riptutorial.com/ 43

https://riptutorial.com/flask/topic/2415/routing

Chapter 17: Sessions

Remarks

Sessions are derived from dictionaries which means they will work with most common dictionary
methods.

Examples

Using the sessions object within a view

First, ensure you have imported sessions from flask

from flask import session

To use session, a Flask application needs a defined SECRET_KEY.

app = Flask(__name__)
app.secret_key = 'app secret key'

Sessions are implemented by default using a cookie signed with the secret key. This ensures that
the data is not modified except by your application, so make sure to pick a secure one! A browser
will send the cookie back to your application along with each request, enabling the persistence of
data across requests.

To use a session you just reference the object (It will behave like a dictionary)

@app.route('/')
def index():
 if 'counter' in session:
 session['counter'] += 1
 else:
 session['counter'] = 1
 return 'Counter: '+str(session['counter'])

To release a session variable use pop() method.

session.pop('counter', None)

Example Code:

from flask import Flask, session

app = Flask(__name__)
app.secret_key = 'app secret key'

@app.route('/')

https://riptutorial.com/ 44

def index():
 if 'counter' in session:
 session['counter'] += 1
 else:
 session['counter'] = 1
 return 'Counter: '+str(session['counter'])

if __name__ == '__main__':
 app.debug = True
 app.run()

Read Sessions online: https://riptutorial.com/flask/topic/2748/sessions

https://riptutorial.com/ 45

https://riptutorial.com/flask/topic/2748/sessions

Chapter 18: Signals

Remarks

Flask supports signals using Blinker. Signal support is optional; they will only be enabled if Blinker
is installed.

pip install blinker

http://flask.pocoo.org/docs/dev/signals/

Signals are not asynchronous. When a signal is sent, it immediately executes each of the
connected functions sequentially.

Examples

Connecting to signals

Use a signal's connect method to connect a function to a signal. When a signal is sent, each
connected function is called with the sender and any named arguments the signal provides.

from flask import template_rendered

def log_template(sender, template, context, **kwargs):
 sender.logger.info(
 'Rendered template %(template)r with context %(context)r.',
 template=template, context=context
)

template_rendered.connect(log_template)

See the documentation on built-in signals for information about what arguments they provides. A
useful pattern is adding a **kwargs argument to catch any unexpected arguments.

Custom signals

If you want to create and send signals in your own code (for example, if you are writing an
extension), create a new Signal instance and call send when the subscribers should be notified.
Signals are created using a Namespace.

from flask import current_app
from flask.signals import Namespace

namespace = Namespace()
message_sent = namespace.signal('mail_sent')

def message_response(recipient, body):

https://riptutorial.com/ 46

https://pythonhosted.org/blinker/
http://flask.pocoo.org/docs/dev/signals/
http://flask.pocoo.org/docs/dev/api/#core-signals-list
http://flask.pocoo.org/docs/dev/signals/#creating-signals
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.send
http://flask.pocoo.org/docs/dev/api/#flask.signals.Namespace

 ...
 message_sent.send(
 current_app._get_current_object(),
 recipient=recipient,
 body=body
)

@message_sent.connect
def log_message(app, recipient, body):
 ...

Prefer using Flask's signal support over using Blinker directly. It wraps the library so that signals
remain optional if developers using your extension have not opted to install Blinker.

Read Signals online: https://riptutorial.com/flask/topic/2331/signals

https://riptutorial.com/ 47

https://riptutorial.com/flask/topic/2331/signals

Chapter 19: Static Files

Examples

Using Static Files

Web applications often require static files like CSS or JavaScript files. To use static files in a Flask
application, create a folder called static in your package or next to your module and it will be
available at /static on the application.

An example project structure for using templates is as follows:

MyApplication/
 /static/
 /style.css
 /script.js
 /templates/
 /index.html
 /app.py

app.py is a basic example of Flask with template rendering.

