
Go

#go

Table of Contents

About 1

Chapter 1: Getting started with Go 2

Remarks 2

Versions 2

The latest major version release is in bold below. Full release history can be found here. 2

Examples 2

Hello, World! 2

Output: 3

FizzBuzz 3

Listing Go Environment Variables 4

Setting up the environment 4

GOPATH 4

GOBIN 5

GOROOT 5

Accessing Documentation Offline 5

Running Go online 6

The Go Playground 6

Sharing your code 6

In action 6

Chapter 2: Arrays 8

Introduction 8

Syntax 8

Examples 8

Creating arrays 8

Multidimensional Array 9

Array Indexes 10

Chapter 3: Base64 Encoding 12

Syntax 12

Remarks 12

Examples 12

Encoding 12

Encoding to a String 12

Decoding 12

Decoding a String 13

Chapter 4: Best practices on project structure 14

Examples 14

Restfull Projects API with Gin 14

controllers 14

core 15

libs 15

middlewares 15

public 16

h21 16

routers 16

services 18

main.go 18

Chapter 5: Branching 20

Examples 20

Switch Statements 20

If Statements 21

Type Switch Statements 22

Goto statements 23

Break-continue statements 23

Chapter 6: Build Constraints 25

Syntax 25

Remarks 25

Examples 25

Separate integration tests 25

Optimize implementations based on architecture 26

Chapter 7: cgo 27

Examples 27

Cgo: First steps tutorial 27

What 27

How 27

The example 27

Hello World! 28

Sum of ints 29

Generating a binary 30

Chapter 8: cgo 32

Examples 32

Calling C Function From Go 32

Wire C and Go code in all directions 33

Chapter 9: Channels 36

Introduction 36

Syntax 36

Remarks 36

Examples 36

Using range 36

Timeouts 37

Coordinating goroutines 37

Buffered vs unbuffered 38

Blocking & unblocking of channels 39

Waiting for work to finish 39

Chapter 10: Closures 41

Examples 41

Closure Basics 41

Chapter 11: Concurrency 43

Introduction 43

Syntax 43

Remarks 43

Examples 43

Creating goroutines 43

Hello World Goroutine 43

Waiting for goroutines 44

Using closures with goroutines in a loop 45

Stopping goroutines 45

Ping pong with two goroutines 46

Chapter 12: Console I/O 48

Examples 48

Read input from console 48

Chapter 13: Constants 50

Remarks 50

Examples 50

Declaring a constant 50

Multiple constants declaration 51

Typed vs. Untyped Constants 51

Chapter 14: Context 53

Syntax 53

Remarks 53

Further Reading 53

Examples 53

Context tree represented as a directed graph 53

Using a context to cancel work 54

Chapter 15: Cross Compilation 56

Introduction 56

Syntax 56

Remarks 56

Examples 57

Compile all architectures using a Makefile 57

Simple cross compilation with go build 58

Cross compilation by using gox 59

Installation 59

Usage 59

Simple Example: Compile helloworld.go for arm architecture on Linux machine 59

Chapter 16: Cryptography 60

Introduction 60

Examples 60

Encryption and decryption 60

Foreword 60

Encryption 60

Introduction and data 60

Step 1 61

Step 2 61

Step 3 61

Step 4 61

Step 5 62

Step 6 62

Step 7 62

Step 8 62

Step 9 62

Step 10 63

Decryption 63

Introduction and data 63

Step 1 63

Step 2 63

Step 3 63

Step 4 63

Step 5 64

Step 6 64

Step 7 64

Step 8 64

Step 9 64

Step 10 64

Chapter 17: Defer 66

Introduction 66

Syntax 66

Remarks 66

Examples 66

Defer Basics 66

Deferred Function Calls 68

Chapter 18: Developing for Multiple Platforms with Conditional Compiling 70

Introduction 70

Syntax 70

Remarks 70

Examples 71

Build tags 71

File suffix 71

Defining separate behaviours in different platforms 71

Chapter 19: Error Handling 73

Introduction 73

Remarks 73

Examples 73

Creating an error value 73

Creating a custom error type 74

Returning an error 75

Handling an error 76

Recovering from panic 77

Chapter 20: Executing Commands 79

Examples 79

Timing Out with Interrupt and then Kill 79

Simple Command Execution 79

Executing a Command then Continue and Wait 79

Running a Command twice 80

Chapter 21: File I/O 81

Syntax 81

Parameters 81

Examples 82

Reading and writing to a file using ioutil 82

Listing all the files and folders in the current directory 82

Listing all folders in the current directory 83

Chapter 22: Fmt 84

Examples 84

Stringer 84

Basic fmt 84

Format Functions 84

Print 85

Sprint 85

Fprint 85

Scan 85

Stringer Interface 85

Chapter 23: Functions 86

Introduction 86

Syntax 86

Examples 86

Basic Declaration 86

Parameters 86

Return Values 86

Named Return Values 87

Literal functions & closures 87

Variadic functions 89

Chapter 24: Getting Started With Go Using Atom 90

Introduction 90

Examples 90

Get, Install And Setup Atom & Gulp 90

Create $GO_PATH/gulpfile.js 92

Create $GO_PATH/mypackage/source.go 93

Creating $GO_PATH/main.go 93

Chapter 25: gob 97

Introduction 97

Examples 97

How to encode data and write to file with gob? 97

How to read data from file and decode with go? 97

How to encode an interface with gob? 98

How to decode an interface with gob? 99

Chapter 26: Goroutines 101

Introduction 101

Examples 101

Goroutines Basic Program 101

Chapter 27: HTTP Client 103

Syntax 103

Parameters 103

Remarks 103

Examples 103

Basic GET 103

GET with URL parameters and a JSON response 104

Time out request with a context 105

1.7+ 105

Before 1.7 105

Further Reading 106

PUT request of JSON object 106

Chapter 28: HTTP Server 108

Remarks 108

Examples 108

HTTP Hello World with custom server and mux 108

Hello World 108

Using a handler function 109

Create a HTTPS Server 111

Generate a certificate 111

The necessary Go code 112

Responding to an HTTP Request using Templates 112

Serving content using ServeMux 113

Handling http method, accessing query strings & request body 114

Chapter 29: Images 116

Introduction 116

Examples 116

Basic concepts 116

Image related type 117

Accessing image dimension and pixel 117

Loading and saving image 118

Save to PNG 119

Save to JPEG 119

Save to GIF 120

Cropping image 120

Convert color image to grayscale 121

Chapter 30: Inline Expansion 124

Remarks 124

Examples 124

Disabling inline expansion 124

Chapter 31: Installation 127

Examples 127

Install in Linux or Ubuntu 127

Chapter 32: Installation 128

Remarks 128

Downloading Go 128

Extracting the download files 128

Mac and Windows 128

Linux 128

Setting Environment Variables 129

Windows 129

Mac 129

Linux 129

Finished! 130

Examples 130

Example .profile or .bash_profile 130

Chapter 33: Interfaces 131

Remarks 131

Examples 131

Simple interface 131

Determining underlying type from interface 133

Compile-time check if a type satisfies an interface 133

Type switch 134

Type Assertion 134

Go Interfaces from a Mathematical Aspect 135

Chapter 34: Iota 137

Introduction 137

Remarks 137

Examples 137

Simple use of iota 137

Using iota in an expression 137

Skipping values 138

Use of iota in an expression list 138

Use of iota in a bitmask 138

Use of iota in const 139

Chapter 35: JSON 140

Syntax 140

Remarks 140

Examples 140

Basic JSON Encoding 140

Basic JSON decoding 141

Decoding JSON data from a file 142

Using anonymous structs for decoding 143

Configuring JSON struct fields 144

Hide/Skip Certain Fields 145

Ignore Empty Fields 145

Marshaling structs with private fields 145

Encoding/Decoding using Go structs 146

Encoding 146

Decoding 147

Chapter 36: JWT Authorization in Go 148

Introduction 148

Remarks 148

Examples 148

Parsing and validating a token using the HMAC signing method 148

Creating a token using a custom claims type 149

Creating, signing, and encoding a JWT token using the HMAC signing method 149

Using the StandardClaims type by itself to parse a token 150

Parsing the error types using bitfield checks 150

Getting token from HTTP Authorization header 151

Chapter 37: Logging 152

Examples 152

Basic Printing 152

Logging to file 152

Logging to syslog 153

Chapter 38: Loops 154

Introduction 154

Examples 154

Basic Loop 154

Break and Continue 154

Conditional loop 155

Different Forms of For Loop 155

Timed loop 158

Chapter 39: Maps 160

Introduction 160

Syntax 160

Remarks 160

Examples 160

Declaring and initializing a map 160

Creating a map 162

Zero value of a map 163

Iterating the elements of a map 163

Iterating the keys of a map 164

Deleting a map element 164

Counting map elements 165

Concurrent Access of Maps 165

Creating maps with slices as values 166

Check for element in a map 166

Iterating the values of a map 167

Copy a Map 167

Using a map as a set 168

Chapter 40: Memory pooling 169

Introduction 169

Examples 169

sync.Pool 169

Chapter 41: Methods 171

Syntax 171

Examples 171

Basic methods 171

Chaining methods 172

Increment-Decrement operators as arguments in Methods 172

Chapter 42: mgo 174

Introduction 174

Remarks 174

Examples 174

Example 174

Chapter 43: Middleware 176

Introduction 176

Remarks 176

Examples 176

Normal Handler Function 176

Middleware Calculate time required for handlerFunc to execute 176

CORS Middleware 177

Auth Middleware 177

Recovery Handler to prevent server from crashing 177

Chapter 44: Mutex 178

Examples 178

Mutex Locking 178

Chapter 45: Object Oriented Programming 179

Remarks 179

Examples 179

Structs 179

Embedded structs 179

Methods 180

Pointer Vs Value receiver 181

Interface & Polymorphism 182

Chapter 46: OS Signals 184

Syntax 184

Parameters 184

Examples 184

Assigning signals to a channel 184

Chapter 47: Packages 186

Examples 186

Package initalization 186

Managing package dependencies 186

Using different package and folder name 186

What's the use of this? 187

Importing packages 187

Chapter 48: Panic and Recover 190

Remarks 190

Examples 190

Panic 190

Recover 190

Chapter 49: Parsing Command Line Arguments And Flags 192

Examples 192

Command line arguments 192

Flags 192

Chapter 50: Parsing CSV files 194

Syntax 194

Examples 194

Simple CSV parsing 194

Chapter 51: Plugin 195

Introduction 195

Examples 195

Defining and using a plugin 195

Chapter 52: Pointers 196

Syntax 196

Examples 196

Basic Pointers 196

Pointer v. Value Methods 197

Pointer Methods 197

Value Methods 197

Dereferencing Pointers 199

Slices are Pointers to Array Segments 199

Simple Pointers 200

Chapter 53: Profiling using go tool pprof 201

Remarks 201

Examples 201

Basic cpu and memory profiling 201

Basic memory Profiling 201

Set CPU/Block profile rate 202

Using Benchmarks to Create Profile 202

Accessing Profile File 202

Chapter 54: Protobuf in Go 204

Introduction 204

Remarks 204

Examples 204

Using Protobuf with Go 204

Chapter 55: Readers 206

Examples 206

Using bytes.Reader to read from a string 206

Chapter 56: Reflection 207

Remarks 207

Examples 207

Basic reflect.Value Usage 207

Structs 207

Slices 208

reflect.Value.Elem() 208

Type of value - package "reflect" 208

Chapter 57: Select and Channels 210

Introduction 210

Syntax 210

Examples 210

Simple Select Working with Channels 210

Using select with timeouts 211

Chapter 58: Send/receive emails 213

Syntax 213

Examples 213

Sending Email with smtp.SendMail() 213

Chapter 59: Slices 215

Introduction 215

Syntax 215

Examples 215

Appending to slice 215

Adding Two slices together 215

Removing elements / "Slicing" slices 215

Length and Capacity 217

Copying contents from one slice to another slice 218

Creating Slices 218

Filtering a slice 219

Zero value of slice 219

Chapter 60: SQL 221

Remarks 221

Examples 221

Querying 221

MySQL 221

Opening a database 222

MongoDB: connect & insert & remove & update & query 222

Chapter 61: String 225

Introduction 225

Syntax 225

Examples 225

String type 225

Formatting text 226

strings package 227

Chapter 62: Structs 229

Introduction 229

Examples 229

Basic Declaration 229

Exported vs. Unexported Fields (Private vs Public) 229

Composition and Embedding 230

Embedding 230

Methods 231

Anonymous struct 232

Tags 233

Making struct copies. 233

Struct Literals 234

Empty struct 235

Chapter 63: Templates 237

Syntax 237

Remarks 237

Examples 237

Output values of struct variable to Standard Output using a text template 237

Defining functions for calling from template 238

Chapter 64: Testing 239

Introduction 239

Examples 239

Basic Test 239

Benchmark tests 240

Table-driven unit tests 241

Example tests (self documenting tests) 242

Testing HTTP requests 244

Set/Reset Mock Function In Tests 244

Testing using setUp and tearDown function 244

View code coverage in HTML format 246

Chapter 65: Text + HTML Templating 247

Examples 247

Single item template 247

Multiple item template 247

Templates with custom logic 248

Templates with structs 249

HTML templates 250

How HTML templates prevent malicious code injection 251

Chapter 66: The Go Command 254

Introduction 254

Examples 254

Go Run 254

Run multiple files in package 254

Go Build 254

Specify OS or Architecture in build: 255

Build multiple files 255

Building a package 255

Go Clean 255

Go Fmt 255

Go Get 256

Go env 257

Chapter 67: Time 258

Introduction 258

Syntax 258

Examples 258

Return time.Time Zero Value when function has an Error 258

Time parsing 258

Comparing Time 259

Chapter 68: Type conversions 261

Examples 261

Basic Type Conversion 261

Testing Interface Implementation 261

Implement a Unit System with Types 261

Chapter 69: Variables 263

Syntax 263

Examples 263

Basic Variable Declaration 263

Multiple Variable Assignment 263

Blank Identifier 264

Checking a variable's type 264

Chapter 70: Vendoring 266

Remarks 266

Examples 266

Use govendor to add external packages 266

Using trash to manage ./vendor 267

Use golang/dep 268

Usage 268

vendor.json using Govendor tool 268

Chapter 71: Worker Pools 270

Examples 270

Simple worker pool 270

Job Queue with Worker Pool 271

Chapter 72: XML 274

Remarks 274

Examples 274

Basic decoding / unmarshalling of nested elements with data 274

Chapter 73: YAML 276

Examples 276

Creating a config file in YAML format 276

Chapter 74: Zero values 277

Remarks 277

Examples 277

Basic Zero Values 277

More Complex Zero Values 277

Struct Zero Values 278

Array Zero Values 278

Chapter 75: Zero values 279

Examples 279

Explanation 279

Credits 281

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: go

It is an unofficial and free Go ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official Go.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/go
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Go

Remarks

Go is an open-source, compiled, statically typed language in the tradition of Algol and C. It boasts
features such as garbage collection, limited structural typing, memory safety features, and easy-
to-use CSP-style concurrent programming.

Versions

The latest major version release is in bold below. Full release history can be
found here.

Version Release Date

1.8.3 2017-05-24

1.8.0 2017-02-16

1.7.0 2016-08-15

1.6.0 2016-02-17

1.5.0 2015-08-19

1.4.0 2014-12-04

1.3.0 2014-06-18

1.2.0 2013-12-01

1.1.0 2013-05-13

1.0.0 2012-03-28

Examples

Hello, World!

Place the following code into a file name hello.go:

package main

import "fmt"

func main() {

https://riptutorial.com/ 2

https://golang.org/
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://golang.org/doc/devel/release.html
https://golang.org/doc/devel/release.html#go1.8.minor
https://golang.org/doc/go1.8
https://golang.org/doc/go1.7
https://golang.org/doc/go1.6
https://golang.org/doc/go1.5
https://golang.org/doc/go1.4
https://golang.org/doc/go1.3
https://golang.org/doc/go1.2
https://golang.org/doc/go1.1
https://golang.org/doc/go1compat

 fmt.Println("Hello, ��")
}

Playground

When Go is installed correctly this program can be compiled and run like this:

go run hello.go

Output:

Hello, ��

Once you are happy with the code it can be compiled to an executable by running:

go build hello.go

This will create an executable file appropriate for your operating system in the current directory,
which you can then run with the following command:

Linux, OSX, and other Unix-like systems

./hello

Windows

hello.exe

Note: The Chinese characters are important because they demonstrate that Go strings are stored
as read-only slices of bytes.

FizzBuzz

Another example of "Hello World" style programs is FizzBuzz. This is one example of a FizzBuzz
implementation. Very idiomatic Go in play here.

package main

// Simple fizzbuzz implementation

import "fmt"

func main() {
 for i := 1; i <= 100; i++ {
 s := ""
 if i % 3 == 0 {
 s += "Fizz"
 }

https://riptutorial.com/ 3

https://play.golang.org/p/I3l_5RKJts
https://golang.org/dl/
https://blog.codinghorror.com/why-cant-programmers-program/

 if i % 5 == 0 {
 s += "Buzz"
 }
 if s != "" {
 fmt.Println(s)
 } else {
 fmt.Println(i)
 }
 }
}

Playground

Listing Go Environment Variables

Environment variables that affect the go tool can be viewed via the go env [var ...] command:

$ go env
GOARCH="amd64"
GOBIN="/home/yourname/bin"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="linux"
GOOS="linux"
GOPATH="/home/yourname"
GORACE=""
GOROOT="/usr/lib/go"
GOTOOLDIR="/usr/lib/go/pkg/tool/linux_amd64"
CC="gcc"
GOGCCFLAGS="-fPIC -m64 -pthread -fmessage-length=0 -fdebug-prefix-map=/tmp/go-
build059426571=/tmp/go-build -gno-record-gcc-switches"
CXX="g++"
CGO_ENABLED="1"

By default it prints the list as a shell script; however, if one or more variable names are given as
arguments, it prints the value of each named variable.

$go env GOOS GOPATH
linux
/home/yourname

Setting up the environment

If Go is not pre-installed in your system you can go to https://golang.org/dl/ and choose your
platform to download and install Go.

To set up a basic Go development environment, only a few of the many environment variables that
affect the behavior of the go tool (See: Listing Go Environment Variables for a full list) need to be
set (generally in your shell's ~/.profile file, or equivalent on Unix-like OSs).

GOPATH

Like the system PATH environment variable, Go path is a :(; on Windows) delimited list of

https://riptutorial.com/ 4

https://play.golang.org/p/ckp5s9Fepm
https://golang.org/dl/
http://www.riptutorial.com/go/example/14405/listing-go-environment-variables

directories where Go will look for packages. The go get tool will also download packages to the
first directory in this list.

The GOPATH is where Go will setup associated bin, pkg, and src folders needed for the workspace:

src — location of source files: .go, .c, .g, .s•
pkg — has compiled .a files•
bin — contains executable files built by Go•

From Go 1.8 onwards, the GOPATH environment variable will have a default value if it is unset. It
defaults to $HOME/go on Unix/Linux and %USERPROFILE%/go on Windows.

Some tools assume that GOPATH will contain a single directory.

GOBIN

The bin directory where go install and go get will place binaries after building main packages.
Generally this is set to somewhere on the system PATH so that installed binaries can be run and
discovered easily.

GOROOT

This is the location of your Go installation. It is used to find the standard libraries. It is very rare to
have to set this variable as Go embeds the build path into the toolchain. Setting GOROOT is needed if
the installation directory differs from the build directory (or the value set when building).

Accessing Documentation Offline

For full documentation, run the command:

godoc -http=:<port-number>

For a tour of Go (highly recommended for beginners in the language):

go tool tour

The two commands above will start web-servers with documentation similar to what is found
online here and here respectively.

For quick reference check from command-line, eg for fmt.Print:

godoc cmd/fmt Print
or
go doc fmt Print

General help is also available from command-line:

go help [command]

https://riptutorial.com/ 5

https://golang.org/doc/go1.8#gopath
https://golang.org/doc/
https://tour.golang.org/

Running Go online

The Go Playground

One little known Go tool is The Go Playground. If one wants to experiment with Go without
downloading it, they can easily do so simply by . . .

Visiting the Playground in their web browser1.
Entering their code2.
Clicking “Run”3.

Sharing your code

The Go Playground also has tools for sharing; if a user presses the “Share” button, a link (like this
one) will be generated that can be sent to other people to test and edit.

In action

https://riptutorial.com/ 6

https://play.golang.org
https://play.golang.org
https://play.golang.org/p/v3rrZLwEUC
https://play.golang.org/p/v3rrZLwEUC

Read Getting started with Go online: https://riptutorial.com/go/topic/198/getting-started-with-go

https://riptutorial.com/ 7

https://i.stack.imgur.com/1v2fz.png
https://riptutorial.com/go/topic/198/getting-started-with-go

Chapter 2: Arrays

Introduction

Arrays are specific data type, representing an ordered collection of elements of another type.

In Go, Arrays can be simple (sometime called "lists") or multi-dimensional (like for example a 2-
dimentions arrays is representing a ordered collection of arrays, that contains elements)

Syntax

var variableName [5]ArrayType // Declaring an array of size 5.•
var variableName [2][3]ArrayType = { {Value1, Value2, Value3}, {Value4, Value5, Value6} } //
Declaring a multidimensional array

•

variableName := [...]ArrayType {Value1, Value2, Value3} // Declare an array of size 3 (The
compiler will count the array elements to define the size)

•

arrayName[2] // Getting the value by index.•
arrayName[5] = 0 // Setting the value at index.•
arrayName[0] // First value of the Array•
arrayName[len(arrayName)-1] // Last value of the Array•

Examples

Creating arrays

An array in go is an ordered collection of same types elements.
The basic notation to represent arrays is to use [] with the variable name.

Creating a new array looks like var array = [size]Type, replacing size by a number (for example 42
to specify it will be a list of 42 elements), and replacing Type by the type of the elements the array
can contains (for example int or string)

Just below it's a code example showing the different way to create an array in Go.

// Creating arrays of 6 elements of type int,
// and put elements 1, 2, 3, 4, 5 and 6 inside it, in this exact order:
var array1 [6]int = [6]int {1, 2, 3, 4, 5, 6} // classical way
var array2 = [6]int {1, 2, 3, 4, 5, 6} // a less verbose way
var array3 = [...]int {1, 2, 3, 4, 5, 6} // the compiler will count the array elements by
itself

fmt.Println("array1:", array1) // > [1 2 3 4 5 6]
fmt.Println("array2:", array2) // > [1 2 3 4 5 6]
fmt.Println("array3:", array3) // > [1 2 3 4 5 6]

// Creating arrays with default values inside:
zeros := [8]int{} // Create a list of 8 int filled with 0

https://riptutorial.com/ 8

ptrs := [8]*int{} // a list of int pointers, filled with 8 nil references (
<nil>)
emptystr := [8]string{} // a list of string filled with 8 times ""

fmt.Println("zeroes:", zeros) // > [0 0 0 0 0 0 0 0]
fmt.Println("ptrs:", ptrs) // > [<nil> <nil> <nil> <nil> <nil> <nil> <nil> <nil>]
fmt.Println("emptystr:", emptystr) // > []
// values are empty strings, separated by spaces,
// so we can just see separating spaces

// Arrays are also working with a personalized type
type Data struct {
 Number int
 Text string
}

// Creating an array with 8 'Data' elements
// All the 8 elements will be like {0, ""} (Number = 0, Text = "")
structs := [8]Data{}

fmt.Println("structs:", structs) // > [{0 } {0 } {0 } {0 } {0 } {0 } {0 } {0 }]
// prints {0 } because Number are 0 and Text are empty; separated by a space

play it on playground

Multidimensional Array

Multidimensional arrays are basically arrays containing others arrays as elements.
It is represented like [sizeDim1][sizeDim2]..[sizeLastDim]type, replacing sizeDim by numbers
corresponding to the length of the dimention, and type by the type of data in the multidimensional
array.

For example, [2][3]int is representing an array composed of 2 sub arrays of 3 int typed
elements.
It can basically be the representation of a matrix of 2 lines and 3 columns.

So we can make huge dimensions number array like var values := [2017][12][31][24][60]int for
example if you need to store a number for each minutes since Year 0.

To access this kind of array, for the last example, searching for the value of 2016-01-31 at 19:42,
you will access values[2016][0][30][19][42] (because array indexes starts at 0 and not at 1 like
days and months)

Some examples following:

// Defining a 2d Array to represent a matrix like
// 1 2 3 So with 2 lines and 3 columns;
// 4 5 6
var multiDimArray := [2/*lines*/][3/*columns*/]int{ [3]int{1, 2, 3}, [3]int{4, 5, 6} }

// That can be simplified like this:
var simplified := [2][3]int{{1, 2, 3}, {4, 5, 6}}

// What does it looks like ?

https://riptutorial.com/ 9

https://play.golang.org/p/7oPdlN8xt8

fmt.Println(multiDimArray)
// > [[1 2 3] [4 5 6]]

fmt.Println(multiDimArray[0])
// > [1 2 3] (first line of the array)

fmt.Println(multiDimArray[0][1])
// > 2 (cell of line 0 (the first one), column 1 (the 2nd one))

// We can also define array with as much dimensions as we need
// here, initialized with all zeros
var multiDimArray := [2][4][3][2]string{}

fmt.Println(multiDimArray);
// Yeah, many dimensions stores many data
// > [[[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]]
// [[[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]]

// We can set some values in the array's cells
multiDimArray[0][0][0][0] := "All zero indexes" // Setting the first value
multiDimArray[1][3][2][1] := "All indexes to max" // Setting the value at extreme location

fmt.Println(multiDimArray);
// If we could see in 4 dimensions, maybe we could see the result as a simple format

// > [[[["All zero indexes" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]]
// [[[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" ""]]]
// [[["" ""] ["" ""]] [["" ""] ["" ""]] [["" ""] ["" "All indexes to max"]]]]

Array Indexes

Arrays values should be accessed using a number specifying the location of the desired value in
the array. This number is called Index.

Indexes starts at 0 and finish at array length -1.

To access a value, you have to do something like this: arrayName[index], replacing "index" by the
number corresponding to the rank of the value in your array.

For example:

var array = [6]int {1, 2, 3, 4, 5, 6}

fmt.Println(array[-42]) // invalid array index -1 (index must be non-negative)
fmt.Println(array[-1]) // invalid array index -1 (index must be non-negative)

https://riptutorial.com/ 10

fmt.Println(array[0]) // > 1
fmt.Println(array[1]) // > 2
fmt.Println(array[2]) // > 3
fmt.Println(array[3]) // > 4
fmt.Println(array[4]) // > 5
fmt.Println(array[5]) // > 6
fmt.Println(array[6]) // invalid array index 6 (out of bounds for 6-element array)
fmt.Println(array[42]) // invalid array index 42 (out of bounds for 6-element array)

To set or modify a value in the array, the way is the same.
Example:

var array = [6]int {1, 2, 3, 4, 5, 6}

fmt.Println(array) // > [1 2 3 4 5 6]

array[0] := 6
fmt.Println(array) // > [6 2 3 4 5 6]

array[1] := 5
fmt.Println(array) // > [6 5 3 4 5 6]

array[2] := 4
fmt.Println(array) // > [6 5 4 4 5 6]

array[3] := 3
fmt.Println(array) // > [6 5 4 3 5 6]

array[4] := 2
fmt.Println(array) // > [6 5 4 3 2 6]

array[5] := 1
fmt.Println(array) // > [6 5 4 3 2 1]

Read Arrays online: https://riptutorial.com/go/topic/390/arrays

https://riptutorial.com/ 11

https://riptutorial.com/go/topic/390/arrays

Chapter 3: Base64 Encoding

Syntax

func (enc *base64.Encoding) Encode(dst, src []byte)•
func (enc *base64.Encoding) Decode(dst, src []byte) (n int, err error)•
func (enc *base64.Encoding) EncodeToString(src []byte) string•
func (enc *base64.Encoding) DecodeString(s string) ([]byte, error)•

Remarks

The encoding/base64 package contains several built in encoders. Most of the examples in this
document will use base64.StdEncoding, but any encoder (URLEncoding, RawStdEncodign, your own
custom encoder, etc.) may be substituted.

Examples

Encoding

const foobar = `foo bar`
encoding := base64.StdEncoding
encodedFooBar := make([]byte, encoding.EncodedLen(len(foobar)))
encoding.Encode(encodedFooBar, []byte(foobar))
fmt.Printf("%s", encodedFooBar)
// Output: Zm9vIGJhcg==

Playground

Encoding to a String

str := base64.StdEncoding.EncodeToString([]byte(`foo bar`))
fmt.Println(str)
// Output: Zm9vIGJhcg==

Playground

Decoding

encoding := base64.StdEncoding
data := []byte(`Zm9vIGJhcg==`)
decoded := make([]byte, encoding.DecodedLen(len(data)))
n, err := encoding.Decode(decoded, data)
if err != nil {
 log.Fatal(err)
}

// Because we don't know the length of the data that is encoded

https://riptutorial.com/ 12

https://godoc.org/encoding/base64
https://godoc.org/encoding/base64#pkg-variables
https://play.golang.org/p/A5c_BSMFrQ
https://play.golang.org/p/vpbKRkEtsU

// (only the max length), we need to trim the buffer to whatever
// the actual length of the decoded data was.
decoded = decoded[:n]

fmt.Printf("`%s`", decoded)
// Output: `foo bar`

Playground

Decoding a String

decoded, err := base64.StdEncoding.DecodeString(`biws`)
if err != nil {
 log.Fatal(err)
}

fmt.Printf("%s", decoded)
// Output: n,,

Playground

Read Base64 Encoding online: https://riptutorial.com/go/topic/4492/base64-encoding

https://riptutorial.com/ 13

https://play.golang.org/p/J5qxlJpaCL
https://play.golang.org/p/h2qngYncRs
https://riptutorial.com/go/topic/4492/base64-encoding

Chapter 4: Best practices on project structure

Examples

Restfull Projects API with Gin

Gin is a web framework written in Golang. It features a martini-like API with much
better performance, up to 40 times faster. If you need performance and good
productivity, you will love Gin.

There will be 8 packages + main.go

controllers1.
core2.
libs3.
middlewares4.
public5.
routers6.
services7.
tests8.
main.go9.

controllers

Controllers package will store all the API logic. Whatever your API, your logic will happen here

https://riptutorial.com/ 14

https://i.stack.imgur.com/bfJba.png

core

Core package will store all your created models, ORM, etc

libs

This package will store any library that used in projects. But only for manually created/imported
library, that not available when using go get package_name commands. Could be your own hashing
algorithm, graph, tree etc.

middlewares

This package store every middleware that used in project, could be creation/validation of
cors,device-id , auth etc

https://riptutorial.com/ 15

https://i.stack.imgur.com/Q1LSU.png
https://i.stack.imgur.com/p5EKT.png
https://i.stack.imgur.com/A3pXf.png

public

This pacakge will store every public and static files, could be html, css, javascript ,images, etc

routers

This package will store every routes in your REST API.

See sample code how to assign the routes.

https://riptutorial.com/ 16

https://i.stack.imgur.com/ALzZW.png
https://i.stack.imgur.com/U59sI.png
https://i.stack.imgur.com/quAlO.png

auth_r.go

import (
 auth "simple-api/controllers/v1/auth"
 "gopkg.in/gin-gonic/gin.v1"
)

func SetAuthRoutes(router *gin.RouterGroup) {

/**
 * @api {post} /v1/auth/login Login
 * @apiGroup Users
 * @apiHeader {application/json} Content-Type Accept application/json
 * @apiParam {String} username User username
 * @apiParam {String} password User Password
 * @apiParamExample {json} Input
 * {
 * "username": "your username",
 * "password" : "your password"
 * }
 * @apiSuccess {Object} authenticate Response
 * @apiSuccess {Boolean} authenticate.success Status
 * @apiSuccess {Integer} authenticate.statuscode Status Code
 * @apiSuccess {String} authenticate.message Authenticate Message
 * @apiSuccess {String} authenticate.token Your JSON Token
 * @apiSuccessExample {json} Success
 * {
 * "authenticate": {
 * "statuscode": 200,
 * "success": true,
 * "message": "Login Successfully",
 * "token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ"

 * }
 * }
 * @apiErrorExample {json} List error
 * HTTP/1.1 500 Internal Server Error
 */

 router.POST("/auth/login" , auth.Login)
}

If you see, the reason I separate the handler is, to easy us to manage each routers. So I can
create comments about the API , that with apidoc will generate this into structured documentation.
Then I will call the function in index.go in current package

index.go

package v1

import (
 "gopkg.in/gin-gonic/gin.v1"
 token "simple-api/middlewares/token"
 appid "simple-api/middlewares/appid"
)
func InitRoutes(g *gin.RouterGroup) {

https://riptutorial.com/ 17

 g.Use(appid.AppIDMiddleWare())
 SetHelloRoutes(g)
 SetAuthRoutes(g) // SetAuthRoutes invoked
 g.Use(token.TokenAuthMiddleWare()) //secure the API From this line to bottom with JSON
Auth
 g.Use(appid.ValidateAppIDMiddleWare())
 SetTaskRoutes(g)
 SetUserRoutes(g)
}

services

This package will store any configuration and setting to used in project from any used service,
could be mongodb,redis,mysql, elasticsearch, etc.

main.go

The main entrance of the API. Any configuration about the dev environment settings,
systems,port, etc will configured here.

Example:
main.go

package main
import (
 "fmt"
 "net/http"
 "gopkg.in/gin-gonic/gin.v1"
 "articles/services/mysql"
 "articles/routers/v1"
 "articles/core/models"
)

var router *gin.Engine;

func init() {
 mysql.CheckDB()
 router = gin.New();
 router.NoRoute(noRouteHandler())
 version1:=router.Group("/v1")

https://riptutorial.com/ 18

https://i.stack.imgur.com/rKTS9.png

 v1.InitRoutes(version1)

}

func main() {
 fmt.Println("Server Running on Port: ", 9090)
 http.ListenAndServe(":9090",router)
}

func noRouteHandler() gin.HandlerFunc{
 return func(c *gin.Context) {
 var statuscode int
 var message string = "Not Found"
 var data interface{} = nil
 var listError [] models.ErrorModel = nil
 var endpoint string = c.Request.URL.String()
 var method string = c.Request.Method

 var tempEr models.ErrorModel
 tempEr.ErrorCode = 4041
 tempEr.Hints = "Not Found !! \n Routes In Valid. You enter on invalid
Page/Endpoint"
 tempEr.Info = "visit http://localhost:9090/v1/docs to see the available routes"
 listError = append(listError,tempEr)
 statuscode = 404
 responseModel := &models.ResponseModel{
 statuscode,
 message,
 data,
 listError,
 endpoint,
 method,
 }
 var content gin.H = responseModel.NewResponse();
 c.JSON(statuscode,content)
 }
}

ps: Every code in this example, come from different projects

see sample projects on github

Read Best practices on project structure online: https://riptutorial.com/go/topic/9463/best-
practices-on-project-structure

https://riptutorial.com/ 19

https://github.com/bxcodec/Simple-API-Go
https://riptutorial.com/go/topic/9463/best-practices-on-project-structure
https://riptutorial.com/go/topic/9463/best-practices-on-project-structure

Chapter 5: Branching

Examples

Switch Statements

A simple switch statement:

switch a + b {
case c:
 // do something
case d:
 // do something else
default:
 // do something entirely different
}

The above example is equivalent to:

if a + b == c {
 // do something
} else if a + b == d {
 // do something else
} else {
 // do something entirely different
}

The default clause is optional and will be executed if and only if none of the cases compare true,
even if it does not appear last, which is acceptable. The following is semantically the same as the
first example:

switch a + b {
default:
 // do something entirely different
case c:
 // do something
case d:
 // do something else
}

This could be useful if you intend to use the fallthrough statement in the default clause, which
must be the last statement in a case and causes program execution to proceed to the next case:

switch a + b {
default:
 // do something entirely different, but then also do something
 fallthrough
case c:
 // do something
case d:

https://riptutorial.com/ 20

 // do something else
}

An empty switch expression is implicitly true:

switch {
case a + b == c:
 // do something
case a + b == d:
 // do something else
}

Switch statements support a simple statement similar to if statements:

switch n := getNumber(); n {
case 1:
 // do something
case 2:
 // do something else
}

Cases can be combined in a comma-separated list if they share the same logic:

switch a + b {
case c, d:
 // do something
default:
 // do something entirely different
}

If Statements

A simple if statement:

if a == b {
 // do something
}

Note that there are no parentheses surrounding the condition and that the opening curly brace {
must be on the same line. The following will not compile:

if a == b
{
 // do something
}

An if statement making use of else:

if a == b {

https://riptutorial.com/ 21

 // do something
} else if a == c {
 // do something else
} else {
 // do something entirely different
}

Per golang.org's documentation, "The expression may be preceded by a simple statement, which
executes before the expression is evaluated." Variables declared in this simple statement are
scoped to the if statement and cannot be accessed outside it:

if err := attemptSomething(); err != nil {
 // attemptSomething() was successful!
} else {
 // attemptSomething() returned an error; handle it
}
fmt.Println(err) // compiler error, 'undefined: err'

Type Switch Statements

A simple type switch:

// assuming x is an expression of type interface{}
switch t := x.(type) {
case nil:
 // x is nil
 // t will be type interface{}
case int:
 // underlying type of x is int
 // t will be int in this case as well
case string:
 // underlying type of x is string
 // t will be string in this case as well
case float, bool:
 // underlying type of x is either float or bool
 // since we don't know which, t is of type interface{} in this case
default:
 // underlying type of x was not any of the types tested for
 // t is interface{} in this type
}

You can test for any type, including error, user-defined types, interface types, and function types:

switch t := x.(type) {
case error:
 log.Fatal(t)
case myType:
 fmt.Println(myType.message)
case myInterface:
 t.MyInterfaceMethod()
case func(string) bool:
 if t("Hello world?") {
 fmt.Println("Hello world!")
 }

https://riptutorial.com/ 22

https://golang.org/ref/spec#If_statements

}

Goto statements

A goto statement transfers control to the statement with the corresponding label within the same
function. Executing the goto statement must not cause any variables to come into scope that were
not already in scope at the point of the goto.

for example see the standard library source code: https://golang.org/src/math/gamma.go :

 for x < 0 {
 if x > -1e-09 {
 goto small
 }
 z = z / x
 x = x + 1
 }
 for x < 2 {
 if x < 1e-09 {
 goto small
 }
 z = z / x
 x = x + 1
 }

 if x == 2 {
 return z
 }

 x = x - 2
 p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6]
 q =
((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x +
_gamQ[7]
 return z * p / q

small:
 if x == 0 {
 return Inf(1)
 }
 return z / ((1 + Euler*x) * x)

Break-continue statements

The break statement, on execution makes the current loop to force exit

package main

import "fmt"

func main() {
 i:=0
 for true {
 if i>2 {
 break

https://riptutorial.com/ 23

https://golang.org/src/math/gamma.go

 }
 fmt.Println("Iteration : ",i)
 i++
 }
}

The continue statement, on execution moves the control to the start of the loop

import "fmt"

func main() {
 j:=100
 for j<110 {
 j++
 if j%2==0 {
 continue
 }
 fmt.Println("Var : ",j)
 }
}

Break/continue loop inside switch

import "fmt"

func main() {
 j := 100

loop:
 for j < 110 {
 j++

 switch j % 3 {
 case 0:
 continue loop
 case 1:
 break loop
 }

 fmt.Println("Var : ", j)
 }
}

Read Branching online: https://riptutorial.com/go/topic/1342/branching

https://riptutorial.com/ 24

https://riptutorial.com/go/topic/1342/branching

Chapter 6: Build Constraints

Syntax

// +build tags•

Remarks

Build tags are used for conditionally building certain files in your code. Build tags may ignore files
that you don't want build unless explicitly included, or some predefined build tags may be used to
have a file only be built on a particular architecture or operating system.

Build tags may appear in any kind of source file (not just Go), but they must appear near the top of
the file, preceded only by blank lines and other line comments. These rules mean that in Go files a
build constraint must appear before the package clause.

A series of build tags must be followed by a blank line.

Examples

Separate integration tests

Build constraints are commonly used to separate normal unit tests from integration tests that
require external resources, like a database or network access. To do this, add a custom build
constraint to the top of the test file:

// +build integration

package main

import (
 "testing"
)

func TestThatRequiresNetworkAccess(t *testing.T) {
 t.Fatal("It failed!")
}

The test file will not compile into the build executable unless the following invocation of go test is
used:

go test -tags "integration"

Results:

$ go test
? bitbucket.org/yourname/yourproject [no test files]

https://riptutorial.com/ 25

$ go test -tags "integration"
--- FAIL: TestThatRequiresNetworkAccess (0.00s)
 main_test.go:10: It failed!
FAIL
exit status 1
FAIL bitbucket.org/yourname/yourproject 0.003s

Optimize implementations based on architecture

We can optimize a simple xor function for only architectures that support unaligned reads/writes by
creating two files that define the function and prefixing them with a build constraint (for an actual
example of the xor code which is out of scope here, see crypto/cipher/xor.go in the standard
library):

// +build 386 amd64 s390x

package cipher

func xorBytes(dst, a, b []byte) int { /* This function uses unaligned reads / writes to
optimize the operation */ }

and for other architectures:

// +build !386,!amd64,!s390x

package cipher

func xorBytes(dst, a, b []byte) int { /* This version of the function just loops and xors */ }

Read Build Constraints online: https://riptutorial.com/go/topic/2595/build-constraints

https://riptutorial.com/ 26

https://riptutorial.com/go/topic/2595/build-constraints

Chapter 7: cgo

Examples

Cgo: First steps tutorial

Some examples to understand the workflow of using Go C Bindings

What

In Go you can call C programs and functions using cgo. This way you can easily create C bindings
to other applications or libraries that provides C API.

How

All you need to do is to add a import "C" at the beginning of your Go program just after including
your C program:

//#include <stdio.h>
import "C"

With the previous example you can use the stdio package in Go.

If you need to use an app that is on your same folder, you use the same syntax than in C (with the
" instead of <>)

//#include "hello.c"
import "C"

IMPORTANT: Do not leave a newline between the include and the import "C"
statements or you will get this type of errors on build:

command-line-arguments
could not determine kind of name for C.Hello
could not determine kind of name for C.sum

The example

On this folder you can find an example of C bindings. We have two very simple C "libraries" called
hello.c:

//hello.c
#include <stdio.h>

void Hello(){

https://riptutorial.com/ 27

https://golang.org/cmd/cgo/

 printf("Hello world\n");
}

That simply prints "hello world" in the console and sum.c

//sum.c
#include <stdio.h>

int sum(int a, int b) {
 return a + b;
}

...that takes 2 arguments and returns its sum (do not print it).

We have a main.go program that will make use of this two files. First we import them as we
mentioned before:

//main.go
package main

/*
 #include "hello.c"
 #include "sum.c"
*/
import "C"

Hello World!

Now we are ready to use the C programs in our Go app. Let's first try the Hello program:

//main.go
package main

/*
 #include "hello.c"
 #include "sum.c"
*/
import "C"

func main() {
 //Call to void function without params
 err := Hello()
 if err != nil {
 log.Fatal(err)
 }
}

//Hello is a C binding to the Hello World "C" program. As a Go user you could
//use now the Hello function transparently without knowing that it is calling
//a C function
func Hello() error {
 _, err := C.Hello() //We ignore first result as it is a void function
 if err != nil {
 return errors.New("error calling Hello function: " + err.Error())
 }

https://riptutorial.com/ 28

 return nil
}

Now run the main.go program using the go run main.go to get print of the C program: "Hello
world!". Well done!

