
Fortran

#fortran

Table of Contents

About 1

Chapter 1: Getting started with Fortran 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello, world 3

Quadratic equation 4

Case insensitivity 4

Chapter 2: Arrays 6

Examples 6

Basic notation 6

Allocatable arrays 7

Array constructors 7

Array nature specification: rank and shape 9

Explicit shape 10

Assumed shape 10

Assumed size 10

Deferred shape 11

Implied shape 11

Whole arrays, array elements and array sections 11

Whole arrays 12

Array elements 12

Array sections 12

Array components of arrays 13

Array operations 13

Addition and subtraction 13

Function 14

Multiplication and division 14

Matrix operations 14

Advanced array sections: subscript triplets and vector subscripts 15

Subscript triplets 15

Vector subscripts 16

Higher rank array sections 16

Chapter 3: C interoperability 17

Examples 17

Calling C from Fortran 17

C structs in Fortran 18

Chapter 4: Data Types 19

Examples 19

Intrinsic types 19

Derived data types 20

Precision of floating point numbers 21

Assumed and deferred length type parameters 23

Literal constants 24

Accessing character substrings 26

Accessing complex components 26

Declaration and attributes 27

Chapter 5: Execution Control 29

Examples 29

If construct 29

SELECT CASE construct 30

Block DO construct 31

WHERE construct 33

Chapter 6: Explicit and implicit interfaces 35

Examples 35

Internal/module subprograms and explicit interfaces 35

External subprograms and implicit interfaces 36

Chapter 7: I/O 38

Syntax 38

Examples 38

Simple I/O 38

Read with some error checking 38

Passing command line arguments 39

Chapter 8: Intrinsic procedures 42

Remarks 42

Examples 42

Using PACK to select elements meeting a condition 42

Chapter 9: Modern alternatives to historical features 44

Examples 44

Implicit variable types 44

Arithmetic if statement 45

Non-block DO constructs 46

Alternate return 46

Fixed Source Form 48

Common Blocks 49

Assigned GOTO 51

Computed GOTO 51

Assigned format specifiers 52

Statement functions 53

Chapter 10: Object Oriented Programming 55

Examples 55

Derived type definition 55

Type Procedures 55

Abstract derived types 56

Type extension 57

Type constructor 58

Chapter 11: Procedures - Functions and Subroutines 60

Remarks 60

Examples 60

Function syntax 60

Return statement 61

Recursive Procedures 61

The Intent of Dummy Arguments 62

Referencing a procedure 63

Chapter 12: Program units and file layout 66

Examples 66

Fortran programs 66

Modules and submodules 67

External procedures 67

Block data program units 68

Internal subprograms 68

Source code files 69

Chapter 13: Source file extensions (.f, .f90, .f95, ...) and how they are related to the c 71

Introduction 71

Examples 71

Extensions and Meanings 71

Chapter 14: Usage of Modules 73

Examples 73

Module syntax 73

Using modules from other program units 73

Intrinsic modules 74

Access control 75

Protected module entities 77

Credits 78

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: fortran

It is an unofficial and free Fortran ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Fortran.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/fortran
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Fortran

Remarks

Fortran is a language used extensively in the scientific community due to its suitability for
numerical computation. Particularly attractive is its intuitive array notation, which makes writing
fast vectorised computations easy.

Despite its age, Fortran is still actively developed, with numerous implementations, including GNU,
Intel, PGI and Cray.

Versions

Version Note Release

FORTRAN 66 First standardization by ASA (now ANSI) 1966-03-07

FORTRAN 77 Fixed Form, Historic 1978-04-15

Fortran 90 Free Form, ISO Standard, Array operations 1991-06-15

Fortran 95 Pure and Elemental Procedures 1997-06-15

Fortran 2003 Object Oriented Programming 2004-04-04

Fortran 2008 Co-Arrays 2010-09-10

Examples

Installation or Setup

Fortran is a language which can be compiled using compilers supplied by many vendors. Different
compilers are available for different hardware platforms and operating systems. Some compilers
are free software, some can be used free of charge and some require the purchase of a licence.

The most common free Fortran compiler is GNU Fortran or gfortran. The source code is available
from GNU as a part of GCC, the GNU compiler collection. Binaries for many operating systems
are available at https://gcc.gnu.org/wiki/GFortranBinaries. Linux distributions often contain gfortran
in their package manager.

Further compilers are available for example:

EKOPath by PathScale•
LLVM (backend via DragonEgg)•
Oracle Developer Studio•

https://riptutorial.com/ 2

https://gcc.gnu.org/wiki/GFortranBinaries
http://www.pathscale.com/ekopath-compiler-suite
http://dragonegg.llvm.org
http://www.oracle.com/technetwork/server-storage/developerstudio/overview/index.html

Absoft Fortran Compiler•
Intel Fortran Compiler•
NAG Fortran Compiler•
PGI Compilers•

On HPC-Systems there are often specialized compilers available by the system provider as for
example the IBM or Cray compilers.

All these compilers support the Fortran 95 standard. An overview on the Fortran 2003 status and
the Fortran 2008 status by various compilers is offered by the ACM Fortran Forum and available in
the Fortran Wiki.

Hello, world

Any Fortran program has to include end as last statement. Therefore, the simplest Fortran program
looks like this:

end

Here are some examples of "hello, world" programs:

print *, "Hello, world"
end

With write statement:

write(*,*) "Hello, world"
end

For clarity it is now common to use the program statement to start a program and give it a name.
The end statement can then refer to this name to make it obvious what it is referring to, and let the
compiler check the code for correctness. Further, all Fortran programs should include an implicit
none statement. Thus, a minimal Fortran program actually should look as follows:

program hello
 implicit none
 write(*,*) 'Hello world!'
end program hello

The next logical step from this point is how to see the result of the hello world program. This
section shows how to achieve that in a linux like environment. We assume that you have some
basic notions of shell commands, mainly you know how to get to the shell terminal. We also
assume that you have already setup your fortran environment. Using your preferred text editor
(notepad, notepad++, vi, vim, emacs, gedit, kate, etc.), save the hello program above (copy and
paste) in a file named hello.f90 in your home directory. hello.f90 is your source file. Then go to
the command line and navigate to the directory(home directory?) where you saved your source
file, then type the following command:

https://riptutorial.com/ 3

http://www.absoft.com
https://software.intel.com/en-us/fortran-compilers
http://www.nag.co.uk/nag-compiler
http://www.pgroup.com
http://www-03.ibm.com/software/products/en/fortcompfami
http://docs.cray.com/books/S-3901-50/html-S-3901-50/f130.html
http://fortranwiki.org/fortran/show/Fortran+2003+status
http://fortranwiki.org/fortran/show/Fortran+2008+status
http://www.riptutorial.com/shell/topic/1068/getting-started-with-shell
http://www.riptutorial.com/fortran/example/3013/installation-or-setup
http://www.riptutorial.com/fortran/example/3013/installation-or-setup
http://www.riptutorial.com/fortran/example/3013/installation-or-setup

>gfortran -o hello hello.f90

You just created your hello world executable program. In technical terms, you just compiled your
program. To run it, type the following command:

>./hello

You should see the following line printed on your shell terminal.

> Hello world!

Congratulations, you just wrote, compiled and ran the "Hello World" program.

Quadratic equation

Today Fortran is mainly used for numerical computation. This very simple example illustrates the
basic program structure to solve quadratic equations:

program quadratic
 !a comment

 !should be present in every separate program unit
 implicit none

 real :: a, b, c
 real :: discriminant
 real :: x1, x2

 print *, "Enter the quadratic equation coefficients a, b and c:"
 read *, a, b, c

 discriminant = b**2 - 4*a*c

 if (discriminant>0) then

 x1 = (-b + sqrt(discriminant)) / (2 * a)
 x2 = (-b - sqrt(discriminant)) / (2 * a)
 print *, "Real roots:"
 print *, x1, x2

 ! Comparison of floating point numbers for equality is often not recommended.
 ! Here, it serves the purpose of illustrating the "else if" construct.
 else if (discriminant==0) then

 x1 = - b / (2 * a)
 print *, "Real root:"
 print *, x1
 else

 print *, "No real roots."
 end if
end program quadratic

Case insensitivity

https://riptutorial.com/ 4

Uppercase and lowercase letters of the alphabet are equivalent in the Fortran character set. In
other words, Fortran is case insensitive. This behavior is in contrast with case-sensitive
languages, such as C++ and many others.

As a consequence, the variables a and A are the same variable. In principle one could write a
program as follows

pROgrAm MYproGRaM
..
enD mYPrOgrAM

It's to the good programmer to avoid such ugly choices.

Read Getting started with Fortran online: https://riptutorial.com/fortran/topic/904/getting-started-
with-fortran

https://riptutorial.com/ 5

https://riptutorial.com/fortran/topic/904/getting-started-with-fortran
https://riptutorial.com/fortran/topic/904/getting-started-with-fortran

Chapter 2: Arrays

Examples

Basic notation

Any type can be declared as an array using either the dimension attribute or by just indicating
directly the dimension(s) of the array:

! One dimensional array with 4 elements
integer, dimension(4) :: foo

! Two dimensional array with 4 rows and 2 columns
real, dimension(4, 2) :: bar

! Three dimensional array
type(mytype), dimension(6, 7, 8) :: myarray

! Same as above without using the dimension keyword
integer :: foo2(4)
real :: bar2(4, 2)
type(mytype) :: myarray2(6, 7, 8)

The latter way of declaring multidimensional array, allows the declaration of same-type different-
rank/dimensions arrays in one line, as follows

real :: pencil(5), plate(3,-2:4), cuboid(0:3,-10:5,6)

The maximum rank (number of dimensions) allowed is 15 in Fortran 2008 standard and was 7
before.

Fortran stores arrays in column-major order. That is, the elements of bar are stored in memory as
follows:

bar(1, 1), bar(2, 1), bar(3, 1), bar(4, 1), bar(1, 2), bar(2, 2), ...

In Fortran, array numbering starts at 1 by default, in contrast to C which starts at 0. In fact, in
Fortran, you can specify the upper and lower bounds for each dimension explicitly:

integer, dimension(7:12, -3:-1) :: geese

This declares an array of shape (6, 3), whose first element is geese(7, -3).

Lower and upper bounds along the 2 (or more) dimensions can be accessed by the intrinsic
functions ubound and lbound. Indeed lbound(geese,2) would return -3, whereas ubound(geese,1)
would return 12.

Size of an array can be accessed by intrinsic function size. For example, size(geese, dim = 1)

https://riptutorial.com/ 6

returns the size of first dimension which is 6.

Allocatable arrays

Arrays can have the allocatable attribute:

! One dimensional allocatable array
integer, dimension(:), allocatable :: foo
! Two dimensional allocatable array
real, dimension(:,:), allocatable :: bar

This declares the variable but does not allocate any space for it.

! We can specify the bounds as usual
allocate(foo(3:5))

! It is an error to allocate an array twice
! so check it has not been allocated first
if (.not. allocated(foo)) then
 allocate(bar(10, 2))
end if

Once a variable is no longer needed, it can be deallocated:

deallocate(foo)

If for some reason an allocate statement fails, the program will stop. This can be prevented if the
status is checked via the stat keyword:

real, dimension(:), allocatable :: geese
integer :: status

allocate(geese(17), stat=status)
if (stat /= 0) then
 print*, "Something went wrong trying to allocate 'geese'"
 stop 1
end if

The deallocate statement has stat keyword too:

deallocate (geese, stat=status)

status is an integer variable whose value is 0 if the allocation or deallocation was successful.

Array constructors

A rank-1 array value can be created using an array constructor, with the syntax

(/ ... /)
[...]

https://riptutorial.com/ 7

The form [...] was introduced in Fortran 2003 and is generally regarded as clearer to read,
especially in complex expressions. This form is used exclusively in this example.

The values featuring in an array constructor may be scalar values, array values, or implied-do
loops.