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')
def index():
 return render_template('index.html')

To use the static CSS and JavaScript file in the template index.html, we need to use the special
'static' endpoint name:

{{url_for('static', filename = 'style.css')}}

So, index.html may contain:

<html>
 <head>
 <title>Static File</title>
 <link href="{{url_for('static', filename = 'style.css')}}" rel="stylesheet">
 <script src="{{url_for('static', filename = 'script.js')}}"></script>
 </head>
 <body>
 <h3>Hello World!</h3>
 </body>
</html>

After running app.py we will see the webpage in http://localhost:5000/.

https://riptutorial.com/ 48

http://localhost:5000/

Static Files in Production (served by frontend webserver)

Flask's built-in webserver is able to serve static assets, and this works fine for development.
However, for production deployments that are using something like uWSGI or Gunicorn to serve
the Flask application, the task of serving static files is one that is typically offloaded to the frontend
webserver (Nginx, Apache, etc.). This is a small/easy task with smaller apps, especially when all
of the static assets are in one folder; for larger apps though, and/or ones that are using Flask
plugin(s) that provide static assets, then it can become difficult to remember the locations of all of
those files, and to manually copy/collect them into one directory. This document shows how to use
the Flask-Collect plugin to simplify that task.

Note that the focus of this documentation is on the collection of static assets. To illustrate that
functionality, this example uses the Flask-Bootstrap plugin, which is one that provides static
assets. It also uses the Flask-Script plugin, which is used to simplify the process of creating
command-line tasks. Neither of these plugins are critical to this document, they are just in use
here to demonstrate the functionality. If you choose not to use Flask-Script, you will want to review
the Flask-Collect docs for alternate ways to call the collect command.

Also note that configuration of your frontend webserver to serve these static assets is outside of
the scope of this doc, you'll want to check out some examples using Nginx and Apache for more
info. Suffice it to say that you'll be aliasing URLs that start with "/static" to the centralized directory
that Flask-Collect will create for you in this example.

The app is structured as follows:

/manage.py - The app management script, used to run the app, and to collect static assets
/app/ - this folder contains the files that are specific to our app
 | - __init__.py - Contains the create_app function
 | - static/ - this folder contains the static files for our app.
 | css/styles.css - custom styles for our app (we will leave this file empty)
 | js/main.js - custom js for our app (we will leave this file empty)
 | - templates/index.html - a simple page that extends the Flask-Bootstrap template

First, create your virtual environment and install the required packages: (your-virtualenv) $
pip install flask flask-script flask-bootstrap flask-collect

1.

Establish the file structure described above:

$ touch manage.py; mkdir -p app/{static/{css,js},templates}; touch app/{init
.py,static/{css/styles.css,js/main.js}}

2.

Establish the contents for the manage.py, app/__init__.py, and app/templates/index.html files:3.

manage.py
#!/usr/bin/env python
import os
from flask_script import Manager, Server
from flask import current_app
from flask_collect import Collect
from app import create_app

https://riptutorial.com/ 49

https://github.com/klen/Flask-Collect
https://github.com/klen/Flask-Collect#id10
https://github.com/klen/Flask-Collect#id10
https://github.com/klen/Flask-Collect#id10
https://www.digitalocean.com/community/tutorials/how-to-deploy-flask-web-applications-using-uwsgi-behind-nginx-on-centos-6-4
http://stackoverflow.com/questions/24739925/serving-static-files-through-apache

class Config(object):
 # CRITICAL CONFIG VALUE: This tells Flask-Collect where to put our static files!
 # Standard practice is to use a folder named "static" that resides in the top-level of the
project directory.
 # You are not bound to this location, however; you may use basically any directory that you
wish.
 COLLECT_STATIC_ROOT = os.path.dirname(__file__) + '/static'
 COLLECT_STORAGE = 'flask_collect.storage.file'

app = create_app(Config)

manager = Manager(app)
manager.add_command('runserver', Server(host='127.0.0.1', port=5000))

collect = Collect()
collect.init_app(app)

@manager.command
def collect():
 """Collect static from blueprints. Workaround for issue: https://github.com/klen/Flask-
Collect/issues/22"""
 return current_app.extensions['collect'].collect()

if __name__ == "__main__":
 manager.run()

app/__init__.py
from flask import Flask, render_template
from flask_collect import Collect
from flask_bootstrap import Bootstrap

def create_app(config):
 app = Flask(__name__)
 app.config.from_object(config)

 Bootstrap(app)
 Collect(app)

 @app.route('/')
 def home():
 return render_template('index.html')

 return app

app/templates/index.html
{% extends "bootstrap/base.html" %}
{% block title %}This is an example page{% endblock %}

{% block navbar %}
<div class="navbar navbar-fixed-top">
 <!-- ... -->
</div>
{% endblock %}

{% block content %}
 <h1>Hello, Bootstrap</h1>
{% endblock %}

https://riptutorial.com/ 50

With those files in place, you can now use the management script to run the app:4.