Sum of ints

Let's make it a bit more complex by adding a function that sums its two arguments.

//sum.c
#include <stdio.h>

int sum(int a, int b) {
 return a + b;
}

And we'll call it from our previous Go app.

//main.go
package main

/*
#include "hello.c"
#include "sum.c"
*/
import "C"

import (
 "errors"
 "fmt"
 "log"
)

func main() {
 //Call to void function without params
 err := Hello()
 if err != nil {
 log.Fatal(err)
 }

 //Call to int function with two params
 res, err := makeSum(5, 4)
 if err != nil {
 log.Fatal(err)
 }

 fmt.Printf("Sum of 5 + 4 is %d\n", res)
}

//Hello is a C binding to the Hello World "C" program. As a Go user you could
//use now the Hello function transparently without knowing that is calling a C
//function
func Hello() error {
 _, err := C.Hello() //We ignore first result as it is a void function
 if err != nil {

https://riptutorial.com/ 29

 return errors.New("error calling Hello function: " + err.Error())
 }

 return nil
}

//makeSum also is a C binding to make a sum. As before it returns a result and
//an error. Look that we had to pass the Int values to C.int values before using
//the function and cast the result back to a Go int value
func makeSum(a, b int) (int, error) {
 //Convert Go ints to C ints
 aC := C.int(a)
 bC := C.int(b)

 sum, err := C.sum(aC, bC)
 if err != nil {
 return 0, errors.New("error calling Sum function: " + err.Error())
 }

 //Convert C.int result to Go int
 res := int(sum)

 return res, nil
}

Take a look at the "makeSum" function. It receives two int parameters that need to be converted
to C int before by using the C.int function. Also, the return of the call will give us a C int and an
error in case something went wrong. We need to cast C response to a Go's int using int().

Try running our go app by using go run main.go

$ go run main.go
Hello world!
Sum of 5 + 4 is 9

Generating a binary

If you try a go build you could get multiple definition errors.

$ go build
github.com/sayden/c-bindings
/tmp/go-build329491076/github.com/sayden/c-bindings/_obj/hello.o: In function `Hello':
../../go/src/github.com/sayden/c-bindings/hello.c:5: multiple definition of `Hello'
/tmp/go-build329491076/github.com/sayden/c-
bindings/_obj/main.cgo2.o:/home/mariocaster/go/src/github.com/sayden/c-bindings/hello.c:5:
first defined here
/tmp/go-build329491076/github.com/sayden/c-bindings/_obj/sum.o: In function `sum':
../../go/src/github.com/sayden/c-bindings/sum.c:5: multiple definition of `sum`
/tmp/go-build329491076/github.com/sayden/c-
bindings/_obj/main.cgo2.o:/home/mariocaster/go/src/github.com/sayden/c-bindings/sum.c:5: first
defined here
collect2: error: ld returned 1 exit status

The trick is to refer to the main file directly when using go build:

https://riptutorial.com/ 30

$ go build main.go
$./main
Hello world!
Sum of 5 + 4 is 9

Remember that you can provide a name to the binary file by using -o flag go build -o
my_c_binding main.go

I hope you enjoyed this tutorial.

Read cgo online: https://riptutorial.com/go/topic/6125/cgo

https://riptutorial.com/ 31

https://riptutorial.com/go/topic/6125/cgo

Chapter 8: cgo

Examples

Calling C Function From Go

Cgo enables the creation of Go packages that call C code.
To use cgo write normal Go code that imports a pseudo-package "C". The Go code can then refer
to types such as C.int, or functions such as C.Add.
The import of "C" is immediately preceded by a comment, that comment, called the preamble, is
used as a header when compiling the C parts of the package.
Note that there must be no blank lines in between the cgo comment and the import statement.
Note that import "C" can not grouped with other imports into a parenthesized, "factored" import
statement. You must write multiple import statements, like:

import "C"
import "fmt"

And it is good style to use the factored import statement, for other imports, like:

import "C"
import (
 "fmt"
 "math"
)

Simple example using cgo:

package main

//int Add(int a, int b){
// return a+b;
//}
import "C"
import "fmt"

func main() {
 a := C.int(10)
 b := C.int(20)
 c := C.Add(a, b)
 fmt.Println(c) // 30
}

Then go build, and run it, output:

30

To build cgo packages, just use go build or go install as usual. The go tool recognizes the special
"C" import and automatically uses cgo for those files.

https://riptutorial.com/ 32

Wire C and Go code in all directions

Calling C code from Go

package main

/*
// Everything in comments above the import "C" is C code and will be compiles with the GCC.
// Make sure you have a GCC installed.

int addInC(int a, int b) {
 return a + b;
}
 */
import "C"
import "fmt"

func main() {
 a := 3
 b := 5

 c := C.addInC(C.int(a), C.int(b))

 fmt.Println("Add in C:", a, "+", b, "=", int(c))
}

Calling Go code from C

package main

/*
static inline int multiplyInGo(int a, int b) {
 return go_multiply(a, b);
}
 */
import "C"
import (
 "fmt"
)

func main() {
 a := 3
 b := 5

 c := C.multiplyInGo(C.int(a), C.int(b))

 fmt.Println("multiplyInGo:", a, "*", b, "=", int(c))
}

//export go_multiply
func go_multiply(a C.int, b C.int) C.int {
 return a * b
}

Dealing with Function pointers

package main

https://riptutorial.com/ 33

/*
int go_multiply(int a, int b);

typedef int (*multiply_f)(int a, int b);
multiply_f multiply;

static inline init() {
 multiply = go_multiply;
}

static inline int multiplyWithFp(int a, int b) {
 return multiply(a, b);
}
 */
import "C"
import (
 "fmt"
)

func main() {
 a := 3
 b := 5
 C.init(); // OR:
 C.multiply = C.multiply_f(go_multiply);

 c := C.multiplyWithFp(C.int(a), C.int(b))

 fmt.Println("multiplyInGo:", a, "+", b, "=", int(c))
}

//export go_multiply
func go_multiply(a C.int, b C.int) C.int {
 return a * b
}

Convert Types, Access Structs and Pointer Arithmetic

From the official Go documentation:

// Go string to C string
// The C string is allocated in the C heap using malloc.
// It is the caller's responsibility to arrange for it to be
// freed, such as by calling C.free (be sure to include stdlib.h
// if C.free is needed).
func C.CString(string) *C.char

// Go []byte slice to C array
// The C array is allocated in the C heap using malloc.
// It is the caller's responsibility to arrange for it to be
// freed, such as by calling C.free (be sure to include stdlib.h
// if C.free is needed).
func C.CBytes([]byte) unsafe.Pointer

// C string to Go string
func C.GoString(*C.char) string

// C data with explicit length to Go string
func C.GoStringN(*C.char, C.int) string

https://riptutorial.com/ 34

// C data with explicit length to Go []byte
func C.GoBytes(unsafe.Pointer, C.int) []byte

How to use it:

func go_handleData(data *C.uint8_t, length C.uint8_t) []byte {
 return C.GoBytes(unsafe.Pointer(data), C.int(length))
}

// ...

goByteSlice := []byte {1, 2, 3}
goUnsafePointer := C.CBytes(goByteSlice)
cPointer := (*C.uint8_t)(goUnsafePointer)

// ...

func getPayload(packet *C.packet_t) []byte {
 dataPtr := unsafe.Pointer(packet.data)
 // Lets assume a 2 byte header before the payload.
 payload := C.GoBytes(unsafe.Pointer(uintptr(dataPtr)+2), C.int(packet.dataLength-2))
 return payload
}

Read cgo online: https://riptutorial.com/go/topic/6455/cgo

https://riptutorial.com/ 35

https://riptutorial.com/go/topic/6455/cgo

Chapter 9: Channels

Introduction

A channel contains values of a given type. Values can be written to a channel and read from it,
and they circulate inside the channel in first-in-first-out order. There is a distinction between
buffered channels, which can contain several messages, and unbuffered channels, which cannot.
Channels are typically used to communicate between goroutines, but are also useful in other
circumstances.

Syntax

make(chan int) // create an unbuffered channel•
make(chan int, 5) // create a buffered channel with a capacity of 5•
close(ch) // closes a channel "ch"•
ch <- 1 // write the value of 1 to a channel "ch"•
val := <-ch // read a value from channel "ch"•
val, ok := <-ch // alternate syntax; ok is a bool indicating if the channel is closed•

Remarks

A channel holding the empty struct make(chan struct{}) is a clear message to the user that no
information is transmitted over the channel and that it's purely used for synchronization.

Regarding unbuffered channels, a channel write will block until a corresponding read occurs from
another goroutine. The same is true for a channel read blocking while waiting for a writer.

Examples

Using range

When reading multiple values from a channel, using range is a common pattern:

func foo() chan int {
 ch := make(chan int)

 go func() {
 ch <- 1
 ch <- 2
 ch <- 3
 close(ch)

 }()

 return ch
}

https://riptutorial.com/ 36

func main() {
 for n := range foo() {
 fmt.Println(n)
 }

 fmt.Println("channel is now closed")
}

Playground

Output

1
2
3
channel is now closed

Timeouts

Channels are often used to implement timeouts.

func main() {
 // Create a buffered channel to prevent a goroutine leak. The buffer
 // ensures that the goroutine below can eventually terminate, even if
 // the timeout is met. Without the buffer, the send on the channel
 // blocks forever, waiting for a read that will never happen, and the
 // goroutine is leaked.
 ch := make(chan struct{}, 1)

 go func() {
 time.Sleep(10 * time.Second)
 ch <- struct{}{}
 }()

 select {
 case <-ch:
 // Work completed before timeout.
 case <-time.After(1 * time.Second):
 // Work was not completed after 1 second.
 }
}

Coordinating goroutines

Imagine a goroutine with a two step process, where the main thread needs to do some work
between each step:

func main() {
 ch := make(chan struct{})
 go func() {
 // Wait for main thread's signal to begin step one
 <-ch

 // Perform work
 time.Sleep(1 * time.Second)

https://riptutorial.com/ 37

https://play.golang.org/p/18ODvaZub9

 // Signal to main thread that step one has completed
 ch <- struct{}{}

 // Wait for main thread's signal to begin step two
 <-ch

 // Perform work
 time.Sleep(1 * time.Second)

 // Signal to main thread that work has completed
 ch <- struct{}{}
 }()

 // Notify goroutine that step one can begin
 ch <- struct{}{}

 // Wait for notification from goroutine that step one has completed
 <-ch

 // Perform some work before we notify
 // the goroutine that step two can begin
 time.Sleep(1 * time.Second)

 // Notify goroutine that step two can begin
 ch <- struct{}{}

 // Wait for notification from goroutine that step two has completed
 <-ch
}

Buffered vs unbuffered

func bufferedUnbufferedExample(buffered bool) {
 // We'll declare the channel, and we'll make it buffered or
 // unbuffered depending on the parameter `buffered` passed
 // to this function.
 var ch chan int
 if buffered {
 ch = make(chan int, 3)
 } else {
 ch = make(chan int)
 }

 // We'll start a goroutine, which will emulate a webserver
 // receiving tasks to do every 25ms.
 go func() {
 for i := 0; i < 7; i++ {
 // If the channel is buffered, then while there's an empty
 // "slot" in the channel, sending to it will not be a
 // blocking operation. If the channel is full, however, we'll
 // have to wait until a "slot" frees up.
 // If the channel is unbuffered, sending will block until
 // there's a receiver ready to take the value. This is great
 // for goroutine synchronization, not so much for queueing
 // tasks for instance in a webserver, as the request will
 // hang until the worker is ready to take our task.
 fmt.Println(">", "Sending", i, "...")
 ch <- i

https://riptutorial.com/ 38

 fmt.Println(">", i, "sent!")
 time.Sleep(25 * time.Millisecond)
 }
 // We'll close the channel, so that the range over channel
 // below can terminate.
 close(ch)
 }()

 for i := range ch {
 // For each task sent on the channel, we would perform some
 // task. In this case, we will assume the job is to
 // "sleep 100ms".
 fmt.Println("<", i, "received, performing 100ms job")
 time.Sleep(100 * time.Millisecond)
 fmt.Println("<", i, "job done")
 }
}

go playground

Blocking & unblocking of channels

By default communication over the channcels is sync; when you send some value there must be a
receiver. Otherwise you will get fatal error: all goroutines are asleep - deadlock! as follows:

package main

import "fmt"

func main() {
 msg := make(chan string)
 msg <- "Hey There"
 go func() {
 fmt.Println(<-msg)
 }()
}

Bu there is a solution use: use buffered channels :

package main

import "fmt"
import "time"

func main() {
 msg :=make(chan string, 1)
 msg <- "Hey There!"
 go func() {
 fmt.Println(<-msg)
 }()
 time.Sleep(time.Second * 1)
}

Waiting for work to finish

A common technique for using channels is to create some number of workers (or consumers) to

https://riptutorial.com/ 39

https://play.golang.org/p/PUR0kDdxli

read from the channel. Using a sync.WaitGroup is an easy way to wait for those workers to finish
running.

package main

import (
 "fmt"
 "sync"
 "time"
)

func main() {
 numPiecesOfWork := 20
 numWorkers := 5

 workCh := make(chan int)
 wg := &sync.WaitGroup{}

 // Start workers
 wg.Add(numWorkers)
 for i := 0; i < numWorkers; i++ {
 go worker(workCh, wg)
 }

 // Send work
 for i := 0; i < numPiecesOfWork; i++ {
 work := i % 10 // invent some work
 workCh <- work
 }

 // Tell workers that no more work is coming
 close(workCh)

 // Wait for workers to finish
 wg.Wait()

 fmt.Println("done")
}

func worker(workCh <-chan int, wg *sync.WaitGroup) {
 defer wg.Done() // will call wg.Done() right before returning

 for work := range workCh { // will wait for work until workCh is closed
 doWork(work)
 }
}

func doWork(work int) {
 time.Sleep(time.Duration(work) * time.Millisecond)
 fmt.Println("slept for", work, "milliseconds")
}

Read Channels online: https://riptutorial.com/go/topic/1263/channels

https://riptutorial.com/ 40

https://riptutorial.com/go/topic/1263/channels

Chapter 10: Closures

Examples

Closure Basics

A Closure is a function taken together with an environment. The function is typically an
anonymous function defined inside another function. The environment is the lexical scope of the
enclosing function (very basic idea of a lexical scope of a function would be the scope that exists
between the function's braces.)

func g() {
 i := 0
 f := func() { // anonymous function
 fmt.Println("f called")
 }
}

Within the body of an anonymous function (say f) defined within another function (say g), variables
present in scopes of both f and g are accessible. However, it is the scope of g that forms the
environment part of the closure (function part is f) and as a result, changes made to the variables
in g's scope retain their values (i.e. the environment persists between calls to f).

Consider the below function:

func NaturalNumbers() func() int {
 i := 0
 f:= func() int { // f is the function part of closure
 i++
 return i
 }
 return f
}

In above definition, NaturalNumbers has an inner function f which NaturalNumbers returns. Inside f,
variable i defined within the scope of NaturalNumbers is being accessed.

We get a new function from NaturalNumbers like so:

n := NaturalNumbers()

Now n is a closure. It is a function (defined by f) which also has an associated environment (scope
of NaturalNumbers).

In case of n, the environment part only contains one variable: i

Since n is a function, it can be called:

https://riptutorial.com/ 41

fmt.Println(n()) // 1
fmt.Println(n()) // 2
fmt.Println(n()) // 3

As evident from above output, each time n is called, it increments i. i starts at 0, and each call to n
executes i++.

The value of i is retained between calls. That is, the environment, being a part of closure, persists.

Calling NaturalNumbers again would create and return a new function. This would initialize a new i
within NaturalNumbers. Which means that the newly returned function forms another closure having
the same part for function (still f) but a brand new environment (a newly initialized i).

o := NaturalNumbers()

fmt.Println(n()) // 4
fmt.Println(o()) // 1
fmt.Println(o()) // 2
fmt.Println(n()) // 5

Both n and o are closures containing same function part (which gives them the same behavior),
but different environments. Thus, use of closures allow functions to have access to a persistent
environment that can be used to retain information between calls.

Another example:

func multiples(i int) func() int {
 var x int = 0
 return func() int {
 x++
 // paramenter to multiples (here it is i) also forms
 // a part of the environment, and is retained
 return x * i
 }
}

two := multiples(2)
fmt.Println(two(), two(), two()) // 2 4 6

fortyTwo := multiples(42)
fmt.Println(fortyTwo(), fortyTwo(), fortyTwo()) // 42 84 126

Read Closures online: https://riptutorial.com/go/topic/2741/closures

https://riptutorial.com/ 42

https://riptutorial.com/go/topic/2741/closures

Chapter 11: Concurrency

Introduction

In Go, concurrency is achieved through the use of goroutines, and communication between
goroutines is usually done with channels. However, other means of synchronization, like mutexes
and wait groups, are available, and should be used whenever they are more convenient than
channels.

Syntax

go doWork() // run the function doWork as a goroutine•
ch := make(chan int) // declare new channel of type int•
ch <- 1 // sending on a channel•
value = <-ch // receiving from a channel•

Remarks

Goroutines in Go are similar to threads in other languages in terms of usage. Internally, Go
creates a number of threads (specified by GOMAXPROCS) and then schedules the goroutines to run on
the threads. Because of this design, Go's concurrency mechanisms are much more efficient than
threads in terms of memory usage and initialization time.

Examples

Creating goroutines

Any function can be invoked as a goroutine by prefixing its invocation with the keyword go:

func DoMultiply(x,y int) {
 // Simulate some hard work
 time.Sleep(time.Second * 1)
 fmt.Printf("Result: %d\n", x * y)
}

go DoMultiply(1,2) // first execution, non-blocking
go DoMultiply(3,4) // second execution, also non-blocking

// Results are printed after a single second only,
// not 2 seconds because they execute concurrently:
// Result: 2
// Result: 12

Note that the return value of the function is ignored.

Hello World Goroutine

https://riptutorial.com/ 43

single channel, single goroutine, one write, one read.

package main

import "fmt"
import "time"

func main() {
 // create new channel of type string
 ch := make(chan string)

 // start new anonymous goroutine
 go func() {
 time.Sleep(time.Second)
 // send "Hello World" to channel
 ch <- "Hello World"
 }()
 // read from channel
 msg, ok := <-ch
 fmt.Printf("msg='%s', ok='%v'\n", msg, ok)
}

Run it on playground

The channel ch is an unbuffered or synchronous channel.

The time.Sleep is here to illustrate main() function will wait on the ch channel, which means the
function literal executed as a goroutine has the time to send a value through that channel: the
receive operator <-ch will block the execution of main(). If it didn't, the goroutine would be killed
when main() exits, and would not have time to send its value.

Waiting for goroutines

Go programs end when the main function ends, therefore it is common practice to wait for all
goroutines to finish. A common solution for this is to use a sync.WaitGroup object.

package main

import (
 "fmt"
 "sync"
)

var wg sync.WaitGroup // 1

func routine(i int) {
 defer wg.Done() // 3
 fmt.Printf("routine %v finished\n", i)
}

func main() {
 wg.Add(10) // 2
 for i := 0; i < 10; i++ {
 go routine(i) // *
 }
 wg.Wait() // 4

https://riptutorial.com/ 44

https://play.golang.org/p/t-5U31vPcb
https://golang.org/doc/effective_go.html#channels
https://golang.org/ref/spec#Function_literals
https://golang.org/ref/spec#Receive_operator
https://golang.org/ref/spec#Receive_operator
http://golang.org/ref/spec#Program_execution
http://golang.org/ref/spec#Program_execution
http://golang.org/ref/spec#Program_execution
http://golang.org/pkg/sync/#WaitGroup

 fmt.Println("main finished")
}

Run the example in the playground

WaitGroup usage in order of execution:

Declaration of global variable. Making it global is the easiest way to make it visible to all
functions and methods.

1.

Increasing the counter. This must be done in the main goroutine because there is no
guarantee that a newly started goroutine will execute before 4 due to memory model
guarantees.

2.

Decreasing the counter. This must be done at the exit of a goroutine. By using a deferred
call, we make sure that it will be called whenever function ends, no matter how it ends.

3.

Waiting for the counter to reach 0. This must be done in the main goroutine to prevent the
program from exiting before all goroutines have finished.

4.

* Parameters are evaluated before starting a new goroutine. Thus it is necessary to define their
values explicitly before wg.Add(10) so that possibly-panicking code will not increase the counter.
Adding 10 items to the WaitGroup, so it will wait for 10 items before wg.Wait returns the control
back to main() goroutine. Here, the value of i is defined in the for loop.

Using closures with goroutines in a loop

When in a loop, the loop variable (val) in the following example is a single variable that changes
value as it goes over the loop. Therefore one must do the following to actually pass each val of
values to the goroutine:

for val := range values {
 go func(val interface{}) {
 fmt.Println(val)
 }(val)
}

If you were to do just do go func(val interface{}) { ... }() without passing val, then the value of
val will be whatever val is when the goroutines actually runs.

Another way to get the same effect is:

for val := range values {
 val := val
 go func() {
 fmt.Println(val)
 }()
}

The strange-looking val := val creates a new variable in each iteration, which is then accessed by
the goroutine.

Stopping goroutines

https://riptutorial.com/ 45

https://play.golang.org/p/64vfZSXXHv
http://golang.org/ref/mem#tmp_5
http://golang.org/ref/spec#Defer_statements
http://golang.org/ref/spec#Go_statements

package main

import (
 "log"
 "sync"
 "time"
)

func main() {
 // The WaitGroup lets the main goroutine wait for all other goroutines
 // to terminate. However, this is no implicit in Go. The WaitGroup must
 // be explicitely incremented prior to the execution of any goroutine
 // (i.e. before the `go` keyword) and it must be decremented by calling
 // wg.Done() at the end of every goroutine (typically via the `defer` keyword).
 wg := sync.WaitGroup{}

 // The stop channel is an unbuffered channel that is closed when the main
 // thread wants all other goroutines to terminate (there is no way to
 // interrupt another goroutine in Go). Each goroutine must multiplex its
 // work with the stop channel to guarantee liveness.
 stopCh := make(chan struct{})

 for i := 0; i < 5; i++ {
 // It is important that the WaitGroup is incremented before we start
 // the goroutine (and not within the goroutine) because the scheduler
 // makes no guarantee that the goroutine starts execution prior to
 // the main goroutine calling wg.Wait().
 wg.Add(1)
 go func(i int, stopCh <-chan struct{}) {
 // The defer keyword guarantees that the WaitGroup count is
 // decremented when the goroutine exits.
 defer wg.Done()

 log.Printf("started goroutine %d", i)

 select {
 // Since we never send empty structs on this channel we can
 // take the return of a receive on the channel to mean that the
 // channel has been closed (recall that receive never blocks on
 // closed channels).
 case <-stopCh:
 log.Printf("stopped goroutine %d", i)
 }
 }(i, stopCh)
 }

 time.Sleep(time.Second * 5)
 close(stopCh)
 log.Printf("stopping goroutines")
 wg.Wait()
 log.Printf("all goroutines stopped")
}

Ping pong with two goroutines

package main

import (

https://riptutorial.com/ 46

 "fmt"
 "time"
)

// The pinger prints a ping and waits for a pong
func pinger(pinger <-chan int, ponger chan<- int) {
 for {
 <-pinger
 fmt.Println("ping")
 time.Sleep(time.Second)
 ponger <- 1
 }
}

// The ponger prints a pong and waits for a ping
func ponger(pinger chan<- int, ponger <-chan int) {
 for {
 <-ponger
 fmt.Println("pong")
 time.Sleep(time.Second)
 pinger <- 1
 }
}

func main() {
 ping := make(chan int)
 pong := make(chan int)

 go pinger(ping, pong)
 go ponger(ping, pong)

 // The main goroutine starts the ping/pong by sending into the ping channel
 ping <- 1

 for {
 // Block the main thread until an interrupt
 time.Sleep(time.Second)
 }
}

Run a slightly modified version of this code in Go Playground

Read Concurrency online: https://riptutorial.com/go/topic/376/concurrency

https://riptutorial.com/ 47

https://play.golang.org/p/LXcPiIPrgf
https://riptutorial.com/go/topic/376/concurrency

Chapter 12: Console I/O

Examples

Read input from console

Using scanf

Scanf scans text read from standard input, storing successive space-separated values
into successive arguments as determined by the format. It returns the number of items
successfully scanned. If that is less than the number of arguments, err will report why.
Newlines in the input must match newlines in the format. The one exception: the verb
%c always scans the next rune in the input, even if it is a space (or tab etc.) or newline.

 # Read integer
 var i int
 fmt.Scanf("%d", &i)

 # Read string
 var str string
 fmt.Scanf("%s", &str)

Using scan

Scan scans text read from standard input, storing successive space-separated values
into successive arguments. Newlines count as space. It returns the number of items
successfully scanned. If that is less than the number of arguments, err will report why.

 # Read integer
 var i int
 fmt.Scan(&i)

 # Read string
 var str string
 fmt.Scan(&str)

Using scanln

Sscanln is similar to Sscan, but stops scanning at a newline and after the final item
there must be a newline or EOF.

Read string
var input string
fmt.Scanln(&input)

Using bufio

Read using Reader
reader := bufio.NewReader(os.Stdin)

https://riptutorial.com/ 48

text, err := reader.ReadString('\n')

Read using Scanner
scanner := bufio.NewScanner(os.Stdin)
for scanner.Scan() {
 fmt.Println(scanner.Text())
}

Read Console I/O online: https://riptutorial.com/go/topic/9741/console-i-o

https://riptutorial.com/ 49

https://riptutorial.com/go/topic/9741/console-i-o

Chapter 13: Constants

Remarks

Go supports constants of character, string, boolean, and numeric values.

Examples

Declaring a constant

Constants are declared like variables, but using the const keyword:

const Greeting string = "Hello World"
const Years int = 10
const Truth bool = true

Like for variables, names starting with an upper case letter are exported (public), names starting
with lower case are not.

// not exported
const alpha string = "Alpha"
// exported
const Beta string = "Beta"

Constants can be used like any other variable, except for the fact that the value cannot be
changed. Here's an example:

package main

import (
 "fmt"
 "math"
)

const s string = "constant"

func main() {
 fmt.Println(s) // constant

 // A `const` statement can appear anywhere a `var` statement can.
 const n = 10
 fmt.Println(n) // 10
 fmt.Printf("n=%d is of type %T\n", n, n) // n=10 is of type int

 const m float64 = 4.3
 fmt.Println(m) // 4.3

 // An untyped constant takes the type needed by its context.
 // For example, here `math.Sin` expects a `float64`.
 const x = 10
 fmt.Println(math.Sin(x)) // -0.5440211108893699

https://riptutorial.com/ 50

}

Playground

Multiple constants declaration

You can declare multiple constants within the same const block:

const (
 Alpha = "alpha"
 Beta = "beta"
 Gamma = "gamma"
)

And automatically increment constants with the iota keyword:

const (
 Zero = iota // Zero == 0
 One // One == 1
 Two // Two == 2
)

For more examples of using iota to declare constants, see Iota.

You can also declare multiple constants using the multiple assignment. However, this syntax may
be harder to read and it is generally avoided.

const Foo, Bar = "foo", "bar"

Typed vs. Untyped Constants

Constants in Go may be typed or untyped. For instance, given the following string literal:

"bar"

one might say that the type of the literal is string, however, this is not semantically correct.
Instead, literals are Untyped string constants. It is a string (more correctly, its default type is string
), but it is not a Go value and therefore has no type until it is assigned or used in a context that is
typed. This is a subtle distinction, but a useful one to understand.

Similarly, if we assign the literal to a constant:

const foo = "bar"

It remains untyped since, by default, constants are untyped. It is possible to declare it as a typed
string constant as well:

const typedFoo string = "bar"

https://riptutorial.com/ 51

https://play.golang.org/p/MI48yM88dE
http://www.riptutorial.com/go/topic/2865/iota

The difference comes into play when we attempt to assign these constants in a context that does
have type. For instance, consider the following:

var s string
s = foo // This works just fine
s = typedFoo // As does this

type MyString string
var mys MyString
mys = foo // This works just fine
mys = typedFoo // cannot use typedFoo (type string) as type MyString in assignment

Read Constants online: https://riptutorial.com/go/topic/1047/constants

https://riptutorial.com/ 52

https://riptutorial.com/go/topic/1047/constants

Chapter 14: Context

Syntax

type CancelFunc func()•
func Background() Context•
func TODO() Context•
func WithCancel(parent Context) (ctx Context, cancel CancelFunc)•
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)•
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)•
func WithValue(parent Context, key interface{}, val interface{})•

Remarks

The context package (in Go 1.7) or the golang.org/x/net/context package (Pre 1.7) is an interface
for creating contexts that can be used to carry request scoped values and deadlines across API
boundaries and between services, as well as a simple implementation of said interface.

aside: the word "context" is loosely used to refer to the entire tree, or to individual leaves in the
tree, eg. the actual context.Context values.

At a high level, a context is a tree. New leaves are added to the tree when they are constructed (a
context.Context with a parent value), and leaves are never removed from the tree. Any context has
access to all of the values above it (data access only flows upwards), and if any context is
canceled its children are also canceled (cancelation signals propogate downwards). The cancel
signal is implemented by means of a function that returns a channel which will be closed
(readable) when the context is canceled; this makes contexts a very efficient way to implement the
pipeline and cancellation concurrency pattern, or timeouts.

By convention, functions that take a context have the first argument ctx context.Context. While this
is just a convention, it's one that should be followed since many static analysis tools specifically
look for this argument. Since Context is an interface, it's also possible to turn existing context-like
data (values that are passed around throughout a request call chain) into a normal Go context and
use them in a backwards compatible way just by implementing a few methods. Furthermore,
contexts are safe for concurrent access so you can use them from many goroutines (whether
they're running on parallel threads or as concurrent coroutines) without fear.

Further Reading

https://blog.golang.org/context•

Examples

Context tree represented as a directed graph

https://riptutorial.com/ 53

https://blog.golang.org/pipelines
https://blog.golang.org/context

A simple context tree (containing some common values that might be request scoped and
included in a context) built from Go code like the following:

// Pseudo-Go
ctx := context.WithValue(
 context.WithDeadline(
 context.WithValue(context.Background(), sidKey, sid),
 time.Now().Add(30 * time.Minute),
),
 ridKey, rid,
)
trCtx := trace.NewContext(ctx, tr)
logCtx := myRequestLogging.NewContext(ctx, myRequestLogging.NewLogger())

Is a tree that can be represented as a directed graph that looks like this:

Each child context has access to the values of its parent contexts, so the data access flows
upwards in the tree (represented by black edges). Cancelation signals on the other hand travel
down the tree (if a context is canceled, all of its children are also canceled). The cancelation signal
flow is represented by the grey edges.

Using a context to cancel work

Passing a context with a timeout (or with a cancel function) to a long running function can be used
to cancel that functions work:

ctx, _ := context.WithTimeout(context.Background(), 200*time.Millisecond)

https://riptutorial.com/ 54

http://i.stack.imgur.com/R0CED.png

for {
 select {
 case <-ctx.Done():
 return ctx.Err()
 default:
 // Do an iteration of some long running work here!
 }
}

Read Context online: https://riptutorial.com/go/topic/2743/context

https://riptutorial.com/ 55

https://riptutorial.com/go/topic/2743/context

Chapter 15: Cross Compilation

Introduction

The Go compiler can produce binaries for many platforms, i.e. processors and systems. Unlike
with most other compilers, there is no specific requirement to cross-compiling, it is as easy to use
as regular compiling.

Syntax

GOOS=linux GOARCH=amd64 go build•

Remarks

Supported Operating System and Architecture target combinations (source)

$GOOS $GOARCH

android arm

darwin 386

darwin amd64

darwin arm

darwin arm64

dragonfly amd64

freebsd 386

freebsd amd64

freebsd arm

linux 386

linux amd64

linux arm

linux arm64

linux ppc64

linux ppc64le

https://riptutorial.com/ 56

https://golang.org/doc/install/source#environment

$GOOS $GOARCH

linux mips64

linux mips64le

netbsd 386

netbsd amd64

netbsd arm

openbsd 386

openbsd amd64

openbsd arm

plan9 386

plan9 amd64

solaris amd64

windows 386

windows amd64

Examples

Compile all architectures using a Makefile

This Makefile will cross compile and zip up executables for Windows, Mac and Linux (ARM and
x86).

Replace demo with your desired executable name
appname := demo

sources := $(wildcard *.go)

build = GOOS=$(1) GOARCH=$(2) go build -o build/$(appname)$(3)
tar = cd build && tar -cvzf $(1)_$(2).tar.gz $(appname)$(3) && rm $(appname)$(3)
zip = cd build && zip $(1)_$(2).zip $(appname)$(3) && rm $(appname)$(3)

.PHONY: all windows darwin linux clean

all: windows darwin linux

clean:
 rm -rf build/

LINUX BUILDS #####
linux: build/linux_arm.tar.gz build/linux_arm64.tar.gz build/linux_386.tar.gz

https://riptutorial.com/ 57

build/linux_amd64.tar.gz

build/linux_386.tar.gz: $(sources)
 $(call build,linux,386,)
 $(call tar,linux,386)

build/linux_amd64.tar.gz: $(sources)
 $(call build,linux,amd64,)
 $(call tar,linux,amd64)

build/linux_arm.tar.gz: $(sources)
 $(call build,linux,arm,)
 $(call tar,linux,arm)

build/linux_arm64.tar.gz: $(sources)
 $(call build,linux,arm64,)
 $(call tar,linux,arm64)

DARWIN (MAC) BUILDS #####
darwin: build/darwin_amd64.tar.gz

build/darwin_amd64.tar.gz: $(sources)
 $(call build,darwin,amd64,)
 $(call tar,darwin,amd64)

WINDOWS BUILDS #####
windows: build/windows_386.zip build/windows_amd64.zip

build/windows_386.zip: $(sources)
 $(call build,windows,386,.exe)
 $(call zip,windows,386,.exe)

build/windows_amd64.zip: $(sources)
 $(call build,windows,amd64,.exe)
 $(call zip,windows,amd64,.exe)

(be cautious that Makefile's need hard tabs not spaces)

Simple cross compilation with go build

From your project directory, run the go build command and specify the operating system and
architecture target with the GOOS and GOARCH environment variables:

Compiling for Mac (64-bit):

GOOS=darwin GOARCH=amd64 go build

Compiling for Windows x86 processor:

GOOS=windows GOARCH=386 go build

You might also want to set the filename of the output executable manually to keep track of the
architecture:

GOOS=windows GOARCH=386 go build -o appname_win_x86.exe

https://riptutorial.com/ 58

http://stackoverflow.com/a/16945143/1462575

From version 1.7 and onwards you can get a list of all possible GOOS and GOARCH
combinations with:

go tool dist list

(or for easier machine consumption go tool dist list -json)

Cross compilation by using gox

Another convenient solution for cross compilation is the usage of gox:
https://github.com/mitchellh/gox

Installation

The installation is done very easily by executing go get github.com/mitchellh/gox. The resulting
executable gets placed at Go's binary directory, e.g. /golang/bin or ~/golang/bin. Ensure that this
folder is part of your path in order to use the gox command from an arbitrary location.

Usage

From within a Go project's root folder (where you perform e.g. go build), execute gox in order to
build all possible binaries for any architecture (e.g. x86, ARM) and operating system (e.g. Linux,
macOS, Windows) which is available.

In order to build for a certain operating system, use e.g. gox -os="linux" instead. Also the
architecture option could be defined: gox -osarch="linux/amd64".

Simple Example: Compile helloworld.go for arm architecture on Linux
machine

Prepare helloworld.go (find below)

package main

import "fmt"

func main(){
 fmt.Println("hello world")
}

Run GOOS=linux GOARCH=arm go build helloworld.go

Copy generated helloworld (arm executable) file to your target machine.

Read Cross Compilation online: https://riptutorial.com/go/topic/1020/cross-compilation

https://riptutorial.com/ 59

https://github.com/mitchellh/gox
https://riptutorial.com/go/topic/1020/cross-compilation

Chapter 16: Cryptography

Introduction

Find out how to encrypt and decrypt data with Go. Keep in mind that this is not a course about
cryptography but rather how to achieve it with Go.

Examples

Encryption and decryption

Foreword

This is a detailed example about how to encrypt and decrypt data with Go. The uses code is
shorten, e.g. the error handling is not mentioned. The full working project with error handling and
user interface could be found on Github here.

Encryption

Introduction and data

This example describes a full working encryption and decryption in Go. In order to do so, we need
a data. In this example, we use our own data structure secret:

type secret struct {
 DisplayName string
 Notes string
 Username string
 EMail string
 CopyMethod string
 Password string
 CustomField01Name string
 CustomField01Data string
 CustomField02Name string
 CustomField02Data string
 CustomField03Name string
 CustomField03Data string
 CustomField04Name string
 CustomField04Data string
 CustomField05Name string
 CustomField05Data string
 CustomField06Name string
 CustomField06Data string
}

https://riptutorial.com/ 60

https://github.com/SommerEngineering/PasswordManager/blob/master/EncryptFile.go

Next, we want to encrypt such a secret. The full working example could be found here (link to
Github). Now, the step-by-step process:

Step 1

First of all, we need a kind of master password to protected the secret: masterPassword := "PASS"

Step 2

All the crypto methods working with bytes instead of strings. Thus, we construct a byte array with
the data from our secret.

secretBytesDecrypted :=
[]byte(fmt.Sprintf("%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n",
 artifact.DisplayName,
 strings.Replace(artifact.Notes, "\n", string(65000), -1),
 artifact.Username,
 artifact.EMail,
 artifact.CopyMethod,
 artifact.Password,
 artifact.CustomField01Name,
 artifact.CustomField01Data,
 artifact.CustomField02Name,
 artifact.CustomField02Data,
 artifact.CustomField03Name,
 artifact.CustomField03Data,
 artifact.CustomField04Name,
 artifact.CustomField04Data,
 artifact.CustomField05Name,
 artifact.CustomField05Data,
 artifact.CustomField06Name,
 artifact.CustomField06Data,
))

Step 3

We create some salt in order to prevent rainbow table attacks, cf. Wikipedia: saltBytes :=
uuid.NewV4().Bytes(). Here, we use an UUID v4 which is not predictable.

Step 4

Now, we are able to derive a key and a vector out of the master password and the random salt,
regarding RFC 2898:

keyLength := 256
rfc2898Iterations := 6

keyVectorData := pbkdf2.Key(masterPassword, saltBytes, rfc2898Iterations,
(keyLength/8)+aes.BlockSize, sha1.New)
keyBytes := keyVectorData[:keyLength/8]
vectorBytes := keyVectorData[keyLength/8:]

https://riptutorial.com/ 61

https://github.com/SommerEngineering/PasswordManager/blob/master/EncryptFile.go
https://github.com/SommerEngineering/PasswordManager/blob/master/EncryptFile.go
https://en.wikipedia.org/wiki/Salt_(cryptography)

Step 5

The desired CBC mode works with whole blocks. Thus, we have to check if our data is aligned to
a full block. If not, we have to pad it:

if len(secretBytesDecrypted)%aes.BlockSize != 0 {
 numberNecessaryBlocks := int(math.Ceil(float64(len(secretBytesDecrypted)) /
float64(aes.BlockSize)))
 enhanced := make([]byte, numberNecessaryBlocks*aes.BlockSize)
 copy(enhanced, secretBytesDecrypted)
 secretBytesDecrypted = enhanced
}

Step 6

Now we create an AES cipher: aesBlockEncrypter, aesErr := aes.NewCipher(keyBytes)

Step 7

We reserve the necessary memory for the encrypted data: encryptedData := make([]byte,
len(secretBytesDecrypted)). In case of AES-CBC, the encrypted data had the same length as the
unencrypted data.

Step 8

Now, we should create the encrypter and encrypt the data:

aesEncrypter := cipher.NewCBCEncrypter(aesBlockEncrypter, vectorBytes)
aesEncrypter.CryptBlocks(encryptedData, secretBytesDecrypted)

Now, the encrypted data is inside the encryptedData variable.

Step 9

The encrypted data must be stored. But not only the data: Without the salt, the encrypted data
could not be decrypted. Thus, we must use some kind of file format to manage this. Here, we
encode the encrypted data as base64, cf. Wikipedia:

encodedBytes := make([]byte, base64.StdEncoding.EncodedLen(len(encryptedData)))
base64.StdEncoding.Encode(encodedBytes, encryptedData)

Next, we define our file content and our own file format. The format looks like this: salt[0x10]base64
content. First, we store the salt. In order to mark the beginning of the base64 content, we store the
byte 10. This works, because base64 does not use this value. Therefore, we could find the start of
base64 by search the first occurrence of 10 from the end to the beginning of the file.

https://riptutorial.com/ 62

https://en.wikipedia.org/wiki/Base64

fileContent := make([]byte, len(saltBytes))
copy(fileContent, saltBytes)
fileContent = append(fileContent, 10)
fileContent = append(fileContent, encodedBytes...)

Step 10

Finally, we could write our file: writeErr := ioutil.WriteFile("my secret.data", fileContent, 0644).

Decryption

Introduction and data

As for encryption, we need some data to work with. Thus, we assume we have an encrypted file
and the mentioned structure secret. The goal is to read the encrypted data from the file, decrypt it,
and create an instance of the structure.

Step 1

The first step is identical to the encryption: We need a kind of master password to decrypt the
secret: masterPassword := "PASS".

Step 2

Now, we read the encrypted data from file: encryptedFileData, bytesErr :=
ioutil.ReadFile(filename).

Step 3

As mentioned before, we could split salt and encrypted data by the delimiter byte 10, searched
backwards from the end to the beginning:

for n := len(encryptedFileData) - 1; n > 0; n-- {
 if encryptedFileData[n] == 10 {
 saltBytes = encryptedFileData[:n]
 encryptedBytesBase64 = encryptedFileData[n+1:]
 break
 }
}

Step 4

Next, we must decode the base64 encoded bytes:

https://riptutorial.com/ 63

decodedBytes := make([]byte, len(encryptedBytesBase64))
countDecoded, decodedErr := base64.StdEncoding.Decode(decodedBytes, encryptedBytesBase64)
encryptedBytes = decodedBytes[:countDecoded]

Step 5

Now, we are able to derive a key and a vector out of the master password and the random salt,
regarding RFC 2898:

keyLength := 256
rfc2898Iterations := 6

keyVectorData := pbkdf2.Key(masterPassword, saltBytes, rfc2898Iterations,
(keyLength/8)+aes.BlockSize, sha1.New)
keyBytes := keyVectorData[:keyLength/8]
vectorBytes := keyVectorData[keyLength/8:]

Step 6

Create an AES cipher: aesBlockDecrypter, aesErr := aes.NewCipher(keyBytes).

Step 7

Reserve the necessary memory for the decrypted data: decryptedData := make([]byte,
len(encryptedBytes)). By definition, it has the same length as the encrypted data.

Step 8

Now, create the decrypter and decrypt the data:

aesDecrypter := cipher.NewCBCDecrypter(aesBlockDecrypter, vectorBytes)
aesDecrypter.CryptBlocks(decryptedData, encryptedBytes)

Step 9

Convert the read bytes to string: decryptedString := string(decryptedData). Because we need
lines, split the string: lines := strings.Split(decryptedString, "\n").