The type and type parameters of the constructed array match those of the values in the array
constructor

[1, 2, 3] ! A rank-1 length-3 array of default integer type
[1., 2., 3.] ! A rank-1 length-3 array of default real type
["A", "B"] ! A rank-1 length-2 array of default character type

integer, parameter :: A = [2, 4]
[1, A, 3] ! A rank-1 length-4 array of default integer type, with A's elements

integer i
[1, (i, i=2, 5), 6] ! A rank-1 length-6 array of default integer type with an implied-do

In the forms above, all the values given must be of the same type and type parameter. Mixing
types, or type parameters, is not allowed. The following examples are not valid

[1, 2.] ! INVALID: Mixing integer and default real
[1e0, 2d0] ! INVALID: Mixing default real and double precision
[1., 2._dp] ! INVALID: Allowed only if kind `dp` corresponds to default real
["Hello", "Frederick"] ! INVALID: Different length parameters

To construct an array using different types, a type specification for the array shall be given

[integer :: 1, 2., 3d0] ! A default integer array
[real(dp) :: 1, 2, 3._sp] ! A real(dp) array
[character(len=9) :: "Hello", "Frederick"] ! A length-2 array of length-9 characters

This latter form for character arrays is especially convenient to avoid space padding, such as the
alternative

["Hello ", "Frederick"] ! A length-2 array of length-9 characters

The size of an array named constant may be implied by the array constructor used to set its value

integer, parameter :: ids(*) = [1, 2, 3, 4]

and for length-parameterized types the length parameter may be assumed

character(len=*), parameter :: names(*) = [character(3) :: "Me", "You", "Her"]

The type specification is also required in the construction of zero-length arrays. From

[] ! Not a valid array constructor

https://riptutorial.com/ 8

the type and type parameters cannot be determined from the non-existing value set. To create a
zero-length default integer array:

[integer ::]

Array constructors construct only rank-1 arrays. At times, such as in setting the value of a named
constant, higher rank arrays are also required in an expression. Higher rank arrays can be taken
from the result of reshape with a constructed rank-1 array

integer, parameter :: multi_rank_ids(2,2) = RESHAPE([1,2,3,4], shape=[2,2])

In an array constructor the values of the array in element order with any arrays in the value list
being as though the individual elemets were given themselves in array element order. Thus, the
earlier example

integer, parameter :: A = [2, 4]
[1, A, 3] ! A rank-1 length-4 array of default integer type, with A's elements

is equivalent to

[1, 2, 4, 3] ! With the array written out in array element order

Generally the values in the constructor may be arbitrary expressions, including nested array
constructors. For such an array constructor to meet certain conditions, such as being a constant or
specification expression, restrictions apply to constituent values.

Although not an array constructor, certain array values may also be conveniently created using the
spread intrinsic function. For example

[(0, i=1,10)] ! An array with 10 default integers each of value 0

is also the result of the function reference

SPREAD(0, 1, 10)

Array nature specification: rank and shape

The dimension attribute on an object specifies that that object is an array. There are, in Fortran
2008, five array natures:1

explicit shape•
assumed shape•
assumed size•
deferred shape•
implied shape•

https://riptutorial.com/ 9

Take the three rank-1 arrays2

integer a, b, c
dimension(5) a ! Explicit shape (default lower bound 1), extent 5
dimension(:) b ! Assumed or deferred shape
dimension(*) c ! Assumed size or implied shape array

With these it can be seen that further context is required to determine fully the nature of an array.

Explicit shape

An explicit shape array is always the shape of its declaration. Unless the array is declared as local
to a subprogram or block construct, the bounds defining shape must be constant expressions. In
other cases, an explicit shape array may be an automatic object, using extents which may vary on
each invocation of a subprogram or block.

subroutine sub(n)
 integer, intent(in) :: n
 integer a(5) ! A local explicit shape array with constant bound
 integer b(n) ! A local explicit shape array, automatic object
end subroutine

Assumed shape

An assumed shape array is a dummy argument without the allocatable or pointer attribute. Such
an array takes its shape from the actual argument with which it is associated.

integer a(5), b(10)
call sub(a) ! In this call the dummy argument is like x(5)
call sub(b) ! In this call the dummy argument is like x(10)

contains

 subroutine sub(x)
 integer x(:) ! Assumed shape dummy argument
 end subroutine sub

end

When a dummy argument has assumed shape the scope referencing the procedure must have an
explicit interface available for that procedure.

Assumed size

An assumed size array is a dummy argument which has its size assumed from its actual
argument.

subroutine sub(x)
 integer x(*) ! Assumed size array
end subroutine

https://riptutorial.com/ 10

Assumed size arrays behave very differently from assumed shape arrays and these differences
are documented elsewhere.

Deferred shape

A deferred shape array is an array which has the allocatable or pointer attribute. The shape of
such an array is determined by its allocation or pointer assignment.

integer, allocatable :: a(:)
integer, pointer :: b(:)

Implied shape

An implied shape array is a named constant which takes its shape from the expression used to
establish its value

integer, parameter :: a(*) = [1,2,3,4]

The implications of these array declarations on dummy arguments are to be documented
elsewhere.

1A Technical Specification extending Fortran 2008 adds a sixth array nature: assumed rank. This
is not covered here.

2 These can equivalently be written as

integer, dimension(5) :: a
integer, dimension(:) :: b
integer, dimension(*) :: c

or

integer a(5)
integer b(:)
integer c(*)

Whole arrays, array elements and array sections

Consider the array declared as

real x(10)

Then we have three aspects of interest:

The whole array x;1.
Array elements, like x(1);2.

https://riptutorial.com/ 11

http://www.riptutorial.com/fortran/example/3469/allocatable-arrays

Array sections, like x(2:6).3.

Whole arrays

In most cases the whole array x refers to all of the elements of the array as a single entity. It may
appear in executable statements such as print *, SUM(x), print *, SIZE(x) or x=1.

A whole array may reference arrays which aren't explicitly shaped (such as x above):

function f(y)
 real, intent(out) :: y(:)
 real, allocatable :: z(:)

 y = 1. ! Intrinsic assignment for the whole array
 z = [1., 2.,] ! Intrinsic assignment for the whole array, invoking allocation
end function

An assumed-size array may also appear as a whole array, but in limited circumstances only (to be
documented elsewhere).

Array elements

An array element is referred to be giving integer indexes, one for each rank of the array, denoting
the location in the whole array:

real x(5,2)
x(1,1) = 0.2
x(2,4) = 0.3

An array element is a scalar.

Array sections

An array section is a reference to a number of elements (perhaps just one) of a whole array, using
a syntax involving colons:

real x(5,2)
x(:,1) = 0. ! Referring to x(1,1), x(2,1), x(3,1), x(4,1) and x(5,1)
x(2,:) = 0. ! Referring to x(2,1), x(2,2)
x(2:4,1) = 0. ! Referring to x(2,1), x(3,1) and x(4,1)
x(2:3,1:2) = 0. ! Referring to x(2,1), x(3,1), x(2,2) and x(3,2)
x(1:1,1) = 0. ! Referring to x(1,1)
x([1,3,5],2) = 0. ! Referring to x(1,2), x(3,2) and x(5,2)

The final form above uses a vector subscript. This is subject to a number of restrictions beyond
other array sections.

Each array section is itself an array, even when just one element is referenced. That is x(1:1,1) is
an array of rank 1 and x(1:1,1:1) is an array of rank 2.

https://riptutorial.com/ 12

http://www.riptutorial.com/fortran/example/30270/whole-arrays--array-elements-and-array-sections

Array sections do not in general have an attribute of the whole array. In particular, where

real, allocatable :: x(:)
x = [1,2,3] ! x is allocated as part of the assignment
x = [1,2,3,4] ! x is dealloacted then allocated to a new shape in the assignment

the assignment

x(:) = [1,2,3,4,5] ! This is bad when x isn't the same shape as the right-hand side

is not allowed: x(:), although an array section with all elements of x, is not an allocatable array.

x(:) = [5,6,7,8]

is fine when x is of the shape of the right-hand side.

Array components of arrays

type t
 real y(5)
end type t

type(t) x(2)

We may also refer to whole arrays, array elements and array sections in more complicated
settings.

From the above, x is a whole array. We also have

x(1)%y ! A whole array
x(1)%y(1) ! An array element
x%y(1) ! An array section
x(1)%y(:) ! An array section
x([1,2]%y(1) ! An array section
x(1)%y(1:1) ! An array section

In such cases we are not allowed to have more than one part of the reference consisting of an
array of rank 1. The following, for example, are not allowed

x%y ! Both the x and y parts are arrays
x(1:1)%y(1:1) ! Recall that each part is still an array section

Array operations

Due to its computational goals, mathematical operations on arrays are straight forward in Fortran.

Addition and subtraction

https://riptutorial.com/ 13

Operations on arrays of the same shape and size are very similar to matrix algebra. Instead of
running through all the indices with loops, one can write addition (and subtraction):

real, dimension(2,3) :: A, B, C
real, dimension(5,6,3) :: D
A = 3. ! Assigning single value to the whole array
B = 5. ! Equivalent writing for assignment
C = A + B ! All elements of C now have value 8.
D = A + B ! Compiler will raise an error. The shapes and dimensions are not the same

Arrays from slicing are also valid:

integer :: i, j
real, dimension(3,2) :: Mat = 0.
real, dimension(3) :: Vec1 = 0., Vec2 = 0., Vec3 = 0.
i = 0
j = 0
do i = 1,3
 do j = 1,2
 Mat(i,j) = i+j
 enddo
enddo
Vec1 = Mat(:,1)
Vec2 = Mat(:,2)
Vec3 = Mat(1:2,1) + Mat(2:3,2)

Function

In the same way, most intrinsic functions can be used implicitly assuming component-wise
operation (though this is not systematic):

real, dimension(2) :: A, B
A(1) = 6
A(2) = 44 ! Random values
B = sin(A) ! Identical to B(1) = sin(6), B(2) = sin(44).

Multiplication and division

Care must be taken with product and division: intrinsic operations using * and / symbols are
element-wise:

real, dimension(2) :: A, B, C
A(1) = 2
A(2) = 4
B(1) = 1
B(2) = 3
C = A*B ! Returns C(1) = 2*1 and C(2) = 4*3

This must not be mistaken with matrix operations (see below).

Matrix operations

https://riptutorial.com/ 14

Matrix operations are intrinsic procedures. For example, the matrix product of the arrays of the
previous section is written as follows:

real, dimension(2,1) :: A, B
real, dimension(1,1) :: C
A(1) = 2
A(2) = 4
B(1) = 1
B(2) = 3
C = matmul(transpose(A),B) ! Returns the scalar product of vectors A and B

Complex operations allow encapsulated of functions by creating temporary arrays. While allowed
by some compilers and compilation options, this is not recommanded. For example, a product
including a matrix transpose can be written:

real, dimension(3,3) :: A, B, C
A(:) = 4
B(:) = 5
C = matmul(transpose(A),matmul(B,matmul(A,transpose(B)))) ! Equivalent to A^t.B.A.B^T

Advanced array sections: subscript triplets and vector subscripts

As mentioned in another example a subset of the elements of an array, called an array section,
may be referenced. From that example we may have

real x(10)
x(:) = 0.
x(2:6) = 1.
x(3:4) = [3., 5.]

Array sections may be more general than this, though. They may take the form of subscript triplets
or vector subscripts.

Subscript triplets

A subscript triple takes the form [bound1]:[bound2][:stride]. For example

real x(10)
x(1:10) = ... ! Elements x(1), x(2), ..., x(10)
x(1:) = ... ! The omitted second bound is equivalent to the upper, same as above
x(:10) = ... ! The omitted first bound is equivalent to the lower, same as above
x(1:6:2) = ... ! Elements x(1), x(3), x(5)
x(5:1) = ... ! No elements: the lower bound is greater than the upper
x(5:1:-1) = ... ! Elements x(5), x(4), x(3), x(2), x(1)
x(::3) = ... ! Elements x(1), x(4), x(7), x(10), assuming omitted bounds
x(::-3) = ... ! No elements: the bounds are assumed with the first the lower, negative
stride

When a stride (which must not be zero) is specified, the sequence of elements begins with the first
bound specified. If the stride is positive (resp. negative) the selected elements following a
sequence incremented (resp. decremented) by the stride until the last element not larger (resp.

https://riptutorial.com/ 15

http://www.riptutorial.com/fortran/example/30270/whole-arrays--array-elements-and-array-sections

smaller) than the second bound is taken. If the stride is omitted it is treated as being one.

If the first bound is larger than the second bound, and the stride is positive, no elements are
specified. If the first bound is smaller than the second bound, and the stride is negative, no
elements are specified.

It should be noted that x(10:1:-1) is not the same as x(1:10:1) even though each element of x
appears in both cases.