$./manage.py runserver # visit http://localhost:5000 to verify that the app works correctly.

Now, to collect your static assets for the first time. Before doing this, it's worth noting again
that you should NOT have a static/ folder in the top-level of your app; this is where Flask-
Collect is going to place all of the static files that it's going to be collecting from your app and
the various plugins you might be using. If you do have a static/ folder in the top level of your
app, you should delete it entirely before proceeding, as starting with a clean slate is a critical
part of witnessing/understanding what Flask-Collect does. Note that this instruction isn't
applicable for day-to-day usage, it is simply to illustrate the fact that Flask-Collect is going to
create this directory for you, and then it's going to place a bunch of files in there.

5.

With that said, you can run the following command to collect your static assets:

$./manage.py collect

After doing so, you should see that Flask-Collect has created this top-level static/ folder, and it
contains the following files:

$ find ./static -type f # execute this from the top-level directory of your app, same dir that
contains the manage.py script
static/bootstrap/css/bootstrap-theme.css
static/bootstrap/css/bootstrap-theme.css.map
static/bootstrap/css/bootstrap-theme.min.css
static/bootstrap/css/bootstrap.css
static/bootstrap/css/bootstrap.css.map
static/bootstrap/css/bootstrap.min.css
static/bootstrap/fonts/glyphicons-halflings-regular.eot
static/bootstrap/fonts/glyphicons-halflings-regular.svg
static/bootstrap/fonts/glyphicons-halflings-regular.ttf
static/bootstrap/fonts/glyphicons-halflings-regular.woff
static/bootstrap/fonts/glyphicons-halflings-regular.woff2
static/bootstrap/jquery.js
static/bootstrap/jquery.min.js
static/bootstrap/jquery.min.map
static/bootstrap/js/bootstrap.js
static/bootstrap/js/bootstrap.min.js
static/bootstrap/js/npm.js
static/css/styles.css
static/js/main.js

And that's it: use the collect command whenever you make edits to your app's CSS or JavaScript,
or when you've updated a Flask plugin that provides static assets (like Flask-Bootstrap in this
example).

Read Static Files online: https://riptutorial.com/flask/topic/3678/static-files

https://riptutorial.com/ 51

https://riptutorial.com/flask/topic/3678/static-files

Chapter 20: Testing

Examples

Testing our Hello World app

Introduction

In this minimalist example, using pytest we're going to test that indeed our Hello World app does
return "Hello, World!" with an HTTP OK status code of 200, when hit with a GET request on the
URL /

First let's install pytest into our virtualenv

pip install pytest

And just for reference, this our hello world app:

hello.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
 return 'Hello, World!'

Defining the test

Along side our hello.py, we define a test module called test_hello.py that is going to be
discovered by py.test

test_hello.py
from hello import app

def test_hello():
 response = app.test_client().get('/')

 assert response.status_code == 200
 assert response.data == b'Hello, World!'

Just to review, at this point our project structure obtained with the tree command is:

.
├── hello.py
└── test_hello.py

https://riptutorial.com/ 52

http://docs.pytest.org/en/latest/

Running the test

Now we can run this test with the py.test command that will automatically discover our
test_hello.py and the test function inside it

$ py.test

You should see some output and an indication that 1 test has passed, e.g.