Step 10

Construct a secret out of the lines:

artifact := secret{}
artifact.DisplayName = lines[0]
artifact.Notes = lines[1]
artifact.Username = lines[2]

https://riptutorial.com/ 64

artifact.EMail = lines[3]
artifact.CopyMethod = lines[4]
artifact.Password = lines[5]
artifact.CustomField01Name = lines[6]
artifact.CustomField01Data = lines[7]
artifact.CustomField02Name = lines[8]
artifact.CustomField02Data = lines[9]
artifact.CustomField03Name = lines[10]
artifact.CustomField03Data = lines[11]
artifact.CustomField04Name = lines[12]
artifact.CustomField04Data = lines[13]
artifact.CustomField05Name = lines[14]
artifact.CustomField05Data = lines[15]
artifact.CustomField06Name = lines[16]
artifact.CustomField06Data = lines[17]

Finally, re-create the line breaks within the notes field: artifact.Notes =
strings.Replace(artifact.Notes, string(65000), "\n", -1).

Read Cryptography online: https://riptutorial.com/go/topic/10065/cryptography

https://riptutorial.com/ 65

https://riptutorial.com/go/topic/10065/cryptography

Chapter 17: Defer

Introduction

A defer statement pushes a function call onto a list. The list of saved calls is executed after the
surrounding function returns. Defer is commonly used to simplify functions that perform various
clean-up actions.

Syntax

defer someFunc(args)•
defer func(){ //code goes here }()•

Remarks

Defer works by injecting a new stack frame (the called function after the defer keyword) into the
call stack below the currently executing function. This means that defer is guaranteed to run as
long as the stack will be unwound (if your program crashes or gets a SIGKILL, defer will not
execute).

Examples

Defer Basics

A defer statement in Go is simply a function call marked to be executed at a later time. Defer
statement is an ordinary function call prefixed by the keyword defer.

defer someFunction()

A deferred function is executed once the function that contains the defer statement returns. Actual
call to the deferred function occurs when the enclosing function:

executes a return statement•
falls off the end•
panics•

Example:

func main() {
 fmt.Println("First main statement")
 defer logExit("main") // position of defer statement here does not matter
 fmt.Println("Last main statement")
}

func logExit(name string) {
 fmt.Printf("Function %s returned\n", name)

https://riptutorial.com/ 66

}

Output:

First main statement
Last main statement
Function main returned

If a function has multiple deferred statements, they form a stack. The last defer is the first one to
execute after the enclosing function returns, followed by subsequent calls to preceding defers in
order (below example returns by causing a panic):

func main() {
 defer logNum(1)
 fmt.Println("First main statement")
 defer logNum(2)
 defer logNum(3)
 panic("panic occurred")
 fmt.Println("Last main statement") // not printed
 defer logNum(3) // not deferred since execution flow never reaches this line
}

func logNum(i int) {
 fmt.Printf("Num %d\n", i)
}

Output:

First main statement
Num 3
Num 2
Num 1
panic: panic occurred

goroutine 1 [running]:
....

Note that deferred functions have their arguments evaluated at the time defer executes:

func main() {
 i := 1
 defer logNum(i) // deferred function call: logNum(1)
 fmt.Println("First main statement")
 i++
 defer logNum(i) // deferred function call: logNum(2)
 defer logNum(i*i) // deferred function call: logNum(4)
 return // explicit return
}

func logNum(i int) {
 fmt.Printf("Num %d\n", i)
}

Output:

https://riptutorial.com/ 67

First main statement
Num 4
Num 2
Num 1

If a function has named return values, a deferred anonymous function within that function can
access and update the returned value even after the function has returned:

func main() {
 fmt.Println(plusOne(1)) // 2
 return
}

func plusOne(i int) (result int) { // overkill! only for demonstration
 defer func() {result += 1}() // anonymous function must be called by adding ()

 // i is returned as result, which is updated by deferred function above
 // after execution of below return
 return i
}

Finally, a defer statement is generally used operations that often occur together. For example:

open and close a file•
connect and disconnect•
lock and unlock a mutex•
mark a waitgroup as done (defer wg.Done())•

This use ensures proper release of system resources irrespective of the flow of execution.

resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close() // Body will always get closed

Deferred Function Calls

Deferred function calls serve a similar purpose to things like finally blocks in languages like Java:
they ensure that some function will be executed when the outer function returns, regardless of if
an error occurred or which return statement was hit in cases with multiple returns. This is useful for
cleaning up resources that must be closed like network connections or file pointers. The defer
keyword indicates a deferred function call, similarly to the go keyword initiating a new goroutine.
Like a go call, function arguments are evaluated immediately, but unlike a go call, deferred
functions are not executed concurrently.

func MyFunc() {
 conn := GetConnection() // Some kind of connection that must be closed.
 defer conn.Close() // Will be executed when MyFunc returns, regardless of how.
 // Do some things...
 if someCondition {
 return // conn.Close() will be called

https://riptutorial.com/ 68

 }
 // Do more things
}// Implicit return - conn.Close() will still be called

Note the use of conn.Close() instead of conn.Close - you're not just passing in a function, you're
deferring a full function call, including its arguments. Multiple function calls can be deferred in the
same outer function, and each will be executed once in reverse order. You can also defer closures
- just don't forget the parens!

defer func(){
 // Do some cleanup
}()

Read Defer online: https://riptutorial.com/go/topic/2795/defer

https://riptutorial.com/ 69

https://riptutorial.com/go/topic/2795/defer

Chapter 18: Developing for Multiple Platforms
with Conditional Compiling

Introduction

Platform based conditional compiling comes in two forms in Go, one is with file suffixes and the
other is with build tags.

Syntax

After "// +build", a single platform or a list can follow•
Platform can be reverted by preceding it by ! sign•
List of space separated platforms are ORed together•

Remarks

Caveats for build tags:

The // +build constraint must be placed at the top of the file, even before package clause.•
It must be followed by one blank line to separate from package comments.•

List of valid platforms for both build tags and file suffixes

android

darwin

dragonfly

freebsd

linux

netbsd

openbsd

plan9

solaris

windows

Refer to $GOOS list in https://golang.org/doc/install/source#environment for the most up-to-date
platform list.

https://riptutorial.com/ 70

https://golang.org/doc/install/source#environment

Examples

Build tags

// +build linux

package lib

var OnlyAccessibleInLinux int // Will only be compiled in Linux

Negate a platform by placing ! before it:

// +build !windows

package lib

var NotWindows int // Will be compiled in all platforms but not Windows

List of platforms can be specified by separating them with spaces

// +build linux darwin plan9

package lib

var SomeUnix int // Will be compiled in linux, darwin and plan9 but not on others

File suffix

If you name your file lib_linux.go, all the content in that file will only be compiled in linux
environments:

package lib

var OnlyCompiledInLinux string

Defining separate behaviours in different platforms

Different platforms can have separate implementations of the same method. This example also
illustrates how build tags and file suffixes can be used together.

File main.go:

package main

import "fmt"

func main() {
 fmt.Println("Hello World from Conditional Compilation Doc!")
 printDetails()
}

https://riptutorial.com/ 71

details.go:

// +build !windows

package main

import "fmt"

func printDetails() {
 fmt.Println("Some specific details that cannot be found on Windows")
}

details_windows.go:

package main

import "fmt"

func printDetails() {
 fmt.Println("Windows specific details")
}

Read Developing for Multiple Platforms with Conditional Compiling online:
https://riptutorial.com/go/topic/8599/developing-for-multiple-platforms-with-conditional-compiling

https://riptutorial.com/ 72

https://riptutorial.com/go/topic/8599/developing-for-multiple-platforms-with-conditional-compiling

Chapter 19: Error Handling

Introduction

In Go, unexpected situations are handled using errors, not exceptions. This approach is more
similar to that of C, using errno, than to that of Java or other object-oriented languages, with their
try/catch blocks. However, an error is not an integer but an interface.

A function that may fail typically returns an error as its last return value. If this error is not nil,
something went wrong, and the caller of the function should take action accordingly.

Remarks

Note how in Go you don't raise an error. Instead, you return an error in case of failure.

If a function can fail, the last returned value is generally an error type.

// This method doesn't fail
func DoSomethingSafe() {
}

// This method can fail
func DoSomething() (error) {
}

// This method can fail and, when it succeeds,
// it returns a string.
func DoAndReturnSomething() (string, error) {
}

Examples

Creating an error value

The simplest way to create an error is by using the errors package.

errors.New("this is an error")

If you want to add additional information to an error, the fmt package also provides a useful error
creation method:

var f float64
fmt.Errorf("error with some additional information: %g", f)

Here's a full example, where the error is returned from a function:

package main

https://riptutorial.com/ 73

https://golang.org/pkg/errors/
https://golang.org/pkg/fmt/

import (
 "errors"
 "fmt"
)

var ErrThreeNotFound = errors.New("error 3 is not found")

func main() {
 fmt.Println(DoSomething(1)) // succeeds! returns nil
 fmt.Println(DoSomething(2)) // returns a specific error message
 fmt.Println(DoSomething(3)) // returns an error variable
 fmt.Println(DoSomething(4)) // returns a simple error message
}

func DoSomething(someID int) error {
 switch someID {
 case 3:
 return ErrThreeNotFound
 case 2:
 return fmt.Errorf("this is an error with extra info: %d", someID)
 case 1:
 return nil
 }

 return errors.New("this is an error")
}

Open in Playground

Creating a custom error type

In Go, an error is represented by any value that can describe itself as string. Any type that
implement the built-in error interface is an error.

// The error interface is represented by a single
// Error() method, that returns a string representation of the error
type error interface {
 Error() string
}

The following example shows how to define a new error type using a string composite literal.

// Define AuthorizationError as composite literal
type AuthorizationError string

// Implement the error interface
// In this case, I simply return the underlying string
func (e AuthorizationError) Error() string {
 return string(e)
}

I can now use my custom error type as error:

package main

https://riptutorial.com/ 74

https://play.golang.org/p/4xlwXJo2m0

import (
 "fmt"
)

// Define AuthorizationError as composite literal
type AuthorizationError string

// Implement the error interface
// In this case, I simply return the underlying string
func (e AuthorizationError) Error() string {
 return string(e)
}

func main() {
 fmt.Println(DoSomething(1)) // succeeds! returns nil
 fmt.Println(DoSomething(2)) // returns an error message
}

func DoSomething(someID int) error {
 if someID != 1 {
 return AuthorizationError("Action not allowed!")
 }

 // do something here

 // return a nil error if the execution succeeded
 return nil
}

Returning an error

In Go you don't raise an error. Instead, you return an error in case of failure.

// This method can fail
func DoSomething() error {
 // functionThatReportsOK is a side-effecting function that reports its
 // state as a boolean. NOTE: this is not a good practice, so this example
 // turns the boolean value into an error. Normally, you'd rewrite this
 // function if it is under your control.
 if ok := functionThatReportsOK(); !ok {
 return errors.New("functionThatReportsSuccess returned a non-ok state")
 }

 // The method succeeded. You still have to return an error
 // to properly obey to the method signature.
 // But in this case you return a nil error.
 return nil
}

If the method returns multiple values (and the execution can fail), then the standard convention is
to return the error as the last argument.

// This method can fail and, when it succeeds,
// it returns a string.
func DoAndReturnSomething() (string, error) {
 if os.Getenv("ERROR") == "1" {
 return "", errors.New("The method failed")

https://riptutorial.com/ 75

 }

 s := "Success!"

 // The method succeeded.
 return s, nil
}

result, err := DoAndReturnSomething()
if err != nil {
 panic(err)
}

Handling an error

In Go errors can be returned from a function call. The convention is that if a method can fail, the
last returned argument is an error.

func DoAndReturnSomething() (string, error) {
 if os.Getenv("ERROR") == "1" {
 return "", errors.New("The method failed")
 }

 // The method succeeded.
 return "Success!", nil
}

You use multiple variable assignments to check if the method failed.

result, err := DoAndReturnSomething()
if err != nil {
 panic(err)
}

// This is executed only if the method didn't return an error
fmt.Println(result)

If you are not interested in the error, you can simply ignore it by assigning it to _.

result, _ := DoAndReturnSomething()
fmt.Println(result)

Of course, ignoring an error can have serious implications. Therefore, this is generally not
recommended.

If you have multiple method calls, and one or more methods in the chain may return an error, you
should propagate the error to the first level that can handle it.

func Foo() error {
 return errors.New("I failed!")
}

func Bar() (string, error) {
 err := Foo()

https://riptutorial.com/ 76

 if err != nil {
 return "", err
 }

 return "I succeeded", nil
}

func Baz() (string, string, error) {
 res, err := Bar()
 if err != nil {
 return "", "", err
 }

 return "Foo", "Bar", nil
}

Recovering from panic

A common mistake is to declare a slice and start requesting indexes from it without initializing it,
which leads to an "index out of range" panic. The following code explains how to recover from the
panic without exiting the program, which is the normal behavior for a panic. In most situations,
returning an error in this fashion rather than exiting the program on a panic is only useful for
development or testing purposes.

type Foo struct {
 Is []int
}

func main() {
 fp := &Foo{}
 if err := fp.Panic(); err != nil {
 fmt.Printf("Error: %v", err)
 }
 fmt.Println("ok")
}

func (fp *Foo) Panic() (err error) {
 defer PanicRecovery(&err)
 fp.Is[0] = 5
 return nil
}

func PanicRecovery(err *error) {

 if r := recover(); r != nil {
 if _, ok := r.(runtime.Error); ok {
 //fmt.Println("Panicing")
 //panic(r)
 *err = r.(error)
 } else {
 *err = r.(error)
 }
 }
}

The use of a separate function (rather than closure) allows re-use of the same function in other
functions prone to panic.

https://riptutorial.com/ 77

Read Error Handling online: https://riptutorial.com/go/topic/785/error-handling

https://riptutorial.com/ 78

https://riptutorial.com/go/topic/785/error-handling

Chapter 20: Executing Commands

Examples

Timing Out with Interrupt and then Kill

c := exec.Command(name, arg...)
b := &bytes.Buffer{}
c.Stdout = b
c.Stdin = stdin
if err := c.Start(); err != nil {
 return nil, err
}
timedOut := false
intTimer := time.AfterFunc(timeout, func() {
 log.Printf("Process taking too long. Interrupting: %s %s", name, strings.Join(arg, " "))
 c.Process.Signal(os.Interrupt)
 timedOut = true
})
killTimer := time.AfterFunc(timeout*2, func() {
 log.Printf("Process taking too long. Killing: %s %s", name, strings.Join(arg, " "))
 c.Process.Signal(os.Kill)
 timedOut = true
})
err := c.Wait()
intTimer.Stop()
killTimer.Stop()
if timedOut {
 log.Print("the process timed out\n")
}

Simple Command Execution

// Execute a command a capture standard out. exec.Command creates the command
// and then the chained Output method gets standard out. Use CombinedOutput()
// if you want both standard out and standerr output
out, err := exec.Command("echo", "foo").Output()
if err != nil {
 log.Fatal(err)
}

Executing a Command then Continue and Wait

cmd := exec.Command("sleep", "5")

// Does not wait for command to complete before returning
err := cmd.Start()
if err != nil {
 log.Fatal(err)
}

// Wait for cmd to Return
err = cmd.Wait()

https://riptutorial.com/ 79

log.Printf("Command finished with error: %v", err)

Running a Command twice

A Cmd cannot be reused after calling its Run, Output or CombinedOutput methods

Running a command twice will not work:

cmd := exec.Command("xte", "key XF86AudioPlay")
_ := cmd.Run() // Play audio key press
// .. do something else
err := cmd.Run() // Pause audio key press, fails

Error: exec: already started

Rather, one must use two separate exec.Command. You might also need some delay between
commands.

cmd := exec.Command("xte", "key XF86AudioPlay")
_ := cmd.Run() // Play audio key press
// .. wait a moment
cmd := exec.Command("xte", "key XF86AudioPlay")
_ := cmd.Run() // Pause audio key press

Read Executing Commands online: https://riptutorial.com/go/topic/1097/executing-commands

https://riptutorial.com/ 80

https://riptutorial.com/go/topic/1097/executing-commands

Chapter 21: File I/O

Syntax

file, err := os.Open(name) // Opens a file in read-only mode. A non-nil error is returned if the
file could not be opened.

•

file, err := os.Create(name) // Creates or opens a file if it already exists in write-only mode.
The file is overwritten to if it already exists. A non-nil error is returned if the file could not be
opened.

•

file, err := os.OpenFile(name, flags, perm) // Opens a file in the mode specified by the flags.
A non-nil error is returned if the file could not be opened.

•

data, err := ioutil.ReadFile(name) // Reads the entire file and returns it. A non-nil error is
returned if the entire file could not be read.

•

err := ioutil.WriteFile(name, data, perm) // Creates or overwrites a file with the provided data
and UNIX permission bits. A non-nil error is returned if the file failed to be written to.

•

err := os.Remove(name) // Deletes a file. A non-nil error is returned if the file could not be
deleted.

•

err := os.RemoveAll(name) // Deletes a file or whole directory hierarchy. A non-nil error is
returned if the file or directory could not be deleted.

•

err := os.Rename(oldName, newName) // Renames or moves a file (can be across
directories). A non-nil error is returned if the file could not be moved.

•

Parameters

Parameter Details

name A filename or path of type string. For example: "hello.txt".

err
An error. If not nil, it represents an error that occurred when the function was
called.

file

A file handler of type *os.File returned by the os package file related functions.
It implements an io.ReadWriter, meaning you can call Read(data) and Write(data)
on it. Note that these functions may not be able to be called depending on the
open flags of the file.

data A slice of bytes ([]byte) representing the raw data of a file.

perm
The UNIX permission bits used to open a file with of type os.FileMode. Several
constants are available to help with the use of permission bits.

flag

File open flags that determine the methods that can be called on the file handler
of type int. Several constants are available to help with the use of flags. They
are: os.O_RDONLY, os.O_WRONLY, os.O_RDWR, os.O_APPEND, os.O_CREATE, os.O_EXCL,
os.O_SYNC, and os.O_TRUNC.

https://riptutorial.com/ 81

Examples

Reading and writing to a file using ioutil

A simple program that writes "Hello, world!" to test.txt, reads back the data, and prints it out.
Demonstrates simple file I/O operations.

package main

import (
 "fmt"
 "io/ioutil"
)

func main() {
 hello := []byte("Hello, world!")

 // Write `Hello, world!` to test.txt that can read/written by user and read by others
 err := ioutil.WriteFile("test.txt", hello, 0644)
 if err != nil {
 panic(err)
 }

 // Read test.txt
 data, err := ioutil.ReadFile("test.txt")
 if err != nil {
 panic(err)
 }

 // Should output: `The file contains: Hello, world!`
 fmt.Println("The file contains: " + string(data))
}

Listing all the files and folders in the current directory

package main

import (
 "fmt"
 "io/ioutil"
)

func main() {
 files, err := ioutil.ReadDir(".")
 if err != nil {
 panic(err)
 }

 fmt.Println("Files and folders in the current directory:")

 for _, fileInfo := range files {
 fmt.Println(fileInfo.Name())
 }
}

https://riptutorial.com/ 82

Listing all folders in the current directory

package main

import (
 "fmt"
 "io/ioutil"
)

func main() {
 files, err := ioutil.ReadDir(".")
 if err != nil {
 panic(err)
 }

 fmt.Println("Folders in the current directory:")

 for _, fileInfo := range files {
 if fileInfo.IsDir() {
 fmt.Println(fileInfo.Name())
 }
 }
}

Read File I/O online: https://riptutorial.com/go/topic/1033/file-i-o

https://riptutorial.com/ 83

https://riptutorial.com/go/topic/1033/file-i-o

Chapter 22: Fmt

Examples

Stringer

The fmt.Stringer interface requires a single method, String() string to be satisfied. The string
method defines the "native" string format for that value, and is the default representation if the
value is provided to any of the fmt packages formatting or printing routines.

package main

import (
 "fmt"
)

type User struct {
 Name string
 Email string
}

// String satisfies the fmt.Stringer interface for the User type
func (u User) String() string {
 return fmt.Sprintf("%s <%s>", u.Name, u.Email)
}

func main() {
 u := User{
 Name: "John Doe",
 Email: "johndoe@example.com",
 }

 fmt.Println(u)
 // output: John Doe <johndoe@example.com>
}

Playground

Basic fmt

Package fmt implements formatted I/O using format verbs:

%v // the value in a default format
%T // a Go-syntax representation of the type of the value
%s // the uninterpreted bytes of the string or slice

Format Functions

There are 4 main function types in fmt and several variations within.

https://riptutorial.com/ 84

https://play.golang.org/p/Cew5S4nl94

Print

fmt.Print("Hello World") // prints: Hello World
fmt.Println("Hello World") // prints: Hello World\n
fmt.Printf("Hello %s", "World") // prints: Hello World

Sprint

formattedString := fmt.Sprintf("%v %s", 2, "words") // returns string "2 words"

Fprint

byteCount, err := fmt.Fprint(w, "Hello World") // writes to io.Writer w

Fprint can be used, inside http handlers:

func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello %s!", "Browser")
} // Writes: "Hello Browser!" onto http response

Scan

Scan scans text read from standard input.

var s string
fmt.Scanln(&s) // pass pointer to buffer
// Scanln is similar to fmt.Scan(), but it stops scanning at new line.
fmt.Println(s) // whatever was inputted

Stringer Interface

Any value which has a String() method implements the fmt inteface Stringer

type Stringer interface {
 String() string
}

Read Fmt online: https://riptutorial.com/go/topic/2938/fmt

https://riptutorial.com/ 85

https://riptutorial.com/go/topic/2938/fmt

Chapter 23: Functions

Introduction

Functions in Go provide organized, reusable code to perform a set of actions. Functions simplify
the coding process, prevent redundant logic, and make code easier to follow. This topic describes
the declaration and utilization of functions, arguments, parameters, return statements and scopes
in Go.

Syntax

func() // function type with no arguments and no return value•
func(x int) int // accepts integer and returns an integer•
func(a, b int, z float32) bool // accepts 2 integers, one float and returns a boolean•
func(prefix string, values ...int) // "variadic" function which accepts one string and one or
more number of integers

•

func() (int, bool) // function returning two values•
func(a, b int, z float64, opt ...interface{}) (success bool) // accepts 2 integers, one float and
one or more number of interfaces and returns named boolean value (which is already
initialized inside of function)

•

Examples

Basic Declaration

A simple function that does not accept any parameters and does not return any values:

func SayHello() {
 fmt.Println("Hello!")
}

Parameters

A function can optionally declare a set of parameters:

func SayHelloToMe(firstName, lastName string, age int) {
 fmt.Printf("Hello, %s %s!\n", firstName, lastName)
 fmt.Printf("You are %d", age)
}

Notice that the type for firstName is omitted because it is identical to lastName.

Return Values

A function can return one or more values to the caller:

https://riptutorial.com/ 86

func AddAndMultiply(a, b int) (int, int) {
 return a+b, a*b
}

The second return value can also be the error var :

import errors

func Divide(dividend, divisor int) (int, error) {
 if divisor == 0 {
 return 0, errors.New("Division by zero forbidden")
 }
 return dividend / divisor, nil
}

Two important things must be noted:

The parenthesis may be omitted for a single return value.•
Each return statement must provide a value for all declared return values.•

Named Return Values

Return values can be assigned to a local variable. An empty return statement can then be used to
return their current values. This is known as "naked" return. Naked return statements should be
used only in short functions as they harm readability in longer functions:

func Inverse(v float32) (reciprocal float32) {
 if v == 0 {
 return
 }
 reciprocal = 1 / v
 return
}

play it on playground

//A function can also return multiple values
func split(sum int) (x, y int) {
 x = sum * 4 / 9
 y = sum - x
 return
}

play it on playground

Two important things must be noted:

The parenthesis around the return values are mandatory.•
An empty return statement must always be provided.•

Literal functions & closures

https://riptutorial.com/ 87

https://play.golang.org/p/dS_bGmP6W0
https://play.golang.org/p/upOAwpOaue

A simple literal function, printing Hello! to stdout:

package main

import "fmt"

func main() {
 func(){
 fmt.Println("Hello!")
 }()
}

play it on playground

A literal function, printing the str argument to stdout:

package main

import "fmt"

func main() {
 func(str string) {
 fmt.Println(str)
 }("Hello!")
}

play it on playground

A literal function, closing over the variable str:

package main

import "fmt"

func main() {
 str := "Hello!"
 func() {
 fmt.Println(str)
 }()
}

play it on playground

It is possible to assign a literal function to a variable:

package main

import (
 "fmt"
)

func main() {

https://riptutorial.com/ 88

https://play.golang.org/p/upOAwpOaue
https://play.golang.org/p/jz-5wpEkY2
https://play.golang.org/p/j6ZgyAna7l

 str := "Hello!"
 anon := func() {
 fmt.Println(str)
 }
 anon()
}

play it on playground

Variadic functions

A variadic function can be called with any number of trailing arguments. Those elements are
stored in a slice.

package main

import "fmt"

func variadic(strs ...string) {
 // strs is a slice of string
 for i, str := range strs {
 fmt.Printf("%d: %s\n", i, str)
 }
}

func main() {
 variadic("Hello", "Goodbye")
 variadic("Str1", "Str2", "Str3")
}

play it on playground

You can also give a slice to a variadic function, with ...:

func main() {
 strs := []string {"Str1", "Str2", "Str3"}

 variadic(strs...)
}

play it on playground

Read Functions online: https://riptutorial.com/go/topic/373/functions

https://riptutorial.com/ 89

https://play.golang.org/p/Ick7RmdTFb
https://play.golang.org/p/rnzg1yK_Va
https://play.golang.org/p/gl4L5R9v8_
https://riptutorial.com/go/topic/373/functions

Chapter 24: Getting Started With Go Using
Atom

Introduction

After installing go (http://www.riptutorial.com/go/topic/198/getting-started-with-go) you'll need an
environment. An efficient and free way to get you started is using Atom text editor (https://atom.io)
and gulp. A question that maybe crossed your mind is why use gulp?.We need gulp for auto-
completion. Let's get Started!

Examples

Get, Install And Setup Atom & Gulp

Install Atom. You can get atom from here1.
Go to Atom settings (ctrl+,). Packages -> Install go-plus package (go-plus)2.

After Installing go-plus in Atom:

https://riptutorial.com/ 90

http://www.riptutorial.com/go/topic/198/getting-started-with-go
https://atom.io
https://github.com/atom/atom/releases/tag/v1.12.7
https://atom.io/packages/go-plus

Get these dependencies using go get or another dependency manager: (open a console and
run these commands)

3.

go get -u golang.org/x/tools/cmd/goimports

https://riptutorial.com/ 91

https://i.stack.imgur.com/HSbug.png

go get -u golang.org/x/tools/cmd/gorename

go get -u github.com/sqs/goreturns

go get -u github.com/nsf/gocode

go get -u github.com/alecthomas/gometalinter

go get -u github.com/zmb3/gogetdoc

go get -u github.com/rogpeppe/godef

go get -u golang.org/x/tools/cmd/guru

Install Gulp (Gulpjs) using npm or any other package manager (gulp-getting-started-doc):4.

$ npm install --global gulp

Create $GO_PATH/gulpfile.js

var gulp = require('gulp');
var path = require('path');
var shell = require('gulp-shell');

var goPath = 'src/mypackage/**/*.go';

gulp.task('compilepkg', function() {
 return gulp.src(goPath, {read: false})
 .pipe(shell(['go install <%= stripPath(file.path) %>'],
 {
 templateData: {
 stripPath: function(filePath) {
 var subPath = filePath.substring(process.cwd().length + 5);
 var pkg = subPath.substring(0, subPath.lastIndexOf(path.sep));
 return pkg;
 }
 }
 })
);
});

gulp.task('watch', function() {
 gulp.watch(goPath, ['compilepkg']);
});

In the code above we defined a compliepkg task that will be triggered every time any go file in
goPath (src/mypackage/) or subdirectories changes. the task will run the shell command go install
changed_file.go

After creating the gulp file in go path and define the task open a command line and run:

gulp watch

You'll se something like this everytime any file changes:

https://riptutorial.com/ 92

http://gulpjs.com/
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md

Create $GO_PATH/mypackage/source.go

package mypackage

var PublicVar string = "Hello, dear reader!"

//Calculates the factorial of given number recursively!
func Factorial(x uint) uint {
 if x == 0 {
 return 1
 }
 return x * Factorial(x-1)
}

Creating $GO_PATH/main.go

Now you can start writing your own go code with auto-completion using Atom and Gulp:

https://riptutorial.com/ 93

https://i.stack.imgur.com/qwEvS.png

https://riptutorial.com/ 94

https://i.stack.imgur.com/olQXd.png

package main

import (
 "fmt"

https://riptutorial.com/ 95

https://i.stack.imgur.com/0SuI3.png

 "mypackage"
)

func main() {

 println("4! = ", mypackage.Factorial(4))

}

Read Getting Started With Go Using Atom online: https://riptutorial.com/go/topic/8592/getting-
started-with-go-using-atom

https://riptutorial.com/ 96

https://i.stack.imgur.com/H0geN.png
https://riptutorial.com/go/topic/8592/getting-started-with-go-using-atom
https://riptutorial.com/go/topic/8592/getting-started-with-go-using-atom

Chapter 25: gob

Introduction

Gob is a Go specific serialisation method. it has support for all Go data types except for channels
and functions. Gob also encodes the type information into the serialised form, what makes it
different from say XML is that it is much more efficient.

The inclusion of type information makes encoding and decoding fairly robust to differences
between encoder and decoder.

Examples

How to encode data and write to file with gob?

package main

import (
 "encoding/gob"
 "os"
)

type User struct {
 Username string
 Password string
}

func main() {

 user := User{
 "zola",
 "supersecretpassword",
 }

 file, _ := os.Create("user.gob")

 defer file.Close()

 encoder := gob.NewEncoder(file)

 encoder.Encode(user)

}

How to read data from file and decode with go?

package main

import (
 "encoding/gob"
 "fmt"
 "os"

https://riptutorial.com/ 97

)

type User struct {
 Username string
 Password string
}

func main() {

 user := User{}

 file, _ := os.Open("user.gob")

 defer file.Close()

 decoder := gob.NewDecoder(file)

 decoder.Decode(&user)

 fmt.Println(user)

}

How to encode an interface with gob?

package main

import (
 "encoding/gob"
 "fmt"
 "os"
)

type User struct {
 Username string
 Password string
}

type Admin struct {
 Username string
 Password string
 IsAdmin bool
}

type Deleter interface {
 Delete()
}

func (u User) Delete() {
 fmt.Println("User ==> Delete()")
}

func (a Admin) Delete() {
 fmt.Println("Admin ==> Delete()")
}

func main() {

 user := User{

https://riptutorial.com/ 98

 "zola",
 "supersecretpassword",
 }

 admin := Admin{
 "john",
 "supersecretpassword",
 true,
 }

 file, _ := os.Create("user.gob")

 adminFile, _ := os.Create("admin.gob")

 defer file.Close()

 defer adminFile.Close()

 gob.Register(User{}) // registering the type allows us to encode it

 gob.Register(Admin{}) // registering the type allows us to encode it

 encoder := gob.NewEncoder(file)

 adminEncoder := gob.NewEncoder(adminFile)

 InterfaceEncode(encoder, user)

 InterfaceEncode(adminEncoder, admin)

}

func InterfaceEncode(encoder *gob.Encoder, d Deleter) {

 if err := encoder.Encode(&d); err != nil {
 fmt.Println(err)
 }

}

How to decode an interface with gob?

package main

import (
 "encoding/gob"
 "fmt"
 "log"
 "os"
)

type User struct {
 Username string
 Password string
}

type Admin struct {
 Username string
 Password string

https://riptutorial.com/ 99

 IsAdmin bool
}

type Deleter interface {
 Delete()
}

func (u User) Delete() {
 fmt.Println("User ==> Delete()")
}

func (a Admin) Delete() {
 fmt.Println("Admin ==> Delete()")
}

func main() {

 file, _ := os.Open("user.gob")

 adminFile, _ := os.Open("admin.gob")

 defer file.Close()

 defer adminFile.Close()

 gob.Register(User{}) // registering the type allows us to encode it

 gob.Register(Admin{}) // registering the type allows us to encode it

 var admin Deleter

 var user Deleter

 userDecoder := gob.NewDecoder(file)

 adminDecoder := gob.NewDecoder(adminFile)

 user = InterfaceDecode(userDecoder)

 admin = InterfaceDecode(adminDecoder)

 fmt.Println(user)

 fmt.Println(admin)

}

func InterfaceDecode(decoder *gob.Decoder) Deleter {

 var d Deleter

 if err := decoder.Decode(&d); err != nil {
 log.Fatal(err)
 }

 return d

}

Read gob online: https://riptutorial.com/go/topic/8820/gob

https://riptutorial.com/ 100

https://riptutorial.com/go/topic/8820/gob

Chapter 26: Goroutines

Introduction

A goroutine is a lightweight thread managed by the Go runtime.

go f(x, y, z)

starts a new goroutine running

f(x, y, z)

The evaluation of f, x, y, and z happens in the current goroutine and the execution of f happens in
the new goroutine.

Goroutines run in the same address space, so access to shared memory must be synchronized.
The sync package provides useful primitives, although you won't need them much in Go as there
are other primitives.

Reference: https://tour.golang.org/concurrency/1

Examples

Goroutines Basic Program

package main

import (
 "fmt"
 "time"
)

func say(s string) {
 for i := 0; i < 5; i++ {
 time.Sleep(100 * time.Millisecond)
 fmt.Println(s)
 }
}

func main() {
 go say("world")
 say("hello")
}

A goroutine is a function that is capable of running concurrently with other functions. To create a
goroutine we use the keyword go followed by a function invocation:

package main

import "fmt"

https://riptutorial.com/ 101

https://tour.golang.org/concurrency/1

func f(n int) {
 for i := 0; i < 10; i++ {
 fmt.Println(n, ":", i)
 }
}

func main() {
 go f(0)
 var input string
 fmt.Scanln(&input)
}

Generally, function call executes all the statements inside the function body and return to the next
line. But, with goroutines we return immediately to the next line as it don't wait for the function to
complete. So, a call to a Scanln function included, otherwise the program has been exited without
printing the numbers.

Read Goroutines online: https://riptutorial.com/go/topic/9776/goroutines

https://riptutorial.com/ 102

https://riptutorial.com/go/topic/9776/goroutines

Chapter 27: HTTP Client

Syntax

resp, err := http.Get(url) // Makes a HTTP GET request with the default HTTP client. A non-
nil error is returned if the request fails.

•

resp, err := http.Post(url, bodyType, body) // Makes a HTTP POST request with the default
HTTP client. A non-nil error is returned if the request fails.

•

resp, err := http.PostForm(url, values) // Makes a HTTP form POST request with the default
HTTP client. A non-nil error is returned if the request fails.

•

Parameters

Parameter Details

resp A response of type *http.Response to an HTTP request

err
An error. If not nil, it represents an error that occured when the function was
called.

url A URL of type string to make a HTTP request to.

bodyType The MIME type of type string of the body payload of a POST request.

body
An io.Reader (implements Read()) which will be read from until an error is
reached to be submitted as the body payload of a POST request.

values
A key-value map of type url.Values. The underlying type is a
map[string][]string.

Remarks

It is important to defer resp.Body.Close() after every HTTP request that does not return a non-nil
error, else resources will be leaked.

Examples

Basic GET

Perform a basic GET request and prints the contents of a site (HTML).

package main

import (

https://riptutorial.com/ 103

 "fmt"
 "io/ioutil"
 "net/http"
)

func main() {
 resp, err := http.Get("https://example.com/")
 if err != nil {
 panic(err)
 }

 // It is important to defer resp.Body.Close(), else resource leaks will occur.
 defer resp.Body.Close()

 data, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 panic(err)
 }

 // Will print site contents (HTML) to output
 fmt.Println(string(data))
}

GET with URL parameters and a JSON response

A request for the top 10 most recently active StackOverflow posts using the Stack Exchange API.

package main

import (
 "encoding/json"
 "fmt"
 "net/http"
 "net/url"
)

const apiURL = "https://api.stackexchange.com/2.2/posts?"

// Structs for JSON decoding
type postItem struct {
 Score int `json:"score"`
 Link string `json:"link"`
}

type postsType struct {
 Items []postItem `json:"items"`
}

func main() {
 // Set URL parameters on declaration
 values := url.Values{
 "order": []string{"desc"},
 "sort": []string{"activity"},
 "site": []string{"stackoverflow"},
 }

 // URL parameters can also be programmatically set
 values.Set("page", "1")
 values.Set("pagesize", "10")

https://riptutorial.com/ 104

 resp, err := http.Get(apiURL + values.Encode())
 if err != nil {
 panic(err)
 }

 defer resp.Body.Close()

 // To compare status codes, you should always use the status constants
 // provided by the http package.
 if resp.StatusCode != http.StatusOK {
 panic("Request was not OK: " + resp.Status)
 }

 // Example of JSON decoding on a reader.
 dec := json.NewDecoder(resp.Body)
 var p postsType
 err = dec.Decode(&p)
 if err != nil {
 panic(err)
 }

 fmt.Println("Top 10 most recently active StackOverflow posts:")
 fmt.Println("Score", "Link")
 for _, post := range p.Items {
 fmt.Println(post.Score, post.Link)
 }
}

Time out request with a context

1.7+

Timing out an HTTP request with a context can be accomplished with only the standard library
(not the subrepos) in 1.7+:

import (
 "context"
 "net/http"
 "time"
)

req, err := http.NewRequest("GET", `https://example.net`, nil)
ctx, _ := context.WithTimeout(context.TODO(), 200 * time.Milliseconds)
resp, err := http.DefaultClient.Do(req.WithContext(ctx))
// Be sure to handle errors.
defer resp.Body.Close()

Before 1.7

import (
 "net/http"
 "time"

 "golang.org/x/net/context"

https://riptutorial.com/ 105

 "golang.org/x/net/context/ctxhttp"
)

ctx, err := context.WithTimeout(context.TODO(), 200 * time.Milliseconds)
resp, err := ctxhttp.Get(ctx, http.DefaultClient, "https://www.example.net")
// Be sure to handle errors.
defer resp.Body.Close()

Further Reading

For more information on the context package see Context.

PUT request of JSON object

The following updates a User object via a PUT request and prints the status code of the request:

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "net/http"
)

type User struct {
 Name string
 Email string
}

func main() {
 user := User{
 Name: "John Doe",
 Email: "johndoe@example.com",
 }

 // initialize http client
 client := &http.Client{}

 // marshal User to json
 json, err := json.Marshal(user)
 if err != nil {
 panic(err)
 }

 // set the HTTP method, url, and request body
 req, err := http.NewRequest(http.MethodPut, "http://api.example.com/v1/user",
bytes.NewBuffer(json))
 if err != nil {
 panic(err)
 }

 // set the request header Content-Type for json
 req.Header.Set("Content-Type", "application/json; charset=utf-8")
 resp, err := client.Do(req)
 if err != nil {
 panic(err)

https://riptutorial.com/ 106

http://www.riptutorial.com/go/topic/2743/context

 }

 fmt.Println(resp.StatusCode)
}

Read HTTP Client online: https://riptutorial.com/go/topic/1422/http-client

https://riptutorial.com/ 107

https://riptutorial.com/go/topic/1422/http-client

Chapter 28: HTTP Server

Remarks

http.ServeMux provides a multiplexer which calls handlers for HTTP requests.

Alternatives to the standard library multiplexer include:

Gorilla Mux•

Examples

HTTP Hello World with custom server and mux

package main

import (
 "log"
 "net/http"
)

func main() {

 // Create a mux for routing incoming requests
 m := http.NewServeMux()

 // All URLs will be handled by this function
 m.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello, world!"))
 })

 // Create a server listening on port 8000
 s := &http.Server{
 Addr: ":8000",
 Handler: m,
 }

 // Continue to process new requests until an error occurs
 log.Fatal(s.ListenAndServe())
}

Press Ctrl+C to stop the process.

Hello World

The typical way to begin writing webservers in golang is to use the standard library net/http
module.

There is also a tutorial for it here.

The following code also uses it. Here is the simplest possible HTTP server implementation. It

https://riptutorial.com/ 108

https://godoc.org/net/http#ServeMux
https://godoc.org/github.com/gorilla/mux
https://golang.org/doc/articles/wiki/

responds "Hello World" to any HTTP request.

Save the following code in a server.go file in your workspaces.

package main

import (
 "log"
 "net/http"
)

func main() {
 // All URLs will be handled by this function
 // http.HandleFunc uses the DefaultServeMux
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello, world!"))
 })

 // Continue to process new requests until an error occurs
 log.Fatal(http.ListenAndServe(":8080", nil))
}

You can run the server using:

$ go run server.go

Or you can compile and run.

$ go build server.go
$./server

The server will listen to the specified port (:8080). You can test it with any HTTP client. Here's an
example with cURL:

curl -i http://localhost:8080/
HTTP/1.1 200 OK
Date: Wed, 20 Jul 2016 18:04:46 GMT
Content-Length: 13
Content-Type: text/plain; charset=utf-8

Hello, world!

Press Ctrl+C to stop the process.

Using a handler function

HandleFunc registers the handler function for the given pattern in the server mux (router).

You can pass define an anonymous function, as we have seen in the basic Hello World example:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Hello, world!")
}

https://riptutorial.com/ 109

https://golang.org/pkg/net/http/#ListenAndServe

But we can also pass a HandlerFunc type. In other words, we can pass any function that respects
the following signature:

func FunctionName(w http.ResponseWriter, req *http.Request)

We can rewrite the previous example passing the reference to a previously defined HandlerFunc.
Here's the full example:

package main

import (
 "fmt"
 "net/http"
)

// A HandlerFunc function
// Notice the signature of the function
func RootHandler(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintln(w, "Hello, world!")
}

func main() {
 // Here we pass the reference to the `RootHandler` handler function
 http.HandleFunc("/", RootHandler)
 panic(http.ListenAndServe(":8080", nil))
}

Of course, you can define several function handlers for different paths.

package main

import (
 "fmt"
 "log"
 "net/http"
)

func FooHandler(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintln(w, "Hello from foo!")
}

func BarHandler(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintln(w, "Hello from bar!")
}

func main() {
 http.HandleFunc("/foo", FooHandler)
 http.HandleFunc("/bar", BarHandler)

 log.Fatal(http.ListenAndServe(":8080", nil))
}

Here's the output using cURL:

➜ ~ curl -i localhost:8080/foo
HTTP/1.1 200 OK

https://riptutorial.com/ 110

https://golang.org/pkg/net/http/#HandlerFunc

Date: Wed, 20 Jul 2016 18:23:08 GMT
Content-Length: 16
Content-Type: text/plain; charset=utf-8

Hello from foo!

➜ ~ curl -i localhost:8080/bar
HTTP/1.1 200 OK
Date: Wed, 20 Jul 2016 18:23:10 GMT
Content-Length: 16
Content-Type: text/plain; charset=utf-8

Hello from bar!