Vector subscripts

A vector subscript is a rank-1 integer array. This designates a sequence of elements
corresponding to the values of the array.

real x(10)
integer i
x([1,6,4]) = ... ! Elements x(1), x(6), x(4)
x([(i,i=2,4)]) = ... ! Elements x(2), x(3) and x(4)
print*, x([2,5,2]) ! Elements x(2), x(5) and x(2)

An array section with a vector subscript is restricted in how it may be used:

it may not be argument associated with a dummy argument which is defined in the
procedure;

•

it may not be the target in a pointer assignment statement;•
it may not be an internal file in a data transfer statement.•

Further, such an array section may not appear in a statement which involves its definition when
the same element is selected twice. From above:

print*, x([2,5,2]) ! Elements x(2), x(5) and x(2) are printed
x([2,5,2]) = 1. ! Not permitted: x(2) appears twice in this definition

Higher rank array sections

real x(5,2)
print*, x(::2,2:1:-1) ! Elements x(1,2), x(3,2), x(5,2), x(1,1), x(3,1), x(5,1)

Read Arrays online: https://riptutorial.com/fortran/topic/996/arrays

https://riptutorial.com/ 16

https://riptutorial.com/fortran/topic/996/arrays

Chapter 3: C interoperability

Examples

Calling C from Fortran

Fortran 2003 introduced language features which can guarantee interoperability between C and
Fortran (and to more languages by using C as an intermediary). These features are mostly
accessed through the intrinsic module iso_c_binding:

use, intrinsic :: iso_c_binding

The intrinsic keyword here ensures the correct module is used, and not a user created module of
the same name.

iso_c_binding gives access to interoperable kind type parameters:

integer(c_int) :: foo ! equivalent of 'int foo' in C
real(c_float) :: bar ! equivalent of 'float bar' in C

Use of C kind type parameters guarantees that the data can be transferred between C and Fortran
programs.

Interoperability of C char and Fortran characters is probably a topic for itself and so not discussed
here

To actually call a C function from Fortran, first the interface must be declared. This is essentially
equivalent to the C function prototype, and lets the compiler know about the number and type of
the arguments, etc. The bind attribute is used to tell the compiler the name of the function in C,
which may be different to the Fortran name.

geese.h

// Count how many geese are in a given flock
int howManyGeese(int flock);

geese.f90

! Interface to C routine
interface
 integer(c_int) function how_many_geese(flock_num) bind(C, 'howManyGeese')
 ! Interface blocks don't know about their context,
 ! so we need to use iso_c_binding to get c_int definition
 use, intrinsic :: iso_c_binding, only : c_int
 integer(c_int) :: flock_num
 end function how_many_geese
end interface

https://riptutorial.com/ 17

The Fortran program needs to be linked against the C library (compiler dependent, include here?)
that includes the implementation of howManyGeese(), and then how_many_geese() can be called from
Fortran.

C structs in Fortran

The bind attribute can also be applied to derived types:

geese.h

struct Goose {
 int flock;
 float buoyancy;
}

struct Goose goose_c;

geese.f90

use, intrinsic :: iso_c_binding, only : c_int, c_float

type, bind(C) :: goose_t
 integer(c_int) :: flock
 real(c_float) :: buoyancy
end type goose_t

type(goose_t) :: goose_f

Data can now be transferred between goose_c and goose_f. C routines which take arguments of
type Goose can be called from Fortran with type(goose_t).

Read C interoperability online: https://riptutorial.com/fortran/topic/2184/c-interoperability

https://riptutorial.com/ 18

https://riptutorial.com/fortran/topic/2184/c-interoperability

Chapter 4: Data Types

Examples

Intrinsic types

The following are data types intrinsic to Fortran:

integer
real
character
complex
logical

integer, real and complex are numeric types.

character is a type used to store character strings.

logical is used to store binary values .true. or .false..

All numeric and logical intrinsic types are parametrized using kinds.

integer(kind=specific_kind)

or just

integer(specific_kind)

where specific_kind is an integer named constant.

Character variables, as well as having a kind parameter, also have a length parameter:

character char

declares char to be a length-1 character variable of default kind, whereas

character(len=len) name

declares name to be a character variable of default kind and length len. The kind can also be
specified

character(len=len, kind=specific_kind) name
character(kind=specific_kind) char

declares name to be a character of kind kind and length len. char is a length-1 character of kind kind
.

https://riptutorial.com/ 19

Alternatively, the obsolete form for character declaration

character*len name

may be seen in older code, declaring name to be of length len and default character kind.

Declaration of a variable of intrinsic type may be of the form above, but also may use the type(...)
form:

integer i
real x
double precision y

is equivalent to (but greatly preferred over)

type(integer) i
type(real) x
type(double precision) y

Derived data types

Define a new type, mytype:

type :: mytype
 integer :: int
 real :: float
end type mytype

Declare a variable of type mytype:

type(mytype) :: foo

The components of a derived type can be accessed with the % operator1:

foo%int = 4
foo%float = 3.142

A Fortran 2003 feature (not yet implemented by all compilers) allows to define parameterized data
types:

type, public :: matrix(rows, cols, k)
 integer, len :: rows, cols
 integer, kind :: k = kind(0.0)
 real(kind = k), dimension(rows, cols) :: values
end type matrix

The derived type matrix has three type parameters which are listed in parentheses following the
type name (they are rows, cols, and k). In the declaration of each type parameter it must be

https://riptutorial.com/ 20

indicated whether they are kind (kind) or length (len) type parameters.

Kind type parameters, like those of the intrinsic types, must be constant expressions whereas
length type parameters, like the length of an intrinsic character variable, may vary during
execution.

Note that parameter k has a default value, so it may be provided or omitted when a variable of
type matrix is declared, as follows

type (matrix (55, 65, kind=double)) :: b, c ! default parameter provided
type (matrix (rows=40, cols=50) :: m ! default parameter omitted

The name of a derived type may not be doubleprecision or the same as any of the intrinsic types.

Many people wonder why Fortran uses % as the component-access operator, instead of the
more common .. This is because . is already taken by the operator syntax, i.e. .not., .and.,
.my_own_operator..

1.

Precision of floating point numbers

Floating point numbers of type real cannot have any real value. They can represent real numbers
up to certain amount of decimal digits.

FORTRAN 77 guaranteed two floating point types and more recent standards guarantee at least
two real types. Real variables may be declared as

real x
double precision y

x here is a real of default kind and y is a real of kind with greater decimal precision than x. In
Fortran 2008, the decimal precision of y is at least 10 and its decimal exponent range at least 37.

 real, parameter :: single = 1.12345678901234567890
 double precision, parameter :: double = 1.12345678901234567890d0

 print *, single
 print *, double

prints

 1.12345684
 1.1234567890123457

in common compilers using default configuration.

Notice the d0 in the double precision constant. A real literal containing d instead of e for denoting
the exponent is used to indicate double precision.

https://riptutorial.com/ 21

! Default single precision constant
1.23e45
! Double precision constant
1.23d45

Fortran 90 introduced parameterized real types using kinds. The kind of a real type is an integer
named constant or literal constant:

real(kind=real_kind) :: x

or just

real(real_kind) :: x

This statement declares x to be of type real with a certain precision depending on the value of
real_kind.

Floating point literals can be declared with a specific kind using a suffix

1.23456e78_real_kind

The exact value of real_kind is not standardized and differs from compiler to compiler. To inquire
the kind of any real variable or constant, the function kind() can be used:

print *, kind(1.0), kind(1.d0)

will typically print

4 8

or

1 2

depending on the compiler.

Kind numbers can be set in several ways:

Single (default) and double precision:

integer, parameter :: single_kind = kind(1.)
integer, parameter :: double_kind = kind(1.d0)

1.

Using the intrinsic function selected_real_kind([p, r]) to specify required decimal precision.
The returned kind has precision of at least p digits and allows exponent of at least r.

integer, parameter :: single_kind = selected_real_kind(p=6, r=37)
integer, parameter :: double_kind = selected_real_kind(p=15, r=200)

2.

Starting with Fortran 2003, pre-defined constants are available through the intrinsic module 3.

https://riptutorial.com/ 22

ISO_C_Binding to ensure that real kinds are inter-operable with the types float, double or
long_double of the accompanying C compiler:

use ISO_C_Binding

integer, parameter :: single_kind = c_float
integer, parameter :: double_kind = c_double
integer, parameter :: long_kind = c_long_double

Starting with Fortran 2008, pre-defined constants are available through the intrinsic module
ISO_Fortran_env. These constants provide real kinds with certain storage size in bits

use ISO_Fortran_env

integer, parameter :: single_kind = real32
integer, parameter :: double_kind = real64
integer, parameter :: quadruple_kind = real128

4.

If certain kind is not available in the compiler, the value returned by selected_real_kind() or the
value of the integer constant is -1.

Assumed and deferred length type parameters

Variables of character type or of a derived type with length parameter may have the length
parameter either assumed or deferred. The character variable name

character(len=len) name

is of length len throughout execution. Conversely the length specifier may be either

character(len=*) ... ! Assumed length

or

character(len=:) ... ! Deferred length

Assumed length variables assume their length from another entity.

In the function

function f(dummy_name)
 character(len=*) dummy_name
end function f

the dummy argument dummy_name has length that of the actual argument.

The named constant const_name in

character(len=*), parameter :: const_name = 'Name from which length is assumed'

https://riptutorial.com/ 23

has length given by the constant expression on the right-hand side.

Deferred length type parameters may vary during execution. A variable with deferred length must
have either the allocatable or pointer attribute

character(len=:), allocatable :: alloc_name
character(len=:), pointer :: ptr_name

Such a variable's length may be set in any of the following ways

allocate(character(len=5) :: alloc_name, ptr_name)
alloc_name = 'Name' ! Using allocation on intrinsic assignment
ptr_name => another_name ! For given target

For derived types with length parameterization the syntax is similar

 type t(len)
 integer, len :: len
 integer i(len)
 end type t

 type(t(:)), allocatable :: t1
 type(t(5)) t2

 call sub(t2)
 allocate(type(t(5)) :: t1)

contains

 subroutine sub(t2)
 type(t(*)), intent(out) :: t2
 end subroutine sub

end

Literal constants

Program units often make use of literal constants. These cover the obvious cases like

print *, "Hello", 1, 1.0

Except in one case, each literal constant is a scalar which has type, type parameters and value
given by the syntax.

Integer literal constants are of the form

1
-1
-1_1 ! For valid kind parameter 1
1_ik ! For the named constant ik being a valid kind paramter

https://riptutorial.com/ 24

Real literal constants are of the form

1.0 ! Default real
1e0 ! Default real using exponent format
1._1 ! Real with kind parameter 1 (if valid)
1.0_sp ! Real with kind paramter named constant sp
1d0 ! Double precision real using exponent format
1e0_dp ! Real with kind named constant dp using exponent format

Complex literal constants are of the form

(1, 1.) ! Complex with integer and real components, literal constants
(real, imag) ! Complex with named constants as components

If the real and imaginary components are both integer, the complex literal constant is default
complex, and the integer components are converted to default real. If one component is real, the
kind parameter of the complex literal constant is that of the real (and the integer component is
converted to that real kind). If both components are real the complex literal constant is of kind of
the real with the greatest precision.

Logical literal constants are

.TRUE. ! Default kind, with true value

.FALSE. ! Default kind, with false value

.TRUE._1 ! Of kind 1 (if valid), with true value

.TRUE._lk ! Of kind named constant lk (if valid), with true value

Character literal values differ slightly in concept, in that the kind specifier precedes the value

"Hello" ! Character value of default kind
'Hello' ! Character value of default kind
ck_"Hello" ! Character value of kind ck
"'Bye" ! Default kind character with a '
'''Bye' ! Default kind character with a '
"" ! A zero-length character of default kind

As suggested above, character literal constants must be delimted by apostrophes or quotation
marks, and the start and end marker must match. Literal apostrophes can be included by being
within quotation mark delimiters or by appearing doubled. The same for quotation marks.

BOZ constants are distinct from the above, in that they specify only a value: they have no type or
type parameter. A BOZ constant is a bit pattern and is specified as

B'00000' ! A binary bit pattern
B"01010001" ! A binary bit pattern
O'012517' ! An octal bit pattern
O"1267671" ! An octal bit pattern
Z'0A4F' ! A hexadecimal bit pattern
Z"FFFFFF" ! A hexadecimal bit pattern

BOZ literal constants are limited in where they may appear: as constants in data statements and a

https://riptutorial.com/ 25

selection of intrinsic procedures.