=== test session starts ===
collected 1 items
test_hello.py .
=== 1 passed in 0.13 seconds ===

Testing a JSON API implemented in Flask

This example assumes you know how to test a Flask app using pytest

Below is an API that takes a JSON input with integer values a and b e.g. {"a": 1, "b": 2}, adds
them up and returns sum a + b in a JSON response e.g. {"sum": 3}.

hello_add.py
from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/add', methods=['POST'])
def add():
 data = request.get_json()
 return jsonify({'sum': data['a'] + data['b']})

Testing this API with pytest

We can test it with pytest

test_hello_add.py
from hello_add import app
from flask import json

def test_add():
 response = app.test_client().post(
 '/add',
 data=json.dumps({'a': 1, 'b': 2}),
 content_type='application/json',
)

 data = json.loads(response.get_data(as_text=True))

 assert response.status_code == 200
 assert data['sum'] == 3

https://riptutorial.com/ 53

http://www.riptutorial.com/flask/example/4122/testing-our-hello-world-app

Now run the test with py.test command.

Accessing and manipulating session variables in your tests using Flask-
Testing

Most of the web applications use the session object to store some important information. This
examples show how you can test such application using Flask-Testing. Full working example is
also available on github.

So first install Flask-Testing in your virtualenv

pip install flask_testing

To be able to use the session object you have to set the secret key

app.secret_key = 'my-seCret_KEy'

Let's imagine you have in your application function that need to store some data in session
variables like this

@app.route('/getSessionVar', methods=['GET', 'POST'])
def getSessionVariable():
 if 'GET' == request.method:
 session['sessionVar'] = 'hello'
 elif 'POST' == request.method:
 session['sessionVar'] = 'hi'
 else:
 session['sessionVar'] = 'error'

 return 'ok'

To test this function you can import flask_testing and let your test class inherit
flask_testing.TestCase. Import also all the necessary libraries

import flask
import unittest
import flask_testing
from myapp.run import app

class TestMyApp(flask_testing.TestCase):

Very important before you start testing is to implement the function create_app otherwise there
will be exception.

 def create_app(self):
 return app

To test your application is working as wanted you have a couple of possibilities. If you want to just
assure your function is setting particular values to a session variable you can just keep the context
around and access flask.session

https://riptutorial.com/ 54

https://github.com/oggo/Flask-Testing

def testSession1(self):
 with app.test_client() as lTestClient:
 lResp= lTestClient.get('/getSessionVar')
 self.assertEqual(lResp.status_code, 200)
 self.assertEqual(flask.session['sessionVar'], 'hello')

One more useful trick is to differentiate between GET and POST methods like in the next test
function

def testSession2(self):
 with app.test_client() as lTestClient:
 lResp= lTestClient.post('/getSessionVar')
 self.assertEqual(lResp.status_code, 200)
 self.assertEqual(flask.session['sessionVar'], 'hi')

Now imagine your function expects a session variable to be set and reacts different on particular
values like this

@app.route('/changeSessionVar')
def changeSessionVariable():
 if session['existingSessionVar'] != 'hello':
 raise Exception('unexpected session value of existingSessionVar!')

 session['existingSessionVar'] = 'hello world'
 return 'ok'

To test this function you have to use so called session transaction and open the session in the
context of the test client. This function is available since Flask 0.8

def testSession3(self):
 with app.test_client() as lTestClient:
 #keep the session
 with lTestClient.session_transaction() as lSess:
 lSess['existingSessionVar'] = 'hello'

 #here the session is stored
 lResp = lTestClient.get('/changeSessionVar')
 self.assertEqual(lResp.status_code, 200)
 self.assertEqual(flask.session['existingSessionVar'], 'hello world')

Running the tests is as usual for unittest

if __name__ == "__main__":
 unittest.main()

And in the command line

python tests/test_myapp.py

Another nice way to run your tests is to use unittest Discovery like this:

python -m unittest discover -s tests

https://riptutorial.com/ 55

Read Testing online: https://riptutorial.com/flask/topic/1260/testing

https://riptutorial.com/ 56

https://riptutorial.com/flask/topic/1260/testing

Chapter 21: Working with JSON

Examples

Return a JSON Response from Flask API

Flask has a utility called jsonify() that makes it more convenient to return JSON responses

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/get-json')
def hello():
 return jsonify(hello='world') # Returns HTTP Response with {"hello": "world"}

Try it with curl

curl -X GET http://127.0.0.1:5000/api/get-json
{
 "hello": "world"
}

Other ways to use jsonify()

Using an existing dictionary:

person = {'name': 'Alice', 'birth-year': 1986}
return jsonify(person)