➜ ~ curl -i localhost:8080/
HTTP/1.1 404 Not Found
Content-Type: text/plain; charset=utf-8
X-Content-Type-Options: nosniff
Date: Wed, 20 Jul 2016 18:23:13 GMT
Content-Length: 19

404 page not found

Create a HTTPS Server

Generate a certificate

In order to run a HTTPS server, a certificate is necessary. Generating a self-signed certificate with
openssl is done by executing this command:

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout key.pem -out cert.pem -subj
"/CN=example.com" -days 3650`

The parameters are:

req Use the certificate request tool•
x509 Creates a self-signed certificate•
newkey rsa:4096 Creates a new key and certificate by using the RSA algorithms with 4096 bit
key length

•

sha256 Forces the SHA256 hashing algorithms which major browsers consider as secure (at
the year 2017)

•

nodes Disables the password protection for the private key. Without this parameter, your
server had to ask you for the password each time its starts.

•

keyout Names the file where to write the key•
out Names the file where to write the certificate•
subj Defines the domain name for which this certificate is valid•
days Fow how many days should this certificate valid? 3650 are approx. 10 years.•

Note: A self-signed certificate could be used e.g. for internal projects, debugging, testing, etc. Any
browser out there will mention, that this certificate is not safe. In order to avoid this, the certificate
must signed by a certification authority. Mostly, this is not available for free. One exception is the

https://riptutorial.com/ 111

"Let's Encrypt" movement: https://letsencrypt.org

The necessary Go code

You can handle configure TLS for the server with the following code. cert.pem and key.pem are your
SSL certificate and key, which where generated with the above command.

package main

import (
 "log"
 "net/http"
)

func main() {
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello, world!"))
 })

 log.Fatal(http.ListenAndServeTLS(":443","cert.pem","key.pem", nil))
}

Responding to an HTTP Request using Templates

Responses can be written to a http.ResponseWriter using templates in Go. This proves as a handy
tool if you wish to create dynamic pages.

(To learn how Templates work in Go, please visit the Go Templates Documentation page.)

Continuing with a simple example to utilise the html/template to respond to an HTTP Request:

package main

import(
 "html/template"
 "net/http"
 "log"
)

func main(){
 http.HandleFunc("/",WelcomeHandler)
 http.ListenAndServe(":8080",nil)
}

type User struct{
 Name string
 nationality string //unexported field.
}

func check(err error){
 if err != nil{
 log.Fatal(err)
 }
}

https://riptutorial.com/ 112

https://letsencrypt.org
http://www.riptutorial.com/go/topic/1402/templates

func WelcomeHandler(w http.ResponseWriter, r *http.Request){
 if r.Method == "GET"{
 t,err := template.ParseFiles("welcomeform.html")
 check(err)
 t.Execute(w,nil)
 }else{
 r.ParseForm()
 myUser := User{}
 myUser.Name = r.Form.Get("entered_name")
 myUser.nationality = r.Form.Get("entered_nationality")
 t, err := template.ParseFiles("welcomeresponse.html")
 check(err)
 t.Execute(w,myUser)
 }
}

Where, the contents of

welcomeform.html are:1.

<head>
 <title> Help us greet you </title>
</head>
<body>
 <form method="POST" action="/">
 Enter Name: <input type="text" name="entered_name">
 Enter Nationality: <input type="text" name="entered_nationality">
 <input type="submit" value="Greet me!">
 </form>
</body>

welcomeresponse.html are:1.

<head>
 <title> Greetings, {{.Name}} </title>
</head>
<body>
 Greetings, {{.Name}}.

 We know you are a {{.nationality}}!
</body>

Note:

Make sure that the .html files are in the correct directory.1.

When http://localhost:8080/ can be visited after starting the server.2.

As it can be seen after submitting the form, the unexported nationality field of the struct could
not be parsed by the template package, as expected.

3.

Serving content using ServeMux

A simple static file server would look like this:

https://riptutorial.com/ 113

package main

import (
 "net/http"
)

func main() {
 muxer := http.NewServeMux()
 fileServerCss := http.FileServer(http.Dir("src/css"))
 fileServerJs := http.FileServer(http.Dir("src/js"))
 fileServerHtml := http.FileServer(http.Dir("content"))
 muxer.Handle("/", fileServerHtml)
 muxer.Handle("/css", fileServerCss)
 muxer.Handle("/js", fileServerJs)
 http.ListenAndServe(":8080", muxer)
}

Handling http method, accessing query strings & request body

Here are a simple example of some common tasks related to developing an API, differentiating
between the HTTP Method of the request, accessing query string values and accessing the
request body.

Resources

http.Handler interface•
http.ResponseWriter•
http.Request•
Available Method and Status constants•

package main

import (
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
)

type customHandler struct{}

// ServeHTTP implements the http.Handler interface in the net/http package
func (h customHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {

 // ParseForm will parse query string values and make r.Form available
 r.ParseForm()

 // r.Form is map of query string parameters
 // its' type is url.Values, which in turn is a map[string][]string
 queryMap := r.Form

 switch r.Method {
 case http.MethodGet:
 // Handle GET requests
 w.WriteHeader(http.StatusOK)
 w.Write([]byte(fmt.Sprintf("Query string values: %s", queryMap)))
 return

https://riptutorial.com/ 114

https://golang.org/pkg/net/http/#Handler
https://golang.org/pkg/net/http/#ResponseWriter
https://golang.org/pkg/net/http/#Request
https://golang.org/pkg/net/http/#pkg-constants

 case http.MethodPost:
 // Handle POST requests
 body, err := ioutil.ReadAll(r.Body)
 if err != nil {
 // Error occurred while parsing request body
 w.WriteHeader(http.StatusBadRequest)
 return
 }
 w.WriteHeader(http.StatusOK)
 w.Write([]byte(fmt.Sprintf("Query string values: %s\nBody posted: %s", queryMap,
body)))
 return
 }

 // Other HTTP methods (eg PUT, PATCH, etc) are not handled by the above
 // so inform the client with appropriate status code
 w.WriteHeader(http.StatusMethodNotAllowed)
}

func main() {
 // All URLs will be handled by this function
 // http.Handle, similarly to http.HandleFunc
 // uses the DefaultServeMux
 http.Handle("/", customHandler{})

 // Continue to process new requests until an error occurs
 log.Fatal(http.ListenAndServe(":8080", nil))
}

Sample curl output:

$ curl -i 'localhost:8080?city=Seattle&state=WA' -H 'Content-Type: text/plain' -X GET
HTTP/1.1 200 OK
Date: Fri, 02 Sep 2016 16:36:24 GMT
Content-Length: 51
Content-Type: text/plain; charset=utf-8

Query string values: map[city:[Seattle] state:[WA]]%

$ curl -i 'localhost:8080?city=Seattle&state=WA' -H 'Content-Type: text/plain' -X POST -d
"some post data"
HTTP/1.1 200 OK
Date: Fri, 02 Sep 2016 16:36:35 GMT
Content-Length: 79
Content-Type: text/plain; charset=utf-8

Query string values: map[city:[Seattle] state:[WA]]
Body posted: some post data%

$ curl -i 'localhost:8080?city=Seattle&state=WA' -H 'Content-Type: text/plain' -X PUT
HTTP/1.1 405 Method Not Allowed
Date: Fri, 02 Sep 2016 16:36:41 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8

Read HTTP Server online: https://riptutorial.com/go/topic/756/http-server

https://riptutorial.com/ 115

https://riptutorial.com/go/topic/756/http-server

Chapter 29: Images

Introduction

The image package provides basic functionalities for working with 2-D image. This topic describes
several basic operations when working with image such as reading and writing a particular image
format, cropping, accessing and modifying pixel, color conversion, resizing and basic image
filtering.

Examples

Basic concepts

An image represents a rectangular grid of picture elements (pixel). In the image package, the pixel
is represented as one of the color defined in image/color package. The 2-D geometry of the image
is represented as image.Rectangle, while image.Point denotes a position on the grid.

The above figure illustrates the basic concepts of an image in the package. An image of size
15x14 pixels has a rectangular bounds started at upper left corner (e.g. co-ordinate (-3, -4) in the
above figure), and its axes increase right and down to lower right corner (e.g. co-ordinate (12, 10)
in the figure). Note that the bounds do not necessarily start from or contain point (0,0).

https://riptutorial.com/ 116

https://golang.org/pkg/image/
https://golang.org/pkg/image/
https://golang.org/pkg/image/color/
https://golang.org/pkg/image/#Rectangle
https://golang.org/pkg/image/#Point
https://i.stack.imgur.com/PbRoJ.jpg

Image related type

In Go, an image always implement the following image.Image interface

type Image interface {
 // ColorModel returns the Image's color model.
 ColorModel() color.Model
 // Bounds returns the domain for which At can return non-zero color.
 // The bounds do not necessarily contain the point (0, 0).
 Bounds() Rectangle
 // At returns the color of the pixel at (x, y).
 // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
 // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
 At(x, y int) color.Color
}

in which the color.Color interface is defined as

type Color interface {
 // RGBA returns the alpha-premultiplied red, green, blue and alpha values
 // for the color. Each value ranges within [0, 0xffff], but is represented
 // by a uint32 so that multiplying by a blend factor up to 0xffff will not
 // overflow.
 //
 // An alpha-premultiplied color component c has been scaled by alpha (a),
 // so has valid values 0 <= c <= a.
 RGBA() (r, g, b, a uint32)
}

and color.Model is an interface declared as

type Model interface {
 Convert(c Color) Color
}

Accessing image dimension and pixel

Suppose we have an image stored as variable img, then we can obtain the dimension and image
pixel by:

// Image bounds and dimension
b := img.Bounds()
width, height := b.Dx(), b.Dy()
// do something with dimension ...

// Corner co-ordinates
top := b.Min.Y
left := b.Min.X
bottom := b.Max.Y
right := b.Max.X

// Accessing pixel. The (x,y) position must be
// started from (left, top) position not (0,0)

https://riptutorial.com/ 117

https://golang.org/pkg/image/#Image
https://golang.org/pkg/image/color/#Color
https://golang.org/pkg/image/color/#Model

for y := top; y < bottom; y++ {
 for x := left; x < right; x++ {
 cl := img.At(x, y)
 r, g, b, a := cl.RGBA()
 // do something with r,g,b,a color component
 }
}

Note that in the package, the value of each R,G,B,A component is between 0-65535 (0x0000 - 0xffff
), not 0-255.

Loading and saving image

In memory, an image can be seen as a matrix of pixel (color). However, when an image being
stored in a permanent storage, it may be stored as is (RAW format), Bitmap or other image
formats with particular compression algorithm for saving storage space, e.g. PNG, JPEG, GIF, etc.
When loading an image with particular format, the image must be decoded to image.Image with
corresponding algorithm. An image.Decode function declared as

func Decode(r io.Reader) (Image, string, error)

is provided for this particular usage. In order to be able to handle various image formats, prior to
calling the image.Decode function, the decoder must be registered through image.RegisterFormat
function defined as

func RegisterFormat(name, magic string,
 decode func(io.Reader) (Image, error), decodeConfig func(io.Reader) (Config, error))

Currently, the image package supports three file formats: JPEG, GIF and PNG. To register a
decoder, add the following

import _ "image/jpeg" //register JPEG decoder

to the application's main package. Somewhere in your code (not necessary in main package), to
load a JPEG image, use the following snippets:

f, err := os.Open("inputimage.jpg")
if err != nil {
 // Handle error
}
defer f.Close()

img, fmtName, err := image.Decode(f)
if err != nil {
 // Handle error
}

// `fmtName` contains the name used during format registration
// Work with `img` ...

https://riptutorial.com/ 118

https://en.wikipedia.org/wiki/Bitmap
https://golang.org/pkg/image/#Decode
https://golang.org/pkg/image/#RegisterFormat
https://golang.org/pkg/image/jpeg/
https://golang.org/pkg/image/gif/
https://golang.org/pkg/image/png/

Save to PNG

To save an image into particular format, the corresponding encoder must be imported explicitly,
i.e.

import "image/png" //needed to use `png` encoder

then an image can be saved with the following snippets:

f, err := os.Create("outimage.png")
if err != nil {
 // Handle error
}
defer f.Close()

// Encode to `PNG` with `DefaultCompression` level
// then save to file
err = png.Encode(f, img)
if err != nil {
 // Handle error
}

If you want to specify compression level other than DefaultCompression level, create an encoder,
e.g.

enc := png.Encoder{
 CompressionLevel: png.BestSpeed,
}
err := enc.Encode(f, img)

Save to JPEG

To save to jpeg format, use the following:

import "image/jpeg"

// Somewhere in the same package
f, err := os.Create("outimage.jpg")
if err != nil {
 // Handle error
}
defer f.Close()

// Specify the quality, between 0-100
// Higher is better
opt := jpeg.Options{
 Quality: 90,
}
err = jpeg.Encode(f, img, &opt)
if err != nil {
 // Handle error
}

https://riptutorial.com/ 119

Save to GIF

To save the image to GIF file, use the following snippets.

import "image/gif"

// Samewhere in the same package
f, err := os.Create("outimage.gif")
if err != nil {
 // Handle error
}
defer f.Close()

opt := gif.Options {
 NumColors: 256,
 // Add more parameters as needed
}

err = gif.Encode(f, img, &opt)
if err != nil {
 // Handle error
}

Cropping image

Most of image type in image package having SubImage(r Rectangle) Image method, except
image.Uniform. Based on this fact, We can implement a function to crop an arbitrary image as
follows

func CropImage(img image.Image, cropRect image.Rectangle) (cropImg image.Image, newImg bool) {
 //Interface for asserting whether `img`
 //implements SubImage or not.
 //This can be defined globally.
 type CropableImage interface {
 image.Image
 SubImage(r image.Rectangle) image.Image
 }

 if p, ok := img.(CropableImage); ok {
 // Call SubImage. This should be fast,
 // since SubImage (usually) shares underlying pixel.
 cropImg = p.SubImage(cropRect)
 } else if cropRect = cropRect.Intersect(img.Bounds()); !cropRect.Empty() {
 // If `img` does not implement `SubImage`,
 // copy (and silently convert) the image portion to RGBA image.
 rgbaImg := image.NewRGBA(cropRect)
 for y := cropRect.Min.Y; y < cropRect.Max.Y; y++ {
 for x := cropRect.Min.X; x < cropRect.Max.X; x++ {
 rgbaImg.Set(x, y, img.At(x, y))
 }
 }
 cropImg = rgbaImg
 newImg = true
 } else {
 // Return an empty RGBA image
 cropImg = &image.RGBA{}

https://riptutorial.com/ 120

https://golang.org/pkg/image/

 newImg = true
 }

 return cropImg, newImg
}

Note that the cropped image may shared its underlying pixels with the original image. If this is the
case, any modification to the cropped image will affect the original image.

Convert color image to grayscale

Some digital image processing algorithm such as edge detection, information carried by the image
intensity (i.e. grayscale value) is sufficient. Using color information (R, G, B channel) may provides
slightly better result, but the algorithm complexity will be increased. Thus, in this case, we need to
convert the color image to grayscale image prior to applying such algorithm.

The following code is an example of converting arbitrary image to 8-bit grayscale image. The
image is retrieved from remote location using net/http package, converted to grayscale, and finally
saved as PNG image.

package main

import (
 "image"
 "log"
 "net/http"
 "os"

 _ "image/jpeg"
 "image/png"
)

func main() {
 // Load image from remote through http
 // The Go gopher was designed by Renee French. (http://reneefrench.blogspot.com/)
 // Images are available under the Creative Commons 3.0 Attributions license.
 resp, err := http.Get("http://golang.org/doc/gopher/fiveyears.jpg")
 if err != nil {
 // handle error
 log.Fatal(err)
 }
 defer resp.Body.Close()

 // Decode image to JPEG
 img, _, err := image.Decode(resp.Body)
 if err != nil {
 // handle error
 log.Fatal(err)
 }
 log.Printf("Image type: %T", img)

 // Converting image to grayscale
 grayImg := image.NewGray(img.Bounds())
 for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ {
 for x := img.Bounds().Min.X; x < img.Bounds().Max.X; x++ {
 grayImg.Set(x, y, img.At(x, y))

https://riptutorial.com/ 121

 }
 }

 // Working with grayscale image, e.g. convert to png
 f, err := os.Create("fiveyears_gray.png")
 if err != nil {
 // handle error
 log.Fatal(err)
 }
 defer f.Close()

 if err := png.Encode(f, grayImg); err != nil {
 log.Fatal(err)
 }
}

Color conversion occurs when assigning pixel through Set(x, y int, c color.Color) which is
implemented in image.go as

func (p *Gray) Set(x, y int, c color.Color) {
 if !(Point{x, y}.In(p.Rect)) {
 return
 }

 i := p.PixOffset(x, y)
 p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
}

in which, color.GrayModel is defined in color.go as

func grayModel(c Color) Color {
 if _, ok := c.(Gray); ok {
 return c
 }
 r, g, b, _ := c.RGBA()

 // These coefficients (the fractions 0.299, 0.587 and 0.114) are the same
 // as those given by the JFIF specification and used by func RGBToYCbCr in
 // ycbcr.go.
 //
 // Note that 19595 + 38470 + 7471 equals 65536.
 //
 // The 24 is 16 + 8. The 16 is the same as used in RGBToYCbCr. The 8 is
 // because the return value is 8 bit color, not 16 bit color.
 y := (19595*r + 38470*g + 7471*b + 1<<15) >> 24

 return Gray{uint8(y)}
}

Based on the above facts, the intensity Y is calculated with the following formula:

Luminance: Y = 0.299R + 0.587G + 0.114B

If we want to apply different formula/algorithms to convert a color into an intesity, e.g.

Mean: Y = (R + G + B) / 3

https://riptutorial.com/ 122

https://golang.org/src/image/image.go?s=19292:19335#L691
https://golang.org/src/image/color/color.go?s=2699:2728#L110
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029740

Luma: Y = 0.2126R + 0.7152G + 0.0722B
Luster: Y = (min(R, G, B) + max(R, G, B))/2

then, the following snippets can be used.

// Converting image to grayscale
grayImg := image.NewGray(img.Bounds())
for y := img.Bounds().Min.Y; y < img.Bounds().Max.Y; y++ {
 for x := img.Bounds().Min.X; x < img.Bounds().Max.X; x++ {
 R, G, B, _ := img.At(x, y).RGBA()
 //Luma: Y = 0.2126*R + 0.7152*G + 0.0722*B
 Y := (0.2126*float64(R) + 0.7152*float64(G) + 0.0722*float64(B)) * (255.0 / 65535)
 grayPix := color.Gray{uint8(Y)}
 grayImg.Set(x, y, grayPix)
 }
}

The above calculation is done by floating point multiplication, and certainly is not the most efficient
one, but it's enough for demonstrating the idea. The other point is, when calling Set(x, y int, c
color.Color) with color.Gray as third argument, the color model will not perform color conversion
as can be seen in the previous grayModel function.

Read Images online: https://riptutorial.com/go/topic/10557/images

https://riptutorial.com/ 123

https://riptutorial.com/go/topic/10557/images

Chapter 30: Inline Expansion

Remarks

Inline expansion is a common optimization in compiled code that prioritized performance over
binary size. It lets the compiler replace a function call with the actual body of the function;
effectively copy/pasting code from one place to another at compile time. Since the call site is
expanded to just contain the machine instructions that the compiler generated for the function, we
don't have to perform a CALL or PUSH (the x86 equivalant of a GOTO statement or a stack frame
push) or their equivalant on other architectures.

The inliner makes decisions about whether or not to inline a function based on a number of
heuristics, but in general Go inlines by default. Because the inliner gets rid of function calls, it
effectively gets to decide where the scheduler is allowed to preempt a goroutine.

Function calls will not be inlined if any of the following are true (there are many other reasons too,
this list is incomplete):

Functions are variadic (eg. they have ... args)•
Functions have a "max hairyness" greater than the budget (they recurse too much or can't
be analyzed for some other reason)

•

They contain panic, recover, or defer•

Examples

Disabling inline expansion

Inline expansion can be disabled with the go:noinline pragma. For example, if we build the
following simple program:

package main

func printhello() {
 println("Hello")
}

func main() {
 printhello()
}

we get output that looks like this (trimmed for readability):

$ go version
go version go1.6.2 linux/amd64
$ go build main.go
$./main
Hello
$ go tool objdump main

https://riptutorial.com/ 124

TEXT main.main(SB) /home/sam/main.go
 main.go:7 0x401000 64488b0c25f8ffffff FS MOVQ FS:0xfffffff8, CX
 main.go:7 0x401009 483b6110 CMPQ 0x10(CX), SP
 main.go:7 0x40100d 7631 JBE 0x401040
 main.go:7 0x40100f 4883ec10 SUBQ $0x10, SP
 main.go:8 0x401013 e8281f0200 CALL runtime.printlock(SB)
 main.go:8 0x401018 488d1d01130700 LEAQ 0x71301(IP), BX
 main.go:8 0x40101f 48891c24 MOVQ BX, 0(SP)
 main.go:8 0x401023 48c744240805000000 MOVQ $0x5, 0x8(SP)
 main.go:8 0x40102c e81f290200 CALL runtime.printstring(SB)
 main.go:8 0x401031 e89a210200 CALL runtime.printnl(SB)
 main.go:8 0x401036 e8851f0200 CALL runtime.printunlock(SB)
 main.go:9 0x40103b 4883c410 ADDQ $0x10, SP
 main.go:9 0x40103f c3 RET
 main.go:7 0x401040 e87b9f0400 CALL
runtime.morestack_noctxt(SB)
 main.go:7 0x401045 ebb9 JMP main.main(SB)
 main.go:7 0x401047 cc INT $0x3
 main.go:7 0x401048 cc INT $0x3
 main.go:7 0x401049 cc INT $0x3
 main.go:7 0x40104a cc INT $0x3
 main.go:7 0x40104b cc INT $0x3
 main.go:7 0x40104c cc INT $0x3
 main.go:7 0x40104d cc INT $0x3
 main.go:7 0x40104e cc INT $0x3
 main.go:7 0x40104f cc INT $0x3
…

note that there is no CALL to printhello. However, if we then build the program with the pragma in
place:

package main

//go:noinline
func printhello() {
 println("Hello")
}

func main() {
 printhello()
}

The output contains the printhello function and a CALL main.printhello:

$ go version
go version go1.6.2 linux/amd64
$ go build main.go
$./main
Hello
$ go tool objdump main
TEXT main.printhello(SB) /home/sam/main.go
 main.go:4 0x401000 64488b0c25f8ffffff FS MOVQ FS:0xfffffff8, CX
 main.go:4 0x401009 483b6110 CMPQ 0x10(CX), SP
 main.go:4 0x40100d 7631 JBE 0x401040
 main.go:4 0x40100f 4883ec10 SUBQ $0x10, SP
 main.go:5 0x401013 e8481f0200 CALL runtime.printlock(SB)
 main.go:5 0x401018 488d1d01130700 LEAQ 0x71301(IP), BX
 main.go:5 0x40101f 48891c24 MOVQ BX, 0(SP)

https://riptutorial.com/ 125

 main.go:5 0x401023 48c744240805000000 MOVQ $0x5, 0x8(SP)
 main.go:5 0x40102c e83f290200 CALL runtime.printstring(SB)
 main.go:5 0x401031 e8ba210200 CALL runtime.printnl(SB)
 main.go:5 0x401036 e8a51f0200 CALL runtime.printunlock(SB)
 main.go:6 0x40103b 4883c410 ADDQ $0x10, SP
 main.go:6 0x40103f c3 RET
 main.go:4 0x401040 e89b9f0400 CALL
runtime.morestack_noctxt(SB)
 main.go:4 0x401045 ebb9 JMP main.printhello(SB)
 main.go:4 0x401047 cc INT $0x3
 main.go:4 0x401048 cc INT $0x3
 main.go:4 0x401049 cc INT $0x3
 main.go:4 0x40104a cc INT $0x3
 main.go:4 0x40104b cc INT $0x3
 main.go:4 0x40104c cc INT $0x3
 main.go:4 0x40104d cc INT $0x3
 main.go:4 0x40104e cc INT $0x3
 main.go:4 0x40104f cc INT $0x3

TEXT main.main(SB) /home/sam/main.go
 main.go:8 0x401050 64488b0c25f8ffffff FS MOVQ FS:0xfffffff8, CX
 main.go:8 0x401059 483b6110 CMPQ 0x10(CX), SP
 main.go:8 0x40105d 7606 JBE 0x401065
 main.go:9 0x40105f e89cffffff CALL main.printhello(SB)
 main.go:10 0x401064 c3 RET
 main.go:8 0x401065 e8769f0400 CALL
runtime.morestack_noctxt(SB)
 main.go:8 0x40106a ebe4 JMP main.main(SB)
 main.go:8 0x40106c cc INT $0x3
 main.go:8 0x40106d cc INT $0x3
 main.go:8 0x40106e cc INT $0x3
 main.go:8 0x40106f cc INT $0x3
…

Read Inline Expansion online: https://riptutorial.com/go/topic/2718/inline-expansion

https://riptutorial.com/ 126

https://riptutorial.com/go/topic/2718/inline-expansion

Chapter 31: Installation

Examples

Install in Linux or Ubuntu

$ sudo apt-get update
$ sudo apt-get install -y build-essential git curl wget
$ wget https://storage.googleapis.com/golang/go<versions>.gz

You can find the version lists here.

To install go1.7 use
$ wget https://storage.googleapis.com/golang/go1.7.linux-amd64.tar.gz

Untar the file
$ sudo tar -C /usr/local -xzf go1.7.linux-amd64.tar.gz
$ sudo chown -R $USER:$USER /usr/local/go
$ rm go1.5.4.linux-amd64.tar.gz

Update $GOPATH

$ mkdir $HOME/go

Add following two lines at the end of the ~/.bashrc file

export GOPATH=$HOME/go
export PATH=$GOPATH/bin:/usr/local/go/bin:$PATH

$ nano ~/.bashrc
 export GOPATH=$HOME/go
 export PATH=$GOPATH/bin:/usr/local/go/bin:$PATH

$ source ~/.bashrc

Now are set to go, test your go version using:

$ go version
go version go<version> linux/amd64

Read Installation online: https://riptutorial.com/go/topic/5776/installation

https://riptutorial.com/ 127

https://golang.org/dl
https://riptutorial.com/go/topic/5776/installation

Chapter 32: Installation

Remarks

Downloading Go

Visit the Downloads List and find the right archive for your operating system. The names of these
downloads can be a bit cryptic to new users.

The names are in the format go[version].[operating system]-[architecture].[archive]

For the version, you want to choose the newest available. These should be the first options you
see.

For the operating system, this is fairly self-explanatory except for Mac users, where the operating
system is named "darwin". This is named after the open-source part of the operating system used
by Mac computers.

If you are running a 64-bit machine (which is the most common in modern computers), the
"architecture" part of the file name should be "amd64". For 32-bit machines, it will be "386". If
you're on an ARM device like a Raspberry Pi, you'll want "armv6l".

For the "archive" part, Mac and Windows users have two options because Go provides installers
for those platforms. For Mac, you probably want "pkg". For Windows, you probably want "msi".

So, for instance, if I'm on a 64-bit Windows machine and I want to download Go 1.6.3, the
download I want will be named:

go1.6.3.windows-amd64.msi

Extracting the download files

Now that we have a Go archive downloaded, we need to extract it somewhere.

Mac and Windows

Since installers are provided for these platforms, installation is easy. Just run the installer and
accept the defaults.

Linux

There is no installer for Linux, so some more work is required. You should have downloaded a file
with the suffix ".tar.gz". This is an archive file, similar to a ".zip" file. We need to extract it. We will
be extracting the Go files to /usr/local because it is the recommended location.

https://riptutorial.com/ 128

https://golang.org/dl/
https://en.wikipedia.org/wiki/Darwin_(operating_system)
https://en.wikipedia.org/wiki/Darwin_(operating_system)

Open up a terminal and change directories to the place where you downloaded the archive. This is
probably in Downloads. If not, replace the directory in the following command appropriately.

cd Downloads

Now, run the following to extract the archive into /usr/local, replacing [filename] with the name of
the file you downloaded.

tar -C /usr/local -xzf [filename].tar.gz

Setting Environment Variables

There's one more step to go before you're ready to start developing. We need to set environment
variables, which is information that users can change to give programs a better idea of the user's
setup.

Windows

You need to set the GOPATH, which is the folder that you will be doing Go work in.

You can set environment variables through the "Environment Variables" button on the "Advanced"
tab of the "System" control panel. Some versions of Windows provide this control panel through
the "Advanced System Settings" option inside the "System" control panel.

The name of your new environment variable should be "GOPATH". The value should be the full
path to a directory you'll be developing Go code in. A folder called "go" in your user directory is a
good choice.

Mac

You need to set the GOPATH, which is the folder that you will be doing Go work in.

Edit a text file named ".bash_profile", which should be in your user directory, and add the following
new line to the end, replacing [work area] with a full path to a directory you would like to do Go
work in. If ".bash_profile" does not exist, create it. A folder called "go" in your user directory is a
good choice.

export GOPATH=[work area]

Linux

Because Linux doesn't have an installer, it requires a bit more work. We need to show the terminal
where the Go compiler and other tools are, and we need to set the GOPATH, which is a folder that
you will be doing Go work in.

Edit a text file named ".profile", which should be in your user directory, and add the following line
to the end, replacing [work area] with a full path tto a directory you would like to do Go work in. If

https://riptutorial.com/ 129

".profile" does not exist, create it. A folder called "go" in your user directory is a good choice.

Then, on another new line, add the following to your ".profile" file.

export PATH=$PATH:/usr/local/go/bin

Finished!

If the Go tools are still not available to you in the terminal, try closing that window and opening a
fresh terminal window.

Examples

Example .profile or .bash_profile

This is an example of a .profile or .bash_profile for Linux and Mac systems
export GOPATH=/home/user/go
export PATH=$PATH:/usr/local/go/bin

Read Installation online: https://riptutorial.com/go/topic/6213/installation

https://riptutorial.com/ 130

https://riptutorial.com/go/topic/6213/installation

Chapter 33: Interfaces

Remarks

Interfaces in Go are just fixed method sets. A type implicitly implements an interface if its method
set is a superset of the interface. There is no declaration of intent.

Examples

Simple interface

In Go, an interface is just a set of methods. We use an interface to specify a behavior of a given
object.

type Painter interface {
 Paint()
}

The implementing type need not declare that it is implementing the interface. It is enough to
define methods of the same signature.

type Rembrandt struct{}

func (r Rembrandt) Paint() {
 // use a lot of canvas here
}

Now we can use the structure as an interface.

var p Painter
p = Rembrandt{}

An interface can be satisfied (or implemented) by an arbitrary number of types. Also a type can
implement an arbitrary number of interfaces.

type Singer interface {
 Sing()
}

type Writer interface {
 Write()
}

type Human struct{}

func (h *Human) Sing() {
 fmt.Println("singing")
}

https://riptutorial.com/ 131

http://golang.org/ref/spec#Interface_types

func (h *Human) Write() {
 fmt.Println("writing")
}

type OnlySinger struct{}
func (o *OnlySinger) Sing() {
 fmt.Println("singing")
}

Here, The Human struct satisfy both the Singer and Writer interface, but the OnlySinger struct only
satisfy Singer interface.

Empty Interface

There is an empty interface type, that contains no methods. We declare it as interface{}. This
contains no methods so every type satisfies it. Hence empty interface can contain any type value.

var a interface{}
var i int = 5
s := "Hello world"

type StructType struct {
 i, j int
 k string
}

// all are valid statements
a = i
a = s
a = &StructType{1, 2, "hello"}

The most common use case for interfaces is to ensure that a variable supports one or more
behaviours. By contrast, the primary use case for the empty interface is to define a variable which
can hold any value, regardless of its concrete type.

To get these values back as their original types we just need to do

i = a.(int)
s = a.(string)
m := a.(*StructType)

or

i, ok := a.(int)
s, ok := a.(string)
m, ok := a.(*StructType)

ok indicates if the interface a is convertible to given type. If it is not possible to cast ok will be false
.

https://riptutorial.com/ 132

Interface Values

If you declare a variable of an interface, it may store any value type that implements the methods
declared by the interface!

If we declare h of interface Singer, it may store a value of type Human or OnlySinger. This is
because of the fact that they all implement methods specified by the Singer interface.

var h Singer
h = &human{}

h.Sing()

Determining underlying type from interface

In go it can sometimes be useful to know which underlying type you have been passed. This can
be done with a type switch. This assumes we have two structs:

type Rembrandt struct{}

func (r Rembrandt) Paint() {}

type Picasso struct{}

func (r Picasso) Paint() {}

That implement the Painter interface:

type Painter interface {
 Paint()
}

Then we can use this switch to determine the underlying type:

func WhichPainter(painter Painter) {
 switch painter.(type) {
 case Rembrandt:
 fmt.Println("The underlying type is Rembrandt")
 case Picasso:
 fmt.Println("The underlying type is Picasso")
 default:
 fmt.Println("Unknown type")
 }
}

Compile-time check if a type satisfies an interface

Interfaces and implementations (types that implement an interface) are "detached". So it is a
rightful question how to check at compile-time if a type implements an interface.

One way to ask the compiler to check that the type T implements the interface I is by attempting
an assignment using the zero value for T or pointer to T, as appropriate. And we may choose to

https://riptutorial.com/ 133

assign to the blank identifier to avoid unnecessary garbage:

type T struct{}

var _ I = T{} // Verify that T implements I.
var _ I = (*T)(nil) // Verify that *T implements I.

If T or *T does not implement I, it will be a compile time error.

This question also appears in the official FAQ: How can I guarantee my type satisfies an
interface?

Type switch

Type switches can also be used to get a variable that matches the type of the case:

func convint(v interface{}) (int,error) {
 switch u := v.(type) {
 case int:
 return u, nil
 case float64:
 return int(u), nil
 case string:
 return strconv(u)
 default:
 return 0, errors.New("Unsupported type")
 }
}

Type Assertion

You can access the real data type of interface with Type Assertion.

interfaceVariable.(DataType)

Example of struct MyType which implement interface Subber:

package main

import (
 "fmt"
)

type Subber interface {
 Sub(a, b int) int
}

type MyType struct {
 Msg string
}

//Implement method Sub(a,b int) int
func (m *MyType) Sub(a, b int) int {
 m.Msg = "SUB!!!"

https://riptutorial.com/ 134

https://golang.org/ref/spec#Blank_identifier
https://golang.org/doc/faq#guarantee_satisfies_interface
https://golang.org/doc/faq#guarantee_satisfies_interface

 return a - b;
}

func main() {
 var interfaceVar Subber = &MyType{}
 fmt.Println(interfaceVar.Sub(6,5))
 fmt.Println(interfaceVar.(*MyType).Msg)
}

Without .(*MyType) we wouldn't able to access Msg Field. If we try interfaceVar.Msg it will show
compile error:

interfaceVar.Msg undefined (type Subber has no field or method Msg)

Go Interfaces from a Mathematical Aspect

In mathematics, especially Set Theory, we have a collection of things which is called set and we
name those things as elements. We show a set with its name like A, B, C, ... or explicitly with
putting its member on brace notation: {a, b, c, d, e}. Suppose we have an arbitrary element x and
a set Z, The key question is: "How we can understand that x is member of Z or not?".
Mathematician answer to this question with a concept: Characteristic Property of a set.
Characteristic Property of a set is an expression which describe set completely. For example we
have set of Natural Numbers which is {0, 1, 2, 3, 4, 5, ...}. We can describe this set with this
expression: {an | a0 = 0, an = an-1+1}. In last expression a0 = 0, an = an-1+1 is the characteristic
property of set of natural numbers. If we have this expression, we can build this set
completely. Let describe the set of even numbers in this manner. We know that this set is made
by this numbers: {0, 2, 4, 6, 8, 10, ...}. With a glance we understand that all of this numbers are
also a natural number, in other words if we add some extra conditions to characteristic property of
natural numbers, we can build a new expression which describe this set. So we can describe with
this expression: {n | n is a member of natural numbers and the reminder of n on 2 is zero}. Now we
can create a filter which get the characteristic property of a set and filter some desired elements to
return elements of our set. For example if we have a natural number filter, both of natural numbers
and even numbers can pass this filter, but if we have a even number filter, then some elements
like 3 and 137871 can't pass the filter.

Definition of interface in Go is like defining the characteristic property and mechanism of using
interface as an argument of a function is like a filter which detect the element is a member of our
desired set or not. Lets describe this aspect with code:

type Number interface {
 IsNumber() bool // the implementation filter "meysam" from 3.14, 2 and 3
}

type NaturalNumber interface {
 Number
 IsNaturalNumber() bool // the implementation filter 3.14 from 2 and 3
}

type EvenNumber interface {
 NaturalNumber

https://riptutorial.com/ 135

 IsEvenNumber() bool // the implementation filter 3 from 2
}

The characteristic property of Number is all structures that have IsNumber method, for NaturalNumber
is all ones that have IsNumber and IsNaturalNumber methods and finally for EvenNumber is all types
which have IsNumber, IsNaturalNumber and IsEvenNumber methods. Thanks to this interpretation of
interface, easily we can understand that since interface{} doesn't have any characteristic
property, accept all types (because it doesn't have any filter for distinguishing between values).

Read Interfaces online: https://riptutorial.com/go/topic/1221/interfaces

https://riptutorial.com/ 136

https://riptutorial.com/go/topic/1221/interfaces

Chapter 34: Iota

Introduction

Iota provides a way of declaring numeric constants from a starting value that grows monotonically.
Iota can be used to declare bitmasks which are often used in system and network programming
and other lists of constants with related values.

Remarks

The iota identifier is used to assign values to lists of constants. When iota is used in a list it starts
with a value of zero, and increments by one for each value in the list of constants and is reset on
each const keyword. Unlike the enumerations of other languages, iota can be used in expressions
(eg. iota + 1) which allows for greater flexibility.

Examples

Simple use of iota

To create a list of constants - assign iota value to each element:

const (
 a = iota // a = 0
 b = iota // b = 1
 c = iota // c = 2
)

To create a list of constants in a shortened way - assign iota value to the first element:

const (
 a = iota // a = 0
 b // b = 1
 c // c = 2
)

Using iota in an expression

iota can be used in expressions, so it can also be used to assign values other than simple
incrementing integers starting from zero. To create constants for SI units, use this example from
Effective Go:

type ByteSize float64

const (
 _ = iota // ignore first value by assigning to blank identifier
 KB ByteSize = 1 << (10 * iota)
 MB

https://riptutorial.com/ 137

https://golang.org/doc/effective_go.html#initialization

 GB
 TB
 PB
 EB
 ZB
 YB
)

Skipping values

The value of iota is still incremented for every entry in a constant list even if iota is not used:

const (// iota is reset to 0
 a = 1 << iota // a == 1
 b = 1 << iota // b == 2
 c = 3 // c == 3 (iota is not used but still incremented)
 d = 1 << iota // d == 8
)

it will also be incremented even if no constant is created at all, meaning the empty identifier can be
used to skip values entirely:

const (
 a = iota // a = 0
 _ // iota is incremented
 b // b = 2
)

The first code block was taken from the Go Spec (CC-BY 3.0).

Use of iota in an expression list

Because iota is incremented after each ConstSpec, values within the same expression list will have
the same value for iota:

const (
 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0
 bit1, mask1 // bit1 == 2, mask1 == 1
 _, _ // skips iota == 2
 bit3, mask3 // bit3 == 8, mask3 == 7
)

This example was taken from the Go Spec (CC-BY 3.0).

Use of iota in a bitmask

Iota can be very useful when creating a bitmask. For instance, to represent the state of a network
connection which may be secure, authenticated, and/or ready, we might create a bitmask like the
following:

const (

https://riptutorial.com/ 138

https://golang.org/ref/spec#Iota
https://golang.org/ref/spec#ConstSpec
https://golang.org/ref/spec#Iota

 Secure = 1 << iota // 0b001
 Authn // 0b010
 Ready // 0b100
)

ConnState := Secure|Authn // 0b011: Connection is secure and authenticated, but not yet Ready

Use of iota in const

This is an enumeration for const creation. Go compiler starts iota from 0 and increments by one for
each following constant. The value is determined at compile time rather than run time. Because of
this we can't apply iota to expressions which are evaluated at run time.

Program to use iota in const

package main

import "fmt"

const (
 Low = 5 * iota
 Medium
 High
)

func main() {
 // Use our iota constants.
 fmt.Println(Low)
 fmt.Println(Medium)
 fmt.Println(High)
}

Try it in Go Playground

Read Iota online: https://riptutorial.com/go/topic/2865/iota

https://riptutorial.com/ 139

https://play.golang.org/p/jyJEzyZSi6
https://riptutorial.com/go/topic/2865/iota

Chapter 35: JSON

Syntax

func Marshal(v interface{}) ([]byte, error)•
func Unmarshal(data []byte, v interface{}) error•

Remarks

The package "encoding/json" Package json implements encoding and decoding of JSON objects
in Go.

Types in JSON along with their corresponding concrete types in Go are:

JSON Type Go Concrete Type

boolean bool

numbers float64 or int

string string

null nil

Examples

Basic JSON Encoding

json.Marshal from the package "encoding/json" encodes a value to JSON.

The parameter is the value to encode. The returned values are an array of bytes representing the
JSON-encoded input (on success), and an error (on failure).

decodedValue := []string{"foo", "bar"}

// encode the value
data, err := json.Marshal(decodedValue)

// check if the encoding is successful
if err != nil {
 panic(err)
}

// print out the JSON-encoded string
// remember that data is a []byte
fmt.Println(string(data))
// "["foo","bar"]"

https://riptutorial.com/ 140

https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/#Marshal

Playground

Here's some basic examples of encoding for built-in data types:

var data []byte

data, _ = json.Marshal(1)
fmt.Println(string(data))
// 1

data, _ = json.Marshal("1")
fmt.Println(string(data))
// "1"

data, _ = json.Marshal(true)
fmt.Println(string(data))
// true

data, _ = json.Marshal(map[string]int{"London": 18, "Rome": 30})
fmt.Println(string(data))
// {"London":18,"Rome":30}

Playground

Encoding simple variables is helpful to understand how the JSON encoding works in Go.
However, in the real world, you'll likely encode more complex data stored in structs.

Basic JSON decoding

json.Unmarshal from the package "encoding/json" decodes a JSON value into the value pointed by
the given variable.

The parameters are the value to decode in []bytes and a variable to use as a storage for the de-
serialized value. The returned value is an error (on failure).

encodedValue := []byte(`{"London":18,"Rome":30}`)

// generic storage for the decoded JSON
var data map[string]interface{}

// decode the value into data
// notice that we must pass the pointer to data using &data
err := json.Unmarshal(encodedValue, &data)

// check if the decoding is successful
if err != nil {
 panic(err)
}

fmt.Println(data)
map[London:18 Rome:30]

Playground

Notice how in the example above we knew in advance both the type of the key and the value. But

https://riptutorial.com/ 141

https://play.golang.org/p/ihOs95HToW
https://play.golang.org/p/pcX_AGeSIz
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs#t=201607220810357745507
https://golang.org/pkg/encoding/json/#Marshal
https://play.golang.org/p/CjplBCptH8

this is not always the case. In fact, in most cases the JSON contains mixed value types.

encodedValue := []byte(`{"city":"Rome","temperature":30}`)

// generic storage for the decoded JSON
var data map[string]interface{}

// decode the value into data
if err := json.Unmarshal(encodedValue, &data); err != nil {
 panic(err)
}

// if you want to use a specific value type, we need to cast it
temp := data["temperature"].(float64)
fmt.Println(temp) // 30
city := data["city"].(string)
fmt.Println(city) // "Rome"

Playground

In the last example above we used a generic map to store the decoded value. We must use a
map[string]interface{} because we know that the keys are strings, but we don't know the type of
their values in advance.