Accessing character substrings

For the character entity

character(len=5), parameter :: greeting = "Hello"

a substring may be referenced with the syntax

greeting(2:4) ! "ell"

To access a single letter it isn't sufficient to write

greeting(1) ! This isn't the letter "H"

but

greeting(1:1) ! This is "H"

For a character array

character(len=5), parameter :: greeting(2) = ["Hello", "Yo! "]

we have substring access like

greeting(1)(2:4) ! "ell"

but we cannot reference the non-contiguous characters

greeting(:)(2:4) ! The parent string here is an array

We can even access substrings of literal constants

"Hello"(2:4)

A portion of a character variable may also be defined by using a substring as a variable. For
example

integer :: i=1
character :: filename = 'file000.txt'

filename(9:11) = 'dat'
write(filename(5:7), '(I3.3)') i

Accessing complex components

https://riptutorial.com/ 26

The complex entity

complex, parameter :: x = (1., 4.)

has real part 1. and complex part 4.. We can access these individual components as

real(x) ! The real component
aimag(x) ! The complex component
x%re ! The real component
y%im ! The complex component

The x%.. form is new to Fortran 2008 and not widely supported in compilers. This form, however,
may be used to directly set the individual components of a complex variable

complex y
y%re = 0.
y%im = 1.

Declaration and attributes

Throughout the topics and examples here we'll see many declarations of variables, functions and
so on.

As well as their name, data objects may have attributes. Covered in this topic are declaration
statements like

integer, parameter :: single_kind = kind(1.)

which gives the object single_kind the parameter attribute (making it a named constant).

There are many other attributes, like

target•
pointer•
optional•
save•

Attributes may be specified with so-called attribute specification statements

integer i ! i is an integer (of default kind)...
pointer i ! ... with the POINTER attribute...
optional i ! ... and the OPTIONAL attribute

However, it is generally regarded to be better to avoid using these attribute specification
statements. For clarity the attributes may be specified as part of a single declaration

integer, pointer, optional :: i

This also reduces the temptation to use implicit typing.

https://riptutorial.com/ 27

In most cases in this Fortran documentation this single declaration statement is preferred.

Read Data Types online: https://riptutorial.com/fortran/topic/939/data-types

https://riptutorial.com/ 28

https://riptutorial.com/fortran/topic/939/data-types

Chapter 5: Execution Control

Examples

If construct

The if construct (called a block IF statement in FORTRAN 77) is common across many
programming languages. It conditionally executes one block of code when a logical expression is
evaluated to true.

[name:] IF (expr) THEN
 block
[ELSE IF (expr) THEN [name]
 block]
[ELSE [name]
 block]
END IF [name]

where,

name - the name of the if construct (optional)•
expr - a scalar logical expression enclosed in parentheses•
block - a sequence of zero or more statements or constructs•

A construct name at the beginning of an if then statement must have the same value as the
construct name at the end if statement, and it should be unique for the current scoping unit.

In if statements, (in)equalities and logical expressions evaluating a statement can be used with
the following operators:

.LT. which is < ! less than

.LE. <= ! less than or equal

.GT. > ! greater than

.GE. >= ! greater than or equal

.EQ. = ! equal

.NE. /= ! not equal

.AND. ! logical and

.OR. ! logical or

.NOT. ! negation

Examples:

! simplest form of if construct
if (a > b) then
 c = b / 2
end if
!equivalent example with alternate syntax
if(a.gt.b)then
 c=b/2
endif

https://riptutorial.com/ 29

! named if construct
circle: if (r >= 0) then
 l = 2 * pi * r
end if circle

! complex example with nested if construct
block: if (a < e) then
 if (abs(c - e) <= d) then
 a = a * c
 else
 a = a * d
 end if
else
 a = a * e
end if block

A historical usage of the if construct is in what is called an "arithmetic if" statement. Since this can
be replaced by more modern constructs, however, it is not covered here. More details can be
found here.

SELECT CASE construct

A select case construct conditionally executes one block of constructs or statements depending on
the value of a scalar expression in a select case statement. This control construct can be
considered as a replacement for computed goto.

[name:] SELECT CASE (expr)
[CASE (case-value [, case-value] ...) [name]
 block]...
[CASE DEFAULT [name]
 block]
END SELECT [name]

where,

name - the name of the select case construct (optional)•
expr - a scalar expression of type integer, logical, or character (enclosed in parentheses)•
case-value - one or more scalar integer, logical, or character initialization expressions
enclosed in parentheses

•

block - a sequence of zero or more statements or constructs•

Examples:

! simplest form of select case construct
select case(i)
case(:-1)
 s = -1
case(0)
 s = 0
case(1:)
 s = 1
case default
 print "Something strange is happened"

https://riptutorial.com/ 30

http://www.riptutorial.com/fortran/example/6897/arithmetic-if-statement

end select

In this example, (:-1) case value is a range of values matches to all values less than zero, (0)
matches to zeroes, and (1:) matches to all values above zero, default section involves if other
sections did not executed.

Block DO construct

A do construct is a looping construct which has a number of iterations governed by a loop control

integer i
do i=1, 5
 print *, i
end do
print *, i

In the form above, the loop variable i passes through the loop 5 times, taking the values 1 to 5 in
turn. After the construct has completed the loop variable has the value 6, that is, the loop variable
is incremented once more after the completion of the loop.

More generally, the do loop construct can be understood as follows

integer i, first, last, step
do i=first, last, step
end do

The loop starts with i with the value first, incrementing each iteration by step until i is greater
than last (or less than last if the step size is negative).

It is important to note that since Fortran 95, the loop variable and the loop control expressions
must be integer.

An iteration may be ended prematurely with the cycle statement

do i=1, 5
 if (i==4) cycle
end do

and the whole construct may cease execution with the exit statement

do i=1, 5
 if (i==4) exit
end do
print *, i

do constructs may be named:

do_name: do i=1, 5
end do do_name

https://riptutorial.com/ 31

which is particularly useful when there are nested do constructs

do1: do i=1, 5
 do j=1,6
 if (j==3) cycle ! This cycles the j construct
 if (j==4) cycle ! This cycles the j construct
 if (i+j==7) cycle do1 ! This cycles the i construct
 if (i*j==15) exit do1 ! This exits the i construct
 end do
end do1

do constructs may also have indeterminate loop control, either "forever" or until a given condition is
met

integer :: i=0
do
 i=i+1
 if (i==5) exit
end do

or

integer :: i=0
do while (i<6)
 i=i+1
end do

This also allows for an infinite do loop via a .true. statement

print *,'forever'
do while(.true.)
 print *,'and ever'
end do

A do construct may also leave the order of iterations indeterminate

do concurrent (i=1:5)
end do

noting that the form of loop control is the same as in a forall control.

There are various restrictions on the statements that may be executed within the range of a do
concurrent construct which are designed to ensure that there are no data dependencies between
iterations of the construct. This explicit indication by the programmer may enable greater
optimization (including parallelization) by the compiler which may be difficul to determine
otherwise.

"Private" variables within an interation can be realized by use of a block construct within the do
concurrent:

https://riptutorial.com/ 32

do concurrent (i=1:5, j=2:7)
 block
 real tempval ! This is independent across iterations
 end block
end do

Another form of the block do construct uses a labelled continue statement instead of an end do:

 do 100, i=1, 5
100 continue

It is even possible to nest such constructs with a shared termination statement

 do 100, i=1,5
 do 100, j=1,5
100 continue

Both of these forms, and especially the second (which is obsolescent), are generally to be avoided
in the interests of clarity.

Finally, there is also a non-block do construct. This is also deemed to be obsolescent and is
described elsewhere, along with methods to restructure as a block do construct.

WHERE construct

The where construct, available in Fortran90 onwards represents a masked do construct. The
masking statement follows the same rules of the if statement, but is applied to all the elements of
the given array. Using where allows operations to be carried out on an array (or multiple arrays of
the same size), the elements of which satisfy a certain rule. This can be used to simplify
simultaneous operations on several variables.

Syntax:

[name]: where (mask)
 block
[elsewhere (mask)
 block]
[elsewhere
 block]
end where [name]

Here,

name - is the name given to the block (if named)•
mask - is a logical expression applied to all elements•
block - series of commands to be executed•

Examples:

https://riptutorial.com/ 33

http://www.riptutorial.com/fortran/example/8767/non-block-do-constructs

! Example variables
real:: A(5),B(5),C(5)
A = 0.0
B = 1.0
C = [0.0, 4.0, 5.0, 10.0, 0.0]

! Simple where construct use
where (C/=0)
 A=B/C
elsewhere
 A=0.0
end

! Named where construct
Block: where (C/=0)
 A=B/C
elsewhere
 A=0.0
end where Block

Read Execution Control online: https://riptutorial.com/fortran/topic/1657/execution-control

https://riptutorial.com/ 34

https://riptutorial.com/fortran/topic/1657/execution-control

Chapter 6: Explicit and implicit interfaces

Examples

Internal/module subprograms and explicit interfaces

A subprogram (which defines a procedure), can be either a subroutine or a function; it is said to be
an internal subprogram if it is called or invoked from the same program or subprogram that contains
it, as follows

program my_program

 ! declarations
 ! executable statements,
 ! among which an invocation to
 ! internal procedure(s),
 call my_sub(arg1,arg2,...)
 fx = my_fun(xx1,xx2,...)

contains

 subroutine my_sub(a1,a2,...)
 ! declarations
 ! executable statements
 end subroutine my_sub

 function my_fun(x1,x2,...) result(f)
 ! declarations
 ! executable statements
 end function my_fun

end program my_program

In this case the compiler will know all about any internal procedure, since it treats the program unit
as a whole. In particular, it will "see" the procedure's interface, that is

whether it is a function or subroutine,•
which are the names and properties of the arguments a1, a2, x1, x2, ...,•
which are the properties of the result f (in the case of a function).•

Being the interface known, the compiler can check whether the actual arguments (arg1, arg2, xx1,
xx2, fx, ...) passed to the procedure match with the dummy arguments (a1, a2, x1, x2, f, ...).

In this case we say that the interface is explicit.

A subprogram is said to be module subprogram when it is invoked by a statement in the
containing module itself,

module my_mod

 ! declarations

https://riptutorial.com/ 35

contains

 subroutine my_mod_sub(b1,b2,...)
 ! declarations
 ! executable statements
 r = my_mod_fun(b1,b2,...)
 end subroutine my_sub

 function my_mod_fun(y1,y2,...) result(g)
 ! declarations
 ! executable statements
 end function my_fun

end module my_mod

or by a statement in another program unit that uses that module,

program my_prog

 use my_mod

 call my_mod_sub(...)

end program my_prog

As in the preceding situation, the compiler will know everything about the subprogram and,
therefore, we say that the interface is explicit.

External subprograms and implicit interfaces

A subprogram is said to be external when it is not contained in the main program, nor in a module
or antoher subprogram. In particular it can be defined by means of a programming language other
than Fortran.

When an external subprogram is invoked, the compiler cannot access to its code, so all the
information allowable to the compiler is implicitly contained in the calling statement of the calling
program and in the type an properties of the acutal arguments, not the dummy arguments (whose
declaration is unknown to the compiler). In this case we say that the interface is implicit.

An external statement can be used to specify that a procedure's name is relative to an external
procedure,

external external_name_list

but even so, the interface remain implicit.

An interface block can be used to specify the interface of an external procedure,

interface
 interface_body
end interface

https://riptutorial.com/ 36

where the interface_body is normally an exact copy of the procedure header followed by the
declaration of all its arguments and, if it is a function, of the result.

For example, for function WindSpeed

real function WindSpeed(u, v)
 real, intent(in) :: u, v
 WindSpeed = sqrt(u*u + v*v)
end function WindSpeed

You can write the following interface

interface
 real function WindSpeed(u, v)
 real, intent(in) :: u, v
 end function WindSpeed
end interface

Read Explicit and implicit interfaces online: https://riptutorial.com/fortran/topic/2882/explicit-and-
implicit-interfaces

https://riptutorial.com/ 37

https://riptutorial.com/fortran/topic/2882/explicit-and-implicit-interfaces
https://riptutorial.com/fortran/topic/2882/explicit-and-implicit-interfaces

Chapter 7: I/O

Syntax

WRITE(unit num, format num) outputs the data after the brackets in a new line.•
READ(unit num, format num) inputs to the variable after the brackets.•
OPEN(unit num, FILE=file) opens a file. (There are more options for opening files, but they
are not important for I/O.

•

CLOSE(unit num) closes a file.•

Examples

Simple I/O

As an example of writing input & output, we'll take in a real value and return the value and its
square until the user enters a negative number.