Using a list:

people = [{'name': 'Alice', 'birth-year': 1986},
 {'name': 'Bob', 'birth-year': 1985}]
return jsonify(people)

Receiving JSON from an HTTP Request

If the mimetype of the HTTP request is application/json, calling request.get_json() will return the
parsed JSON data (otherwise it returns None)

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/echo-json', methods=['GET', 'POST', 'DELETE', 'PUT'])

https://riptutorial.com/ 57

def add():

 data = request.get_json()
 # ... do your business logic, and return some response
 # e.g. below we're just echo-ing back the received JSON data
 return jsonify(data)

Try it with curl

The parameter -H 'Content-Type: application/json' specifies that this is a JSON request:

 curl -X POST -H 'Content-Type: application/json' http://127.0.0.1:5000/api/echo-json -d
'{"name": "Alice"}'
{
 "name": "Alice"
}

To send requests using other HTTP methods, substitute curl -X POST with the desired method e.g.
curl -X GET, curl -X PUT, etc.

Read Working with JSON online: https://riptutorial.com/flask/topic/1789/working-with-json

https://riptutorial.com/ 58

https://riptutorial.com/flask/topic/1789/working-with-json

Credits

S.
No

Chapters Contributors

1
Getting started with
Flask

arsho, bakkal, Community, davidism, ettanany, Martijn Pieters,
mmenschig, Sean Vieira, Shrike

2
Accessing request
data

RPi Awesomeness

3
Authorization and
authentication

boreq, Ninad Mhatre

4 Blueprints Achim Munene, Kir Chou, stamaimer

5 Class-Based Views ettanany

6
Custom Jinja2
Template Filters

Celeo, dylanj.nz

7

Deploying Flask
application using
uWSGI web server
with Nginx

Gal Dreiman, Tempux, user305883, wimkeir, Wombatz

8 File Uploads davidism, sigmasum

9
Flask on Apache
with mod_wsgi

Aaron D

10 Flask-SQLAlchemy Achim Munene, arsho, Matt Davis

11 Flask-WTF Achim Munene

12 Message Flashing Grey Li

13 Pagination hdbuster

14 Redirect coralvanda

15
Rendering
Templates

arsho, atayenel, Celeo, fabioqcorreia, Jon Chan, MikeC

16 Routing
davidism, Douglas Starnes, Grey Li, junnytony, Luke Taylor,
MikeC, mmenschig, sytech

17 Sessions arsho, PsyKzz, this-vidor

https://riptutorial.com/ 59

https://riptutorial.com/contributor/3129414/arsho
https://riptutorial.com/contributor/238639/bakkal
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/1429776/mmenschig
https://riptutorial.com/contributor/135978/sean-vieira
https://riptutorial.com/contributor/3143259/shrike
https://riptutorial.com/contributor/2770044/rpi-awesomeness
https://riptutorial.com/contributor/1078027/boreq
https://riptutorial.com/contributor/3086621/ninad-mhatre
https://riptutorial.com/contributor/5075266/achim-munene
https://riptutorial.com/contributor/2740386/kir-chou
https://riptutorial.com/contributor/2714012/stamaimer
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/2676531/celeo
https://riptutorial.com/contributor/4967694/dylanj-nz
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1040597/tempux
https://riptutorial.com/contributor/305883/user305883
https://riptutorial.com/contributor/6208351/wimkeir
https://riptutorial.com/contributor/4759726/wombatz
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/4857438/sigmasum
https://riptutorial.com/contributor/1960180/aaron-d
https://riptutorial.com/contributor/5075266/achim-munene
https://riptutorial.com/contributor/3129414/arsho
https://riptutorial.com/contributor/8290310/matt-davis
https://riptutorial.com/contributor/5075266/achim-munene
https://riptutorial.com/contributor/5511849/grey-li
https://riptutorial.com/contributor/2213574/hdbuster
https://riptutorial.com/contributor/5094044/coralvanda
https://riptutorial.com/contributor/3129414/arsho
https://riptutorial.com/contributor/4982148/atayenel
https://riptutorial.com/contributor/2676531/celeo
https://riptutorial.com/contributor/8322303/fabioqcorreia
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/1232035/mikec
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/974695/douglas-starnes
https://riptutorial.com/contributor/5511849/grey-li
https://riptutorial.com/contributor/2566965/junnytony
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/1232035/mikec
https://riptutorial.com/contributor/1429776/mmenschig
https://riptutorial.com/contributor/5747944/sytech
https://riptutorial.com/contributor/3129414/arsho
https://riptutorial.com/contributor/211081/psykzz
https://riptutorial.com/contributor/5869747/this-vidor