This is a very simple approach, but it's also extremely limited. In the real world, you would
generally decode a JSON into a custom-defined struct type.

Decoding JSON data from a file

JSON data can also be read from files.

Let's assume we have a file called data.json with the following content:

[
 {
 "Name" : "John Doe",
 "Standard" : 4
 },
 {
 "Name" : "Peter Parker",
 "Standard" : 11
 },
 {
 "Name" : "Bilbo Baggins",
 "Standard" : 150
 }
]

The following example reads the file and decodes the content:

package main

import (
 "encoding/json"
 "fmt"

https://riptutorial.com/ 142

https://play.golang.org/p/SawE86QKRt
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs#t=201607220810357745507
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs#t=201607220810357745507
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs#t=201607220810357745507

 "log"
 "os"
)

type Student struct {
 Name string
 Standard int `json:"Standard"`
}

func main() {
 // open the file pointer
 studentFile, err := os.Open("data.json")
 if err != nil {
 log.Fatal(err)
 }
 defer studentFile.Close()

 // create a new decoder
 var studentDecoder *json.Decoder = json.NewDecoder(studentFile)
 if err != nil {
 log.Fatal(err)
 }

 // initialize the storage for the decoded data
 var studentList []Student

 // decode the data
 err = studentDecoder.Decode(&studentList)
 if err != nil {
 log.Fatal(err)
 }

 for i, student := range studentList {
 fmt.Println("Student", i+1)
 fmt.Println("Student name:", student.Name)
 fmt.Println("Student standard:", student.Standard)
 }
}

The file data.json must be in the same directory of the Go executable program. Read Go File I/O
documentation for more information on how to work with files in Go.

Using anonymous structs for decoding

The goal with using anonymous structs is to decode only the information we care about without
littering our app with types that are used only in a single function.

jsonBlob := []byte(`
 {
 "_total": 1,
 "_links": {
 "self":
"https://api.twitch.tv/kraken/channels/foo/subscriptions?direction=ASC&limit=25&offset=0",
 "next":
"https://api.twitch.tv/kraken/channels/foo/subscriptions?direction=ASC&limit=25&offset=25"
 },
 "subscriptions": [
 {

https://riptutorial.com/ 143

http://www.riptutorial.com/go/topic/1033/file-i-o
http://www.riptutorial.com/go/topic/1033/file-i-o

 "created_at": "2011-11-23T02:53:17Z",
 "_id": "abcdef0000000000000000000000000000000000",
 "_links": {
 "self": "https://api.twitch.tv/kraken/channels/foo/subscriptions/bar"
 },
 "user": {
 "display_name": "bar",
 "_id": 123456,
 "name": "bar",
 "staff": false,
 "created_at": "2011-06-16T18:23:11Z",
 "updated_at": "2014-10-23T02:20:51Z",
 "logo": null,
 "_links": {
 "self": "https://api.twitch.tv/kraken/users/bar"
 }
 }
 }
]
 }
`)

var js struct {
 Total int `json:"_total"`
 Links struct {
 Next string `json:"next"`
 } `json:"_links"`
 Subs []struct {
 Created string `json:"created_at"`
 User struct {
 Name string `json:"name"`
 ID int `json:"_id"`
 } `json:"user"`
 } `json:"subscriptions"`
}

err := json.Unmarshal(jsonBlob, &js)
if err != nil {
 fmt.Println("error:", err)
}
fmt.Printf("%+v", js)

Output: {Total:1
Links:{Next:https://api.twitch.tv/kraken/channels/foo/subscriptions?direction=ASC&limit=25&offset=25}
Subs:[{Created:2011-11-23T02:53:17Z User:{Name:bar ID:123456}}]}

Playground

For the general case see also:
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs

Configuring JSON struct fields

Consider the following example:

type Company struct {
 Name string
 Location string

https://riptutorial.com/ 144

https://play.golang.org/p/bSNc758imH
http://stackoverflow.com/documentation/go/994/json/4111/encoding-decoding-go-structs

}

Hide/Skip Certain Fields

To export Revenue and Sales, but hide them from encoding/decoding, use json:"-" or rename the
variable to begin with a lowercase letter. Note that this prevents the variable from being visible
outside the package.

type Company struct {
 Name string `json:"name"`
 Location string `json:"location"`
 Revenue int `json:"-"`
 sales int
}

Ignore Empty Fields

To prevent Location from being included in the JSON when it is set to its zero value, add
,omitempty to the json tag.

type Company struct {
 Name string `json:"name"`
 Location string `json:"location,omitempty"`
}

Example in Playground

Marshaling structs with private fields

As a good developer you have created following struct with both exported and unexported fields:

type MyStruct struct {
 uuid string
 Name string
}

Example in Playground: https://play.golang.org/p/Zk94Il2ANZ

Now you want to Marshal() this struct into valid JSON for storage in something like etcd. However,
since uuid in not exported, the json.Marshal() skips it. What to do? Use an anonymous struct and
the json.MarshalJSON() interface! Here's an example:

type MyStruct struct {
 uuid string
 Name string
}

func (m MyStruct) MarshalJSON() ([]byte, error {
 j, err := json.Marshal(struct {
 Uuid string
 Name string

https://riptutorial.com/ 145

https://play.golang.org/p/q8keNCcYAn
https://play.golang.org/p/Zk94Il2ANZ

 }{
 Uuid: m.uuid,
 Name: m.Name,
 })
 if err != nil {
 return nil, err
 }
 return j, nil
}

Example in Playground: https://play.golang.org/p/Bv2k9GgbzE

Encoding/Decoding using Go structs

Let's assume we have the following struct that defines a City type:

type City struct {
 Name string
 Temperature int
}

We can encode/decode City values using the encoding/json package.

First of all, we need to use the Go metadata to tell the encoder the correspondence between the
struct fields and the JSON keys.

type City struct {
 Name string `json:"name"`
 Temperature int `json:"temp"`
 // IMPORTANT: only exported fields will be encoded/decoded
 // Any field starting with a lower letter will be ignored
}

To keep this example simple, we'll declare an explicit correspondence between the fields and the
keys. However, you can use several variants of the json: metadata as explained in the docs.

IMPORTANT: Only exported fields (fields with capital name) will be serialized/deserialized.
For example, if you name the field temperature it will be ignored even if you set the json metadata.

Encoding

To encode a City struct, use json.Marshal as in the basic example:

// data to encode
city := City{Name: "Rome", Temperature: 30}

// encode the data
bytes, err := json.Marshal(city)
if err != nil {
 panic(err)
}

fmt.Println(string(bytes))

https://riptutorial.com/ 146

https://play.golang.org/p/Bv2k9GgbzE
https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/#Marshal
http://www.riptutorial.com/go/example/1255/exported-vs--unexported-fields--private-vs-public-

// {"name":"Rome","temp":30}

Playground

Decoding

To decode a City struct, use json.Unmarshal as in the basic example:

// data to decode
bytes := []byte(`{"name":"Rome","temp":30}`)

// initialize the container for the decoded data
var city City

// decode the data
// notice the use of &city to pass the pointer to city
if err := json.Unmarshal(bytes, &city); err != nil {
 panic(err)
}

fmt.Println(city)
// {Rome 30}

Playground

Read JSON online: https://riptutorial.com/go/topic/994/json

https://riptutorial.com/ 147

https://play.golang.org/p/KlziJIDWPW
https://play.golang.org/p/VHS28E-234
https://riptutorial.com/go/topic/994/json

Chapter 36: JWT Authorization in Go

Introduction

JSON Web Tokens (JWTs) are a popular method for representing claims securely between two
parties. Understanding how to work with them is important when developing web applications or
application programming interfaces.

Remarks

context.Context and HTTP middleware are outside the scope of this topic, but nonetheless those
curious, wandering souls should check out https://github.com/goware/jwtauth,
https://github.com/auth0/go-jwt-middleware, and https://github.com/dgrijalva/jwt-go.

Huge kudos to Dave Grijalva for his amazing work on go-jwt.

Examples

Parsing and validating a token using the HMAC signing method

// sample token string taken from the New example
tokenString :=
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmb28iOiJiYXIiLCJuYmYiOjE0NDQ0Nzg0MDB9.u1riaD1rW97opCoAuRCTy4w58Br-
Zk-bh7vLiRIsrpU"

// Parse takes the token string and a function for looking up the key. The latter is
especially
// useful if you use multiple keys for your application. The standard is to use 'kid' in the
// head of the token to identify which key to use, but the parsed token (head and claims) is
provided
// to the callback, providing flexibility.
token, err := jwt.Parse(tokenString, func(token *jwt.Token) (interface{}, error) {
 // Don't forget to validate the alg is what you expect:
 if _, ok := token.Method.(*jwt.SigningMethodHMAC); !ok {
 return nil, fmt.Errorf("Unexpected signing method: %v", token.Header["alg"])
 }

 // hmacSampleSecret is a []byte containing your secret, e.g. []byte("my_secret_key")
 return hmacSampleSecret, nil
})

if claims, ok := token.Claims.(jwt.MapClaims); ok && token.Valid {
 fmt.Println(claims["foo"], claims["nbf"])
} else {
 fmt.Println(err)
}

Output:

bar 1.4444784e+09

https://riptutorial.com/ 148

https://github.com/goware/jwtauth
https://github.com/auth0/go-jwt-middleware
https://github.com/dgrijalva/jwt-go

(From the documentation, courtesy of Dave Grijalva.)

Creating a token using a custom claims type

The StandardClaim is embedded in the custom type to allow for easy encoding, parsing and
validation of standard claims.

tokenString :=
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmb28iOiJiYXIiLCJleHAiOjE1MDAwLCJpc3MiOiJ0ZXN0In0.HE7fK0xOQwFEr4WDgRWj4teRPZ6i3GLwD5YCm6Pwu_c"

type MyCustomClaims struct {
 Foo string `json:"foo"`
 jwt.StandardClaims
}

// sample token is expired. override time so it parses as valid
at(time.Unix(0, 0), func() {
 token, err := jwt.ParseWithClaims(tokenString, &MyCustomClaims{}, func(token *jwt.Token)
(interface{}, error) {
 return []byte("AllYourBase"), nil
 })

 if claims, ok := token.Claims.(*MyCustomClaims); ok && token.Valid {
 fmt.Printf("%v %v", claims.Foo, claims.StandardClaims.ExpiresAt)
 } else {
 fmt.Println(err)
 }
})

Output:

bar 15000

(From the documentation, courtesy of Dave Grijalva.)

Creating, signing, and encoding a JWT token using the HMAC signing method

// Create a new token object, specifying signing method and the claims
// you would like it to contain.
token := jwt.NewWithClaims(jwt.SigningMethodHS256, jwt.MapClaims{
 "foo": "bar",
 "nbf": time.Date(2015, 10, 10, 12, 0, 0, 0, time.UTC).Unix(),
})

// Sign and get the complete encoded token as a string using the secret
tokenString, err := token.SignedString(hmacSampleSecret)

fmt.Println(tokenString, err)

Output:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmb28iOiJiYXIiLCJuYmYiOjE0NDQ0Nzg0MDB9.u1riaD1rW97opCoAuRCTy4w58Br-
Zk-bh7vLiRIsrpU <nil>

https://riptutorial.com/ 149

https://godoc.org/github.com/dgrijalva/jwt-go#ex-Parse--Hmac
https://godoc.org/github.com/dgrijalva/jwt-go#ex-ParseWithClaims--CustomClaimsType

(From the documentation, courtesy of Dave Grijalva.)

Using the StandardClaims type by itself to parse a token

The StandardClaims type is designed to be embedded into your custom types to provide standard
validation features. You can use it alone, but there's no way to retrieve other fields after parsing.
See the custom claims example for intended usage.

mySigningKey := []byte("AllYourBase")

// Create the Claims
claims := &jwt.StandardClaims{
 ExpiresAt: 15000,
 Issuer: "test",
}

token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)
ss, err := token.SignedString(mySigningKey)
fmt.Printf("%v %v", ss, err)

Output:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MDAwLCJpc3MiOiJ0ZXN0In0.QsODzZu3lUZMVdhbO76u3Jv02iYCvEHcYVUI1kOWEU0
<nil>

(From the documentation, courtesy of Dave Grijalva.)

Parsing the error types using bitfield checks

// Token from another example. This token is expired
var tokenString =
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmb28iOiJiYXIiLCJleHAiOjE1MDAwLCJpc3MiOiJ0ZXN0In0.HE7fK0xOQwFEr4WDgRWj4teRPZ6i3GLwD5YCm6Pwu_c"

token, err := jwt.Parse(tokenString, func(token *jwt.Token) (interface{}, error) {
 return []byte("AllYourBase"), nil
})

if token.Valid {
 fmt.Println("You look nice today")
} else if ve, ok := err.(*jwt.ValidationError); ok {
 if ve.Errors&jwt.ValidationErrorMalformed != 0 {
 fmt.Println("That's not even a token")
 } else if ve.Errors&(jwt.ValidationErrorExpired|jwt.ValidationErrorNotValidYet) != 0 {
 // Token is either expired or not active yet
 fmt.Println("Timing is everything")
 } else {
 fmt.Println("Couldn't handle this token:", err)
 }
} else {
 fmt.Println("Couldn't handle this token:", err)
}

Output:

https://riptutorial.com/ 150

https://godoc.org/github.com/dgrijalva/jwt-go#ex-New--Hmac
https://godoc.org/github.com/dgrijalva/jwt-go#ex-NewWithClaims--StandardClaims

Timing is everything

(From the documentation, courtesy of Dave Grijalva.)

Getting token from HTTP Authorization header

type contextKey string

const (
 // JWTTokenContextKey holds the key used to store a JWT Token in the
 // context.
 JWTTokenContextKey contextKey = "JWTToken"

 // JWTClaimsContextKey holds the key used to store the JWT Claims in the
 // context.
 JWTClaimsContextKey contextKey = "JWTClaims"
)

// ToHTTPContext moves JWT token from request header to context.
func ToHTTPContext() http.RequestFunc {
 return func(ctx context.Context, r *stdhttp.Request) context.Context {
 token, ok := extractTokenFromAuthHeader(r.Header.Get("Authorization"))
 if !ok {
 return ctx
 }

 return context.WithValue(ctx, JWTTokenContextKey, token)
 }
}

(From go-kit/kit, courtesy of Peter Bourgon)

Read JWT Authorization in Go online: https://riptutorial.com/go/topic/10161/jwt-authorization-in-go

https://riptutorial.com/ 151

https://godoc.org/github.com/dgrijalva/jwt-go#ex-Parse--ErrorChecking
https://github.com/go-kit/kit/blob/master/auth/jwt/transport.go
https://riptutorial.com/go/topic/10161/jwt-authorization-in-go

Chapter 37: Logging

Examples

Basic Printing

Go has a built-in logging library known as log with a commonly use method Print and its variants.
You can import the library then do some basic printing:

package main

import "log"

func main() {

 log.Println("Hello, world!")
 // Prints 'Hello, world!' on a single line

 log.Print("Hello, again! \n")
 // Prints 'Hello, again!' but doesn't break at the end without \n

 hello := "Hello, Stackers!"
 log.Printf("The type of hello is: %T \n", hello)
 // Allows you to use standard string formatting. Prints the type 'string' for %T
 // 'The type of hello is: string
}

Logging to file

It is possible to specify log destination with something that statisfies io.Writer interface. With that
we can log to file:

package main

import (
 "log"
 "os"
)

func main() {
 logfile, err := os.OpenFile("test.log", os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
 if err != nil {
 log.Fatalln(err)
 }
 defer logfile.Close()

 log.SetOutput(logfile)
 log.Println("Log entry")
}

Output:

https://riptutorial.com/ 152

$ cat test.log
2016/07/26 07:29:05 Log entry

Logging to syslog

It is also possible to log to syslog with log/syslog like this:

package main

import (
 "log"
 "log/syslog"
)

func main() {
 syslogger, err := syslog.New(syslog.LOG_INFO, "syslog_example")
 if err != nil {
 log.Fatalln(err)
 }

 log.SetOutput(syslogger)
 log.Println("Log entry")
}

After running we will be able to see that line in syslog:

Jul 26 07:35:21 localhost syslog_example[18358]: 2016/07/26 07:35:21 Log entry

Read Logging online: https://riptutorial.com/go/topic/3724/logging

https://riptutorial.com/ 153

https://riptutorial.com/go/topic/3724/logging

Chapter 38: Loops

Introduction

As one of the most basic functions in programming, loops are an important piece to nearly every
programming language. Loops enable developers to set certain portions of their code to repeat
through a number of loops which are referred to as iterations. This topic covers using multiple
types of loops and applications of loops in Go.

Examples

Basic Loop

for is the only loop statement in go, so a basic loop implementation could look like this:

// like if, for doesn't use parens either.
// variables declared in for and if are local to their scope.
for x := 0; x < 3; x++ { // ++ is a statement.
 fmt.Println("iteration", x)
}

// would print:
// iteration 0
// iteration 1
// iteration 2

Break and Continue

Breaking out of the loop and continuing to the next iteration is also supported in Go, like in many
other languages:

for x := 0; x < 10; x++ { // loop through 0 to 9
 if x < 3 { // skips all the numbers before 3
 continue
 }
 if x > 5 { // breaks out of the loop once x == 6
 break
 }
 fmt.Println("iteration", x)
}

// would print:
// iteration 3
// iteration 4
// iteration 5

The break and continue statements additionally accept an optional label, used to identify outer
loops to target with the statement:

https://riptutorial.com/ 154

OuterLoop:
for {
 for {
 if allDone() {
 break OuterLoop
 }
 if innerDone() {
 continue OuterLoop
 }
 // do something
 }
}

Conditional loop

The for keyword is also used for conditional loops, traditionally while loops in other programming
languages.

package main

import (
 "fmt"
)

func main() {
 i := 0
 for i < 3 { // Will repeat if condition is true
 i++
 fmt.Println(i)
 }
}

play it on playground

Will output:

1
2
3

infinite loop:

for {
 // This will run until a return or break.
}

Different Forms of For Loop

Simple form using one variable:

for i := 0; i < 10; i++ {
 fmt.Print(i, " ")
}

https://riptutorial.com/ 155

https://play.golang.org/p/18NqQo3PA6

Using two variables (or more):

for i, j := 0, 0; i < 5 && j < 10; i, j = i+1, j+2 {
 fmt.Println(i, j)
}

Without using initialization statement:

i := 0
for ; i < 10; i++ {
 fmt.Print(i, " ")
}

Without a test expression:

for i := 1; ; i++ {
 if i&1 == 1 {
 continue
 }
 if i == 22 {
 break
 }
 fmt.Print(i, " ")
}

Without increment expression:

for i := 0; i < 10; {
 fmt.Print(i, " ")
 i++
}

When all three initialization, test and increment expressions are removed, the loop
becomes infinite:

i := 0
for {
 fmt.Print(i, " ")
 i++
 if i == 10 {
 break
 }
}

This is an example of infinite loop with counter initialized with zero:

for i := 0; ; {
 fmt.Print(i, " ")
 if i == 9 {
 break
 }
 i++
}

https://riptutorial.com/ 156

When just the test expression is used (acts like a typical while loop):

i := 0
for i < 10 {
 fmt.Print(i, " ")
 i++
}

Using just increment expression:

i := 0
for ; ; i++ {
 fmt.Print(i, " ")
 if i == 9 {
 break
 }
}

Iterate over a range of values using index and value:

ary := [5]int{0, 1, 2, 3, 4}
for index, value := range ary {
 fmt.Println("ary[", index, "] =", value)
}

Iterate over a range using just index:

for index := range ary {
 fmt.Println("ary[", index, "] =", ary[index])
}

Iterate over a range using just index:

for index, _ := range ary {
 fmt.Println("ary[", index, "] =", ary[index])
}

Iterate over a range using just value:

for _, value := range ary {
 fmt.Print(value, " ")
}

Iterate over a range using key and value for map (may not be in order):

mp := map[string]int{"One": 1, "Two": 2, "Three": 3}
for key, value := range mp {
 fmt.Println("map[", key, "] =", value)
}

Iterate over a range using just key for map (may be not in order):

https://riptutorial.com/ 157

for key := range mp {
 fmt.Print(key, " ") //One Two Three
}

Iterate over a range using just key for map (may be not in order):

for key, _ := range mp {
 fmt.Print(key, " ") //One Two Three
}

Iterate over a range using just value for map (may be not in order):

for _, value := range mp {
 fmt.Print(value, " ") //2 3 1
}

Iterate over a range for channels (exits if the channel is closed):

ch := make(chan int, 10)
for i := 0; i < 10; i++ {
 ch <- i
}
close(ch)

for i := range ch {
 fmt.Print(i, " ")
}

Iterate over a range for string (gives Unicode code points):

utf8str := "B = \u00b5H" //B = µH
for _, r := range utf8str {
 fmt.Print(r, " ") //66 32 61 32 181 72
}
fmt.Println()
for _, v := range []byte(utf8str) {
 fmt.Print(v, " ") //66 32 61 32 194 181 72
}
fmt.Println(len(utf8str)) //7

as you see utf8str has 6 runes (Unicode code points) and 7 bytes.

Timed loop

package main

import(
 "fmt"
 "time"
)

func main() {
 for _ = range time.Tick(time.Second * 3) {
 fmt.Println("Ticking every 3 seconds")

https://riptutorial.com/ 158

 }
}

Read Loops online: https://riptutorial.com/go/topic/975/loops

https://riptutorial.com/ 159

https://riptutorial.com/go/topic/975/loops

Chapter 39: Maps

Introduction

Maps are data types used for storing unordered key-value pairs, so that looking up the value
associated to a given key is very efficient. Keys are unique. The underlying data structure grows
as needed to accommodate new elements, so the programmer does not need to worry about
memory management. They are similar to what other languages call hash tables, dictionaries, or
associative arrays.

Syntax

var mapName map[KeyType]ValueType // declare a Map•
var mapName = map[KeyType]ValueType{} // declare and assign an empty Map•
var mapName = map[KeyType]ValueType{key1: val1, key2: val2} // declare and assign a
Map

•

mapName := make(map[KeyType]ValueType) // declare and initialize default size map•
mapName := make(map[KeyType]ValueType, length) // declare and initialize length size
map

•

mapName := map[KeyType]ValueType{} // auto-declare and assign an empty Map with :=•
mapName := map[KeyType]ValueType{key1: value1, key2: value2} // auto-declare and
assign a Map with :=

•

value := mapName[key] // Get value by key•
value, hasKey := mapName[key] // Get value by key, 'hasKey' is 'true' if key exists in map•
mapName[key] = value // Set value by key•

Remarks

Go provides a built-in map type that implements a hash table. Maps are Go's built-in associative
data type (also called hashes or dictionaries in other languages).

Examples

Declaring and initializing a map

You define a map using the keyword map, followed by the types of its keys and its values:

// Keys are ints, values are ints.
var m1 map[int]int // initialized to nil

// Keys are strings, values are ints.
var m2 map[string]int // initialized to nil

Maps are reference types, and once defined they have a zero value of nil. Writes to nil maps will

https://riptutorial.com/ 160

http://www.riptutorial.com/go/example/2485/zero-value-of-a-map
http://www.riptutorial.com/go/example/2485/zero-value-of-a-map
http://www.riptutorial.com/go/example/2485/zero-value-of-a-map

panic and reads will always return the zero value.

To initialize a map, use the make function:

m := make(map[string]int)

With the two-parameter form of make, it's possible to specify an initial entry capacity for the map,
overriding the default capacity:

m := make(map[string]int, 30)

Alternatively, you can declare a map, initializing it to its zero value, and then assign a literal value
to it later, which helps if you marshal the struct into json thereby producing an empty map on
return.

m := make(map[string]int, 0)

You can also make a map and set its initial value with curly brackets ({}).

var m map[string]int = map[string]int{"Foo": 20, "Bar": 30}

fmt.Println(m["Foo"]) // outputs 20

All the following statements result in the variable being bound to the same value.

// Declare, initializing to zero value, then assign a literal value.
var m map[string]int
m = map[string]int{}

// Declare and initialize via literal value.
var m = map[string]int{}

// Declare via short variable declaration and initialize with a literal value.
m := map[string]int{}

We can also use a map literal to create a new map with some initial key/value pairs.

The key type can be any comparable type; notably, this excludes functions, maps, and slices. The
value type can be any type, including custom types or interface{}.

type Person struct {
 FirstName string
 LastName string
}

// Declare via short variable declaration and initialize with make.
m := make(map[string]Person)

// Declare, initializing to zero value, then assign a literal value.
var m map[string]Person
m = map[string]Person{}

https://riptutorial.com/ 161

http://www.riptutorial.com/go/example/17009/panic
https://golang.org/pkg/builtin/#make
http://www.riptutorial.com/go/example/2484/creating-a-map
http://golang.org/ref/spec#Comparison_operators
https://golang.org/ref/spec#Map_types

// Declare and initialize via literal value.
var m = map[string]Person{}

// Declare via short variable declaration and initialize with a literal value.
m := map[string]Person{}

Creating a map

One can declare and initialize a map in a single statement using a composite literal.

Using automatic type Short variable declaration:

mapIntInt := map[int]int{10: 100, 20: 100, 30: 1000}
mapIntString := map[int]string{10: "foo", 20: "bar", 30: "baz"}
mapStringInt := map[string]int{"foo": 10, "bar": 20, "baz": 30}
mapStringString := map[string]string{"foo": "one", "bar": "two", "baz": "three"}

The same code, but with Variable types:

var mapIntInt = map[int]int{10: 100, 20: 100, 30: 1000}
var mapIntString = map[int]string{10: "foo", 20: "bar", 30: "baz"}
var mapStringInt = map[string]int{"foo": 10, "bar": 20, "baz": 30}
var mapStringString = map[string]string{"foo": "one", "bar": "two", "baz": "three"}

You can also include your own structs in a map:

You can use custom types as value:

// Custom struct types
type Person struct {
 FirstName, LastName string
}

var mapStringPerson = map[string]Person{
 "john": Person{"John", "Doe"},
 "jane": Person{"Jane", "Doe"}}
mapStringPerson := map[string]Person{
 "john": Person{"John", "Doe"},
 "jane": Person{"Jane", "Doe"}}

Your struct can also be the key to the map:

type RouteHit struct {
 Domain string
 Route string
}

var hitMap = map[RouteHit]int{
 RouteHit{"example.com","/home"}: 1,
 RouteHit{"example.com","/help"}: 2}
hitMap := map[RouteHit]int{
 RouteHit{"example.com","/home"}: 1,
 RouteHit{"example.com","/help"}: 2}

https://riptutorial.com/ 162

https://golang.org/ref/spec#Composite_literals

You can create an empty map simply by not entering any value within the brackets {}.

mapIntInt := map[int]int{}
mapIntString := map[int]string{}
mapStringInt := map[string]int{}
mapStringString := map[string]string{}
mapStringPerson := map[string]Person{}

You can create and use a map directly, without the need to assign it to a variable. However, you
will have to specify both the declaration and the content.

// using a map as argument for fmt.Println()
fmt.Println(map[string]string{
 "FirstName": "John",
 "LastName": "Doe",
 "Age": "30"})

// equivalent to
data := map[string]string{
 "FirstName": "John",
 "LastName": "Doe",
 "Age": "30"}
fmt.Println(data)

Zero value of a map

The zero value of a map is nil and has a length of 0.

var m map[string]string
fmt.Println(m == nil) // true
fmt.Println(len(m) ==0) // true

A nil map has no keys nor can keys be added. A nil map behaves like an empty map if read from
but causes a runtime panic if written to.

var m map[string]string

// reading
m["foo"] == "" // true. Remember "" is the zero value for a string
_, ok = m["foo"] // ok == false

// writing
m["foo"] = "bar" // panic: assignment to entry in nil map

You should not try to read from or write to a zero value map. Instead, initialize the map (with make
or assignment) before using it.

var m map[string]string
m = make(map[string]string) // OR m = map[string]string{}
m["foo"] = "bar"

Iterating the elements of a map

https://riptutorial.com/ 163

import fmt

people := map[string]int{
 "john": 30,
 "jane": 29,
 "mark": 11,
}

for key, value := range people {
 fmt.Println("Name:", key, "Age:", value)
}

Note that when iterating over a map with a range loop, the iteration order is not specified and is
not guaranteed to be the same from one iteration to the next.

You can also discard either the keys or the values of the map, if you are looking to just grab keys
or just grab values.

Iterating the keys of a map

people := map[string]int{
 "john": 30,
 "jane": 29,
 "mark": 11,
}

for key, _ := range people {
 fmt.Println("Name:", key)
}

If you are just looking for the keys, since they are the first value, you can simply drop the
underscore:

for key := range people {
 fmt.Println("Name:", key)
}

Note that when iterating over a map with a range loop, the iteration order is not specified and is
not guaranteed to be the same from one iteration to the next.

Deleting a map element

The delete built-in function removes the element with the specified key from a map.

people := map[string]int{"john": 30, "jane": 29}
fmt.Println(people) // map[john:30 jane:29]

delete(people, "john")
fmt.Println(people) // map[jane:29]

If the map is nil or there is no such element, delete has no effect.

https://riptutorial.com/ 164

https://blog.golang.org/go-maps-in-action
http://www.riptutorial.com/go/example/2487/iterating-the-keys-of-a-map
https://blog.golang.org/go-maps-in-action
https://golang.org/pkg/builtin/#delete

people := map[string]int{"john": 30, "jane": 29}
fmt.Println(people) // map[john:30 jane:29]

delete(people, "notfound")
fmt.Println(people) // map[john:30 jane:29]

var something map[string]int
delete(something, "notfound") // no-op

Counting map elements

The built-in function len returns the number of elements in a map

m := map[string]int{}
len(m) // 0

m["foo"] = 1
len(m) // 1

If a variable points to a nil map, then len returns 0.

var m map[string]int
len(m) // 0

Concurrent Access of Maps

Maps in go are not safe for concurrency. You must take a lock to read and write on them if you will
be accessing them concurrently. Usually the best option is to use sync.RWMutex because you can
have read and write locks. However, a sync.Mutex could also be used.

type RWMap struct {
 sync.RWMutex
 m map[string]int
}

// Get is a wrapper for getting the value from the underlying map
func (r RWMap) Get(key string) int {
 r.RLock()
 defer r.RUnlock()
 return r.m[key]
}

// Set is a wrapper for setting the value of a key in the underlying map
func (r RWMap) Set(key string, val int) {
 r.Lock()
 defer r.Unlock()
 r.m[key] = val
}

// Inc increases the value in the RWMap for a key.
// This is more pleasant than r.Set(key, r.Get(key)++)
func (r RWMap) Inc(key string) {
 r.Lock()
 defer r.Unlock()
 r.m[key]++

https://riptutorial.com/ 165

https://golang.org/pkg/builtin/#len

}

func main() {

 // Init
 counter := RWMap{m: make(map[string]int)}

 // Get a Read Lock
 counter.RLock()
 _ = counter.["Key"]
 counter.RUnlock()

 // the above could be replaced with
 _ = counter.Get("Key")

 // Get a write Lock
 counter.Lock()
 counter.m["some_key"]++
 counter.Unlock()

 // above would need to be written as
 counter.Inc("some_key")
}

The trade-off of the wrapper functions is between the public access of the underlying map and
using the appropriate locks correctly.

Creating maps with slices as values

m := make(map[string][]int)

Accessing a non-existent key will return a nil slice as a value. Since nil slices act like zero length
slices when used with append or other built-in functions you do not normally need to check to see if
a key exists:

// m["key1"] == nil && len(m["key1"]) == 0
m["key1"] = append(m["key1"], 1)
// len(m["key1"]) == 1

Deleting a key from map sets the key back to a nil slice:

delete(m, "key1")
// m["key1"] == nil

Check for element in a map

To get a value from the map, you just have to do something like:00

value := mapName[key]

If the map contains the key, it returns the corresponding value.
If not, it returns zero-value of the map's value type (0 if map of int values, "" if map of string

https://riptutorial.com/ 166

values...)

m := map[string]string{"foo": "foo_value", "bar": ""}
k := m["foo"] // returns "foo_value" since that is the value stored in the map
k2 := m["bar"] // returns "" since that is the value stored in the map
k3 := m["nop"] // returns "" since the key does not exist, and "" is the string type's zero
value

To differentiate between empty values and non-existent keys, you can use the second returned
value of the map access (using like value, hasKey := map["key"]).

This second value is boolean typed, and will be:

true when the value is in the map,•
false when the map does not contains the given key.•

Look at the following example:

value, hasKey = m[key]
if hasKey {
 // the map contains the given key, so we can safely use the value
 // If value is zero-value, it's because the zero-value was pushed to the map
} else {
 // The map does not have the given key
 // the value will be the zero-value of the map's type
}

Iterating the values of a map

people := map[string]int{
 "john": 30,
 "jane": 29,
 "mark": 11,
}

for _, value := range people {
 fmt.Println("Age:", value)
}

Note that when iterating over a map with a range loop, the iteration order is not specified and is
not guaranteed to be the same from one iteration to the next.

Copy a Map

Like slices, maps hold references to an underlying data structure. So by assigning its value to
another variable, only the reference will be passed. To copy the map, it is necessary to create
another map and copy each value:

// Create the original map
originalMap := make(map[string]int)
originalMap["one"] = 1
originalMap["two"] = 2

https://riptutorial.com/ 167

https://blog.golang.org/go-maps-in-action

// Create the target map
targetMap := make(map[string]int)

// Copy from the original map to the target map
for key, value := range originalMap {
 targetMap[key] = value
}

Using a map as a set

Some languages have a native structure for sets. To make a set in Go, it's best practice to use a
map from the value type of the set to an empty struct (map[Type]struct{}).

For example, with strings:

// To initialize a set of strings:
greetings := map[string]struct{}{
 "hi": {},
 "hello": {},
}

// To delete a value:
delete(greetings, "hi")

// To add a value:
greetings["hey"] = struct{}{}

// To check if a value is in the set:
if _, ok := greetings["hey"]; ok {
 fmt.Println("hey is in greetings")
}

Read Maps online: https://riptutorial.com/go/topic/732/maps

https://riptutorial.com/ 168

https://riptutorial.com/go/topic/732/maps

Chapter 40: Memory pooling

Introduction

sync.Pool stores a cache of allocated but unused items for future use, avoiding memory churn for
frequently changed collections, and allowing efficient, thread-safe re-use of memory. It is useful to
manage a group of temporary items shared between concurrent clients of a package, for example
a list of database connections or a list of output buffers.

Examples

sync.Pool

Using sync.Pool structure we can pool objects and reuse them.

package main

import (
 "bytes"
 "fmt"
 "sync"
)

var pool = sync.Pool{
 // New creates an object when the pool has nothing available to return.
 // New must return an interface{} to make it flexible. You have to cast
 // your type after getting it.
 New: func() interface{} {
 // Pools often contain things like *bytes.Buffer, which are
 // temporary and re-usable.
 return &bytes.Buffer{}
 },
}

func main() {
 // When getting from a Pool, you need to cast
 s := pool.Get().(*bytes.Buffer)
 // We write to the object
 s.Write([]byte("dirty"))
 // Then put it back
 pool.Put(s)

 // Pools can return dirty results

 // Get 'another' buffer
 s = pool.Get().(*bytes.Buffer)
 // Write to it
 s.Write([]bytes("append"))
 // At this point, if GC ran, this buffer *might* exist already, in
 // which case it will contain the bytes of the string "dirtyappend"
 fmt.Println(s)
 // So use pools wisely, and clean up after yourself
 s.Reset()

https://riptutorial.com/ 169

https://golang.org/pkg/sync/#Pool

 pool.Put(s)

 // When you clean up, your buffer should be empty
 s = pool.Get().(*bytes.Buffer)
 // Defer your Puts to make sure you don't leak!
 defer pool.Put(s)
 s.Write([]byte("reset!"))
 // This prints "reset!", and not "dirtyappendreset!"
 fmt.Println(s)
}

Read Memory pooling online: https://riptutorial.com/go/topic/4647/memory-pooling

https://riptutorial.com/ 170

https://riptutorial.com/go/topic/4647/memory-pooling

Chapter 41: Methods

Syntax

func (t T) exampleOne(i int) (n int) { return i } // this function will receive copy of struct•
func (t *T) exampleTwo(i int) (n int) { return i } // this method will receive pointer to struct and
will be able to modify it

•

Examples

Basic methods

Methods in Go are just like functions, except they have receiver.

Usually receiver is some kind of struct or type.

package main

import (
 "fmt"
)

type Employee struct {
 Name string
 Age int
 Rank int
}

func (empl *Employee) Promote() {
 empl.Rank++
}

func main() {

 Bob := new(Employee)

 Bob.Rank = 1
 fmt.Println("Bobs rank now is: ", Bob.Rank)
 fmt.Println("Lets promote Bob!")

 Bob.Promote()

 fmt.Println("Now Bobs rank is: ", Bob.Rank)

}

Output:

Bobs rank now is: 1
Lets promote Bob!
Now Bobs rank is: 2

https://riptutorial.com/ 171

Chaining methods

With methods in golang you can do method "chaining" passing pointer to method and returning
pointer to the same struct like this:

package main

import (
 "fmt"
)

type Employee struct {
 Name string
 Age int
 Rank int
}

func (empl *Employee) Promote() *Employee {
 fmt.Printf("Promoting %s\n", empl.Name)
 empl.Rank++
 return empl
}

func (empl *Employee) SetName(name string) *Employee {
 fmt.Printf("Set name of new Employee to %s\n", name)
 empl.Name = name
 return empl
}

func main() {

 worker := new(Employee)

 worker.Rank = 1

 worker.SetName("Bob").Promote()

 fmt.Printf("Here we have %s with rank %d\n", worker.Name, worker.Rank)

}

Output:

Set name of new Employee to Bob
Promoting Bob
Here we have Bob with rank 2

Increment-Decrement operators as arguments in Methods

Though Go supports ++ and -- operators and the behaviour is found to be almost similar to c/c++,
variables with such operators cannot be passed as argument to function.

 package main

 import (
 "fmt"

https://riptutorial.com/ 172

)

 func abcd(a int, b int) {
 fmt.Println(a," ",b)
 }
 func main() {
 a:=5
 abcd(a++,++a)
 }

Output: syntax error: unexpected ++, expecting comma or)

Read Methods online: https://riptutorial.com/go/topic/3890/methods

https://riptutorial.com/ 173

https://riptutorial.com/go/topic/3890/methods

Chapter 42: mgo

Introduction

mgo (pronounced as mango) is a MongoDB driver for the Go language that implements a rich and
well tested selection of features under a very simple API following standard Go idioms.

Remarks

API Documentation

[https://gopkg.in/mgo.v2][1]

Examples

Example

package main

import (
 "fmt"
 "log"
 "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

type Person struct {
 Name string
 Phone string
}

func main() {
 session, err := mgo.Dial("server1.example.com,server2.example.com")
 if err != nil {
 panic(err)
 }
 defer session.Close()

 // Optional. Switch the session to a monotonic behavior.
 session.SetMode(mgo.Monotonic, true)

 c := session.DB("test").C("people")
 err = c.Insert(&Person{"Ale", "+55 53 8116 9639"},
 &Person{"Cla", "+55 53 8402 8510"})
 if err != nil {
 log.Fatal(err)
 }

 result := Person{}
 err = c.Find(bson.M{"name": "Ale"}).One(&result)
 if err != nil {
 log.Fatal(err)

https://riptutorial.com/ 174

https://gopkg.in/mgo.v2%5D%5B1%5D

 }

 fmt.Println("Phone:", result.Phone)
}

Read mgo online: https://riptutorial.com/go/topic/8898/mgo

https://riptutorial.com/ 175

https://riptutorial.com/go/topic/8898/mgo

Chapter 43: Middleware

Introduction

In Go Middleware can be used to execute code before and after handler function. It uses the
power of Single Function Interfaces. Can be introduced at any time without affecting the other
middleware. For Ex: Authentication logging can be added in later stages of development without
disturbing the existing code.

Remarks

The Signature of middleware should be (http.ResponseWriter, *http.Request) i.e. of
http.handlerFunc type.

Examples

Normal Handler Function

func loginHandler(w http.ResponseWriter, r *http.Request) {
 // Steps to login
}

func main() {
 http.HandleFunc("/login", loginHandler)
 http.ListenAndServe(":8080", nil)
}

Middleware Calculate time required for handlerFunc to execute

// logger middlerware that logs time taken to process each request
func Logger(h http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 startTime := time.Now()
 h.ServeHttp(w,r)
 endTime := time.Since(startTime)
 log.Printf("%s %d %v", r.URL, r.Method, endTime)
 })
}

func loginHandler(w http.ResponseWriter, r *http.Request) {
 // Steps to login
}

func main() {
 http.HandleFunc("/login", Logger(loginHandler))
 http.ListenAndServe(":8080", nil)
}

https://riptutorial.com/ 176

CORS Middleware

func CORS(h http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 origin := r.Header.Get("Origin")
 w.Header().Set("Access-Control-Allow-Origin", origin)
 if r.Method == "OPTIONS" {
 w.Header().Set("Access-Control-Allow-Credentials", "true")
 w.Header().Set("Access-Control-Allow-Methods", "GET,POST")

 w.RespWriter.Header().Set("Access-Control-Allow-Headers", "Content-Type, X-CSRF-
Token, Authorization")
 return
 } else {
 h.ServeHTTP(w, r)
 }
 })
}

func main() {
 http.HandleFunc("/login", Logger(CORS(loginHandler)))
 http.ListenAndServe(":8080", nil)
}

Auth Middleware

func Authenticate(h http.Handler) http.Handler {
 return CustomHandlerFunc(func(w *http.ResponseWriter, r *http.Request) {
 // extract params from req
 // post params | headers etc
 if CheckAuth(params) {
 log.Println("Auth Pass")
 // pass control to next middleware in chain or handler func
 h.ServeHTTP(w, r)
 } else {
 log.Println("Auth Fail")
 // Responsd Auth Fail
 }
 })
}

Recovery Handler to prevent server from crashing

func Recovery(h http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request){
 defer func() {
 if err := recover(); err != nil {
 // respondInternalServerError
 }
 }()
 h.ServeHTTP(w , r)
 })
}

Read Middleware online: https://riptutorial.com/go/topic/9343/middleware

https://riptutorial.com/ 177

https://riptutorial.com/go/topic/9343/middleware

Chapter 44: Mutex

Examples

Mutex Locking

Mutex locking in Go allows you to ensure that only one goroutine at a time has a lock:

import "sync"

func mutexTest() {
 lock := sync.Mutex{}
 go func(m *sync.Mutex) {
 m.Lock()
 defer m.Unlock() // Automatically unlock when this function returns
 // Do some things
 }(&lock)

 lock.Lock()
 // Do some other things
 lock.Unlock()
}

Using a Mutex allows you to avoid race conditions, concurrent modifications, and other issues
associated with multiple concurrent routines operating on the same resources. Note that
Mutex.Unlock() can be executed by any routine, not just the routine that got the lock. Also note that
the call to Mutex.Lock() will not fail if another routine holds the lock; it will block until the lock is
released.

Tip: Whenever you're passing a Mutex variable to a function, always pass it as a pointer.
Otherwise a copy is made of your variable, which defeats the purpose of the Mutex. If you're using
an older Go version (< 1.7), the compiler will not warn you about this mistake!