As specified below, the read command takes two arguments: the unit number and the format
specifier. In the example below, we use * for the unit number (which indicates stdin) and * for the
format (which indicates the default for reals, in this case). We also specify the format for the print
statement. One can alternatively use write(*,"The value....") or simply ignore formatting and
have it as

print *,"The entered value was ", x," and its square is ",x*x

which will likely result in some oddly spaced strings and values.

program SimpleIO
 implicit none
 integer, parameter :: wp = selected_real_kind(15,307)
 real(kind=wp) :: x

 ! we'll loop over until user enters a negative number
 print '("Enter a number >= 0 to see its square. Enter a number < 0 to exit.")'
 do
 ! this reads the input as a double-pricision value
 read(*,*) x
 if (x < 0d0) exit
 ! print the entered value and it's square
 print '("The entered value was ",f12.6,", its square is ",f12.6,".")',x,x*x
 end do
 print '("Thank you!")'

end program SimpleIO

Read with some error checking

A modern Fortran example which includes error checking and a function to get a new unit number

https://riptutorial.com/ 38

for the file.

module functions

contains

 function get_new_fileunit() result (f)
 implicit none

 logical :: op
 integer :: f

 f = 1
 do
 inquire(f,opened=op)
 if (op .eqv. .false.) exit
 f = f + 1
 enddo

 end function

end module

program file_read
 use functions, only : get_new_fileunit
 implicit none

 integer :: unitno, ierr, readerr
 logical :: exists
 real(kind(0.d0)) :: somevalue
 character(len=128) :: filename

 filename = "somefile.txt"

 inquire(file=trim(filename), exist=exists)
 if (exists) then
 unitno = get_new_fileunit()
 open(unitno, file=trim(filename), action="read", iostat=ierr)
 if (ierr .eq. 0) then
 read(unitno, *, iostat=readerr) somevalue
 if (readerr .eq. 0) then
 print*, "Value in file ", trim(filename), " is ", somevalue
 else
 print*, "Error ", readerr, &
 " attempting to read file ", &
 trim(filename)
 endif
 else
 print*, "Error ", ierr ," attempting to open file ", trim(filename)
 stop
 endif
 else
 print*, "Error -- cannot find file: ", trim(filename)
 stop
 endif

end program file_read

Passing command line arguments

https://riptutorial.com/ 39

Where command line arguments are supported they can be read in via the get_command_argument
intrinsic (introduced in the Fortran 2003 standard). The command_argument_count intrinsic provides a
way to know the number of arguments provided at the command line.

All command-line arguments are read in as strings, so an internal type conversion must be done
for numeric data. As an example, this simple code sums the two numbers provided at the
command line:

PROGRAM cmdlnsum
IMPLICIT NONE
CHARACTER(100) :: num1char
CHARACTER(100) :: num2char
REAL :: num1
REAL :: num2
REAL :: numsum

!First, make sure the right number of inputs have been provided
IF(COMMAND_ARGUMENT_COUNT().NE.2)THEN
 WRITE(*,*)'ERROR, TWO COMMAND-LINE ARGUMENTS REQUIRED, STOPPING'
 STOP
ENDIF

CALL GET_COMMAND_ARGUMENT(1,num1char) !first, read in the two values
CALL GET_COMMAND_ARGUMENT(2,num2char)

READ(num1char,*)num1 !then, convert them to REALs
READ(num2char,*)num2

numsum=num1+num2 !sum numbers
WRITE(*,*)numsum !write out value

END PROGRAM

The number argument in get_command_argument usefully ranges between 0 and the result of
command_argument_count. If the value is 0 then the command name is supplied (if supported).

Many compilers also offer non-standard intrinsics (such as getarg) to access command line
arguments. As these are non-standard, the corresponding compiler documentation should be
consulted.

Use of get_command_argument may be extended beyond the above example with the length and
status arguments. For example, with

character(5) arg
integer stat
call get_command_argument(number=1, value=arg, status=stat)

the value of stat will be -1 if the first argument exists and has length greater than 5. If there is
some other difficulty retrieving the argument the value of stat will be some positive number (and
arg will consist entirely of blanks). Otherwise its value will be 0.

The length argument may be combined with a deferred length character variable, such as in the
following example.

https://riptutorial.com/ 40

character(:), allocatable :: arg
integer arglen, stat
call get_command_argument(number=1, length=arglen) ! Assume for simplicity success
allocate (character(arglen) :: arg)
call get_command_argument(number=1, value=arg, status=stat)

Read I/O online: https://riptutorial.com/fortran/topic/6778/i-o

https://riptutorial.com/ 41

https://riptutorial.com/fortran/topic/6778/i-o

Chapter 8: Intrinsic procedures

Remarks

Many of the available intrinsic procedures have argument types in common. For example:

a logical argument MASK which selects elements of input arrays to be processed•
an integer scalar argument KIND which determines the kind of the function result•
an integer argument DIM for a reduction function which controls the dimension over which the
reduction is performed

•

Examples

Using PACK to select elements meeting a condition

The intrinsic pack function packs an array into a vector, selecting elements based on a given mask.
The function has two forms

PACK(array, mask)
PACK(array, mask, vector)

(that is, the vector argument is optional).

In both cases array is an array, and mask of logical type and conformable with array (either a scalar
or an array of the same shape).

In the first case the result is rank-1 array of type and type parameters of array with the number of
elements being the number of true elements in the mask.

integer, allocatable :: positive_values(:)
integer :: values(5) = [2, -1, 3, -2, 5]
positive_values = PACK(values, values>0)

results in positive_values being the array [2, 3, 5].

With the vector rank-1 argument present the result is now the size of vector (whcih must have at
least as many elements as there are true values in mask.

The effect with vector is to return that array with the initial elements of that array overwritten by the
masked elements of array. For example

integer, allocatable :: positive_values(:)
integer :: values(5) = [2, -1, 3, -2, 5]
positive_values = PACK(values, values>0, [10,20,30,40,50])

results in positive_values being the array [2,3,5,40,50].

https://riptutorial.com/ 42

It should be noted that, regardless of the shape of the argument array the result is always a rank-1
array.

In addition to selecting the elements of an array meeting a masking condition it is often useful to
determine the indices for which the masking condition is met. This common idiom can be
expressed as

integer, allocatable :: indices(:)
integer i
indices = PACK([(i, i=1,5)], [2, -1, 3, -2, 5]>0)

resulting in indices being the array [1,3,5].

Read Intrinsic procedures online: https://riptutorial.com/fortran/topic/2643/intrinsic-procedures

https://riptutorial.com/ 43

https://riptutorial.com/fortran/topic/2643/intrinsic-procedures

Chapter 9: Modern alternatives to historical
features

Examples

Implicit variable types

When Fortran was originally developed memory was at a premium. Variables and procedure
names could have a maximum of 6 characters, and variables were often implicitly typed. This
means that the first letter of the variable name determines its type.

variables beginning with i, j, ..., n are integer•
everything else (a, b, ..., h, and o, p, ..., z) are real•

Programs like the following are acceptable Fortran:

program badbadnotgood
 j = 4
 key = 5 ! only the first letter determines the type
 x = 3.142
 print*, "j = ", j, "key = ", key, "x = ", x
end program badbadnotgood

You may even define your own implicit rules with the implicit statement:

! all variables are real by default
implicit real (a-z)

or

! variables starting with x, y, z are complex
! variables starting with c, s are character with length of 4 bytes
! and all other letters have their default implicit type
implicit complex (x,y,z), character*4 (c,s)

Implicit typing is no longer considered best practice. It is very easy to make a mistake using
implicit typing, as typos can go unnoticed, e.g.

program oops
 real :: somelongandcomplicatedname

 ...

 call expensive_subroutine(somelongandcomplEcatedname)
end program oops

This program will happily run and do the wrong thing.

https://riptutorial.com/ 44

To turn off implicit typing, the implicit none statement can be used.

program much_better
 implicit none
 integer :: j = 4
 real :: x = 3.142
 print*, "j = ", j, "x = ", x
end program much_better

If we had used implicit none in the program oops above, the compiler would have noticed
immediately, and produced an error.

Arithmetic if statement

Arithmetic if statement allows one to use three branches depending on the result of an arithmetic
expression

if (arith_expr) label1, label2, label3

This if statement transfers control flow to one of the labels in a code. If the result of arith_expr is
negative label1 is involved, if the result is zero label2 is used, and if the result is positive last
label3 is applied. Arithmetic if requires all three labels but it allows the re-use of labels, therefore
this statement can be simplified to a two branch if.

Examples:

if (N * N - N / 2) 130, 140, 130

if (X) 100, 110, 120

Now this feature is obsolete with the same functionality being offered by the if statement and if-
else construct. For example, the fragment

 if (X) 100, 110, 120
100 print*, "Negative"
 goto 200
110 print*, "Zero"
 goto 200
120 print*, "Positive"
200 continue

may be written as the if-else construct

if (X<0) then
 print*, "Negative"
else if (X==0) then
 print*, "Zero"
else
 print*, "Positive"
end if

https://riptutorial.com/ 45

An if statement replacement for

 if (X) 100, 100, 200
100 print *, "Negative or zero"
200 continue

may be

if (X<=0) print*, "Negative or zero"

Non-block DO constructs

The non-block do construct looks like

 integer i
 do 100, i=1, 5
100 print *, i

That is, where the labelled termination statement is not a continue statement. There are various
restrictions on the statement that can be used as the termination statement and the whole thing is
generally very confusing.

Such a non-block construct can be rewritten in block form as

 integer i
 do 100 i=1,5
 print *, i
100 continue

or better, using an end do termination statement,

integer i
do i=1,5
 print *, i
end do

Alternate return

Alternate return is a facility to control the flow of execution on return from a subroutine. It is often
used as a form of error handling:

real x

call sub(x, 1, *100, *200)
print*, "Success:", x
stop

100 print*, "Negative input value"
stop

200 print*, "Input value too large"

https://riptutorial.com/ 46

stop

end

subroutine sub(x, i, *, *)
 real, intent(out) :: x
 integer, intent(in) :: i
 if (i<0) return 1
 if (i>10) return 2
 x = i
end subroutine

The alternate return is marked by the arguments * in the subroutine dummy argument list.

In the call statement above *100 and *200 refer to the statements labelled 100 and 200 respectively.

In the subroutine itself the return statements corresponding to alternate return have a number.
This number is not a return value, but denotes the provided label to which execution is passed on
return. In this case, return 1 passes execution to the statement labelled 100 and return 2 passes
execution to the statement labelled 200. An unadorned return statement, or completion of
subroutine execution without a return statement, passess execution to immediately after the call
statement.

The alternate return syntax is very different from other forms of argument association and the
facility introduces flow control contrary to modern tastes. More pleasing flow control can be
managed with return of an integer "status" code.

real x
integer status

call sub(x, 1, status)
select case (status)
case (0)
 print*, "Success:", x
case (1)
 print*, "Negative input value"
case (2)
 print*, "Input value too large"
end select

end

subroutine sub(x, i, status)
 real, intent(out) :: x
 integer, intent(in) :: i
 integer, intent(out) :: status

 status = 0

 if (i<0) then
 status = 1
 else if (i>10)
 status = 2
 else
 x = i
 end if

https://riptutorial.com/ 47

end subroutine

Fixed Source Form

Fortran originally was designed for a fixed format form based on an 80 column punched card:

Yes: This is a line of the author's own code

These were created on a card punch machine, much like this:

Images are original photography by the author

The format, as shown on the illustrated sample card, had the first five columns reserved for
statement labels. The first column was used to denote comments by a letter C. The sixth column
was used to denote a statement continuation (by inserting any character other than a zero '0'). The
last 8 columns were used for card identification and sequencing, which was pretty valuable if you
dropped your deck of cards on the floor! The character coding for punched cards had only a
limited set of characters and was upper case only. As a result, Fortran programs looked like this:

 DIMENSION A(10) 00000001
C THIS IS A COMMENT STATEMENT TO EXPLAIN THIS EXAMPLE PROGRAM 00000002
 WRITE (6,100) 00000003
 100 FORMAT(169HTHIS IS A RATHER LONG STRING BEING OUTPUT WHICH GOES OVE00000004

https://riptutorial.com/ 48

https://en.wikipedia.org/wiki/Fortran#Fixed_layout_and_punched_cards
http://i.stack.imgur.com/oJiKo.jpg
http://i.stack.imgur.com/jMhV0m.jpg

 1R MORE THAN ONE LINE, AND USES THE STATEMENT CONTINUATION MARKER IN00000005
 2COLUMN 6, AND ALSO USES HOLLERITH STRING FORMAT) 00000006
 STOP 00000007
 END 00000008

The space character was also ignored everywhere, except inside a Hollerith character constant
(as shown above). This meant that spaces could occur inside reserved words and constants, or
completely missed out. This had the side effect of some rather misleading statements such as:

 DO 1 I = 1.0

is an assignment to the variable DO1I whereas:

 DO1I = 1,0

is actually a DO loop on the variable I.

