
generics

#generics

Table of Contents

About 1

Chapter 1: Getting started with generics 2

Remarks 2

Examples 2

Availability 2

Chapter 2: Generics in Java 3

Syntax 3

Remarks 3

Examples 3

Introduction 3

Generic Methods 4

Credits 6

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: generics

It is an unofficial and free generics ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official generics.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/generics
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with generics

Remarks

Generics allow you to define placeholders for exact types in definitions for classes, interfaces
and/or methods.

Possible subtopics:

Class (and structure) generics•
Interface generics•
Method generics•
Constraints•
Covariance and contravariance•

Examples

Availability

Generics became available with:

.NET Framework 2.0 (and version 2.0 of the compact framework).•
Java in version 5.•
Common Lisp since it was standardised ...•

Read Getting started with generics online: https://riptutorial.com/generics/topic/4454/getting-
started-with-generics

https://riptutorial.com/ 2

https://riptutorial.com/generics/topic/4454/getting-started-with-generics
https://riptutorial.com/generics/topic/4454/getting-started-with-generics

Chapter 2: Generics in Java

Syntax

class MyClass<T1, T2 extends CharSequence> implements Comparable<MyClass> //...•
interface MyListInterface<T extends Serializable> extends List<T> //...•
public <T1, T2 extends Instant> T1 provideClone(T1 toClone, T2 instant> //...•
public static List<CharSequence> safe(Collection<? extends CharSequence> l) { return new
ArrayList<>(l);}

•

Set<String> strings = Collections.singleton("Hello world");•
List<CharSequence> chsList = safe(strings);•

Remarks

Type erasure limits reflection, though that is not JVM specific, for example Ceylon uses reified
generics.

Existential type support is not necessarily supported by other languages in this form: Kotlin
supports it through type projections.

Examples

Introduction

Generics was introduced in Java in its version (1.)5. These are erased during compilation, so
runtime reflection is not possible for them. Generics generate new types parametrized by other
types. For example we do not have to create new classes in order to use type safe collection of
Strings and Numbers, generic ArrayList<T> can be used in all cases, like: new ArrayList<String>().

Example:

List<String> variable = new ArrayList<String>();

In Java 7 some syntactic sugar was introduced to ease the construction (<> aka. diamond):

List<String> variable = new ArrayList<>();

Interestingly it was also possible (from Java 5) to use type inference, when a static method had as
a return value (often used in Google Guava for example):

List<String> singleton = Collections.singletonList();//Note the missing `<>` or `<String>`!

In Java existential types were used to provide polymorphism for the types, as the generic types
are invariant (for example: List<String> is not a subtype, nor a supertype of List<CharSequence>,
although in Java String[] is a subtype of CharSequence[]; note: String implements the CharSequence
interface). Existential generic types can be expressed as:

https://riptutorial.com/ 3

http://ceylon-lang.org/
http://ceylon-lang.org/documentation/1.2/spec/html/execution.html#reification
http://ceylon-lang.org/documentation/1.2/spec/html/execution.html#reification
https://kotlinlang.org
https://kotlinlang.org/docs/reference/java-interop.html#java-generics-in-kotlin
https://github.com/google/guava

List<? extends CharSequence> list = new ArrayList<String>();
Comparable<? super ChronoLocalDate> ccld = LocalDate.now();
ChronoLocalDate cld = JapaneseDate.now(); //ChronoLocalDate extends
Comparable<ChronoLocalDate>
ccld.compareTo(cld);
//cld.compareTo(ccld);//fails to compile because ccld is not a `ChronoLocalDate` (compile
time)

Both instances can be used in a list parametrized by the corresponding Comparable:

List<Comparable<? super ChronoLocalDate>> list2 = new ArrayList<>();
list2.add(cld);
list2.add(ccld);

Generic Methods

Generic type parameters are commonly defined at the class or interface level, but methods and
(rarely) constructors also support declaring type parameters bound to the scope of a single
method call.

class Utility // no generics at the class level
{
 @SafeVarargs
 public static <T> T randomOf(T first, T... rest) {
 int choice = new java.util.Random().nextInt(rest.length + 1);
 return choice == rest.length ? first : rest[choice];
 }

 public static <T extends Comparable<T>> T max(T t1, T t2) {
 return t1.compareTo(t2) < 0 ? t2 : t1;
 }
}

Notice the type parameter declarations, T and <T extends Comparable<T>> respectively, appear after
the method modifiers and before the return type. This allows the type parameter T to be used
within the scope of such methods, acting as:

argument types•
return type•
local variable types•

Though both methods above use the same type parameter name T, at the method level they are
completely independent of each other. The compiler will infer the actual type based on the
arguments passed to the method at each call site that invokes the method. Since the max method
declares that T extends Comparable<T>, the compiler also enforces that the inferred types are
compatible implementations of the Comparable interface.

Integer num1 = 1;
Integer num2 = 2;
String str1 = "abc";
String str2 = "xyz";

https://riptutorial.com/ 4

Integer bigger = Utility.max(num1, num2);
assert bigger == num2;

String later = Utility.max(str2, str1);
assert later == str2;

Utility.max(num1, str1); // compiler error: num1 and str1 are incompatible types

Utility.max(new Object(), new Object()); // compiler error: Object does not implement
Comparable

Java 8 significantly improved the compiler's ability to correctly infer the generic types at call sites.
If the compiler fails to infer the proper type, developers can explicitly state the type as a part of the
call:

Object obj = Utility.<Object>randomOf(str1, new Object(), num1);

Read Generics in Java online: https://riptutorial.com/generics/topic/6552/generics-in-java

https://riptutorial.com/ 5

https://riptutorial.com/generics/topic/6552/generics-in-java

Credits

S.
No

Chapters Contributors

1
Getting started with
generics

Community, Mark Hurd

2 Generics in Java Gábor Bakos, William Price

https://riptutorial.com/ 6

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/256431/mark-hurd
https://riptutorial.com/contributor/1502148/gabor-bakos
https://riptutorial.com/contributor/2390644/william-price

	About
	Chapter 1: Getting started with generics
	Remarks
	Examples
	Availability

	Chapter 2: Generics in Java
	Syntax
	Remarks
	Examples
	Introduction
	Generic Methods

	Credits