Read Mutex online: https://riptutorial.com/go/topic/2607/mutex

https://riptutorial.com/ 178

https://riptutorial.com/go/topic/2607/mutex

Chapter 45: Object Oriented Programming

Remarks

Interface can't be implemented with pointer receivers because *User is not User

Examples

Structs

Go supports user defined types in the form of structs and type aliases. structs are composite
types, the component pieces of data that constitute the struct type are called fields. a field has a
type and a name which must be unqiue.

package main

type User struct {
 ID uint64
 FullName string
 Email string
}

func main() {
 user := User{
 1,
 "Zelalem Mekonen",
 "zola.mk.27@gmail.com",
 }

 fmt.Println(user) // {1 Zelalem Mekonen zola.mk.27@gmail.com}
}

this is also a legal syntax for definining structs

type User struct {
 ID uint64
 FullName, Email string
}

user := new(User)

user.ID = 1
user.FullName = "Zelalem Mekonen"
user.Email = "zola.mk.27@gmail.com"

Embedded structs

because a struct is also a data type, it can be used as an anonymous field, the outer struct can
directly access the fields of the embedded struct even if the struct came from a diffrent package.
this behaviour provides a way to derive some or all of your implementation from another type or a

https://riptutorial.com/ 179

set of types.

package main

type Admin struct {
 Username, Password string
}

type User struct {
 ID uint64
 FullName, Email string
 Admin // embedded struct
}

func main() {
 admin := Admin{
 "zola",
 "supersecretpassword",
 }

 user := User{
 1,
 "Zelalem Mekonen",
 "zola.mk.27@gmail.com",
 admin,
 }

 fmt.Println(admin) // {zola supersecretpassword}

 fmt.Println(user) // {1 Zelalem Mekonen zola.mk.27@gmail.com {zola supersecretpassword}}

 fmt.Println(user.Username) // zola

 fmt.Println(user.Password) // supersecretpassword
}

Methods

In Go a method is

a function that acts on a variable of a certain type, called the receiver

the receiver can be anything, not only structs but even a function, alias types for built in types
such as int, string, bool can have a method, an exception to this rule is that interfaces(discussed
later) cannot have methods, since an interface is an abstract definition and a method is an
implementation, trying it generate a compile error.

combining structs and methods you can get a close eqivalent of a class in Object Oriented
programming.

a method in Go has the following signature

func (name receiverType) methodName(paramterList) (returnList) {}

package main

https://riptutorial.com/ 180

type Admin struct {
 Username, Password string
}

func (admin Admin) Delete() {
 fmt.Println("Admin Deleted")
}

type User struct {
 ID uint64
 FullName, Email string
 Admin
}

func (user User) SendEmail(email string) {
 fmt.Printf("Email sent to: %s\n", user.Email)
}

func main() {
 admin := Admin{
 "zola",
 "supersecretpassword",
 }

 user := User{
 1,
 "Zelalem Mekonen",
 "zola.mk.27@gmail.com",
 admin,
 }

 user.SendEmail("Hello") // Email sent to: zola.mk.27@gmail.com

 admin.Delete() // Admin Deleted
}

Pointer Vs Value receiver

the receiver of a method is usually a pointer for performance reason because we wouldn't make a
copy of the instance, as it would be the case in value receiver, this is especially true if the receiver
type is a struct. anoter reason to make the receiver type a pointer would be so we could modify the
data the receiver points to.

a value receiver is used to avoid modification of the data the receiver contains, a vaule receiver
may cause a performance hit if the receiver is a large struct.

package main

type User struct {
 ID uint64
 FullName, Email string
}

// We do no require any special syntax to access field because receiver is a pointer
func (user *User) SendEmail(email string) {
 fmt.Printf("Sent email to: %s\n", user.Email)
}

https://riptutorial.com/ 181

// ChangeMail will modify the users email because the receiver type is a ponter
func (user *User) ChangeEmail(email string) {
 user.Email = email;
}

func main() {
 user := User{
 1,
 "Zelalem Mekonen",
 "zola.mk.27@gmail.com",
 }

 user.SendEmail("Hello") // Sent email to: zola.mk.27@gmail.com

 user.ChangeEmail("zola@gmail.com")

 fmt.Println(user.Email) // zola@gmail.com
}

Interface & Polymorphism

Interfaces provide a way to specify the behaviour of an object, if something can do this then it can
be used here. an interface defines a set of methods, but these methods do not contain code as
they are abstract or the implemntation is left to the user of the interface. unlike most Object
Oriented languages interfaces can contain variables in Go.

Polymorphism is the essence of object-oriented programming: the ability to treat objects of
different types uniformly as long as they adhere to the same interface. Go interfaces provide this
capability in a very direct and intuitive way

package main

type Runner interface {
 Run()
}

type Admin struct {
 Username, Password string
}

func (admin Admin) Run() {
 fmt.Println("Admin ==> Run()");
}

type User struct {
 ID uint64
 FullName, Email string
}

func (user User) Run() {
 fmt.Println("User ==> Run()")
}

// RunnerExample takes any type that fullfils the Runner interface
func RunnerExample(r Runner) {
 r.Run()

https://riptutorial.com/ 182

}

func main() {
 admin := Admin{
 "zola",
 "supersecretpassword",
 }

 user := User{
 1,
 "Zelalem Mekonen",
 "zola.mk.27@gmail.com",
 }

 RunnerExample(admin)

 RunnerExample(user)

}

Read Object Oriented Programming online: https://riptutorial.com/go/topic/8801/object-oriented-
programming

https://riptutorial.com/ 183

https://riptutorial.com/go/topic/8801/object-oriented-programming
https://riptutorial.com/go/topic/8801/object-oriented-programming

Chapter 46: OS Signals

Syntax

func Notify(c chan<- os.Signal, sig ...os.Signal)•

Parameters

Parameter Details

c chan<-
os.Signal

Receiving channel specifically of type os.Signal; easily created with sigChan
:= make(chan os.Signal)

sig
...os.Signal

List of os.Signal types to catch and send down this channel. See
https://golang.org/pkg/syscall/#pkg-constants for more options.

Examples

Assigning signals to a channel

Often times you will have reason to catch when your program is being told to stop by the OS and
take some actions to preserve the state, or clean up your application. To accomplish this you can
use the os/signal package from the standard library. Below is a simple example of assigning all
signals from the system to a channel, and then how to react to those signals.

package main

import (
 "fmt"
 "os"
 "os/signal"
)

func main() {
 // create a channel for os.Signal
 sigChan := make(chan os.Signal)

 // assign all signal notifications to the channel
 signal.Notify(sigChan)

 // blocks until you get a signal from the OS
 select {
 // when a signal is received
 case sig := <-sigChan:
 // print this line telling us which signal was seen
 fmt.Println("Received signal from OS:", sig)
 }
}

https://riptutorial.com/ 184

https://golang.org/pkg/syscall/#pkg-constants

When you run the above script it will create a channel, and then block until that channel receives a
signal.

$ go run signals.go
^CReceived signal from OS: interrupt

The ^C above is the keyboard command CTRL+C which sends the SIGINT signal.

Read OS Signals online: https://riptutorial.com/go/topic/4497/os-signals

https://riptutorial.com/ 185

https://riptutorial.com/go/topic/4497/os-signals

Chapter 47: Packages

Examples

Package initalization

Package can have init methods which are run only once before main.

package usefull

func init() {
 // init code
}

If you just want to run the package initialization without referencing anything from it use the
following import expression.

import _ "usefull"

Managing package dependencies

A common way to download Go dependencies is by using the go get <package> command, which
will save the package into the global/shared $GOPATH/src directory. This means that a single version
of each package will be linked into each project that includes it as a dependency. This also means
that when a new developers deploys your project, they will go get the latest version of each
dependency.

However you can keep the build environment consistent, by attaching all the dependencies of a
project into the vendor/ directory. Keeping vendored dependencies committed along with your
project's repository allows you to do per-project dependency versioning, and provide a consistent
environment for your build.

This is what your project's structure will look like:

$GOPATH/src/
├── github.com/username/project/
| ├── main.go
| ├── vendor/
| | ├── github.com/pkg/errors
| | ├── github.com/gorilla/mux

Using different package and folder name

It is perfectly fine to use a package name other than the folder name. If we do so, we still have to
import the package based on the directory structure, but after the import we have to refer to it by
the name we used in the package clause.

https://riptutorial.com/ 186

For example, if you have a folder $GOPATH/src/mypck, and in it we have a file a.go:

package apple

const Pi = 3.14

Using this package:

package main

import (
 "mypck"
 "fmt"
)

func main() {
 fmt.Println(apple.Pi)
}

Even though this works, you should have a good reason to deviate package name from the folder
name (or it may become source of misunderstanding and confusion).

What's the use of this?

Simple. A package name is a Go idetifier:

identifier = letter { letter | unicode_digit } .

Which allows unicode letters to be used in identifiers, e.g. αβ is a valid identifier in Go. Folder and
file names are not handled by Go but by the Operating System, and different file systems have
different restrictions. There are actually many file systems which would not allow all valid Go
identifiers as folder names, so you would not be able to name your packages what otherwise the
language spec would allow.

Having the option to use different package names than their containing folders, you have the
option to really name your packages what the language spec allows, regardless of the underlying
operating and file system.

Importing packages

You can import a single package with the statement:

import "path/to/package"

or group multiple imports together:

import (
 "path/to/package1"
 "path/to/package2"
)

https://riptutorial.com/ 187

https://golang.org/ref/spec#Identifiers

This will look in the corresponding import paths inside of the $GOPATH for .go files and lets you
access exported names through packagename.AnyExportedName.

You can also access local packages inside of the current folder by prefacing packages with ./. In
a project with a structure like this:

project
├── src
│ ├── package1
│ │ └── file1.go
│ └── package2
│ └── file2.go
└── main.go

You could call this in main.go in order to import the code in file1.go and file2.go:

import (
 "./src/package1"
 "./src/package2"
)

Since package-names can collide in different libraries you may want to alias one package to a new
name. You can do this by prefixing your import-statement with the name you want to use.

import (
 "fmt" //fmt from the standardlibrary
 tfmt "some/thirdparty/fmt" //fmt from some other library
)

This allows you to access the former fmt package using fmt.* and the latter fmt package using
tfmt.*.

You can also import the package into the own namespace, so that you can refer to the exported
names without the package. prefix using a single dot as alias:

import (
 . "fmt"
)

Above example imports fmt into the global namespace and lets you call, for example, Printf
directly: Playground

If you import a package but don't use any of it's exported names, the Go compiler will print an
error-message. To circumvent this, you can set the alias to the underscore:

import (
 _ "fmt"
)

This can be useful if you don't access this package directly but need it's init functions to run.

https://riptutorial.com/ 188

https://play.golang.org/p/CT2V79T7h3

Note:

As the package names are based on the folder structure, any changes in the folder names &
import references (including case sensitivity) will cause a compile time error "case-insensitive
import collision" in Linux & OS-X, which is difficult to trace and fix (the error message is kinda
cryptic for mere mortals as it tries to convey the opposite - that, the comparison failed due to case
sensitivity).

ex: "path/to/Package1" vs "path/to/package1"

Live example: https://github.com/akamai-open/AkamaiOPEN-edgegrid-golang/issues/2

Read Packages online: https://riptutorial.com/go/topic/401/packages

https://riptutorial.com/ 189

https://github.com/akamai-open/AkamaiOPEN-edgegrid-golang/issues/2
https://riptutorial.com/go/topic/401/packages

Chapter 48: Panic and Recover

Remarks

This article assumes knowledge of Defer Basics

For ordinary error handling, read the topic on error handling

Examples

Panic

A panic halts normal execution flow and exits the current function. Any deferred calls will then be
executed before control is passed to the next higher function on the stack. Each stack's function
will exit and run deferred calls until the panic is handled using a deferred recover(), or until the
panic reaches main() and terminates the program. If this occurs, the argument provided to panic
and a stack trace will be printed to stderr.

package main

import "fmt"

func foo() {
 defer fmt.Println("Exiting foo")
 panic("bar")
}

func main() {
 defer fmt.Println("Exiting main")
 foo()
}

Output:

Exiting foo
Exiting main
panic: bar

goroutine 1 [running]:
panic(0x128360, 0x1040a130)
 /usr/local/go/src/runtime/panic.go:481 +0x700
main.foo()
 /tmp/sandbox550159908/main.go:7 +0x160
main.main()
 /tmp/sandbox550159908/main.go:12 +0x120

It is important to note that panic will accept any type as its parameter.

Recover

https://riptutorial.com/ 190

http://www.riptutorial.com/go/example/9429/defer-basics
http://www.riptutorial.com/go/topic/785/error-handling

Recover as the name implies, can attempt to recover from a panic. The recover must be attempted
in a deferred statement as normal execution flow has been halted. The recover statement must
appear directly within the deferred function enclosure. Recover statements in functions called by
deferred function calls will not be honored. The recover() call will return the argument provided to
the initial panic, if the program is currently panicking. If the program is not currently panicking,
recover() will return nil.

package main

import "fmt"

func foo() {
 panic("bar")
}

func bar() {
 defer func() {
 if msg := recover(); msg != nil {
 fmt.Printf("Recovered with message %s\n", msg)
 }
 }()
 foo()
 fmt.Println("Never gets executed")
}

func main() {
 fmt.Println("Entering main")
 bar()
 fmt.Println("Exiting main the normal way")
}

Output:

Entering main
Recovered with message bar
Exiting main the normal way

Read Panic and Recover online: https://riptutorial.com/go/topic/4350/panic-and-recover

https://riptutorial.com/ 191

https://riptutorial.com/go/topic/4350/panic-and-recover

Chapter 49: Parsing Command Line
Arguments And Flags

Examples

Command line arguments

Command line arguments parsing is Go is very similar to other languages. In you code you just
access slice of arguments where first argument will be the name of program itself.

Quick example:

package main

import (
 "fmt"
 "os"
)

func main() {

 progName := os.Args[0]
 arguments := os.Args[1:]

 fmt.Printf("Here we have program '%s' launched with following flags: ", progName)

 for _, arg := range arguments {
 fmt.Printf("%s ", arg)
 }

 fmt.Println("")
}

And output would be:

$./cmd test_arg1 test_arg2
Here we have program './cmd' launched with following flags: test_arg1 test_arg2

Each argument is just a string. In os package it looks like: var Args []string

Flags

Go standard library provides package flag that helps with parsing flags passed to program.

Note that flag package doesn't provide usual GNU-style flags. That means that multi-letter flags
must be started with single hyphen like this: -exampleflag , not this: --exampleflag. GNU-style flags
can be done with some 3-rd party package.

package main

https://riptutorial.com/ 192

import (
 "flag"
 "fmt"
)

func main() {

 // basic flag can be defined like this:
 stringFlag := flag.String("string.flag", "default value", "here comes usage")
 // after that stringFlag variable will become a pointer to flag value

 // if you need to store value in variable, not pointer, than you can
 // do it like:
 var intFlag int
 flag.IntVar(&intFlag, "int.flag", 1, "usage of intFlag")

 // after all flag definitions you must call
 flag.Parse()

 // then we can access our values
 fmt.Printf("Value of stringFlag is: %s\n", *stringFlag)
 fmt.Printf("Value of intFlag is: %d\n", intFlag)

}

flag does help message for us:

$./flags -h
Usage of ./flags:
 -int.flag int
 usage of intFlag (default 1)
 -string.flag string
 here comes usage (default "default value")

Call with all flags:

$./flags -string.flag test -int.flag 24
Value of stringFlag is: test
Value of intFlag is: 24

Call with missing flags:

$./flags
Value of stringFlag is: default value
Value of intFlag is: 1

Read Parsing Command Line Arguments And Flags online:
https://riptutorial.com/go/topic/4023/parsing-command-line-arguments-and-flags

https://riptutorial.com/ 193

https://riptutorial.com/go/topic/4023/parsing-command-line-arguments-and-flags

Chapter 50: Parsing CSV files

Syntax

csvReader := csv.NewReader(r)•
data, err := csvReader.Read()•

Examples

Simple CSV parsing

Consider this CSV data:

#id,title,text
1,hello world,"This is a ""blog""."
2,second time,"My
second
entry."

This data can be read with the following code:

// r can be any io.Reader, including a file.
csvReader := csv.NewReader(r)
// Set comment character to '#'.
csvReader.Comment = '#'
for {
 post, err := csvReader.Read()
 if err != nil {
 log.Println(err)
 // Will break on EOF.
 break
 }
 fmt.Printf("post with id %s is titled %q: %q\n", post[0], post[1], post[2])
}

And produce:

post with id 1 is titled "hello world": "This is a \"blog\"."
post with id 2 is titled "second time": "My\nsecond\nentry."
2009/11/10 23:00:00 EOF

Playground: https://play.golang.org/p/d2E6-CGGIe.

Read Parsing CSV files online: https://riptutorial.com/go/topic/5818/parsing-csv-files

https://riptutorial.com/ 194

https://play.golang.org/p/d2E6-CGGIe
https://riptutorial.com/go/topic/5818/parsing-csv-files

Chapter 51: Plugin

Introduction

Go provides a plugin mechanism that can be used to dynamically link other Go code at runtime.

As of Go 1.8, it is only usable on Linux.

Examples

Defining and using a plugin

package main

import "fmt"

var V int

func F() { fmt.Printf("Hello, number %d\n", V) }

This can be built with:

go build -buildmode=plugin

And then loaded and used from your application:

p, err := plugin.Open("plugin_name.so")
if err != nil {
 panic(err)
}

v, err := p.Lookup("V")
if err != nil {
 panic(err)
}

f, err := p.Lookup("F")
if err != nil {
 panic(err)
}

*v.(*int) = 7
f.(func())() // prints "Hello, number 7"

Example from The State of Go 2017.

Read Plugin online: https://riptutorial.com/go/topic/9150/plugin

https://riptutorial.com/ 195

https://talks.golang.org/2017/state-of-go.slide#1
https://riptutorial.com/go/topic/9150/plugin

Chapter 52: Pointers

Syntax

pointer := &variable // get pointer from variable•
variable := *pointer // get variable from pointer•
*pointer = value // set value from variable through the pointer•
pointer := new(Struct) // get pointer of new struct•

Examples

Basic Pointers

Go supports pointers, allowing you to pass references to values and records within your program.

package main

import "fmt"

// We'll show how pointers work in contrast to values with
// 2 functions: `zeroval` and `zeroptr`. `zeroval` has an
// `int` parameter, so arguments will be passed to it by
// value. `zeroval` will get a copy of `ival` distinct
// from the one in the calling function.
func zeroval(ival int) {
 ival = 0
}

// `zeroptr` in contrast has an `*int` parameter, meaning
// that it takes an `int` pointer. The `*iptr` code in the
// function body then _dereferences_ the pointer from its
// memory address to the current value at that address.
// Assigning a value to a dereferenced pointer changes the
// value at the referenced address.
func zeroptr(iptr *int) {
 *iptr = 0
}

Once these functions are defined, you can do the following:

func main() {
 i := 1
 fmt.Println("initial:", i) // initial: 1

 zeroval(i)
 fmt.Println("zeroval:", i) // zeroval: 1
 // `i` is still equal to 1 because `zeroval` edited
 // a "copy" of `i`, not the original.

 // The `&i` syntax gives the memory address of `i`,
 // i.e. a pointer to `i`. When calling `zeroptr`,
 // it will edit the "original" `i`.

https://riptutorial.com/ 196

http://en.wikipedia.org/wiki/Pointer_(computer_programming)

 zeroptr(&i)
 fmt.Println("zeroptr:", i) // zeroptr: 0

 // Pointers can be printed too.
 fmt.Println("pointer:", &i) // pointer: 0x10434114
}

Try this code

Pointer v. Value Methods

Pointer Methods

Pointer methods can be called even if the variable is itself not a pointer.

According to the Go Spec,

. . . a reference to a non-interface method with a pointer receiver using an addressable
value will automatically take the address of that value: t.Mp is equivalent to (&t).Mp.

You can see this in this example:

package main

import "fmt"

type Foo struct {
 Bar int
}

func (f *Foo) Increment() {
 f.Bar += 1
}

func main() {
 var f Foo

 // Calling `f.Increment` is automatically changed to `(&f).Increment` by the compiler.
 f = Foo{}
 fmt.Printf("f.Bar is %d\n", f.Bar)
 f.Increment()
 fmt.Printf("f.Bar is %d\n", f.Bar)

 // As you can see, calling `(&f).Increment` directly does the same thing.
 f = Foo{}
 fmt.Printf("f.Bar is %d\n", f.Bar)
 (&f).Increment()
 fmt.Printf("f.Bar is %d\n", f.Bar)
}

Play it

https://riptutorial.com/ 197

https://play.golang.org/p/KdE4TBbUL2
https://golang.org/ref/spec#Method_values
https://play.golang.org/p/jlQLrSnH-E

Value Methods

Similarly to pointer methods, value methods can be called even if the variable is itself not a value.

According to the Go Spec,

. . . a reference to a non-interface method with a value receiver using a pointer will
automatically dereference that pointer: pt.Mv is equivalent to (*pt).Mv.

You can see this in this example:

package main

import "fmt"

type Foo struct {
 Bar int
}

func (f Foo) Increment() {
 f.Bar += 1
}

func main() {
 var p *Foo

 // Calling `p.Increment` is automatically changed to `(*p).Increment` by the compiler.
 // (Note that `*p` is going to remain at 0 because a copy of `*p`, and not the original
`*p` are being edited)
 p = &Foo{}
 fmt.Printf("(*p).Bar is %d\n", (*p).Bar)
 p.Increment()
 fmt.Printf("(*p).Bar is %d\n", (*p).Bar)

 // As you can see, calling `(*p).Increment` directly does the same thing.
 p = &Foo{}
 fmt.Printf("(*p).Bar is %d\n", (*p).Bar)
 (*p).Increment()
 fmt.Printf("(*p).Bar is %d\n", (*p).Bar)
}

Play it

To learn more about pointer and value methods, visit the Go Spec section on Method Values, or
see the Effective Go section about Pointers v. Values.

Note 1: The parenthesis (()) around *p and &f before selectors like .Bar are there for grouping
purposes, and must be kept.

Note 2: Although pointers can be converted to values (and vice-versa) when they are the receivers
for a method, they are not automattically converted to eachother when they are arguments inside
of a function.

https://riptutorial.com/ 198

https://golang.org/ref/spec#Method_values
https://play.golang.org/p/Efc0IVgzh8
https://golang.org/ref/spec#Method_values
https://golang.org/doc/effective_go.html#pointers_vs_values

Dereferencing Pointers

Pointers can be dereferenced by adding an asterisk * before a pointer.

package main

import (
 "fmt"
)

type Person struct {
 Name string
}

func main() {
 c := new(Person) // returns pointer
 c.Name = "Catherine"
 fmt.Println(c.Name) // prints: Catherine
 d := c
 d.Name = "Daniel"
 fmt.Println(c.Name) // prints: Daniel
 // Adding an Asterix before a pointer dereferences the pointer
 i := *d
 i.Name = "Ines"
 fmt.Println(c.Name) // prints: Daniel
 fmt.Println(d.Name) // prints: Daniel
 fmt.Println(i.Name) // prints: Ines
}

Slices are Pointers to Array Segments

Slices are pointers to arrays, with the length of the segment, and its capacity. They behave as
pointers, and assigning their value to another slice, will assign the memory address. To copy a
slice value to another, use the built-in copy function: func copy(dst, src []Type) int (returns the
amount of items copied).

package main

import (
 "fmt"
)

func main() {
 x := []byte{'a', 'b', 'c'}
 fmt.Printf("%s", x) // prints: abc
 y := x
 y[0], y[1], y[2] = 'x', 'y', 'z'
 fmt.Printf("%s", x) // prints: xyz
 z := make([]byte, len(x))
 // To copy the value to another slice, but
 // but not the memory address use copy:
 _ = copy(z, x) // returns count of items copied
 fmt.Printf("%s", z) // prints: xyz
 z[0], z[1], z[2] = 'a', 'b', 'c'
 fmt.Printf("%s", x) // prints: xyz
 fmt.Printf("%s", z) // prints: abc
}

https://riptutorial.com/ 199

Simple Pointers

func swap(x, y *int) {
 *x, *y = *y, *x
}

func main() {
 x := int(1)
 y := int(2)
 // variable addresses
 swap(&x, &y)
 fmt.Println(x, y)
}

Read Pointers online: https://riptutorial.com/go/topic/1239/pointers

https://riptutorial.com/ 200

https://riptutorial.com/go/topic/1239/pointers

Chapter 53: Profiling using go tool pprof

Remarks

For more in profiling go programs visit the go blog.

Examples

Basic cpu and memory profiling

Add the following code in you main program.

var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to `file`")

func main() {
 flag.Parse()
 if *cpuprofile != "" {
 f, err := os.Create(*cpuprofile)
 if err != nil {
 log.Fatal("could not create CPU profile: ", err)
 }
 if err := pprof.StartCPUProfile(f); err != nil {
 log.Fatal("could not start CPU profile: ", err)
 }
 defer pprof.StopCPUProfile()
 }
 ...
 if *memprofile != "" {
 f, err := os.Create(*memprofile)
 if err != nil {
 log.Fatal("could not create memory profile: ", err)
 }
 runtime.GC() // get up-to-date statistics
 if err := pprof.WriteHeapProfile(f); err != nil {
 log.Fatal("could not write memory profile: ", err)
 }
 f.Close()
 }
}

after that build the go program if added in main go build main.go. Run main program with flags
defined in code main.exe -cpuprofile cpu.prof -memprof mem.prof. If the profiling is done for test
cases run the tests with same flags go test -cpuprofile cpu.prof -memprofile mem.prof

Basic memory Profiling

var memprofile = flag.String("memprofile", "", "write memory profile to `file`")

func main() {
 flag.Parse()
 if *memprofile != "" {

https://riptutorial.com/ 201

https://blog.golang.org/profiling-go-programs

 f, err := os.Create(*memprofile)
 if err != nil {
 log.Fatal("could not create memory profile: ", err)
 }
 runtime.GC() // get up-to-date statistics
 if err := pprof.WriteHeapProfile(f); err != nil {
 log.Fatal("could not write memory profile: ", err)
 }
 f.Close()
 }
}

go build main.go
main.exe -memprofile mem.prof
go tool pprof main.exe mem.prof

Set CPU/Block profile rate

// Sets the CPU profiling rate to hz samples per second
// If hz <= 0, SetCPUProfileRate turns off profiling
runtime.SetCPUProfileRate(hz)

// Controls the fraction of goroutine blocking events that are reported in the blocking
profile
// Rate = 1 includes every blocking event in the profile
// Rate <= 0 turns off profiling
runtime.SetBlockProfileRate(rate)

Using Benchmarks to Create Profile

For a non-main packages as well as main, instead of adding flags inside the code, write
benchmarks in the test package , for example:

func BenchmarkHello(b *testing.B) {
 for i := 0; i < b.N; i++ {
 fmt.Sprintf("hello")
 }
}

Then run the test with the profile flag

go test -cpuprofile cpu.prof -bench=.

And the benchmarks will be run and create a prof file with filename cpu.prof (in the above
example).

Accessing Profile File

once a prof file has been generated, one can access the prof file using go tools:

go tool pprof cpu.prof

https://riptutorial.com/ 202

This will enter into a command line interface for exploring the profile

Common commands include:

(pprof) top

lists top processes in memory

(pprof) peek

Lists all processes, use regex to narrow search.

(pprof) web

Opens an graph (in svg format) of the process.

An example of the top command:

69.29s of 100.84s total (68.71%)
Dropped 176 nodes (cum <= 0.50s)
Showing top 10 nodes out of 73 (cum >= 12.03s)
 flat flat% sum% cum cum%
 12.44s 12.34% 12.34% 27.87s 27.64% runtime.mapaccess1
 10.94s 10.85% 23.19% 10.94s 10.85% runtime.duffcopy
 9.45s 9.37% 32.56% 54.61s 54.16% github.com/tester/test.(*Circle).Draw
 8.88s 8.81% 41.36% 8.88s 8.81% runtime.aeshashbody
 7.90s 7.83% 49.20% 11.04s 10.95% runtime.mapaccess1_fast64
 5.86s 5.81% 55.01% 9.59s 9.51% github.com/tester/test.(*Circle).isCircle
 5.03s 4.99% 60.00% 8.89s 8.82% github.com/tester/test.(*Circle).openCircle
 3.14s 3.11% 63.11% 3.14s 3.11% runtime.aeshash64
 3.08s 3.05% 66.16% 7.85s 7.78% runtime.mallocgc
 2.57s 2.55% 68.71% 12.03s 11.93% runtime.memhash

Read Profiling using go tool pprof online: https://riptutorial.com/go/topic/7748/profiling-using-go-
tool-pprof

https://riptutorial.com/ 203

https://riptutorial.com/go/topic/7748/profiling-using-go-tool-pprof
https://riptutorial.com/go/topic/7748/profiling-using-go-tool-pprof

Chapter 54: Protobuf in Go

Introduction

Protobuf or Protocol Buffer encodes and decodes data so that different applications or modules
written in unlike languages can exchange the large number of messages quickly and reliably
without overloading the communication channel. With protobuf, the performance is directly
proportional to the number of message you tend to send. It compress the message to send in a
serialized binary format by providing your the tools to encode the message at source and decode
it at the destination.

Remarks

There are two steps of using protobuf.

First you must compile the protocol buffer definitions1.
Import the above definitions, with the support library into your program.2.

gRPC Support

If a proto file specifies RPC services, protoc-gen-go can be instructed to generate code compatible
with gRPC (http://www.grpc.io/). To do this, pass the plugins parameter to protoc-gen-go; the
usual way is to insert it into the --go_out argument to protoc:

protoc --go_out=plugins=grpc:. *.proto

Examples

Using Protobuf with Go

The message you want to serialize and send that you can include into a file test.proto, containing

package example;

enum FOO { X = 17; };

message Test {
 required string label = 1;
 optional int32 type = 2 [default=77];
 repeated int64 reps = 3;
 optional group OptionalGroup = 4 {
 required string RequiredField = 5;
 }
}

To compile the protocol buffer definition, run protoc with the --go_out parameter set to the
directory you want to output the Go code to.

https://riptutorial.com/ 204

http://www.grpc.io/)

protoc --go_out=. *.proto

To create and play with a Test object from the example package,

package main

import (
 "log"

 "github.com/golang/protobuf/proto"
 "path/to/example"
)

func main() {
 test := &example.Test {
 Label: proto.String("hello"),
 Type: proto.Int32(17),
 Reps: []int64{1, 2, 3},
 Optionalgroup: &example.Test_OptionalGroup {
 RequiredField: proto.String("good bye"),
 },
 }
 data, err := proto.Marshal(test)
 if err != nil {
 log.Fatal("marshaling error: ", err)
 }
 newTest := &example.Test{}
 err = proto.Unmarshal(data, newTest)
 if err != nil {
 log.Fatal("unmarshaling error: ", err)
 }
 // Now test and newTest contain the same data.
 if test.GetLabel() != newTest.GetLabel() {
 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
 }
 // etc.
}

To pass extra parameters to the plugin, use a comma-separated parameter list separated from the
output directory by a colon:

protoc --go_out=plugins=grpc,import_path=mypackage:. *.proto

Read Protobuf in Go online: https://riptutorial.com/go/topic/9729/protobuf-in-go

https://riptutorial.com/ 205

https://riptutorial.com/go/topic/9729/protobuf-in-go

Chapter 55: Readers

Examples

Using bytes.Reader to read from a string

One implementation of the io.Reader interface can be found in the bytes package. It allows a byte
slice to be used as the source for a Reader. In this example the byte slice is taken from a string,
but is more likely to have been read from a file or network connection.

message := []byte("Hello, playground")

reader := bytes.NewReader(message)

bs := make([]byte, 5)
n, err := reader.Read(bs)
if err != nil {
 log.Fatal(err)
}

fmt.Printf("Read %d bytes: %s", n, bs)

Go Playground

Read Readers online: https://riptutorial.com/go/topic/7000/readers

https://riptutorial.com/ 206

https://play.golang.org/p/cRSRKwKcXr
https://riptutorial.com/go/topic/7000/readers

Chapter 56: Reflection

Remarks

The reflect docs are a great reference. In general computer programming, reflection is ability of
a program to examine the structure and behavior of itself at runtime.

Based on its strict static type system Go lang has some rules (laws of reflection)

Examples

Basic reflect.Value Usage

import "reflect"

value := reflect.ValueOf(4)

// Interface returns an interface{}-typed value, which can be type-asserted
value.Interface().(int) // 4

// Type gets the reflect.Type, which contains runtime type information about
// this value
value.Type().Name() // int

value.SetInt(5) // panics -- non-pointer/slice/array types are not addressable

x := 4
reflect.ValueOf(&x).Elem().SetInt(5) // works

Structs

import "reflect"

type S struct {
 A int
 b string
}

func (s *S) String() { return s.b }

s := &S{
 A: 5,
 b: "example",
}

indirect := reflect.ValueOf(s) // effectively a pointer to an S
value := indirect.Elem() // this is addressable, since we've derefed a pointer

value.FieldByName("A").Interface() // 5
value.Field(2).Interface() // "example"

https://riptutorial.com/ 207

https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/
https://blog.golang.org/laws-of-reflection

value.NumMethod() // 0, since String takes a pointer receiver
indirect.NumMethod() // 1

indirect.Method(0).Call([]reflect.Value{}) // "example"
indirect.MethodByName("String").Call([]reflect.Value{}) // "example"

Slices

import "reflect"

s := []int{1, 2, 3}

value := reflect.ValueOf(s)

value.Len() // 3
value.Index(0).Interface() // 1
value.Type().Kind() // reflect.Slice
value.Type().Elem().Name() // int

value.Index(1).CanAddr() // true -- slice elements are addressable
value.Index(1).CanSet() // true -- and settable
value.Index(1).Set(5)

typ := reflect.SliceOf(reflect.TypeOf("example"))
newS := reflect.MakeSlice(typ, 0, 10) // an empty []string{} with capacity 10

reflect.Value.Elem()

import "reflect"

// this is effectively a pointer dereference

x := 5
ptr := reflect.ValueOf(&x)
ptr.Type().Name() // *int
ptr.Type().Kind() // reflect.Ptr
ptr.Interface() // [pointer to x]
ptr.Set(4) // panic

value := ptr.Elem() // this is a deref
value.Type().Name() // int
value.Type().Kind() // reflect.Int
value.Set(4) // this works
value.Interface() // 4

Type of value - package "reflect"

reflect.TypeOf can be used to check the type of variables when comparing

package main

 import (

https://riptutorial.com/ 208

 "fmt"
 "reflect"
)
 type Data struct {
 a int
 }
 func main() {
 s:="hey dude"
 fmt.Println(reflect.TypeOf(s))

 D := Data{a:5}
 fmt.Println(reflect.TypeOf(D))

 }

Output :
string
main.Data

Read Reflection online: https://riptutorial.com/go/topic/1854/reflection

https://riptutorial.com/ 209

https://riptutorial.com/go/topic/1854/reflection

Chapter 57: Select and Channels

Introduction

The select keyword provides an easy method to work with channels and perform more advanced
tasks. It is frequently used for a number of purposes: - Handling timeouts. - When there are
multiple channels to read from, the select will randomly read from one channel which has data. -
Providing an easy way to define what happens if no data is available on a channel.

Syntax

select {}•
select { case true: }•
select { case incomingData := <-someChannel: }•
select { default: }•

Examples

Simple Select Working with Channels

In this example we create a goroutine (a function running in a separate thread) that accepts a chan
parameter, and simply loops, sending information into the channel each time.

In the main we have a for loop and a select. The select will block processing until one of the case
statements becomes true. Here we have declared two cases; the first is when information comes
through the channel, and the other is if no other case occurs, which is known as default.

// Use of the select statement with channels (no timeouts)
package main

import (
 "fmt"
 "time"
)

// Function that is "chatty"
// Takes a single parameter a channel to send messages down
func chatter(chatChannel chan<- string) {
 // Clean up our channel when we are done.
 // The channel writer should always be the one to close a channel.
 defer close(chatChannel)

 // loop five times and die
 for i := 1; i <= 5; i++ {
 time.Sleep(2 * time.Second) // sleep for 2 seconds
 chatChannel <- fmt.Sprintf("This is pass number %d of chatter", i)
 }
}

https://riptutorial.com/ 210

// Our main function
func main() {
 // Create the channel
 chatChannel := make(chan string, 1)

 // start a go routine with chatter (separate, non blocking)
 go chatter(chatChannel)

 // This for loop keeps things going while the chatter is sleeping
 for {
 // select statement will block this thread until one of the two conditions below is
met
 // because we have a default, we will hit default any time the chatter isn't chatting
 select {
 // anytime the chatter chats, we'll catch it and output it
 case spam, ok := <-chatChannel:
 // Print the string from the channel, unless the channel is closed
 // and we're out of data, in which case exit.
 if ok {
 fmt.Println(spam)
 } else {
 fmt.Println("Channel closed, exiting!")
 return
 }
 default:
 // print a line, then sleep for 1 second.
 fmt.Println("Nothing happened this second.")
 time.Sleep(1 * time.Second)
 }
 }
}

Try it on the Go Playground!

Using select with timeouts

So here, I have removed the for loops, and made a timeout by adding a second case to the select
that returns after 3 seconds. Because the select just waits until ANY case is true, the second case
fires, and then our script ends, and chatter() never even gets a chance to finish.

// Use of the select statement with channels, for timeouts, etc.
package main

import (
 "fmt"
 "time"
)

// Function that is "chatty"
//Takes a single parameter a channel to send messages down
func chatter(chatChannel chan<- string) {
 // loop ten times and die
 time.Sleep(5 * time.Second) // sleep for 5 seconds
 chatChannel<- fmt.Sprintf("This is pass number %d of chatter", 1)
}

// out main function
func main() {

https://riptutorial.com/ 211

https://play.golang.org/p/jMeu32yIUJ

 // Create the channel, it will be taking only strings, no need for a buffer on this
project
 chatChannel := make(chan string)
 // Clean up our channel when we are done
 defer close(chatChannel)

 // start a go routine with chatter (separate, no blocking)
 go chatter(chatChannel)

 // select statement will block this thread until one of the two conditions below is met
 // because we have a default, we will hit default any time the chatter isn't chatting
 select {
 // anytime the chatter chats, we'll catch it and output it
 case spam := <-chatChannel:
 fmt.Println(spam)
 // if the chatter takes more than 3 seconds to chat, stop waiting
 case <-time.After(3 * time.Second):
 fmt.Println("Ain't no time for that!")
 }
}

Read Select and Channels online: https://riptutorial.com/go/topic/3539/select-and-channels

https://riptutorial.com/ 212

https://riptutorial.com/go/topic/3539/select-and-channels

Chapter 58: Send/receive emails

Syntax

func PlainAuth(identity, username, password, host string) Auth•
func SendMail(addr string, a Auth, from string, to []string, msg []byte) error•

Examples

Sending Email with smtp.SendMail()

Sending email is pretty simple in Go. It helps to understand the RFC 822, which specifies the style
an email need to be in, the code below sends a RFC 822 compliant email.

package main

import (
 "fmt"
 "net/smtp"
)

func main() {
 // user we are authorizing as
 from := "someuser@example.com"

 // use we are sending email to
 to := "otheruser@example.com"

 // server we are authorized to send email through
 host := "mail.example.com"

 // Create the authentication for the SendMail()
 // using PlainText, but other authentication methods are encouraged
 auth := smtp.PlainAuth("", from, "password", host)

 // NOTE: Using the backtick here ` works like a heredoc, which is why all the
 // rest of the lines are forced to the beginning of the line, otherwise the
 // formatting is wrong for the RFC 822 style
 message := `To: "Some User" <someuser@example.com>
From: "Other User" <otheruser@example.com>
Subject: Testing Email From Go!!

This is the message we are sending. That's it!
`

 if err := smtp.SendMail(host+":25", auth, from, []string{to}, []byte(message)); err != nil
{
 fmt.Println("Error SendMail: ", err)
 os.Exit(1)
 }
 fmt.Println("Email Sent!")
}

https://riptutorial.com/ 213

The above will send a message like the following:

To: "Other User" <otheruser@example.com>
From: "Some User" <someuser@example.com>
Subject: Testing Email From Go!!

This is the message we are sending. That's it!
.

Read Send/receive emails online: https://riptutorial.com/go/topic/5912/send-receive-emails

https://riptutorial.com/ 214

https://riptutorial.com/go/topic/5912/send-receive-emails

Chapter 59: Slices

Introduction

A slice is a data structure that encapsulates an array so that the programmer can add as many
elements as needed without having to worry about memory management. Slices can be cut into
sub-slices very efficiently, since the resulting slices all point to the same internal array. Go
programmers often take advantage of this to avoid copying arrays, which would typically be done
in many other programming languages.

Syntax

slice := make([]type, len, cap) // create a new slice•
slice = append(slice, item) // append a item to a slice•
slice = append(slice, items...) // append slice of items to a slice•
len := len(slice) // get the length of a slice•
cap := cap(slice) // get the capacity of a slice•
elNum := copy(dst, slice) // copy a the contents of a slice to an other slice•

Examples

Appending to slice

slice = append(slice, "hello", "world")

Adding Two slices together

slice1 := []string{"!"}
slice2 := []string{"Hello", "world"}
slice := append(slice1, slice2...)

Run in the Go Playground

Removing elements / "Slicing" slices

If you need to remove one or more elements from a slice, or if you need to work with a sub slice of
another existing one; you can use the following method.

Following examples uses slice of int, but that works with all type of slice.

So for that, we need a slice, from witch we will remove some elements:

slice := []int{1, 2, 3, 4, 5, 6}
// > [1 2 3 4 5 6]

https://riptutorial.com/ 215

https://play.golang.org/p/H3EsjlcMu5

We need also the indexes of elements to remove:

// index of first element to remove (corresponding to the '3' in the slice)
var first = 2

// index of last element to remove (corresponding to the '5' in the slice)
var last = 4

And so we can "slice" the slice, removing undesired elements:

// keeping elements from start to 'first element to remove' (not keeping first to remove),
// removing elements from 'first element to remove' to 'last element to remove'
// and keeping all others elements to the end of the slice
newSlice1 := append(slice[:first], slice[last+1:]...)
// > [1 2 6]

// you can do using directly numbers instead of variables
newSlice2 := append(slice[:2], slice[5:]...)
// > [1 2 6]

// Another way to do the same
newSlice3 := slice[:first + copy(slice[first:], slice[last+1:])]
// > [1 2 6]

// same that newSlice3 with hard coded indexes (without use of variables)
newSlice4 := slice[:2 + copy(slice[2:], slice[5:])]
// > [1 2 6]

To remove only one element, just have to put the index of this element as the first AND as the last
index to remove, just like that:

var indexToRemove = 3
newSlice5 := append(slice[:indexToRemove], slice[indexToRemove+1:]...)
// > [1 2 3 5 6]

// hard-coded version:
newSlice5 := append(slice[:3], slice[4:]...)
// > [1 2 3 5 6]

And you can also remove elements from the beginning of the slice:

newSlice6 := append(slice[:0], slice[last+1:]...)
// > [6]

// That can be simplified into
newSlice6 := slice[last+1:]
// > [6]

You can also removing some elements from the end of the slice:

newSlice7 := append(slice[:first], slice[first+1:len(slice)-1]...)
// > [1 2]

// That can be simplified into
newSlice7 := slice[:first]

https://riptutorial.com/ 216

// > [1 2]

If the new slice have to contains exactly the same elements than the first one, you can
use the same thing but with last := first-1.
(This can be useful in case of your indexes are previously computed)

Length and Capacity

Slices have both length and capacity. The length of a slice is the number of elements currently in
the slice, while the capacity is the number of elements the slice can hold before needing to be
reallocated.