Modern Fortran does not now required this fixed form of input and permits free form using any
columns. Comments are now indicated by a ! which can also be appended to a statement line.
Spaces are now not permitted anywhere and must be used as separators, much as in most other
languages. The above program could be written in modern Fortran as:

! This is a comment statement to explain this example program
Print *,"THIS IS A RATHER LONG STRING BEING OUTPUT WHICH no longer GOES OVER MORE THAN ONE
LINE, AND does not need to USE THE STATEMENT CONTINUATION MARKER IN COLUMN 6, or the HOLLERITH
STRING FORMAT"

Although the old-style continuation is no longer used, the above example illustrates that very long
statements will still occur. Modern Fortran uses a & symbol at the end and beginning of the
continuation. For example, we could write the above in a more readable form:

! This is a comment statement to explain this example program
Print *,"THIS IS A RATHER LONG STRING BEING OUTPUT WHICH still &
 &GOES OVER MORE THAN ONE LINE, AND does need to USE THE STATEMENT &
 &CONTINUATION notation"

Common Blocks

In the early forms of Fortran the only mechanism for creating global variable store visible from
subroutines and functions is to use the COMMON block mechanism. This permitted sequences of
variables to be names and shared in common.

In addition to named common blocks there may also be a blank (unnamed) common block.

A blank common block could be declared like

common i, j

https://riptutorial.com/ 49

whereas the named block variables could be declared like

common /variables/ i, j

As a complete example, we could imagine a heap store that is used by routines that can add and
remove values:

 PROGRAM STACKING
 COMMON /HEAP/ ICOUNT, ISTACK(1023)
 ICOUNT = 0
 READ *, IVAL
 CALL PUSH(IVAL)
 CALL POP(IVAL)
 END

 SUBROUTINE PUSH(IVAL)
 COMMON /HEAP/ ICOUNT, ISTACK(1023)
 ICOUNT = ICOUNT + 1
 ISTACK(ICOUNT) = IVAL
 RETURN
 END

 SUBROUTINE POP(IVAL)
 COMMON /HEAP/ ICOUNT, ISTACK(1023)
 IVAL = ISTACK(ICOUNT)
 ICOUNT = ICOUNT - 1
 RETURN
 END

Common statements may be used to implicitly declare the type of a variable and to specify the
dimension attribute. This behaviour alone is often a sufficient source of confusion. Further, the
implied storage association and requirements for repeated definitions across program units makes
the use of common blocks prone to error.

Finally, common blocks are very restricted in the objects they contain. For example, an array in a
common block must be of explicit size; allocatable objects may not occur; derived types must not
have default initialization.

In modern Fortran this sharing of variables can be handled by the use of modules. The above
example can be written as:

module heap
 implicit none
 ! In Fortran 2008 all module variables are implicitly saved
 integer, save :: count = 0
 integer, save :: stack(1023)
end module heap

program stacking
 implicit none
 integer val
 read *, val
 call push(val)
 call pop(val)

https://riptutorial.com/ 50

http://www.riptutorial.com/fortran/topic/1139/usage-of-modules

contains
 subroutine push(val)
 use heap, only : count, stack
 integer val
 count = count + 1
 stack(count) = val
 end subroutine push

 subroutine pop(val)
 use heap, only : count, stack
 integer val
 val = stack(count)
 count = count - 1
 end subroutine pop
end program stacking

Named and blank common blocks have slightly different behaviours. Of note:

objects in named common blocks may be defined initially; objects in blank common shall not
be

•

objects in blank common blocks behave as though the common block has the save attribute;
objects in named common blocks without the save attribute may become undefined when the
block is not in the scope of an active program unit

•

This latter point can be contrasted with the behaviour of module variables in modern code. All
module variables in Fortran 2008 are implicitly saved and do not become undefined when the
module goes out of scope. Before Fortran 2008 module variables, like variables in named
common blocks, would also become undefined when the module went out of scope.

Assigned GOTO

Assigned GOTO uses integer variable to which a statement label is assigned using the ASSIGN
statement.

100 CONTINUE

...

ASSIGN 100 TO ILABEL

...

GOTO ILABEL

Assigned GOTO is obsolescent in Fortran 90 and deleted in Fortran 95 and later. It can be
avoided in modern code by using procedures, internal procedures, procedure pointers and other
features.

Computed GOTO

https://riptutorial.com/ 51

Computed GOTO allows branching of the program according to the value of an integer
expression.

GOTO (label_1, label_2,... label_n) scalar-integer-expression

If scalar-integer-expression is equal to 1 the program continues at statement label label_1, if it is
equal to 2 it goes to label_2 and so on. If it is less then 1 or larger than n program continues on
next line.

Example:

ivar = 2

...

GOTO (10, 20, 30, 40) ivar

will jump to statement label 20.

This form of goto is obsolescent in Fortran 95 and later, being superseded by the select case
construct.

Assigned format specifiers

Before Fortran 95 it was possible to use assigned formats for input or output. Consider

integer i, fmt
read *, i

assign 100 to fmt
if (i<100000) assign 200 to fmt

print fmt, i

100 format ("This is a big number", I10)
200 format ("This is a small number", I6)

end

The assign statement assigns a statement label to an integer variable. This integer variable is later
used as the format specifier in the print statement.

Such format specifier assignment was deleted in Fortran 95. Instead, more modern code can use
some other form of execution flow control

integer i
read *, i

if (i<100000) then
 print 100, i
else
 print 200, i

https://riptutorial.com/ 52

end if

100 format ("This is a big number", I10)
200 format ("This is a small number", I6)

end

or a character variable may be used as the format specifier

character(29), target :: big_fmt='("This is a big number", I10)'
character(30), target :: small_fmt='("This is a small number", I6)'
character(:), pointer :: fmt

integer i
read *, i

fmt=>big_fmt
if (i<100000) fmt=>small_fmt

print fmt, i

end

Statement functions

Consider the program

implicit none
integer f, i
f(i)=i

print *, f(1)
end

Here f is a statement function. It has integer result type, taking one integer dummy argument.1

Such a statement function exists within the scope in which it is defined. In particular, it has access
to variables and named constants accessible in that scope.

However, statement functions are subject to many restrictions and are potentially confusing
(looking at casual glance like an array element assignment statement). Important restrictions are:

the function result and dummy arguments must be scalar•
the dummy arguments are in the same scope as the function•
statement functions have no local variables•
statement functions cannot be passed as actual arguments•

The main benefits of statement functions are repeated by internal functions

implicit none

print *, f(1)

https://riptutorial.com/ 53

contains

 integer function f(i)
 integer i
 f = i
 end function

end

Internal functions are not subject to the restrictions mentioned above, although it is perhaps worth
noting that an internal subprogram may not contain further internal subprogram (but it may contain
a statement function).

Internal functions have their own scope but also have available host association.

1 In real old code examples, it wouldn't be unusual to see the dummy arguments of a statement
function being implicitly typed, even if the result has explicit type.

Read Modern alternatives to historical features online:
https://riptutorial.com/fortran/topic/2103/modern-alternatives-to-historical-features

https://riptutorial.com/ 54

https://riptutorial.com/fortran/topic/2103/modern-alternatives-to-historical-features

Chapter 10: Object Oriented Programming

Examples

Derived type definition

Fortran 2003 introduced support for object oriented programming. This feature allows to take
advantage of modern programming techniques. Derived types are defined with the following form:

TYPE [[, attr-list] ::] name [(name-list)]
 [def-stmts]
 [PRIVATE statement or SEQUENCE statement]. . .
 [component-definition]. . .
 [procedure-part]
END TYPE [name]

where,

attr-list - a list of attribute specifiers•
name - the name of derived data type•
name-list - a list of type parameter names separated by commas•
def-stmts - one or more INTEGER declarations of the type parameters named in the name-
list

•

component-definition - one or more type declaration statements or procedure pointer
statements defining the component of derived type

•

procedure-part - a CONTAINS statement, optionally followed by a PRIVATE statement, and
one or more procedure binding statements

•

Example:

type shape
 integer :: color
end type shape

Type Procedures

In order to obtain class-like behavior, type and related procedures (subroutine and functions) shall
be placed in a module:

Example:

module MShape
 implicit none
 private

 type, public :: Shape
 private
 integer :: radius

https://riptutorial.com/ 55

 contains
 procedure :: set => shape_set_radius
 procedure :: print => shape_print
 end type Shape

contains
 subroutine shape_set_radius(this, value)
 class(Shape), intent(in out) :: self
 integer, intent(in) :: value

 self%radius = value
 end subroutine shape_set_radius

 subroutine shape_print(this)
 class(Shape), intent(in) :: self

 print *, 'Shape: r = ', self%radius
 end subroutine shape_print
end module MShape

Later, in a code, we can use this Shape class as follows:

! declare a variable of type Shape
type(Shape) :: shape

! call the type-bound subroutine
call shape%set(10)
call shape%print

Abstract derived types

An extensible derived type may be abstract

type, abstract :: base_type
end type

Such a derived type may never be instantiated, such as by

type(base_type) t1
allocate(type(base_type) :: t2)

but a polymorphic object may have this as its declared type

class(base_type), allocatable :: t1

or

function f(t1)
 class(base_type) t1
end function

Abstract types may have components and type-bound procedures

https://riptutorial.com/ 56

type, abstract :: base_type
 integer i
contains
 procedure func
 procedure(func_iface), deferred :: def_func
end type

The procedure def_func is a deferred type-bound procedure with interface func_iface. Such a
deferred type-bound procedure must be implemented by each extending type.

Type extension

A derived type is extensible if it has neither the bind attribute nor the sequence attribute. Such a
type may be extended by another type.

module mod

 type base_type
 integer i
 end type base_type

 type, extends(base_type) :: higher_type
 integer j
 end type higher_type

end module mod

A polymorphic variable with declared type base_type is type compatible with type higher_type and
may have that as dynamic type

class(base_type), allocatable :: obj
allocate(obj, source=higher_type(1,2))

Type compatability descends through a chain of children, but a type may extend only one other
type.

An extending derived type inherits type bound procedures from the parent, but this can be
overriden

module mod

 type base_type
 contains
 procedure :: sub => sub_base
 end type base_type

 type, extends(base_type) :: higher_type
 contains
 procedure :: sub => sub_higher
 end type higher_type

contains

 subroutine sub_base(this)

https://riptutorial.com/ 57

 class(base_type) this
 end subroutine sub_base

 subroutine sub_higher(this)
 class(higher_type) this
 end subroutine sub_higher

end module mod

program prog
 use mod

 class(base_type), allocatable :: obj

 obj = base_type()
 call obj%sub

 obj = higher_type()
 call obj%sub

end program

Type constructor

Custom constructors can be made for derived types by using an interface to overload the type
name. This way, keyword arguments that don't correspond to components can be used when
constructing an object of that type.

module ball_mod
 implicit none

 ! only export the derived type, and not any of the
 ! constructors themselves
 private
 public :: ball

 type :: ball_t
 real :: mass
 end type ball_t

 ! Writing an interface overloading 'ball_t' allows us to
 ! overload the type constructor
 interface ball_t
 procedure :: new_ball
 end interface ball_t

contains

 type(ball_t) function new_ball(heavy)
 logical, intent(in) :: heavy

 if (heavy) then
 new_ball%mass = 100
 else
 new_ball%mass = 1
 end if

 end function new_ball

https://riptutorial.com/ 58

end module ball_mod

program test
 use ball_mod
 implicit none

 type(ball_t) :: football
 type(ball_t) :: boulder

 ! sets football%mass to 4.5
 football = ball_t(4.5)
 ! calls 'ball_mod::new_ball'
 boulder = ball_t(heavy=.true.)
end program test

This can be used to make a neater API than using separate initialisation routines:

subroutine make_heavy_ball(ball)
 type(ball_t), intent(inout) :: ball
 ball%mass = 100
end subroutine make_heavy_ball

...

call make_heavy_ball(boulder)

Read Object Oriented Programming online: https://riptutorial.com/fortran/topic/2374/object-
oriented-programming

https://riptutorial.com/ 59

https://riptutorial.com/fortran/topic/2374/object-oriented-programming
https://riptutorial.com/fortran/topic/2374/object-oriented-programming

Chapter 11: Procedures - Functions and
Subroutines

Remarks

Functions and subroutines, in conjunction with modules, are the tools to break down a program
into units. This makes the program more readable and manageable. Each one of these units can
be thought of as part of the code that, ideally, could be compiled and tested in isolation. The main
program(s) can call (or invoke) such subprograms (functions or subroutines) to accomplish a task.