18 Signals davidism

19 Static Files arsho, davidism, MikeC, YellowShark

20 Testing bakkal, oggo

21 Working with JSON bakkal, g3rv4

https://riptutorial.com/ 60

https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/3129414/arsho
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/1232035/mikec
https://riptutorial.com/contributor/844976/yellowshark
https://riptutorial.com/contributor/238639/bakkal
https://riptutorial.com/contributor/3292080/oggo
https://riptutorial.com/contributor/238639/bakkal
https://riptutorial.com/contributor/920295/g3rv4

	About
	Chapter 1: Getting started with Flask
	Remarks
	Versions
	Examples
	Installation - Stable
	Hello World
	Installation - Latest
	Installation - Development

	sphinx
	py.test
	tox
	Chapter 2: Accessing request data
	Introduction
	Examples
	Accessing query string
	Combined form and query string
	Accessing form fields

	Chapter 3: Authorization and authentication
	Examples
	Using flask-login extension

	General idea
	Create a LoginManager
	Specify a callback used for loading users
	A class representing your user
	Logging the users in
	I have logged in a user, what now?
	Logging users out
	What happens if a user is not logged in and I access the current_user object?
	What next?
	Timing out the login session

	Chapter 4: Blueprints
	Introduction
	Examples
	A basic flask blueprints example

	Chapter 5: Class-Based Views
	Examples
	Basic example

	Chapter 6: Custom Jinja2 Template Filters
	Syntax
	Parameters
	Examples
	Format datetime in a Jinja2 template

	Chapter 7: Deploying Flask application using uWSGI web server with Nginx
	Examples
	Using uWSGI to run a flask application
	Installing nginx and setting it up for uWSGI
	Enable streaming from flask
	Set up Flask Application, uWGSI, Nginx - Server Configurations boiler template (default, proxy and cache)

	Chapter 8: File Uploads
	Syntax
	Examples
	Uploading Files

	HTML Form
	Python Requests
	Save uploads on the server
	Passing data to WTForms and Flask-WTF
	PARSE CSV FILE UPLOAD AS LIST OF DICTIONARIES IN FLASK WITHOUT SAVING

	Chapter 9: Flask on Apache with mod_wsgi
	Examples
	WSGI Application wrapper
	Apache sites-enabled configuration for WSGI

	Chapter 10: Flask-SQLAlchemy
	Introduction
	Examples
	Installation and Initial Example
	Relationships: One to Many

	Chapter 11: Flask-WTF
	Introduction
	Examples
	A simple Form

	Chapter 12: Message Flashing
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Simple Message Flashing
	Flashing With Categories

	Chapter 13: Pagination
	Examples
	Pagination Route Example with flask-sqlalchemy Paginate
	Rendering pagination in Jinja

	Chapter 14: Redirect
	Syntax
	Parameters
	Remarks
	Examples
	Simple example
	Passing along data

	Chapter 15: Rendering Templates
	Syntax
	Examples
	render_template Usage

	Chapter 16: Routing
	Examples
	Basic Routes
	Catch-all route
	Routing and HTTP methods

	Chapter 17: Sessions
	Remarks
	Examples
	Using the sessions object within a view

	Chapter 18: Signals
	Remarks
	Examples
	Connecting to signals
	Custom signals

	Chapter 19: Static Files
	Examples
	Using Static Files
	Static Files in Production (served by frontend webserver)

	Chapter 20: Testing
	Examples
	Testing our Hello World app

	Introduction
	Defining the test
	Running the test
	Testing a JSON API implemented in Flask

	Testing this API with pytest
	Accessing and manipulating session variables in your tests using Flask-Testing

	Chapter 21: Working with JSON
	Examples
	Return a JSON Response from Flask API

	Try it with curl
	Other ways to use jsonify()
	Receiving JSON from an HTTP Request

	Try it with curl

	Credits