When creating a slice using the built-in make() function, you can specify its length, and optionally
its capacity. If the capacity is not explicitly specified, it will be the specified length.

var s = make([]int, 3, 5) // length 3, capacity 5

You can check the length of a slice with the built-in len() function:

var n = len(s) // n == 3

You can check the capacity with the built-in cap() function:

var c = cap(s) // c == 5

Elements created by make() are set to the zero value for the element type of the slice:

for idx, val := range s {
 fmt.Println(idx, val)
}
// output:
// 0 0
// 1 0
// 2 0

Run it on play.golang.org

You cannot access elements beyond the length of a slice, even if the index is within capacity:

var x = s[3] // panic: runtime error: index out of range

However, as long as the capacity exceeds the length, you can append new elements without
reallocating:

var t = []int{3, 4}
s = append(s, t) // s is now []int{0, 0, 0, 3, 4}
n = len(s) // n == 5
c = cap(s) // c == 5

https://riptutorial.com/ 217

https://play.golang.org/p/E1OoWPDjwW

If you append to a slice which lacks the capacity to accept the new elements, the underlying array
will be reallocated for you with sufficient capacity:

var u = []int{5, 6}
s = append(s, u) // s is now []int{0, 0, 0, 3, 4, 5, 6}
n = len(s) // n == 7
c = cap(s) // c > 5

It is, therefore, generally good practice to allocate sufficient capacity when first creating a slice, if
you know how much space you'll need, to avoid unnecessary reallocations.

Copying contents from one slice to another slice

If you wish to copy the contents of a slice into an initially empty slice, following steps can be taken
to accomplish it-

Create the source slice:1.

var sourceSlice []interface{} = []interface{}{"Hello",5.10,"World",true}

Create the destination slice, with:2.

Length = Length of sourceSlice•

var destinationSlice []interface{} = make([]interface{},len(sourceSlice))

Now that the destination slice's underlying array is big enough to accomodate all the
elements of the source slice, we can proceed to copy the elements using the builtin copy:

3.

copy(destinationSlice,sourceSlice)

Creating Slices

Slices are the typical way go programmers store lists of data.

To declare a slice variable use the []Type syntax.

var a []int

To declare and initialize a slice variable in one line use the []Type{values} syntax.

var a []int = []int{3, 1, 4, 1, 5, 9}

Another way to initialize a slice is with the make function. It three arguments: the Type of the slice (or
map), the length, and the capacity.

a := make([]int, 0, 5)

https://riptutorial.com/ 218

http://www.riptutorial.com/go/topic/732/maps

You can add elements to your new slice using append.

a = append(a, 5)

Check the number of elements in your slice using len.

length := len(a)

Check the capacity of your slice using cap. The capacity is the number of elements currently
allocated to be in memory for the slice. You can always append to a slice at capacity as Go will
automatically create a bigger slice for you.

capacity := cap(a)

You can access elements in a slice using typical indexing syntax.

a[0] // Gets the first member of `a`

You can also use a for loop over slices with range. The first variable is the index in the specified
array, and the second variable is the value for the index.

for index, value := range a {
 fmt.Println("Index: " + index + " Value: " + value) // Prints "Index: 0 Value: 5" (and
continues until end of slice)
}

Go Playground

Filtering a slice

To filter a slice without allocating a new underlying array:

// Our base slice
slice := []int{ 1, 2, 3, 4 }
// Create a zero-length slice with the same underlying array
tmp := slice[:0]

for _, v := range slice {
 if v % 2 == 0 {
 // Append desired values to slice
 tmp = append(tmp, v)
 }
}

// (Optional) Reassign the slice
slice = tmp // [2, 4]

Zero value of slice

The zero value of slice is nil, which has the length and capacity 0. A nil slice has no underlying

https://riptutorial.com/ 219

https://play.golang.org/p/l9M34jbOla

array. But there are also non-nil slices of length and capacity 0, like []int{} or make([]int, 5)[5:].

Any type that have nil values can be converted to nil slice:

s = []int(nil)

To test whether a slice is empty, use:

if len(s) == 0�{
 fmt.Ptintf("s is empty.")
}

Read Slices online: https://riptutorial.com/go/topic/733/slices

https://riptutorial.com/ 220

https://riptutorial.com/go/topic/733/slices

Chapter 60: SQL

Remarks

For a list of SQL database drivers see the official Go wiki article SQLDrivers.

The SQL drivers are imported and prefixed by _, so that they are only available to driver.

Examples

Querying

This example is showing how to query a database with database/sql, taking as example a MySql
database.

package main

import (
 "log"
 "fmt"
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)

func main() {
 dsn := "mysql_username:CHANGEME@tcp(localhost:3306)/dbname"

 db, err := sql.Open("mysql", dsn)
 if err != nil {
 log.Fatal(err)
 }
 defer sql.Close()

 rows, err := db.Query("select id, first_name from user limit 10")
 if err != nil {
 log.Fatal(err)
 }
 defer rows.Close()

 for rows.Next() {
 var id int
 var username string
 if err := rows.Scan(&id, &username); err != nil {
 log.Fatal(err)
 }
 fmt.Printf("%d-%s\n", id, username)
 }
}

MySQL

To enable MySQL, a database driver is needed. For example github.com/go-sql-driver/mysql.

https://riptutorial.com/ 221

https://github.com/golang/go/wiki/SQLDrivers
http://github.com/go-sql-driver/mysql

import (
 "database/sql"
 _ "github.com/go-sql-driver/mysql"
)

Opening a database

Opening a database is database specific, here there are examples for some databases.

Sqlite 3

file := "path/to/file"
db_, err := sql.Open("sqlite3", file)
if err != nil {
 panic(err)
}

MySql

dsn := "mysql_username:CHANGEME@tcp(localhost:3306)/dbname"
db, err := sql.Open("mysql", dsn)
if err != nil {
 panic(err)
}

MongoDB: connect & insert & remove & update & query

package main

import (
 "fmt"
 "time"

 log "github.com/Sirupsen/logrus"
 mgo "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

var mongoConn *mgo.Session

type MongoDB_Conn struct {
 Host string `json:"Host"`
 Port string `json:"Port"`
 User string `json:"User"`
 Pass string `json:"Pass"`
 DB string `json:"DB"`
}

func MongoConn(mdb MongoDB_Conn) (*mgo.Session, string, error) {
 if mongoConn != nil {
 if mongoConn.Ping() == nil {
 return mongoConn, nil
 }
 }
 user := mdb.User

https://riptutorial.com/ 222

 pass := mdb.Pass
 host := mdb.Host
 port := mdb.Port
 db := mdb.DB
 if host == "" || port == "" || db == "" {
 log.Fatal("Host or port or db is nil")
 }
 url := fmt.Sprintf("mongodb://%s:%s@%s:%s/%s", user, pass, host, port, db)
 if user == "" {
 url = fmt.Sprintf("mongodb://%s:%s/%s", host, port, db)
 }
 mongo, err := mgo.DialWithTimeout(url, 3*time.Second)
 if err != nil {
 log.Errorf("Mongo Conn Error: [%v], Mongo ConnUrl: [%v]",
 err, url)
 errTextReturn := fmt.Sprintf("Mongo Conn Error: [%v]", err)
 return &mgo.Session{}, errors.New(errTextReturn)
 }
 mongoConn = mongo
 return mongoConn, nil
}

func MongoInsert(dbName, C string, data interface{}) error {
 mongo, err := MongoConn()
 if err != nil {
 log.Error(err)
 return err
 }
 db := mongo.DB(dbName)
 collection := db.C(C)
 err = collection.Insert(data)
 if err != nil {
 return err
 }
 return nil
}

func MongoRemove(dbName, C string, selector bson.M) error {
 mongo, err := MongoConn()
 if err != nil {
 log.Error(err)
 return err
 }
 db := mongo.DB(dbName)
 collection := db.C(C)
 err = collection.Remove(selector)
 if err != nil {
 return err
 }
 return nil
}

func MongoFind(dbName, C string, query, selector bson.M) ([]interface{}, error) {
 mongo, err := MongoConn()
 if err != nil {
 return nil, err
 }
 db := mongo.DB(dbName)
 collection := db.C(C)
 result := make([]interface{}, 0)
 err = collection.Find(query).Select(selector).All(&result)

https://riptutorial.com/ 223

 return result, err
}

func MongoUpdate(dbName, C string, selector bson.M, update interface{}) error {
 mongo, err := MongoConn()
 if err != nil {
 log.Error(err)
 return err
 }
 db := mongo.DB(dbName)
 collection := db.C(C)
 err = collection.Update(selector, update)
 if err != nil {
 return err
 }
 return nil
}

Read SQL online: https://riptutorial.com/go/topic/1273/sql

https://riptutorial.com/ 224

https://riptutorial.com/go/topic/1273/sql

Chapter 61: String

Introduction

A string is in effect a read-only slice of bytes. In Go a string literal will always contain a valid UTF-8
representation of its content.

Syntax

variableName := "Hello World" // declare a string•
variableName := `Hello World` // declare a raw literal string•
variableName := "Hello " + "World" // concatenates strings•
substring := "Hello World"[0:4] // get a part of the string•
letter := "Hello World"[6] // get a character of the string•
fmt.Sprintf("%s", "Hello World") // formats a string•

Examples

String type

The string type allows you to store text, which is a series of characters. There are multiple ways to
create strings. A literal string is created by writing the text between double quotes.

text := "Hello World"

Because Go strings support UTF-8, the previous example is perfectly valid. Strings hold arbitrary
bytes which does not necessarily mean every string will contain valid UTF-8 but string literals will
always hold valid UTF-8 sequences.

The zero value of strings is an empty string "".

Strings can be concatenated using the + operator.

text := "Hello " + "World"

Strings can also be defined using backticks ``. This creates a raw string literal which means
characters won't be escaped.

text1 := "Hello\nWorld"
text2 := `Hello
World`

In the previous example, text1 escapes the \n character which represents a new line while text2
contains the new line character directly. If you compare text1 == text2 the result will be true.

https://riptutorial.com/ 225

However, text2 := `Hello\nWorld` would not escape the \n character which means the string
contains the text Hello\nWorld without a new line. It would be the equivalent of typing text1 :=
"Hello\\nWorld".

Formatting text

Package fmt implements functions to print and format text using format verbs. Verbs are
represented with a percent sign.

General verbs:

%v // the value in a default format
 // when printing structs, the plus flag (%+v) adds field names
%#v // a Go-syntax representation of the value
%T // a Go-syntax representation of the type of the value
%% // a literal percent sign; consumes no value

Boolean:

%t // the word true or false

Integer:

%b // base 2
%c // the character represented by the corresponding Unicode code point
%d // base 10
%o // base 8
%q // a single-quoted character literal safely escaped with Go syntax.
%x // base 16, with lower-case letters for a-f
%X // base 16, with upper-case letters for A-F
%U // Unicode format: U+1234; same as "U+%04X"

Floating-point and complex constituents:

%b // decimalless scientific notation with exponent a power of two,
 // in the manner of strconv.FormatFloat with the 'b' format,
 // e.g. -123456p-78
%e // scientific notation, e.g. -1.234456e+78
%E // scientific notation, e.g. -1.234456E+78
%f // decimal point but no exponent, e.g. 123.456
%F // synonym for %f
%g // %e for large exponents, %f otherwise
%G // %E for large exponents, %F otherwise

String and slice of bytes (treated equivalently with these verbs):

%s // the uninterpreted bytes of the string or slice
%q // a double-quoted string safely escaped with Go syntax
%x // base 16, lower-case, two characters per byte
%X // base 16, upper-case, two characters per byte

Pointer:

https://riptutorial.com/ 226

%p // base 16 notation, with leading 0x

Using the verbs, you can create strings concatenating multiple types:

text1 := fmt.Sprintf("Hello %s", "World")
text2 := fmt.Sprintf("%d + %d = %d", 2, 3, 5)
text3 := fmt.Sprintf("%s, %s (Age: %d)", "Obama", "Barack", 55)

The function Sprintf formats the string in the first parameter replacing the verbs with the value of
the values in the next parameters and returns the result. Like Sprintf, the function Printf also
formats but instead of returning the result it prints the string.

strings package

strings.Contains

fmt.Println(strings.Contains("foobar", "foo")) // true
fmt.Println(strings.Contains("foobar", "baz")) // false

•

strings.HasPrefix

fmt.Println(strings.HasPrefix("foobar", "foo")) // true
fmt.Println(strings.HasPrefix("foobar", "baz")) // false

•

strings.HasSuffix

fmt.Println(strings.HasSuffix("foobar", "bar")) // true
fmt.Println(strings.HasSuffix("foobar", "baz")) // false

•

strings.Join

ss := []string{"foo", "bar", "bar"}
fmt.Println(strings.Join(ss, ", ")) // foo, bar, baz

•

strings.Replace

fmt.Println(strings.Replace("foobar", "bar", "baz", 1)) // foobaz

•

strings.Split

s := "foo, bar, bar"
fmt.Println(strings.Split(s, ", ")) // [foo bar baz]

•

strings.ToLower

fmt.Println(strings.ToLower("FOOBAR")) // foobar

•

strings.ToUpper

fmt.Println(strings.ToUpper("foobar")) // FOOBAR

•

https://riptutorial.com/ 227

https://golang.org/pkg/strings/#Contains
https://golang.org/pkg/strings/#HasPrefix
https://golang.org/pkg/strings/#HasSuffix
https://golang.org/pkg/strings/#Join
https://golang.org/pkg/strings/#Replace
https://golang.org/pkg/strings/#Split
https://golang.org/pkg/strings/#ToLower
https://golang.org/pkg/strings/#ToUpper

strings.TrimSpace

fmt.Println(strings.TrimSpace(" foobar ")) // foobar

•

More: https://golang.org/pkg/strings/.

Read String online: https://riptutorial.com/go/topic/9666/string

https://riptutorial.com/ 228

https://golang.org/pkg/strings/#TrimSpace
https://golang.org/pkg/strings/
https://riptutorial.com/go/topic/9666/string

Chapter 62: Structs

Introduction

Structs are sets of various variables packed together. The struct itself is only a package containing
variables and making them easily accessible.

Unlike in C, Go's structs can have methods attached to them. It also allows them to implement
interfaces. That makes Go's structs similar to objects, but they are (probably intentionally) missing
some major features known in object oriented languages like inheritance.

Examples

Basic Declaration

A basic struct is declared as follows:

type User struct {
 FirstName, LastName string
 Email string
 Age int
}

Each value is called a field. Fields are usually written one per line, with the field's name
preceeding its type. Consecutive fields of the same type may be combined, as FirstName and
LastName in the above example.

Exported vs. Unexported Fields (Private vs Public)

Struct fields whose names begin with an uppercase letter are exported. All other names are
unexported.

type Account struct {
 UserID int // exported
 accessToken string // unexported
}

Unexported fields can only be accessed by code within the same package. As such, if you are
ever accessing a field from a different package, its name needs to start with an uppercase letter.

package main

import "bank"

func main() {
 var x = &bank.Account{
 UserID: 1, // this works fine
 accessToken: "one", // this does not work, since accessToken is unexported

https://riptutorial.com/ 229

 }
}

However, from within the bank package, you can access both UserId and accessToken without
issue.

The package bank could be implemented like this:

package bank

type Account struct {
 UserID int
 accessToken string
}

func ProcessUser(u *Account) {
 u.accessToken = doSomething(u) // ProcessUser() can access u.accessToken because
 // it's defined in the same package
}

Composition and Embedding

Composition provides an alternative to inheritance. A struct may include another type by name in
its declaration:

type Request struct {
 Resource string
}

type AuthenticatedRequest struct {
 Request
 Username, Password string
}

In the example above, AuthenticatedRequest will contain four public members: Resource, Request,
Username, and Password.

Composite structs can be instantiated and used the same way as normal structs:

func main() {
 ar := new(AuthenticatedRequest)
 ar.Resource = "example.com/request"
 ar.Username = "bob"
 ar.Password = "P@ssw0rd"
 fmt.Printf("%#v", ar)
}

play it on playground

Embedding

https://riptutorial.com/ 230

https://play.golang.org/p/MfBhvhNMa-

In the previous example, Request is an embedded field. Composition can also be achieved by
embedding a different type. This is useful, for example, to decorate a Struct with more
functionality. For example, continuing with the Resource example, we want a function that formats
the content of the Resource field to prefix it with http:// or https://. We have two options: create
the new methods on AuthenticatedRequest or embed it from a different struct:

type ResourceFormatter struct {}

func(r *ResourceFormatter) FormatHTTP(resource string) string {
 return fmt.Sprintf("http://%s", resource)
}
func(r *ResourceFormatter) FormatHTTPS(resource string) string {
 return fmt.Sprintf("https://%s", resource)
}

type AuthenticatedRequest struct {
 Request
 Username, Password string
 ResourceFormatter
}

And now the main function could do the following:

func main() {
 ar := new(AuthenticatedRequest)
 ar.Resource = "www.example.com/request"
 ar.Username = "bob"
 ar.Password = "P@ssw0rd"

 println(ar.FormatHTTP(ar.Resource))
 println(ar.FormatHTTPS(ar.Resource))

 fmt.Printf("%#v", ar)
}

Look that the AuthenticatedRequest that has a ResourceFormatter embedded struct.

But the downside of it is that you cannot access objects outside of your composition. So
ResourceFormatter cannot access members from AuthenticatedRequest.

play it on playground

Methods

Struct methods are very similar to functions:

type User struct {
 name string
}

func (u User) Name() string {
 return u.name
}

https://riptutorial.com/ 231

https://play.golang.org/p/Ngl3D8UW5I

func (u *User) SetName(newName string) {
 u.name = newName
}

The only difference is the addition of the method receiver. It may be declared either as an instance
of the type or a pointer to an instance of the type. Since SetName() mutates the instance, the
receiver must be a pointer in order to effect a permanent change in the instance.

For example:

package main

import "fmt"

type User struct {
 name string
}

func (u User) Name() string {
 return u.name
}

func (u *User) SetName(newName string) {
 u.name = newName
}

func main() {
 var me User

 me.SetName("Slim Shady")
 fmt.Println("My name is", me.Name())
}

Go Playground

Anonymous struct

It is possible to create an anonymous struct:

data := struct {
 Number int
 Text string
} {
 42,
 "Hello world!",
}

Full example:

package main

import (
 "fmt"
)

https://riptutorial.com/ 232

https://play.golang.org/p/I5e3yOaRcI

func main() {
 data := struct {Number int; Text string}{42, "Hello world!"} // anonymous struct
 fmt.Printf("%+v\n", data)
}

play it on playground

Tags

Struct fields can have tags associated with them. These tags can be read by the reflect package
to get custom information specified about a field by the developer.

struct Account {
 Username string `json:"username"`
 DisplayName string `json:"display_name"`
 FavoriteColor string `json:"favorite_color,omitempty"`
}

In the above example, the tags are used to change the key names used by the encoding/json
package when marshaling or unmarshaling JSON.

While the tag can be any string value, it's considered best practice to use space separated
key:"value" pairs:

struct StructName {
 FieldName int `package1:"customdata,moredata" package2:"info"`
}

The struct tags used with the encoding/xml and encoding/json package are used throughout the
standard libarary.

Making struct copies.

A struct can simply be copied using assignment.

type T struct {
 I int
 S string
}

// initialize a struct
t := T{1, "one"}

// make struct copy
u := t // u has its field values equal to t

if u == t { // true
 fmt.Println("u and t are equal") // Prints: "u and t are equal"
}

In above case, 't' and 'u' are now separate objects (struct values).

https://riptutorial.com/ 233

https://play.golang.org/p/atpNnP5wE_

Since T does not contain any reference types (slices, map, channels) as its fields, t and u above
can be modified without affecting each other.

fmt.Printf("t.I = %d, u.I = %d\n", t.I, u.I) // t.I = 100, u.I = 1

However, if T contains a reference type, for example:

type T struct {
 I int
 S string
 xs []int // a slice is a reference type
}

Then a simple copy by assignment would copy the value of slice type field as well to the new
object. This would result in two different objects referring to the same slice object.

// initialize a struct
t := T{I: 1, S: "one", xs: []int{1, 2, 3}}

// make struct copy
u := t // u has its field values equal to t

Since both u and t refer to the same slice through their field xs updating a value in the slice of one
object would reflect the change in the other.

// update a slice field in u
u.xs[1] = 500

fmt.Printf("t.xs = %d, u.xs = %d\n", t.xs, u.xs)
// t.xs = [1 500 3], u.xs = [1 500 3]

Hence, extra care must be taken to ensure this reference type property does not produce
unintended behavior.

To copy above objects for example, an explicit copy of the slice field could be performed:

// explicitly initialize u's slice field
u.xs = make([]int, len(t.xs))
// copy the slice values over from t
copy(u.xs, t.xs)

// updating slice value in u will not affect t
u.xs[1] = 500

fmt.Printf("t.xs = %d, u.xs = %d\n", t.xs, u.xs)
// t.xs = [1 2 3], u.xs = [1 500 3]

Struct Literals

A value of a struct type can be written using a struct literal that specifies values for its fields.

https://riptutorial.com/ 234

type Point struct { X, Y int }
p := Point{1, 2}

The above example specifies every field in the right order. Which is not useful, because
programmers have to remember the exact fields in order. More often, a struct can be initialized by
listing some or all of the field names and their corresponding values.

anim := gif.GIF{LoopCount: nframes}

Omitted fields are set to the zero value for its type.

Note: The two forms cannot be mixed in the same literal.

Empty struct

A struct is a sequence of named elements, called fields, each of which has a name and a type.
Empty struct has no fields, like this anonymous empty struct:

var s struct{}

Or like this named empty struct type:

type T struct{}

The interesting thing about the empty struct is that, its size is zero (try The Go Playground):

fmt.Println(unsafe.Sizeof(s))

This prints 0, so the empty struct itself takes no memory. so it is good option for quit channel, like
(try The Go Playground):

package main

import (
 "fmt"
 "time"
)

func main() {
 done := make(chan struct{})
 go func() {
 time.Sleep(1 * time.Second)
 close(done)
 }()

 fmt.Println("Wait...")
 <-done
 fmt.Println("done.")
}

https://riptutorial.com/ 235

https://play.golang.org/p/ICQkZn01ng
https://play.golang.org/p/j3qowmGdmC

Read Structs online: https://riptutorial.com/go/topic/374/structs

https://riptutorial.com/ 236

https://riptutorial.com/go/topic/374/structs

Chapter 63: Templates

Syntax

t, err := template.Parse({{.MyName .MyAge}})•

t.Execute(os.Stdout,struct{MyValue,MyAge string}{"John Doe","40.1"})•

Remarks

Golang provides packages like:

text/template1.

html/template2.

to implement data-driven templates for generating textual and HTML outputs.

Examples

Output values of struct variable to Standard Output using a text template

package main

import (
 "log"
 "text/template"
 "os"
)

type Person struct{
 MyName string
 MyAge int
}

var myTempContents string= `
This person's name is : {{.MyName}}
And he is {{.MyAge}} years old.
`

func main() {
 t,err := template.New("myTemp").Parse(myTempContents)
 if err != nil{
 log.Fatal(err)
 }
 myPersonSlice := []Person{ {"John Doe",41},{"Peter Parker",17} }
 for _,myPerson := range myPersonSlice{
 t.Execute(os.Stdout,myPerson)
 }
}

Playground

https://riptutorial.com/ 237

https://play.golang.org/p/HwaxzuwO7A

Defining functions for calling from template

package main

import (
 "fmt"
 "net/http"
 "os"
 "text/template"
)

var requestTemplate string = `
{{range $i, $url := .URLs}}
{{ $url }} {{(status_code $url)}}
{{ end }}`

type Requests struct {
 URLs []string
}

func main() {
 var fns = template.FuncMap{
 "status_code": func(x string) int {
 resp, err := http.Head(x)
 if err != nil {
 return -1
 }
 return resp.StatusCode
 },
 }

 req := new(Requests)
 req.URLs = []string{"http://godoc.org", "http://stackoverflow.com", "http://linux.org"}

 tmpl := template.Must(template.New("getBatch").Funcs(fns).Parse(requestTemplate))
 err := tmpl.Execute(os.Stdout, req)
 if err != nil {
 fmt.Println(err)
 }
}

Here we use our defined function status_code to get status code of web page right from template.

Output:

http://godoc.org 200

http://stackoverflow.com 200

http://linux.org 200

Read Templates online: https://riptutorial.com/go/topic/1402/templates

https://riptutorial.com/ 238

https://riptutorial.com/go/topic/1402/templates

Chapter 64: Testing

Introduction

Go comes with its own testing facilities that has everything needed to run tests and benchmarks.
Unlike in most other programming languages, there is often no need for a separate testing
framework, although some exist.

Examples

Basic Test

main.go:

package main

import (
 "fmt"
)

func main() {
 fmt.Println(Sum(4,5))
}

func Sum(a, b int) int {
 return a + b
}

main_test.go:

package main

import (
 "testing"
)

// Test methods start with `Test`
func TestSum(t *testing.T) {
 got := Sum(1, 2)
 want := 3
 if got != want {
 t.Errorf("Sum(1, 2) == %d, want %d", got, want)
 }
}

To run the test just use the go test command:

$ go test
ok test_app 0.005s

Use the -v flag to see the results of each test:

https://riptutorial.com/ 239

$ go test -v
=== RUN TestSum
--- PASS: TestSum (0.00s)
PASS
ok _/tmp 0.000s

Use the path ./... to test subdirectories recursively:

$ go test -v ./...
ok github.com/me/project/dir1 0.008s
=== RUN TestSum
--- PASS: TestSum (0.00s)
PASS
ok github.com/me/project/dir2 0.008s
=== RUN TestDiff
--- PASS: TestDiff (0.00s)
PASS

Run a Particular Test:
If there are multiple tests and you want to run a specific test, it can be done like this:

go test -v -run=<TestName> // will execute only test with this name

Example:

go test -v run=TestSum

Benchmark tests

If you want to measure benchmarks add a testing method like this:

sum.go:

package sum

// Sum calculates the sum of two integers
func Sum(a, b int) int {
 return a + b
}

sum_test.go:

package sum

import "testing"

func BenchmarkSum(b *testing.B) {
 for i := 0; i < b.N; i++ {
 _ = Sum(2, 3)
 }
}

https://riptutorial.com/ 240

Then in order to run a simple benchmark:

$ go test -bench=.
BenchmarkSum-8 2000000000 0.49 ns/op
ok so/sum 1.027s

Table-driven unit tests

This type of testing is popular technique for testing with predefined input and output values.

Create a file called main.go with content:

package main

import (
 "fmt"
)

func main() {
 fmt.Println(Sum(4, 5))
}

func Sum(a, b int) int {
 return a + b
}

After you run it with, you will see that the output is 9. Although the Sum function looks pretty simple,
it is a good idea to test your code. In order to do this, we create another file named main_test.go in
the same folder as main.go, containing the following code:

package main

import (
 "testing"
)

// Test methods start with Test
func TestSum(t *testing.T) {
 // Note that the data variable is of type array of anonymous struct,
 // which is very handy for writing table-driven unit tests.
 data := []struct {
 a, b, res int
 }{
 {1, 2, 3},
 {0, 0, 0},
 {1, -1, 0},
 {2, 3, 5},
 {1000, 234, 1234},
 }

 for _, d := range data {
 if got := Sum(d.a, d.b); got != d.res {
 t.Errorf("Sum(%d, %d) == %d, want %d", d.a, d.b, got, d.res)
 }
 }
}

https://riptutorial.com/ 241

As you can see, a slice of anonymous structs is created, each with a set of inputs and the
expected result. This allows a large number of test cases to be created all together in one place,
then executed in a loop, reducing code repetition and improving clarity.

Example tests (self documenting tests)

This type of tests make sure that your code compiles properly and will appear in the generated
documentation for your project. In addition to that, the example tests can assert that your test
produces proper output.

sum.go:

package sum

// Sum calculates the sum of two integers
func Sum(a, b int) int {
 return a + b
}

sum_test.go:

package sum

import "fmt"

func ExampleSum() {
 x := Sum(1, 2)
 fmt.Println(x)
 fmt.Println(Sum(-1, -1))
 fmt.Println(Sum(0, 0))

 // Output:
 // 3
 // -2
 // 0
}

To execute your test, run go test in the folder containing those files OR put those two files in a
sub-folder named sum and then from the parent folder execute go test ./sum. In both cases you will
get an output similar to this:

ok so/sum 0.005s

If you are wondering how this is testing your code, here is another example function, which
actually fails the test:

func ExampleSum_fail() {
 x := Sum(1, 2)
 fmt.Println(x)

 // Output:
 // 5
}

https://riptutorial.com/ 242

When you run go test, you get the following output:

$ go test
--- FAIL: ExampleSum_fail (0.00s)
got:
3
want:
5
FAIL
exit status 1
FAIL so/sum 0.006s

If you want to see the documentation for your sum package – just run:

go doc -http=:6060

and navigate to http://localhost:6060/pkg/FOLDER/sum/, where FOLDER is the folder containing
the sum package (in this example so). The documentation for the sum method looks like this:

https://riptutorial.com/ 243

http://localhost:6060/pkg/FOLDER/sum/

Testing HTTP requests

main.go:

package main

main_test.go:

package main

Set/Reset Mock Function In Tests

This example shows how to mock out a function call that is irrelevant to our unit test, and then use

var validate = validateDTD

In our unit test,

func TestParseXML(t *testing.T) {

Testing using setUp and tearDown function

You can set a setUp and tearDown function.

A setUp function prepares your environment to tests.•

https://riptutorial.com/ 244

http://i.stack.imgur.com/GNHv4.png

A tearDown function does a rollback.•

This is a good option when you can't modify your database and you need to create an object that
simulate an object brought of database or need to init a configuration in each test.

A stupid example would be:

// Standard numbers map
var numbers map[string]int = map[string]int{"zero": 0, "three": 3}

// TestMain will exec each test, one by one
func TestMain(m *testing.M) {
 // exec setUp function
 setUp("one", 1)
 // exec test and this returns an exit code to pass to os
 retCode := m.Run()
 // exec tearDown function
 tearDown("one")
 // If exit code is distinct of zero,
 // the test will be failed (red)
 os.Exit(retCode)
}

// setUp function, add a number to numbers slice
func setUp(key string, value int) {
 numbers[key] = value
}

// tearDown function, delete a number to numbers slice
func tearDown(key string) {
 delete(numbers, key)
}

// First test
func TestOnePlusOne(t *testing.T) {
 numbers["one"] = numbers["one"] + 1

 if numbers["one"] != 2 {
 t.Error("1 plus 1 = 2, not %v", value)
 }
}

// Second test
func TestOnePlusTwo(t *testing.T) {
 numbers["one"] = numbers["one"] + 2

 if numbers["one"] != 3 {
 t.Error("1 plus 2 = 3, not %v", value)
 }
}

Other example would be to prepare database to test and to do rollback

 // ID of Person will be saved in database
personID := 12345
// Name of Person will be saved in database
personName := "Toni"

https://riptutorial.com/ 245

func TestMain(m *testing.M) {
 // You create an Person and you save in database
 setUp(&Person{
 ID: personID,
 Name: personName,
 Age: 19,
 })
 retCode := m.Run()
 // When you have executed the test, the Person is deleted from database
 tearDown(personID)
 os.Exit(retCode)
}

func setUp(P *Person) {
 // ...
 db.add(P)
 // ...
}

func tearDown(id int) {
 // ...
 db.delete(id)
 // ...
}

func getPerson(t *testing.T) {
 P := Get(personID)

 if P.Name != personName {
 t.Error("P.Name is %s and it must be Toni", P.Name)
 }
}

View code coverage in HTML format

Run go test as normal, yet with the coverprofile flag. Then use go tool to view the results as
HTML.

 go test -coverprofile=c.out
 go tool cover -html=c.out

Read Testing online: https://riptutorial.com/go/topic/1234/testing

https://riptutorial.com/ 246

https://riptutorial.com/go/topic/1234/testing

Chapter 65: Text + HTML Templating

Examples

Single item template

Note the use of {{.}} to output the item within the template.

package main

import (
 "fmt"
 "os"
 "text/template"
)

func main() {
 const (
 letter = `Dear {{.}}, How are you?`
)

 tmpl, err := template.New("letter").Parse(letter)
 if err != nil {
 fmt.Println(err.Error())
 }

 tmpl.Execute(os.Stdout, "Professor Jones")
}

Results in:

Dear Professor Jones, How are you?

Multiple item template

Note the use of {{range .}} and {{end}} to cycle over the collection.

package main

import (
 "fmt"
 "os"
 "text/template"
)

func main() {
 const (
 letter = `Dear {{range .}}{{.}}, {{end}} How are you?`
)

 tmpl, err := template.New("letter").Parse(letter)
 if err != nil {
 fmt.Println(err.Error())

https://riptutorial.com/ 247

 }

 tmpl.Execute(os.Stdout, []string{"Harry", "Jane", "Lisa", "George"})
}

Results in:

Dear Harry, Jane, Lisa, George, How are you?

Templates with custom logic

In this example, a function map named funcMap is supplied to the template via the Funcs() method
and then invoked inside the template. Here, the function increment() is used to get around the lack
of a less than or equal function in the templating language. Note in the output how the final item in
the collection is handled.

A - at the beginning {{- or end -}} is used to trim whitespace and can be used to help make the
template more legible.

package main

import (
 "fmt"
 "os"
 "text/template"
)

var funcMap = template.FuncMap{
 "increment": increment,
}

func increment(x int) int {
 return x + 1
}

func main() {
 const (
 letter = `Dear {{with $names := .}}
 {{- range $i, $val := $names}}
 {{- if lt (increment $i) (len $names)}}
 {{- $val}}, {{else -}} and {{$val}}{{end}}
 {{- end}}{{end}}; How are you?`
)

 tmpl, err := template.New("letter").Funcs(funcMap).Parse(letter)
 if err != nil {
 fmt.Println(err.Error())
 }

 tmpl.Execute(os.Stdout, []string{"Harry", "Jane", "Lisa", "George"})
}

Results in:

Dear Harry, Jane, Lisa, and George; How are you?

https://riptutorial.com/ 248

Templates with structs

Note how field values are obtained using {{.FieldName}}.

package main

import (
 "fmt"
 "os"
 "text/template"
)

type Person struct {
 FirstName string
 LastName string
 Street string
 City string
 State string
 Zip string
}

func main() {
 const (
 letter = `------------------------------
{{range .}}{{.FirstName}} {{.LastName}}
{{.Street}}
{{.City}}, {{.State}} {{.Zip}}

Dear {{.FirstName}},
 How are you?

{{end}}`
)

 tmpl, err := template.New("letter").Parse(letter)
 if err != nil {
 fmt.Println(err.Error())
 }

 harry := Person{
 FirstName: "Harry",
 LastName: "Jones",
 Street: "1234 Main St.",
 City: "Springfield",
 State: "IL",
 Zip: "12345-6789",
 }

 jane := Person{
 FirstName: "Jane",
 LastName: "Sherman",
 Street: "8511 1st Ave.",
 City: "Dayton",
 State: "OH",
 Zip: "18515-6261",
 }

 tmpl.Execute(os.Stdout, []Person{harry, jane})
}

https://riptutorial.com/ 249

Results in:

Harry Jones
1234 Main St.
Springfield, IL 12345-6789

Dear Harry,
 How are you?

Jane Sherman
8511 1st Ave.
Dayton, OH 18515-6261

Dear Jane,
 How are you?

HTML templates

Note the different package import.

package main

import (
 "fmt"
 "html/template"
 "os"
)

type Person struct {
 FirstName string
 LastName string
 Street string
 City string
 State string
 Zip string
 AvatarUrl string
}

func main() {
 const (
 letter = `<html><body><table>
<tr><th></th><th>Name</th><th>Address</th></tr>
{{range .}}
<tr>
<td></td>
<td>{{.FirstName}} {{.LastName}}</td>
<td>{{.Street}}, {{.City}}, {{.State}} {{.Zip}}</td>
</tr>
{{end}}
</table></body></html>`
)

 tmpl, err := template.New("letter").Parse(letter)
 if err != nil {

https://riptutorial.com/ 250

 fmt.Println(err.Error())
 }

 harry := Person{
 FirstName: "Harry",
 LastName: "Jones",
 Street: "1234 Main St.",
 City: "Springfield",
 State: "IL",
 Zip: "12345-6789",
 AvatarUrl: "harry.png",
 }

 jane := Person{
 FirstName: "Jane",
 LastName: "Sherman",
 Street: "8511 1st Ave.",
 City: "Dayton",
 State: "OH",
 Zip: "18515-6261",
 AvatarUrl: "jane.png",
 }

 tmpl.Execute(os.Stdout, []Person{harry, jane})
}

Results in:

<html><body><table>
<tr><th></th><th>Name</th><th>Address</th></tr>

<tr>
<td></td>
<td>Harry Jones</td>
<td>1234 Main St., Springfield, IL 12345-6789</td>
</tr>

<tr>
<td></td>
<td>Jane Sherman</td>
<td>8511 1st Ave., Dayton, OH 18515-6261</td>
</tr>

</table></body></html>

How HTML templates prevent malicious code injection

First, here's what can happen when text/template is used for HTML. Note Harry's FirstName
property).

package main

import (
 "fmt"
 "html/template"
 "os"
)

https://riptutorial.com/ 251

type Person struct {
 FirstName string
 LastName string
 Street string
 City string
 State string
 Zip string
 AvatarUrl string
}

func main() {
 const (
 letter = `<html><body><table>
<tr><th></th><th>Name</th><th>Address</th></tr>
{{range .}}
<tr>
<td></td>
<td>{{.FirstName}} {{.LastName}}</td>
<td>{{.Street}}, {{.City}}, {{.State}} {{.Zip}}</td>
</tr>
{{end}}
</table></body></html>`
)

 tmpl, err := template.New("letter").Parse(letter)
 if err != nil {
 fmt.Println(err.Error())
 }

 harry := Person{
 FirstName: `Harry<script>alert("You've been hacked!")</script>`,
 LastName: "Jones",
 Street: "1234 Main St.",
 City: "Springfield",
 State: "IL",
 Zip: "12345-6789",
 AvatarUrl: "harry.png",
 }

 jane := Person{
 FirstName: "Jane",
 LastName: "Sherman",
 Street: "8511 1st Ave.",
 City: "Dayton",
 State: "OH",
 Zip: "18515-6261",
 AvatarUrl: "jane.png",
 }

 tmpl.Execute(os.Stdout, []Person{harry, jane})
}

Results in:

<html><body><table>
<tr><th></th><th>Name</th><th>Address</th></tr>

<tr>
<td></td>

https://riptutorial.com/ 252

<td>Harry<script>alert("You've been hacked!")</script> Jones</td>
<td>1234 Main St., Springfield, IL 12345-6789</td>
</tr>

<tr>
<td></td>
<td>Jane Sherman</td>
<td>8511 1st Ave., Dayton, OH 18515-6261</td>
</tr>

</table></body></html>

The above example, if accessed from a browser, would result in the script being executed an an
alert being generated. If, instead, the html/template were imported instead of text/template, the
script would be safely sanitized:

<html><body><table>
<tr><th></th><th>Name</th><th>Address</th></tr>

<tr>
<td></td>
<td>Harry<script>alert("You've been hacked!")</script> Jones</td>
<td>1234 Main St., Springfield, IL 12345-6789</td>
</tr>

<tr>
<td></td>
<td>Jane Sherman</td>
<td>8511 1st Ave., Dayton, OH 18515-6261</td>
</tr>

</table></body></html>

The second result would look garbled when loaded in a browser, but would not result in a
potentially malicious script executing.

Read Text + HTML Templating online: https://riptutorial.com/go/topic/3888/text-plus-html-
templating

https://riptutorial.com/ 253

https://riptutorial.com/go/topic/3888/text-plus-html-templating
https://riptutorial.com/go/topic/3888/text-plus-html-templating

Chapter 66: The Go Command

Introduction

The go command is a command-line program that allows for the management of Go development.
It enables building, running, and testing code, as well as a variety of other Go-related tasks.

Examples

Go Run

go run will run a program without creating an executable file. Mostly useful for development. run
will only execute packages whose package name is main.

To demonstrate, we will use a simple Hello World example main.go:

package main

import fmt

func main() {
 fmt.Println("Hello, World!")
}

Execute without compiling to a file:

go run main.go

Output:

Hello, World!

Run multiple files in package

If the package is main and split into multiple files, one must include the other files in the run
command:

go run main.go assets.go

Go Build

go build will compile a program into an executable file.

To demonstrate, we will use a simple Hello World example main.go:

https://riptutorial.com/ 254

package main

import fmt

func main() {
 fmt.Println("Hello, World!")
}

Compile the program:

go build main.go

build creates an executable program, in this case: main or main.exe. You can then run this file to
see the output Hello, World!. You can also copy it to a similar system that doesn't have Go
installed, make it executable, and run it there.

Specify OS or Architecture in build:

You can specify what system or architecture to build by modifying the env before build:

env GOOS=linux go build main.go # builds for Linux
env GOARCH=arm go build main.go # builds for ARM architecture

Build multiple files

If your package is split into multiple files and the package name is main (that is, it is not an
importable package), you must specify all the files to build:

go build main.go assets.go # outputs an executable: main

Building a package

To build a package called main, you can simply use:

go build . # outputs an executable with name as the name of enclosing folder

Go Clean

go clean will clean up any temporary files created when invoking go build on a program. It will also
clean files left over from Makefiles.

Go Fmt

go fmt will format a program's source code in a neat, idiomatic way that is easy to read and
understand. It is recommended that you use go fmt on any source before you submit it for public
viewing or committing into a version control system, to make reading it easier.

https://riptutorial.com/ 255

To format a file:

go fmt main.go

Or all files in a directory:

go fmt myProject

You can also use gofmt -s (not go fmt) to attempt to simplify any code that it can.

gofmt (not go fmt) can also be used to refactor code. It understands Go, so it is more powerful than
using a simple search and replace. For example, given this program (main.go):

package main

type Example struct {
 Name string
}

func (e *Example) Original(name string) {
 e.Name = name
}

func main() {
 e := &Example{"Hello"}
 e.Original("Goodbye")
}

You can replace the method Original with Refactor with gofmt:

gofmt -r 'Original -> Refactor' -d main.go

Which will produce the diff:

-func (e *Example) Original(name string) {
+func (e *Example) Refactor(name string) {
 e.Name = name
 }

 func main() {
 e := &Example{"Hello"}
- e.Original("Goodbye")
+ e.Refactor("Goodbye")
 }

Go Get

go get downloads the packages named by the import paths, along with their dependencies. It then
installs the named packages, like 'go install'. Get also accepts build flags to control the installation.

go get github.com/maknahar/phonecountry

https://riptutorial.com/ 256

When checking out a new package, get creates the target directory $GOPATH/src/<import-path>. If
the GOPATH contains multiple entries, get uses the first one. Similarly, it will install compiled
binaries in $GOPATH/bin.

When checking out or updating a package, get looks for a branch or tag that matches the locally
installed version of Go. The most important rule is that if the local installation is running version
"go1", get searches for a branch or tag named "go1". If no such version exists it retrieves the most
recent version of the package.

When using go get, the -d flag causes it to download but not install the given package. The -u flag
will allow it to update the package and its dependencies.

Get never checks out or updates code stored in vendor directories.

Go env

go env [var ...] prints go environment information.