Functions and subroutines are different in the following sense:

Functions return a single object and - usually - don't alter the values of its arguments (i.e.
they act just like a mathematical function!);

•

Subroutines usually perform a more complicated task and they ordinarily alter their
arguments (if any is present), as well as other variables (e.g. those declared in the module
that contains the subroutine).

•

Functions and subroutines collectively go under the name of procedures. (In the following we will
use the verb "call" as synonym of "invoke" even if technically the procedures to be called are
subroutines, whereas functions appear as right hand side of assignment or in expressions.)

Examples

Function syntax

Functions can be written using several types of syntax

function name()
 integer name
 name = 42
end function

integer function name()
 name = 42
end function

function name() result(res)
 integer res
 res = 42
end function

Functions return values through a function result. Unless the function statement has a result
clause the function's result has the same name as the function. With result the function result is
that given by the result. In each of the first two examples above the function result is given by name
; in the third by res.

https://riptutorial.com/ 60

The function result must be defined during execution of the function.

Functions allow to use some special prefixes.

Pure function means that this function has no side effect:

pure real function square(x)
 real, intent(in) :: x
 square = x * x
end function

Elemental function is defined as scalar operator but it can be invoked with array as actual
argument in which case the function will be applied element-wise. Unless the impure prefix
(introduced in Fortran 2008) is specified an elemental function is also a pure function.

elemental real function square(x)
 real, intent(in) :: x
 square = x * x
end function

Return statement

The return statement can be used to exit function and subroutine. Unlike many other programming
languages it is not used to set the return value.

real function f(x)
 real, intent(in) :: x
 integer :: i

 f = x

 do i = 1, 10

 f = sqrt(f) - 1.0

 if (f < 0) then
 f = -1000.
 return
 end if

 end do
end function

This function performs an iterative computation. If the value of f becomes negative the function
returns value -1000.

Recursive Procedures

In Fortran functions and subroutines need to be explicitly declared as recursive, if they are to call
themselves again, directly or indirectly. Thus, a recursive implementation of the Fibonacci series
could look like this:

https://riptutorial.com/ 61

recursive function fibonacci(term) result(fibo)
 integer, intent(in) :: term
 integer :: fibo

 if (term <= 1) then
 fibo = 1
 else
 fibo = fibonacci(term-1) + fibonacci(term-2)
 end if

end function fibonacci

Another example is allowed to calculate factorial:

recursive function factorial(n) result(f)
 integer :: f
 integer, intent(in) :: n

 if(n == 0) then
 f = 1
 else
 f = n * f(n-1)
 end if
end function factorial

For a function to directly recursively reference itself its definition must use the result suffix. It is not
possible for a function to be both recursive and elemental.

The Intent of Dummy Arguments

The intent attribute of a dummy argument in a subroutine or function declares its intended use.
The syntax is either one of

intent(IN)
intent(OUT)
intent(INOUT)

For example, consider this function:

real function f(x)
 real, intent(IN) :: x

 f = x*x
end function

The intent(IN) specifies that the (non-pointer) dummy argument x may never be defined or
become undefined throughout the function or its initialization. If a pointer dummy argument has the
attribute intent(IN), this applies to its association.

intent(OUT) for a non-pointer dummy argument means that dummy argument becomes undefined
on invocation of the subprogram (except for any components of a derived type with default
initialization) and is to be set during execution. The actual argument passed as dummy argument
must be definable: passing a named or literal constant, or an expression, is not allowed.

https://riptutorial.com/ 62

Similarly to before, if a pointer dummy argument is intent(OUT) the association status of the pointer
becomes undefined. The actual argument here must be a pointer variable.

intent(INOUT) specifies that the actual argument is definable and is suitable for both passing in and
returning data from the procedure.

Finally, a dummy argument may be without the intent attribute. Such a dummy argument has its
use limited by the actual argument passed.

For example, consider

integer :: i = 0
call sub(i, .TRUE.)
call sub(1, .FALSE.)

end

subroutine sub(i, update)
 integer i
 logical, intent(in) :: update
 if (update) i = i+1
end subroutine

The argument i can have no intent attribute which allows both of the subroutine calls of the main
program.

Referencing a procedure

For a function or subroutine to be useful it has to be referenced. A subroutine is referenced in a
call statement

call sub(...)

and a function within an expression. Unlike in many other languages, an expression does not form
a complete statement, so a function reference is often seen in an assignment statement or used in
some other way:

x = func(...)
y = 1 + 2*func(...)

There are three ways to designate a procedure being referenced:

as the name of a procedure or procedure pointer•
a procedure component of a derived type object•
a type bound procedure binding name•

The first can be seen as

procedure(), pointer :: sub_ptr=>sub
call sub() ! With no argument list the parentheses are optional
call sub_ptr()

https://riptutorial.com/ 63

end

subroutine sub()
end subroutine

and the final two as

module mod
 type t
 procedure(sub), pointer, nopass :: sub_ptr=>sub
 contains
 procedure, nopass :: sub
 end type

contains

 subroutine sub()
 end subroutine

end module

use mod
type(t) x
call x%sub_ptr() ! Procedure component
call x%sub() ! Binding name

end

For a procedure with dummy arguments the reference requires corresponding actual arguments,
although optional dummy arguments may be not given.

Consider the subroutine

subroutine sub(a, b, c)
 integer a, b
 integer, optional :: c
end subroutine

This may be referenced in the following two ways

call sub(1, 2, 3) ! Passing to the optional dummy c
call sub(1, 2) ! Not passing to the optional dummy c

This is so-called positional referencing: the actual arguments are associated based on the position
in the argument lists. Here, the dummy a is associated with 1, b with 2 and c (when specified) with 3
.

Alternatively, keyword referencing may be used when the procedure has an explicit interface
available

call sub(a=1, b=2, c=3)
call sub(a=1, b=2)

https://riptutorial.com/ 64

which is the same as the above.

However, with keywords the actual arguments may be offered in any order

call sub(b=2, c=3, a=1)
call sub(b=2, a=1)

Positional and keyword referencing may both be used

call sub(1, c=3, b=2)

as long as a keyword is given for every argument following the first appearance of a keyword

call sub(b=2, 1, 3) ! Not valid: all keywords must be specified

The value of keyword referencing is particularly pronounced when there are multiple optional
dummy arguments, as seen below if in the subroutine definition above b were also optional

call sub(1, c=3) ! Optional b is not passed

The argument lists for type-bound procedures or component procedure pointers with a passed
argument are considered separately.

Read Procedures - Functions and Subroutines online:
https://riptutorial.com/fortran/topic/1106/procedures---functions-and-subroutines

https://riptutorial.com/ 65

https://riptutorial.com/fortran/topic/1106/procedures---functions-and-subroutines

Chapter 12: Program units and file layout

Examples

Fortran programs

A complete Fortran program is made up from a number of distinct program units. Program units
are:

main program•
function or subroutine subprogram•
module or submodule•
block data program unit•

The main program and some procedure (function or subroutine) subprograms may be provided by
a language other than Fortran. For example a C main program may call a function defined by a
Fortran function subprogram, or a Fortran main program may call a procedure defined by C.

These Fortran program units may be given be distinct files or within a single file.

For example, we may see the two files:

prog.f90

program main
 use mod
end program main

mod.f90

module mod
end module mod

And the compiler (invoked correctly) will be able to associate the main program with the module.

The single file may contain many program units

everything.f90

module mod
end module mod

program prog
 use mod
end program prog

function f()
end function f()

https://riptutorial.com/ 66

In this case, though, it must be noted that the function f is still an external function as far as the
main program and module are concerned. The module will be accessible by the main program,
however.

Typing scope rules apply to each individual program unit and not to the file in which they are
contained. For example, if we want each scoping unit to have no implicit typing, the above file
need be written as

module mod
 implicit none
end module mod

program prog
 use mod
 implicit none
end program prog

function f()
 implicit none
 <type> f
end function f

Modules and submodules

Modules are documented elsewhere.

Compilers often generate so-called module files: usually the file containing

module my_module
end module

will result in a file named something like my_module.mod by the compiler. In such cases, for a module
to be accessible by a program unit, that module file must be visible before this latter program unit
is processed.

External procedures

An external procedure is one which is defined outside another program unit, or by a means other
than Fortran.

The function contained in a file like

integer function f()
 implicit none
end function f

is an external function.

For external procedures, their existence may be declared by using an interface block (to given an
explicit interface)

https://riptutorial.com/ 67

http://www.riptutorial.com/fortran/topic/1139/usage-of-modules

program prog
 implicit none
 interface
 integer function f()
 end interface
end program prog

or by a declaration statement to give an implicit interface

program prog
 implicit none
 integer, external :: f
end program prog

or even

program prog
 implicit none
 integer f
 external f
end program prog

The external attribute is not necessary:

program prog
 implicit none
 integer i
 integer f
 i = f() ! f is now an external function
end program prog

Block data program units

Block data program units are program units which provide initial values for objects in common
blocks. These are deliberately left undocumented here, and will feature in the documentation of
historic Fortran features.

Internal subprograms

A program unit which is not an internal subprogram may contain other program units, called
internal subprograms.

program prog
 implicit none
contains
 function f()
 end function f
 subroutine g()
 end subroutine g
end program

Such an internal subprogram has a number of features:

https://riptutorial.com/ 68

there is host association between entities in the subprogram and the outer program•
implicit typing rules are inherited (implicit none is in effect in f above)•
internal subprograms have an explicit interface available in the host•

Module subprograms and external subprograms may have internal subprograms, such as

module mod
 implicit none
contains
 function f()
 contains
 subroutine s()
 end subroutine s
 end function f
end module mod

Source code files

A source code file is a (generally) plain text file which is to processed by the compiler. A source
code file may contain up to one main program and any number of modules and external
subprograms. For example, a source code file may contain the following

module mod1
end module mod1

module mod2
end module mod2

function func1() ! An external function
end function func1

subroutine sub1() ! An external subroutine
end subroutine sub1

program prog ! The main program starts here...
end program prog ! ... and ends here

function func2() ! An external function
end function func2

We should recall here that, even though the external subprograms are given in the same file as
the modules and the main program, the external subprograms are not explicitly known by any
other component.

Alternatively, the individual components may be spread across multiple files, and even compiled at
different times. Compiler documentation should be read on how to combine multiple files into a
single program.

A single source code file may contain either fixed-form or free-form source code: they cannot be
mixed, although multiple files being combined at compile-time may have different styles.

To indicate to the compiler the source form there are generally two options:

https://riptutorial.com/ 69

http://www.riptutorial.com/fortran/example/11457/fixed-source-form

choice of filename suffix•
use of compiler flags•

The compile-time flag to indicate fixed- or free-form source can be found in the compiler's
documentation.

The significant filename suffixes are also to be found in the compiler's documentation, but as a
general rule a file named file.f90 is taken to contain free-form source whereas the file file.f is
taken to contain fixed-form source.

The use of .f90 suffix to indicate free-form source (which was introduced in the Fortran 90
standard) often tempts the programmer to use the suffix to indicate the language standard to
which the source code conforms. For example, we may see files with .f03 or .f08 suffixes. This is
generally to be avoided: most Fortran 2003 source is also compliant with Fortran 77, Fortran 90/5
and Fortran 2008. Further, many comilers don't automatically consider such suffixes.

Compilers also often offer a built-in code preprocessor (generally based on cpp). Again, a compile-
time flag may be used to indicate that the preprocessor should be run before compilation, but the
source code file suffix may also indicate such preprocessing requirement.

For case-sensitive filesystems the file file.F is often taken to be a fixed-form source file to be
preprocessed and file.F90 to be a free-form source file to be preprocessed. As before, the
compiler's documentation should be consulted for such flags and file suffixes.

Read Program units and file layout online: https://riptutorial.com/fortran/topic/2203/program-units-
and-file-layout

https://riptutorial.com/ 70

https://riptutorial.com/fortran/topic/2203/program-units-and-file-layout
https://riptutorial.com/fortran/topic/2203/program-units-and-file-layout

Chapter 13: Source file extensions (.f, .f90,
.f95, ...) and how they are related to the
compiler.

Introduction

Fortran files come under a variety of extensions and each of them have a separate meaning. They
specify the Fortran release version, code formatting style and the usage of preprocessor directives
similar to C programming language.

Examples

Extensions and Meanings

The following are some of the common extensions used in Fortran source files and the
functionalities they can work on.

Lowercase f in the extension

These files do not have the features of preprocessor directives similar to C-programming
language. They can be directly compiled to create object files. eg: .f, .for, .f95

Uppercase F in the extension

These files do have the features of preprocessor directives similar to C-programming language.
The preprocessors are either defined within the files or using C/C++ like header files or both.
These files have to be pre-processed to get the lower case extension files which can be used for
compiling. eg: .F, .FOR, .F95

.f, .for, .f77, .ftn

These are used for Fortran files that use Fixed style format and thus uses Fortran 77 release
version. Since they are lower case extensions, they cannot have preprocessor directives.

.F, .FOR, .F77, .FTN

These are used for Fortran files that use Fixed style format and thus uses Fortran 77 release
version. Since they are upper case extensions, they can have preprocessor directives and thus
they have to be preprocessed to get the lower case extension files.

.f90, .f95, .f03, .f08 These are used for Fortran files that use Free style format and thus uses
later release versions of Fortran. The release versions are in the name.

f90 - Fortran 90•
f95 - Fortran 95•

https://riptutorial.com/ 71

f03 - Fortran 2003•
f08 - Fortran 2008•

Since they are lower case extensions, they cannot have preprocessor directives.

.F90, .F95, .F03, .F08 These are used for Fortran files that use Free style format and thus uses
later release versions of Fortran. The release versions are in the name.

F90 - Fortran 90•
F95 - Fortran 95•
F03 - Fortran 2003•
F08 - Fortran 2008•

Since they are upper case extensions, they have preprocessor directives and thus they have to be
preprocessed to get the lower case extension files.

Read Source file extensions (.f, .f90, .f95, ...) and how they are related to the compiler. online:
https://riptutorial.com/fortran/topic/10265/source-file-extensions---f---f90---f95-------and-how-they-
are-related-to-the-compiler-

https://riptutorial.com/ 72

https://riptutorial.com/fortran/topic/10265/source-file-extensions---f---f90---f95-------and-how-they-are-related-to-the-compiler-
https://riptutorial.com/fortran/topic/10265/source-file-extensions---f---f90---f95-------and-how-they-are-related-to-the-compiler-

Chapter 14: Usage of Modules

Examples

Module syntax

Module is a collection of type declarations, data declarations and procedures. The basic syntax is:

module module_name
 use other_module_being_used

 ! The use of implicit none here will set it for the scope of the module.
 ! Therefore, it is not required (although considered good practice) to repeat
 ! it in the contained subprograms.
 implicit none

 ! Parameters declaration
 real, parameter, public :: pi = 3.14159
 ! The keyword private limits access to e parameter only for this module
 real, parameter, private :: e = 2.71828

 ! Type declaration
 type my_type
 integer :: my_int_var
 end type

 ! Variable declaration
 integer :: my_integer_variable

! Subroutines and functions belong to the contains section
contains

 subroutine my_subroutine
 !module variables are accessible
 print *, my_integer_variable
 end subroutine

 real function my_func(x)
 real, intent(in) :: x
 my_func = x * x
 end function my_func
end module

Using modules from other program units

To access entities declared in a module from another program unit (module, procedure or
program), the module must be used with the use statement.

module shared_data
 implicit none

 integer :: iarray(4) = [1, 2, 3, 4]
 real :: rarray(4) = [1., 2., 3., 4.]
end module

https://riptutorial.com/ 73

program test

 !use statements most come before implicit none
 use shared_data

 implicit none

 print *, iarray
 print *, rarray
end program

The use statement supports importing only selected names

program test

 !only iarray is accessible
 use shared_data, only: iarray

 implicit none

 print *, iarray

end program

Entities can be also accessed under different name by using a rename-list:

program test

 !only iarray is locally renamed to local_name, rarray is still acessible
 use shared_data, local_name => iarray

 implicit none

 print *, local_name

 print *, rarray

end program

Further, renaming can be combined with the only option

program test
 use shared_data, only : local_name => iarray
end program

so that only the module entity iarray is accessed, but it has the local name local_name.

If selected for importing names mark as private you can not import them to your program.

Intrinsic modules

Fortran 2003 introduced intrinsic modules which provide access to special named constants,
derived types and module procedures. There are now five standard intrinsic modules:

https://riptutorial.com/ 74

ISO_C_Binding; supporting C interoperability;•
ISO_Fortran_env; detailing the Fortran environment;•
IEEE_Exceptions, IEEE_Arithmetic and IEEE_Features; supporting so-called IEEE arithmetic
facility.

•

These intrinsic modules are part of the Fortran library and accessed like other modules except that
the use statement may have the intrinsic nature explicitly stated:

use, intrinsic :: ISO_C_Binding

This ensures that the intrinsic module is used when a user-provided module of the same name is
available. Conversely

use, non_intrinsic :: ISO_C_Binding

ensures that that same user-provided module (which must be accessible) is accessed instead of
the intrinsic module. Without the module nature specified as in

use ISO_C_Binding

an available non-intrinsic module will be preferred over the intrinsic module.

The intrinsic IEEE modules are different from other modules in that their accessibility in a scoping
unit may change the behaviour of code there even without reference to any of the entities defined
in them.

Access control

Accessibility of symbols declared in a module can be controlled using private and public attributes
and statement.

Syntax of the statement form:

!all symbols declared in the module are private by default
private

!all symbols declared in the module are public by default
public

!symbols in the list will be private
private :: name1, name2

!symbols in the list will be public
public :: name3, name4

Syntax of the attribute form:

integer, parameter, public :: maxn = 1000

https://riptutorial.com/ 75

real, parameter, private :: local_constant = 42.24

Public symbols can be accessed from program units using the module, but private symbols
cannot.

When no specification is used, the default is public.

The default access specification using

private

or

public

can be changed by specifying different access with entity-declaration-list

public :: name1, name2

or using attributes.

This access control also affects symbols imported from another module:

module mod1
 integer :: var1
end module

module mod2
 use mod1, only: var1

 public
end module

program test
 use mod2, only: var1
end program

is possible, but

module mod1
 integer :: var1
end module

module mod2
 use mod1, only: var1

 public
 private :: var1
end module

program test
 use mod2, only: var1
end program

https://riptutorial.com/ 76

is not possible because var is private in mod2.

Protected module entities

As well as allowing module entities to have access control (being public or private) modules
entities may also have the protect attribute. A public protected entity may be use associated, but
the used entity is subject to restrictions on its use.

module mod
 integer, public, protected :: i=1
end module

program test
 use mod, only : i
 print *, i ! We are allowed to get the value of i
 i = 2 ! But we can't change the value
end program test

A public protected target is not allowed to be pointed at outside its module

module mod
 integer, public, target, protected :: i
end module mod

program test
 use mod, only : i
 integer, pointer :: j
 j => i ! Not allowed, even though we aren't changing the value of i
end program test

For a public protected pointer in a module the restrictions are different. What is protected is the
association status of the pointer

module mod
 integer, public, target :: j
 integer, public, protected, pointer :: i => j
end module mod

program test
 use mod, only : i
 i = 2 ! We may change the value of the target, just not the association status
end program test

As with variable pointers, procedure pointers may also be protected, again preventing change of
target association.

Read Usage of Modules online: https://riptutorial.com/fortran/topic/1139/usage-of-modules

https://riptutorial.com/ 77

https://riptutorial.com/fortran/topic/1139/usage-of-modules

Credits

S.
No

Chapters Contributors

1
Getting started with
Fortran

Alexander Vogt, Community, Enrico Maria De Angelis, Gilles,
haraldkl, High Performance Mark, Ingve, innoSPG, milancurcic,
packet0, RamenChef, Serenity, Vladimir F, Yossarian

2 Arrays
Enrico Maria De Angelis, francescalus, G.Clavier, Gilles,
Serenity, TTT, Vladimir F, Yossarian

3 C interoperability Serenity, Yossarian

4 Data Types
Alexander Vogt, Enrico Maria De Angelis, francescalus, Vladimir
F, Yossarian

5 Execution Control
Enrico Maria De Angelis, francescalus, haraldkl, ptev, Serenity,
syscreat, TTT, Vladimir F

6
Explicit and implicit
interfaces

Enrico Maria De Angelis, Serenity, Vladimir F

7 I/O AL-P, Ed Smith, francescalus, Kyle Kanos, TTT

8 Intrinsic procedures francescalus

9
Modern alternatives
to historical features

Brian Tompsett - , d_1999, Enrico Maria De Angelis,
francescalus, Serenity, TTT, Vladimir F, Yossarian

10
Object Oriented
Programming

Enrico Maria De Angelis, francescalus, syscreat, Yossarian

11
Procedures -
Functions and
Subroutines

Alexander Vogt, Enrico Maria De Angelis, francescalus, haraldkl
, Serenity, Vladimir F, Yossarian

12
Program units and
file layout

agentp, francescalus, haraldkl, trblnc

13

Source file
extensions (.f, .f90,
.f95, ...) and how
they are related to
the compiler.

Arun

14 Usage of Modules
Alexander Vogt, Enrico Maria De Angelis, francescalus,
Serenity, Vladimir F

https://riptutorial.com/ 78

https://riptutorial.com/contributor/2737715/alexander-vogt
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/577108/haraldkl
https://riptutorial.com/contributor/44309/high-performance-mark
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/2532275/innospg
https://riptutorial.com/contributor/827297/milancurcic
https://riptutorial.com/contributor/4366452/packet0
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/3293210/g-clavier
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/1789543/ttt
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/2737715/alexander-vogt
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/577108/haraldkl
https://riptutorial.com/contributor/5937714/ptev
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/875072/syscreat
https://riptutorial.com/contributor/1789543/ttt
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/6123853/al-p
https://riptutorial.com/contributor/4680533/ed-smith
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/1276356/kyle-kanos
https://riptutorial.com/contributor/1789543/ttt
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/6382074/d-1999
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/1789543/ttt
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/875072/syscreat
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/2737715/alexander-vogt
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/577108/haraldkl
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/721644/vladimir-f
https://riptutorial.com/contributor/2043465/yossarian
https://riptutorial.com/contributor/1004168/agentp
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/577108/haraldkl
https://riptutorial.com/contributor/2590800/trblnc
https://riptutorial.com/contributor/5803233/arun
https://riptutorial.com/contributor/2737715/alexander-vogt
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/3157076/francescalus
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/721644/vladimir-f

	About
	Chapter 1: Getting started with Fortran
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello, world
	Quadratic equation
	Case insensitivity

	Chapter 2: Arrays
	Examples
	Basic notation
	Allocatable arrays
	Array constructors
	Array nature specification: rank and shape

	Explicit shape
	Assumed shape
	Assumed size
	Deferred shape
	Implied shape
	Whole arrays, array elements and array sections

	Whole arrays
	Array elements
	Array sections
	Array components of arrays
	Array operations

	Addition and subtraction
	Function
	Multiplication and division
	Matrix operations
	Advanced array sections: subscript triplets and vector subscripts

	Subscript triplets
	Vector subscripts
	Higher rank array sections

	Chapter 3: C interoperability
	Examples
	Calling C from Fortran
	C structs in Fortran

	Chapter 4: Data Types
	Examples
	Intrinsic types
	Derived data types
	Precision of floating point numbers
	Assumed and deferred length type parameters
	Literal constants
	Accessing character substrings
	Accessing complex components
	Declaration and attributes

	Chapter 5: Execution Control
	Examples
	If construct
	SELECT CASE construct
	Block DO construct
	WHERE construct

	Chapter 6: Explicit and implicit interfaces
	Examples
	Internal/module subprograms and explicit interfaces
	External subprograms and implicit interfaces

	Chapter 7: I/O
	Syntax
	Examples
	Simple I/O
	Read with some error checking
	Passing command line arguments

	Chapter 8: Intrinsic procedures
	Remarks
	Examples
	Using PACK to select elements meeting a condition

	Chapter 9: Modern alternatives to historical features
	Examples
	Implicit variable types
	Arithmetic if statement
	Non-block DO constructs
	Alternate return
	Fixed Source Form
	Common Blocks
	Assigned GOTO
	Computed GOTO
	Assigned format specifiers
	Statement functions

	Chapter 10: Object Oriented Programming
	Examples
	Derived type definition
	Type Procedures
	Abstract derived types
	Type extension
	Type constructor

	Chapter 11: Procedures - Functions and Subroutines
	Remarks
	Examples
	Function syntax
	Return statement
	Recursive Procedures
	The Intent of Dummy Arguments
	Referencing a procedure

	Chapter 12: Program units and file layout
	Examples
	Fortran programs
	Modules and submodules
	External procedures
	Block data program units
	Internal subprograms
	Source code files

	Chapter 13: Source file extensions (.f, .f90, .f95, ...) and how they are related to the compiler.
	Introduction
	Examples
	Extensions and Meanings

	Chapter 14: Usage of Modules
	Examples
	Module syntax
	Using modules from other program units
	Intrinsic modules
	Access control
	Protected module entities

	Credits