By default it prints all the information.

$go env

GOARCH="amd64"
GOBIN=""
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/vikashkv/work"
GORACE=""
GOROOT="/usr/local/Cellar/go/1.7.4_1/libexec"
GOTOOLDIR="/usr/local/Cellar/go/1.7.4_1/libexec/pkg/tool/darwin_amd64"
CC="clang"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -
fdebug-prefix-map=/var/folders/xf/t3j24fjd2b7bv8c9gdr_0mj80000gn/T/go-build785167995=/tmp/go-
build -gno-record-gcc-switches -fno-common"
CXX="clang++"
CGO_ENABLED="1"

If one or more variable names is given as arguments, it prints the value of each named
variable on its own line.

$go env GOOS GOPATH

darwin
/Users/vikashkv/work

Read The Go Command online: https://riptutorial.com/go/topic/4828/the-go-command

https://riptutorial.com/ 257

https://riptutorial.com/go/topic/4828/the-go-command

Chapter 67: Time

Introduction

The Go time package provides functionality for measuring and displaying time.

This package provide a structure time.Time, allowing to store and do computations on dates and
time.

Syntax

time.Date(2016, time.December, 31, 23, 59, 59, 999, time.UTC) // initialize•
date1 == date2 // returns true when the 2 are the same moment•
date1 != date2 // returns true when the 2 are different moment•
date1.Before(date2) // returns true when the first is strictly before the second•
date1.After(date2) // returns true when the first is strictly after the second•

Examples

Return time.Time Zero Value when function has an Error

const timeFormat = "15 Monday January 2006"

func ParseDate(s string) (time.Time, error) {
 t, err := time.Parse(timeFormat, s)
 if err != nil {
 // time.Time{} returns January 1, year 1, 00:00:00.000000000 UTC
 // which according to the source code is the zero value for time.Time
 // https://golang.org/src/time/time.go#L23
 return time.Time{}, err
 }
 return t, nil
}

Time parsing

If you have a date stored as a string you will need to parse it. Use time.Parse.

// time.Parse(format , date to parse)
date, err := time.Parse("01/02/2006", "04/08/2017")
if err != nil {
 panic(err)
}

fmt.Println(date)
// Prints 2017-04-08 00:00:00 +0000 UTC

The first parameter is the layout in which the string stores the date and the second parameter is

https://riptutorial.com/ 258

https://golang.org/pkg/time/

the string that contains the date. 01/02/2006 is the same than saying the format is MM/DD/YYYY.

The layout defines the format by showing how the reference time, defined to be Mon Jan 2 15:04:05
-0700 MST 2006 would be interpreted if it were the value; it serves as an example of the input
format. The same interpretation will then be made to the input string.

You can see the constants defined in the time package to know how to write the layout string, but
note that the constants are not exported and can't be used outside the time package.

const (
 stdLongMonth // "January"
 stdMonth // "Jan"
 stdNumMonth // "1"
 stdZeroMonth // "01"
 stdLongWeekDay // "Monday"
 stdWeekDay // "Mon"
 stdDay // "2"
 stdUnderDay // "_2"
 stdZeroDay // "02"
 stdHour // "15"
 stdHour12 // "3"
 stdZeroHour12 // "03"
 stdMinute // "4"
 stdZeroMinute // "04"
 stdSecond // "5"
 stdZeroSecond // "05"
 stdLongYear // "2006"
 stdYear // "06"
 stdPM // "PM"
 stdpm // "pm"
 stdTZ // "MST"
 stdISO8601TZ // "Z0700" // prints Z for UTC
 stdISO8601SecondsTZ // "Z070000"
 stdISO8601ShortTZ // "Z07"
 stdISO8601ColonTZ // "Z07:00" // prints Z for UTC
 stdISO8601ColonSecondsTZ // "Z07:00:00"
 stdNumTZ // "-0700" // always numeric
 stdNumSecondsTz // "-070000"
 stdNumShortTZ // "-07" // always numeric
 stdNumColonTZ // "-07:00" // always numeric
 stdNumColonSecondsTZ // "-07:00:00"
)

Comparing Time

Sometime you will need to know, with 2 dates objects, if there are corresponding to the same date,
or find which date is after the other.

In Go, there is 4 way to compare dates:

date1 == date2, returns true when the 2 are the same moment•
date1 != date2, returns true when the 2 are different moment•
date1.Before(date2), returns true when the first is strictly before the second•
date1.After(date2), returns true when the first is strictly after the second•

https://riptutorial.com/ 259

WARNING: When the 2 Time to compare are the same (or correspond to the exact
same date), functions After and Before will return false, as a date is neither before nor
after itself

date1 == date1, returns true•
date1 != date1, returns false•
date1.After(date1), returns false•
date1.Before(date1), returns false•

TIPS: If you need to know if a date is before or equal another one, just need to
combine the 4 operators

date1 == date2 && date1.After(date2), returns true when date1 is after or equal
date2
or using ! (date1.Before(date2))

•

date1 == date2 && date1.Before(date2), returns true when date1 is before or equal
date2 or using !(date1.After(date2))

•

Some examples to see how to use:

// Init 2 dates for example
var date1 = time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC)
var date2 = time.Date(2017, time.July, 25, 16, 22, 42, 123, time.UTC)
var date3 = time.Date(2017, time.July, 25, 16, 22, 42, 123, time.UTC)

bool1 := date1.Before(date2) // true, because date1 is before date2
bool2 := date1.After(date2) // false, because date1 is not after date2

bool3 := date2.Before(date1) // false, because date2 is not before date1
bool4 := date2.After(date1) // true, because date2 is after date1

bool5 := date1 == date2 // false, not the same moment
bool6 := date1 == date3 // true, different objects but representing the exact same time

bool7 := date1 != date2 // true, different moments
bool8 := date1 != date3 // false, not different moments

bool9 := date1.After(date3) // false, because date1 is not after date3 (that are the same)
bool10:= date1.Before(date3) // false, because date1 is not before date3 (that are the same)

bool11 := !(date1.Before(date3)) // true, because date1 is not before date3
bool12 := !(date1.After(date3)) // true, because date1 is not after date3

Read Time online: https://riptutorial.com/go/topic/8860/time

https://riptutorial.com/ 260

https://riptutorial.com/go/topic/8860/time

Chapter 68: Type conversions

Examples

Basic Type Conversion

There are two basic styles of type conversion in Go:

// Simple type conversion
var x := Foo{} // x is of type Foo
var y := (Bar)Foo // y is of type Bar, unless Foo cannot be cast to Bar, then compile-time
error occurs.
// Extended type conversion
var z,ok := x.(Bar) // z is of type Bar, ok is of type bool - if conversion succeeded, z
has the same value as x and ok is true. If it failed, z has the zero value of type Bar, and ok
is false.

Testing Interface Implementation

As Go uses implicit interface implementation, you will not get a compile-time error if your struct
does not implement an interface you had intended to implement. You can test the implementation
explicitly using type casting: type MyInterface interface { Thing() }

type MyImplementer struct {}

func (m MyImplementer) Thing() {
 fmt.Println("Huzzah!")
}

// Interface is implemented, no error. Variable name _ causes value to be ignored.
var _ MyInterface = (*MyImplementer)nil

type MyNonImplementer struct {}

// Compile-time error - cannot case because interface is not implemented.
var _ MyInterface = (*MyNonImplementer)nil

Implement a Unit System with Types

This example illustrates how Go's type system can be used to implement some unit system.

package main

import (
 "fmt"
)

type MetersPerSecond float64
type KilometersPerHour float64

func (mps MetersPerSecond) toKilometersPerHour() KilometersPerHour {

https://riptutorial.com/ 261

 return KilometersPerHour(mps * 3.6)
}

func (kmh KilometersPerHour) toMetersPerSecond() MetersPerSecond {
 return MetersPerSecond(kmh / 3.6)
}

func main() {
 var mps MetersPerSecond
 mps = 12.5
 kmh := mps.toKilometersPerHour()
 mps2 := kmh.toMetersPerSecond()
 fmt.Printf("%vmps = %vkmh = %vmps\n", mps, kmh, mps2)
}

Open in Playground

Read Type conversions online: https://riptutorial.com/go/topic/2851/type-conversions

https://riptutorial.com/ 262

https://play.golang.org/p/bhtAQWt5ci
https://riptutorial.com/go/topic/2851/type-conversions

Chapter 69: Variables

Syntax

var x int // declare variable x with type int•
var s string // declare variable s with type string•
x = 4 // define x value•
s = "foo" // define s value•
y := 5 // declare and define y inferring its type to int•
f := 4.5 // declare and define f inferring its type to float64•
b := "bar" // declare and define b inferring its type to string•

Examples

Basic Variable Declaration

Go is a statically typed language, meaning you generally have to declare the type of the variables
you are using.

// Basic variable declaration. Declares a variable of type specified on the right.
// The variable is initialized to the zero value of the respective type.
var x int
var s string
var p Person // Assuming type Person struct {}

// Assignment of a value to a variable
x = 3

// Short declaration using := infers the type
y := 4

u := int64(100) // declare variable of type int64 and init with 100
var u2 int64 = 100 // declare variable of type int64 and init with 100

Multiple Variable Assignment

In Go, you can declare multiple variables at the same time.

// You can declare multiple variables of the same type in one line
var a, b, c string

var d, e string = "Hello", "world!"

// You can also use short declaration to assign multiple variables
x, y, z := 1, 2, 3

foo, bar := 4, "stack" // `foo` is type `int`, `bar` is type `string`

If a function returns multiple values, you can also assign values to variables based on the

https://riptutorial.com/ 263

function's return values.

func multipleReturn() (int, int) {
 return 1, 2
}

x, y := multipleReturn() // x = 1, y = 2

func multipleReturn2() (a int, b int) {
 a = 3
 b = 4
 return
}

w, z := multipleReturn2() // w = 3, z = 4

Blank Identifier

Go will throw an error when there is a variable that is unused, in order to encourage you to write
better code. However, there are some situations when you really don't need to use a value stored
in a variable. In those cases, you use a "blank identifier" _ to assign and discard the assigned
value.

A blank identifier can be assigned a value of any type, and is most commonly used in functions
that return multiple values.

Multiple Return Values

func SumProduct(a, b int) (int, int) {
 return a+b, a*b
}

func main() {
 // I only want the sum, but not the product
 sum, _ := SumProduct(1,2) // the product gets discarded
 fmt.Println(sum) // prints 3
}

Using range

func main() {

 pets := []string{"dog", "cat", "fish"}

 // Range returns both the current index and value
 // but sometimes you may only want to use the value
 for _, pet := range pets {
 fmt.Println(pet)
 }

}

Checking a variable's type

https://riptutorial.com/ 264

There are some situations where you won't be sure what type a variable is when it is returned from
a function. You can always check a variable's type by using var.(type) if you are unsure what type
it is:

x := someFunction() // Some value of an unknown type is stored in x now

switch x := x.(type) {
 case bool:
 fmt.Printf("boolean %t\n", x) // x has type bool
 case int:
 fmt.Printf("integer %d\n", x) // x has type int
 case string:
 fmt.Printf("pointer to boolean %s\n", x) // x has type string
 default:
 fmt.Printf("unexpected type %T\n", x) // %T prints whatever type x is
}

Read Variables online: https://riptutorial.com/go/topic/674/variables

https://riptutorial.com/ 265

https://riptutorial.com/go/topic/674/variables

Chapter 70: Vendoring

Remarks

Vendoring is a method of ensuring that all of your 3rd party packages that you use in your Go
project are consistent for everyone who develops for your application.

When your Go package imports another package, the compiler normally checks $GOPATH/src/ for
the path of the imported project. However if your package contains a folder named vendor, the
compiler will check in that folder first. This means that you can import other parties packages
inside your own code repository, without having to modify their code.

Vendoring is a standard feature in Go 1.6 and up. In Go 1.5, you need to set the environment
variable of GO15VENDOREXPERIMENT=1 to enable vendoring.

Examples

Use govendor to add external packages

Govendor is a tool that is used to import 3rd party packages into your code repository in a way that
is compatible with golang's vendoring.

Say for example that you are using a 3rd party package bosun.org/slog:

package main

import "bosun.org/slog"

func main() {
 slog.Infof("Hello World")
}

Your directory structure might look like:

$GOPATH/src/
├── github.com/me/helloworld/
| ├── hello.go
├── bosun.org/slog/
| ├── ... (slog files)

However someone who clones github.com/me/helloworld may not have a
$GOPATH/src/bosun.org/slog/ folder, causing their build to fail due to missing packages.

Running the following command at your command prompt will grab all the external packages from
your Go package and package the required bits into a vendor folder:

govendor add +e

https://riptutorial.com/ 266

https://github.com/kardianos/govendor

This instructs govendor to add all of the external packages into your current repository.

Your application's directory structure would now look like:

$GOPATH/src/
├── github.com/me/helloworld/
| ├── vendor/
| | ├── bosun.org/slog/
| | | ├── ... (slog files)
| ├── hello.go

and those who clone your repository will also grab the required 3rd party packages.

Using trash to manage ./vendor

trash is a minimalistic vendoring tool that you configure with vendor.conf file. This example is for
trash itself:

package
github.com/rancher/trash

github.com/Sirupsen/logrus v0.10.0
github.com/urfave/cli v1.18.0
github.com/cloudfoundry-incubator/candiedyaml 99c3df8
https://github.com/imikushin/candiedyaml.git
github.com/stretchr/testify v1.1.3
github.com/davecgh/go-spew 5215b55
github.com/pmezard/go-difflib 792786c
golang.org/x/sys a408501

The first non-comment line is the package we're managing ./vendor for (note: this can be literally
any package in your project, not just the root one).

Commented lines begin with #.

Each non-empty and non-comment line lists one dependency. Only the "root" package of the
dependency needs to be listed.

After the package name goes the version (commit, tag or branch) and optionally the package
repository URL (by default, it's inferred from the package name).

To populate your ./vendor dir, you need to have vendor.conf file in the current dir and just run:

$ trash

Trash will clone the vendored libraries into ~/.trash-cache (by default), checkout requested
versions, copy the files into ./vendor dir and prune non-imported packages and test files. This
last step keeps your ./vendor lean and mean and helps save space in your project repo.

Note: as of v0.2.5 trash is available for Linux and macOS, and only supports git to retrieve
packages, as git's the most popular one, but we're working on adding all the others that go get
supports.

https://riptutorial.com/ 267

https://github.com/rancher/trash

Use golang/dep

golang/dep is a prototype dependency management tool. Soon to be an official versioning tool.
Current status Alpha.

Usage

Get the tool via

$ go get -u github.com/golang/dep/...

Typical usage on a new repo might be

$ dep init
$ dep ensure -update

To update a dependency to a new version, you might run

$ dep ensure github.com/pkg/errors@^0.8.0

Note that the manifest and lock file formats have now been finalized. These will remain
compatible even as the tool changes.

vendor.json using Govendor tool

It creates vendor folder and vendor.json inside it
govendor init

Add dependencies in vendor.json
govendor fetch <dependency>

Usage on new repository
fetch depenencies in vendor.json
govendor sync

Example vendor.json

{

"comment": "",
"ignore": "test",
"package": [
 {
 "checksumSHA1": "kBeNcaKk56FguvPSUCEaH6AxpRc=",
 "path": "github.com/golang/protobuf/proto",
 "revision": "2bba0603135d7d7f5cb73b2125beeda19c09f4ef",
 "revisionTime": "2017-03-31T03:19:02Z"
 },
 {
 "checksumSHA1": "1DRAxdlWzS4U0xKN/yQ/fdNN7f0=",
 "path": "github.com/syndtr/goleveldb/leveldb/errors",

https://riptutorial.com/ 268

https://github.com/golang/dep

 "revision": "8c81ea47d4c41a385645e133e15510fc6a2a74b4",
 "revisionTime": "2017-04-09T01:48:31Z"
 }
],
"rootPath": "github.com/sample"

}

Read Vendoring online: https://riptutorial.com/go/topic/978/vendoring

https://riptutorial.com/ 269

https://riptutorial.com/go/topic/978/vendoring

Chapter 71: Worker Pools

Examples

Simple worker pool

A simple worker pool implementation:

package main

import (
 "fmt"
 "sync"
)

type job struct {
 // some fields for your job type
}

type result struct {
 // some fields for your result type
}

func worker(jobs <-chan job, results chan<- result) {
 for j := range jobs {
 var r result
 // do some work
 results <- r
 }
}

func main() {
 // make our channels for communicating work and results
 jobs := make(chan job, 100) // 100 was chosen arbitrarily
 results := make(chan result, 100)

 // spin up workers and use a sync.WaitGroup to indicate completion
 wg := sync.WaitGroup
 for i := 0; i < runtime.NumCPU; i++ {
 wg.Add(1)
 go func() {
 defer wg.Done()
 worker(jobs, results)
 }()
 }

 // wait on the workers to finish and close the result channel
 // to signal downstream that all work is done
 go func() {
 defer close(results)
 wg.Wait()
 }()

 // start sending jobs
 go func() {
 defer close(jobs)

https://riptutorial.com/ 270

 for {
 jobs <- getJob() // I haven't defined getJob() and noMoreJobs()
 if noMoreJobs() { // they are just for illustration
 break
 }
 }
 }()

 // read all the results
 for r := range results {
 fmt.Println(r)
 }
}

Job Queue with Worker Pool

A job queue that maintains a worker pool, useful for doing things like background processing in
web servers:

package main

import (
 "fmt"
 "runtime"
 "strconv"
 "sync"
 "time"
)

// Job - interface for job processing
type Job interface {
 Process()
}

// Worker - the worker threads that actually process the jobs
type Worker struct {
 done sync.WaitGroup
 readyPool chan chan Job
 assignedJobQueue chan Job

 quit chan bool
}

// JobQueue - a queue for enqueueing jobs to be processed
type JobQueue struct {
 internalQueue chan Job
 readyPool chan chan Job
 workers []*Worker
 dispatcherStopped sync.WaitGroup
 workersStopped sync.WaitGroup
 quit chan bool
}

// NewJobQueue - creates a new job queue
func NewJobQueue(maxWorkers int) *JobQueue {
 workersStopped := sync.WaitGroup{}
 readyPool := make(chan chan Job, maxWorkers)
 workers := make([]*Worker, maxWorkers, maxWorkers)
 for i := 0; i < maxWorkers; i++ {

https://riptutorial.com/ 271

 workers[i] = NewWorker(readyPool, workersStopped)
 }
 return &JobQueue{
 internalQueue: make(chan Job),
 readyPool: readyPool,
 workers: workers,
 dispatcherStopped: sync.WaitGroup{},
 workersStopped: workersStopped,
 quit: make(chan bool),
 }
}

// Start - starts the worker routines and dispatcher routine
func (q *JobQueue) Start() {
 for i := 0; i < len(q.workers); i++ {
 q.workers[i].Start()
 }
 go q.dispatch()
}

// Stop - stops the workers and sispatcher routine
func (q *JobQueue) Stop() {
 q.quit <- true
 q.dispatcherStopped.Wait()
}

func (q *JobQueue) dispatch() {
 q.dispatcherStopped.Add(1)
 for {
 select {
 case job := <-q.internalQueue: // We got something in on our queue
 workerChannel := <-q.readyPool // Check out an available worker
 workerChannel <- job // Send the request to the channel
 case <-q.quit:
 for i := 0; i < len(q.workers); i++ {
 q.workers[i].Stop()
 }
 q.workersStopped.Wait()
 q.dispatcherStopped.Done()
 return
 }
 }
}

// Submit - adds a new job to be processed
func (q *JobQueue) Submit(job Job) {
 q.internalQueue <- job
}

// NewWorker - creates a new worker
func NewWorker(readyPool chan chan Job, done sync.WaitGroup) *Worker {
 return &Worker{
 done: done,
 readyPool: readyPool,
 assignedJobQueue: make(chan Job),
 quit: make(chan bool),
 }
}

// Start - begins the job processing loop for the worker
func (w *Worker) Start() {

https://riptutorial.com/ 272

 go func() {
 w.done.Add(1)
 for {
 w.readyPool <- w.assignedJobQueue // check the job queue in
 select {
 case job := <-w.assignedJobQueue: // see if anything has been assigned to the queue
 job.Process()
 case <-w.quit:
 w.done.Done()
 return
 }
 }
 }()
}

// Stop - stops the worker
func (w *Worker) Stop() {
 w.quit <- true
}

//////////////// Example //////////////////

// TestJob - holds only an ID to show state
type TestJob struct {
 ID string
}

// Process - test process function
func (t *TestJob) Process() {
 fmt.Printf("Processing job '%s'\n", t.ID)
 time.Sleep(1 * time.Second)
}

func main() {
 queue := NewJobQueue(runtime.NumCPU())
 queue.Start()
 defer queue.Stop()

 for i := 0; i < 4*runtime.NumCPU(); i++ {
 queue.Submit(&TestJob{strconv.Itoa(i)})
 }
}

Read Worker Pools online: https://riptutorial.com/go/topic/4182/worker-pools

https://riptutorial.com/ 273

https://riptutorial.com/go/topic/4182/worker-pools

Chapter 72: XML

Remarks

While many uses of the encoding/xml package include marshaling and unmarshaling to a Go struct
, it's worth noting that this is not a direct mapping. The package documentation states:

Mapping between XML elements and data structures is inherently flawed: an XML
element is an order-dependent collection of anonymous values, while a data structure
is an order-independent collection of named values.

For simple, unordered, key-value pairs, using a different encoding such as Gob's or JSON may be
a better fit. For ordered data or event / callback based streams of data, XML may be the best
choice.

Examples

Basic decoding / unmarshalling of nested elements with data

XML elements often nest, have data in attributes and/or as character data. The way to capture this
data is by using ,attr and ,chardata respectively for those cases.

var doc = `
<parent>
 <child1 attr1="attribute one"/>
 <child2>and some cdata</child2>
</parent>
`

type parent struct {
 Child1 child1 `xml:"child1"`
 Child2 child2 `xml:"child2"`
}

type child1 struct {
 Attr1 string `xml:"attr1,attr"`
}

type child2 struct {
 Cdata1 string `xml:",cdata"`
}

func main() {
 var obj parent
 err := xml.Unmarshal([]byte(doc), &obj)
 if err != nil {
 log.Fatal(err)
 }

 fmt.Println(obj.Child2.Cdata1)

}

https://riptutorial.com/ 274

https://godoc.org/encoding/xml
http://www.riptutorial.com/go/topic/994/json

Playground

Read XML online: https://riptutorial.com/go/topic/1846/xml

https://riptutorial.com/ 275

https://play.golang.org/p/yQrZPNTaWo
https://riptutorial.com/go/topic/1846/xml

Chapter 73: YAML

Examples

Creating a config file in YAML format

import (
 "io/ioutil"
 "path/filepath"

 "gopkg.in/yaml.v2"
)

func main() {
 filename, _ := filepath.Abs("config/config.yml")
 yamlFile, err := ioutil.ReadFile(filename)
 var config Config
 err = yaml.Unmarshal(yamlFile, &config)
 if err != nil {
 panic(err)
 }
 //env can be accessed from config.Env
}

type Config struct {
 Env string `yaml:"env"`
}

//config.yml should be placed in config/config.yml for example, and needs to have the
following line for the above example:
//env: test

Read YAML online: https://riptutorial.com/go/topic/2503/yaml

https://riptutorial.com/ 276

https://riptutorial.com/go/topic/2503/yaml

Chapter 74: Zero values

Remarks

One thing to note - types that have a non-nil zero value like strings, ints, floats, bools and structs
can't be set to nil.

Examples

Basic Zero Values

Variables in Go are always initialized whether you give them a starting value or not. Each type,
including custom types, has a zero value they are set to if not given a value.

var myString string // "" - an empty string
var myInt int64 // 0 - applies to all types of int and uint
var myFloat float64 // 0.0 - applies to all types of float and complex
var myBool bool // false
var myPointer *string // nil
var myInter interface{} // nil

This also applies to maps, slices, channels and function types. These types will initialize to nil. In
arrays, each element is initialized to the zero value of its respective type.

More Complex Zero Values

In slices the zero value is an empty slice.

var myIntSlice []int // [] - an empty slice

Use make to create a slice populated with values, any values created in the slice are set to the zero
value of the type of the slice. For instance:

myIntSlice := make([]int, 5) // [0, 0, 0, 0, 0] - a slice with 5 zeroes
fmt.Println(myIntSlice[3])
// Prints 0

In this example, myIntSlice is a int slice that contains 5 elements which are all 0 because that's
the zero value for the type int.

You can also create a slice with new, this will create a pointer to a slice.

myIntSlice := new([]int) // &[] - a pointer to an empty slice
*myIntSlice = make([]int, 5) // [0, 0, 0, 0, 0] - a slice with 5 zeroes
fmt.Println((*myIntSlice)[3])
// Prints 0

https://riptutorial.com/ 277

Note: Slice pointers don't support indexing so you can't access the values using myIntSlice[3],
instead you need to do it like (*myIntSlice)[3].

Struct Zero Values

When creating a struct without initializing it, each field of the struct is initialized to its respective
zero value.

type ZeroStruct struct {
 myString string
 myInt int64
 myBool bool
}

func main() {
 var myZero = ZeroStruct{}
 fmt.Printf("Zero values are: %q, %d, %t\n", myZero.myString, myZero.myInt, myZero.myBool)
 // Prints "Zero values are: "", 0, false"
}

Array Zero Values

As per the Go blog:

Arrays do not need to be initialized explicitly; the zero value of an array is a ready-to-
use array whose elements are themselves zeroed

For example, myIntArray is initialized with the zero value of int, which is 0:

var myIntArray [5]int // an array of five 0's: [0, 0, 0, 0, 0]

Read Zero values online: https://riptutorial.com/go/topic/6069/zero-values

https://riptutorial.com/ 278

https://blog.golang.org/go-slices-usage-and-internals
https://riptutorial.com/go/topic/6069/zero-values

Chapter 75: Zero values

Examples

Explanation

Zero values or zero initialization are simple to implement. Coming from languages like Java it may
seem complicated that some values can be nil while others are not. In summary from Zero Value:
The Go Programming Language Specification:

Pointers, functions, interfaces, slices, channels, and maps are the only types that can
be nil. The rest are initializated to false, zero, or empty strings based on their
respective types.

If a functions that checks some condition, problems may arise:

func isAlive() bool {
 //Not implemented yet
 return false
}

The zero value will be false even before implementation. Unit tests dependant on the return of this
function could be giving false positives/negatives.

A typical workaround is to also return an error, which is idiomatic in Go:

package main

import "fmt"

func isAlive() (bool, error) {
 //Not implemented yet
 return false, fmt.Errorf("Not implemented yet")
}

func main() {
 _, err := isAlive()
 if err != nil {
 fmt.Printf("ERR: %s\n", err.Error())
 }

}

play it on playground

When returning both a struct and an error you need a User structure for return, which is not very
elegant. There are two counter-options:

Work with interfaces: Return nil by returning an interface.•
Work with pointers: A pointer can be nil•

https://riptutorial.com/ 279

https://golang.org/ref/spec#Program_initialization_and_execution
https://golang.org/ref/spec#Program_initialization_and_execution
https://play.golang.org/p/Ix04UCi9hI

For example, the following code returns a pointer:

func(d *DB) GetUser(id uint64) (*User, error) {
 //Some error ocurred
 return nil, err
}

Read Zero values online: https://riptutorial.com/go/topic/6379/zero-values

https://riptutorial.com/ 280

https://riptutorial.com/go/topic/6379/zero-values

Credits

S.
No

Chapters Contributors

1
Getting started with
Go

4444, alejosocorro, Alexander, Amitay Stern, Andrej Bencic,
Andrii Abramov, burfl, Burhan Ali, cat, Cody Gustafson,
Community, David G., Dmitri Goldring, Feckmore, Florian
Hämmerle, Franck Dernoncourt, Gerep, Greg Bray, hellyale,
Hunter, James Taylor, Jared Hooper, Jon Chan, Katamaritaco,
Mark Henderson, Matt, mbb, MegaTom, mmlb, mnoronha,
mohan08p, Nir, nix, nouney, patterns, Pavel Nikolov,
ProfNandaa, Quentin Skousen, Radouane ROUFID, Rahul Nair,
RamenChef, raulsntos, Sam Whited, seriousdev, Simone
Carletti, skunkmb, sztanpet, Tanmay Garg, Topo, Unapiedra,
Vikash, Xavier Nicollet

2 Arrays NatNgs, nouney, Noval Agung Prayogo, Sam Whited

3 Base64 Encoding Nathan Osman, RamenChef, Sam Whited

4
Best practices on
project structure

Iman Tumorang

5 Branching burfl, Community, ganesh kumar, Ingve, nk2ge5k

6 Build Constraints 4444, RamenChef, Sam Whited, seriousdev

7 cgo MaC, Vojtech Kane

8 Channels
Chris Lucas, Howl, Jeremy, Kwarrtz, metmirr, RamenChef,
Rodolfo Carvalho, Zoyd

9 Closures abhink

10 Concurrency

Chris Lucas, Community, Florian Hämmerle, flyingfinger,
Grzegorz Żur, Harshal Sheth, Ilya, Inanc Gumus, Kyle Brandt,
Nathan Osman, Roland Illig, Ryan Kelln, Tim S. Van Haren,
VonC, zianwar, Zoyd

11 Console I/O Abhilekh Singh

12 Constants Pavel Nikolov, RamenChef, Sam Whited, Simone Carletti

13 Context Ingaz, Sam Whited

Jordan, Katamaritaco, mbb, mohan08p, RamenChef, Riley
Guerin, SH', Siu Ching Pong -Asuka Kenji-,

14 Cross Compilation

https://riptutorial.com/ 281

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1330831/alejosocorro
https://riptutorial.com/contributor/131264/alexander
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/6644909/andrej-bencic
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/966703/burhan-ali
https://riptutorial.com/contributor/4532996/cat
https://riptutorial.com/contributor/4133078/cody-gustafson
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2061590/dmitri-goldring
https://riptutorial.com/contributor/110186/feckmore
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/745235/gerep
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/4645236/hellyale
https://riptutorial.com/contributor/6347501/hunter
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/1497534/katamaritaco
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/581665/mbb
https://riptutorial.com/contributor/3990897/megatom
https://riptutorial.com/contributor/1045994/mmlb
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/2040160/nir
https://riptutorial.com/contributor/4900653/nix
https://riptutorial.com/contributor/2432477/nouney
https://riptutorial.com/contributor/518387/patterns
https://riptutorial.com/contributor/11792/pavel-nikolov
https://riptutorial.com/contributor/1618202/profnandaa
https://riptutorial.com/contributor/1034613/quentin-skousen
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5180802/raulsntos
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/407054/seriousdev
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/5310423/skunkmb
https://riptutorial.com/contributor/5832/sztanpet
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/816892/topo
https://riptutorial.com/contributor/461597/unapiedra
https://riptutorial.com/contributor/1742474/vikash
https://riptutorial.com/contributor/995368/xavier-nicollet
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/2432477/nouney
https://riptutorial.com/contributor/1467988/noval-agung-prayogo
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/4075313/iman-tumorang
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6559048/ganesh-kumar
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/8075949/nk2ge5k
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/407054/seriousdev
https://riptutorial.com/contributor/1683251/mac
https://riptutorial.com/contributor/4038448/vojtech-kane
https://riptutorial.com/contributor/2670047/chris-lucas
https://riptutorial.com/contributor/5328069/howl
https://riptutorial.com/contributor/76929/jeremy
https://riptutorial.com/contributor/4725625/kwarrtz
https://riptutorial.com/contributor/5802335/metmirr
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4804690/rodolfo-carvalho
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/3129778/abhink
https://riptutorial.com/contributor/2670047/chris-lucas
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/2146843/flyingfinger
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/5004662/harshal-sheth
https://riptutorial.com/contributor/291768/ilya
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/225757/roland-illig
https://riptutorial.com/contributor/132950/ryan-kelln
https://riptutorial.com/contributor/107009/tim-s--van-haren
https://riptutorial.com/contributor/6309/vonc
https://riptutorial.com/contributor/3235127/zianwar
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/6284825/abhilekh-singh
https://riptutorial.com/contributor/11792/pavel-nikolov
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/1168212/ingaz
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/80393/jordan
https://riptutorial.com/contributor/1497534/katamaritaco
https://riptutorial.com/contributor/581665/mbb
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1462575/riley-guerin
https://riptutorial.com/contributor/1462575/riley-guerin
https://riptutorial.com/contributor/5718351/sh-
https://riptutorial.com/contributor/142239/siu-ching-pong--asuka-kenji-

SommerEngineering, sztanpet, Zoyd

15 Cryptography SommerEngineering

16 Defer abhink, Adrian, Sam Whited, Vikash

17

Developing for
Multiple Platforms
with Conditional
Compiling

ecem

18 Error Handling
bowsersenior, elevine, Elijah Sarver, Florian Hämmerle, groob,
Ingve, Joe, Kin, Paul Hankin, Quentin Skousen, Sam Whited,
Simone Carletti, Sridhar, Surreal Dreams, Vervious, Zoyd

19
Executing
Commands

Krzysztof Kowalczyk, Kyle Brandt, Nevermore

20 File I/O
1lann, Andres Kütt, greatwolf, Grzegorz Żur, koblas,
noisewaterphd, Quentin Skousen, Sam Whited

21 Fmt Lanzafame, Nevermore, Sam Whited

22 Functions
Boris Le Méec, Dmytro Sadovnychyi, Grzegorz Żur, jayantS,
LeoTao, Nathan Osman, nouney, palestamp, RamenChef, Right
leg, Thomas Gerot

23
Getting Started With
Go Using Atom

Ali M, Danny Chen, Katamaritaco

24 gob zola

25 Goroutines mohan08p

26 HTTP Client
1lann, dmportella, Lanzafame, Sam Whited,
SommerEngineering

27 HTTP Server
Chief, frigo americain, Jon Erickson, Kin, Nathan Osman,
rogerdpack, Sam Whited, Sascha, seriousdev, Simone Carletti,
SommerEngineering, Tanmay Garg, Zhinkk

28 Images putu

29 Inline Expansion Sam Whited

30 Installation sadlil

31 Interfaces
Cody Roseborough, dotctor, Francis Norton, Grzegorz Żur, icza,
Ingve, meysam, Mike, ptman, sadlil, Sam Whited, Wendy Adi

https://riptutorial.com/ 282

https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/5832/sztanpet
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/3129778/abhink
https://riptutorial.com/contributor/7426/adrian
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1742474/vikash
https://riptutorial.com/contributor/559885/ecem
https://riptutorial.com/contributor/457819/bowsersenior
https://riptutorial.com/contributor/3767/elevine
https://riptutorial.com/contributor/1246069/elijah-sarver
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/4517738/groob
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/48912/joe
https://riptutorial.com/contributor/2828227/kin
https://riptutorial.com/contributor/1400793/paul-hankin
https://riptutorial.com/contributor/1034613/quentin-skousen
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/1093710/sridhar
https://riptutorial.com/contributor/495935/surreal-dreams
https://riptutorial.com/contributor/307881/vervious
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/2898/krzysztof-kowalczyk
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/2692215/1lann
https://riptutorial.com/contributor/757383/andres-kutt
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/191450/koblas
https://riptutorial.com/contributor/595362/noisewaterphd
https://riptutorial.com/contributor/1034613/quentin-skousen
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/3299523/lanzafame
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/6640806/boris-le-meec
https://riptutorial.com/contributor/1279005/dmytro-sadovnychyi
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/3868484/leotao
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/2432477/nouney
https://riptutorial.com/contributor/5072889/palestamp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7051394/right-leg
https://riptutorial.com/contributor/7051394/right-leg
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3566757/ali-m
https://riptutorial.com/contributor/323924/danny-chen
https://riptutorial.com/contributor/1497534/katamaritaco
https://riptutorial.com/contributor/5288071/zola
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/2692215/1lann
https://riptutorial.com/contributor/176478/dmportella
https://riptutorial.com/contributor/3299523/lanzafame
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/1209272/chief
https://riptutorial.com/contributor/2618558/frigo-americain
https://riptutorial.com/contributor/1950/jon-erickson
https://riptutorial.com/contributor/2828227/kin
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/32453/rogerdpack
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/66907/sascha
https://riptutorial.com/contributor/407054/seriousdev
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/5156765/zhinkk
https://riptutorial.com/contributor/6207052/putu
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/3476121/sadlil
https://riptutorial.com/contributor/2647427/cody-roseborough
https://riptutorial.com/contributor/3970411/dotctor
https://riptutorial.com/contributor/237568/francis-norton
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/1705598/icza
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/1592247/meysam
https://riptutorial.com/contributor/1793374/mike
https://riptutorial.com/contributor/202648/ptman
https://riptutorial.com/contributor/3476121/sadlil
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1750407/wendy-adi

32 Iota
4444, Florian Hämmerle, Ingve, mohan08p, Sam Whited,
Wojciech Kazior, Zoyd

33 JSON
Dmitry Udod, Joe, Jon Chan, Kyle Brandt, Nathan Osman,
RamenChef, Sam Whited, shayan, Simone Carletti, sztanpet,
Tanmay Garg, Utahcon

34
JWT Authorization in
Go

AniSkywalker

35 Logging
Grzegorz Żur, Jon Chan, Nathan Osman, Pavel Kazhevets,
Sam Whited

36 Loops
1lann, burfl, Community, ivan73, jayantS, Jon Chan, mgh,
MohamedAlaa, RamenChef, Sam Whited, Steven Maude,
Thomas Gerot

37 Maps

Abhay, abhink, Amitay Stern, Brendan, burfl, chowey, Chris
Lucas, cizixs, Community, creker, Dair, Dmitri Goldring, gbulmer
, Hugo, James, JepZ, Joe, Kaedys, Kamil Kisiel, Kyle Brandt,
Mark Henderson, matt.s, Milo Christiansen, NatNgs, Oleg
Sklyar, radbrawler, RamenChef, Roland Illig, Sam Whited, seh,
Simone Carletti, skunkmb, Surreal Dreams, Vojtech Kane, Zoyd
, Zyerah

38 Memory pooling Elijah Sarver, Grzegorz Żur, Kenny Grant

39 Methods ganesh kumar, Pavel Kazhevets

40 mgo Florian Hämmerle, Sourabh

41 Middleware Ankit Deshpande

42 Mutex Adrian, Prutswonder

43
Object Oriented
Programming

Davyd Dzhahaiev, Sam Whited, zola

44 OS Signals Community, Sam Whited, Utahcon

45 Packages
dmportella, Grzegorz Żur, icza, Michael, Nathan Osman,
RadicalFish, RamenChef, skunkmb, tkausl

46 Panic and Recover JunLe Meng, Kaedys, Kristoffer Sall-Storgaard, Sam Whited

47
Parsing Command
Line Arguments And
Flags

Ingve, Pavel Kazhevets, Sam Whited

48 Parsing CSV files Ainar-G

https://riptutorial.com/ 283

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/5090021/dmitry-udod
https://riptutorial.com/contributor/48912/joe
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1414913/shayan
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/5832/sztanpet
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/3936063/utahcon
https://riptutorial.com/contributor/3152168/aniskywalker
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/6634768/pavel-kazhevets
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/2692215/1lann
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/371756/ivan73
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/4422527/mgh
https://riptutorial.com/contributor/807679/mohamedalaa
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1678416/steven-maude
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/433709/abhay
https://riptutorial.com/contributor/3129778/abhink
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/5090391/brendan
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/2105930/chowey
https://riptutorial.com/contributor/2670047/chris-lucas
https://riptutorial.com/contributor/2670047/chris-lucas
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2363866/creker
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/2061590/dmitri-goldring
https://riptutorial.com/contributor/1274815/gbulmer
https://riptutorial.com/contributor/6134918/hugo
https://riptutorial.com/contributor/1062714/james
https://riptutorial.com/contributor/1149404/jepz
https://riptutorial.com/contributor/48912/joe
https://riptutorial.com/contributor/4551301/kaedys
https://riptutorial.com/contributor/15061/kamil-kisiel
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/151825/matt-s
https://riptutorial.com/contributor/1094529/milo-christiansen
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/3165602/oleg-sklyar
https://riptutorial.com/contributor/5536005/radbrawler
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/225757/roland-illig
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/31818/seh
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/5310423/skunkmb
https://riptutorial.com/contributor/495935/surreal-dreams
https://riptutorial.com/contributor/4038448/vojtech-kane
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/1131435/zyerah
https://riptutorial.com/contributor/1246069/elijah-sarver
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/1601137/kenny-grant
https://riptutorial.com/contributor/6559048/ganesh-kumar
https://riptutorial.com/contributor/6634768/pavel-kazhevets
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/6509830/sourabh
https://riptutorial.com/contributor/3968921/ankit-deshpande
https://riptutorial.com/contributor/7426/adrian
https://riptutorial.com/contributor/292230/prutswonder
https://riptutorial.com/contributor/771388/davyd-dzhahaiev
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/5288071/zola
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/3936063/utahcon
https://riptutorial.com/contributor/176478/dmportella
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/1705598/icza
https://riptutorial.com/contributor/358830/michael
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/108621/radicalfish
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5310423/skunkmb
https://riptutorial.com/contributor/1080064/tkausl
https://riptutorial.com/contributor/4858506/junle-meng
https://riptutorial.com/contributor/4551301/kaedys
https://riptutorial.com/contributor/3287/kristoffer-sall-storgaard
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/6634768/pavel-kazhevets
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1892060/ainar-g

49 Plugin Sam Whited

50 Pointers
David Hoelzer, Jon Chan, Joost, Mal Curtis, metmirr,
Nevermore, skunkmb

51
Profiling using go
tool pprof

mbb, Nevermore, radbrawler

52 Protobuf in Go mohan08p

53 Readers Mike Houston

54 Reflection ganesh kumar, mammothbane, radbrawler

55 Select and Channels Harshal Sheth, Kaedys, RamenChef, Sam Whited, Utahcon

56 Send/receive emails Utahcon

57 Slices

1lann, Benjamin Kadish, burfl, cizixs, Grzegorz Żur, Guillaume,
Jared Hooper, Joost, Jukurrpa, Kyle Brandt, Mark Henderson,
NatNgs, RamenChef, Simone Carletti, skunkmb, Tanmay Garg,
Zoyd

58 SQL
Adrian, artamonovdev, bernardn, Francesco Pasa, Nevermore,
Sam Whited, Sascha, Tanmay Garg, wrfly

59 String Ainar-G, NatNgs, raulsntos

60 Structs

abhink, Amitay Stern, Anthony Atkinson, Blixt, burfl, cizixs,
Community, FredMaggiowski, Howl, Ingve, Kin, MaC, Mark
Henderson, matt.s, mohan08p, Nathan Osman, nouney, Patrick,
Quentin Skousen, radbrawler, RamenChef, Roland Illig, Simone
Carletti, sunkuet02, Vojtech Kane, Wojciech Kazior

61 Templates Pavel Kazhevets, RamenChef, Tanmay Garg

62 Testing
Adrian, Ankit Deshpande, Harshal Sheth, ivan.sim, Jared Ririe,
Nathan Osman, Omid, Pavel Nikolov, Rodolfo Carvalho,
seriousdev, Toni Villena, Zoyd

63
Text + HTML
Templating

Stephen Rudolph

64 The Go Command
ganesh kumar, Harshal Sheth, Ingve, Lanzafame, Mayank Patel
, Nevermore, Quentin Skousen, Sam Whited, theflametrooper,
Vikash

65 Time Lanzafame, NatNgs, raulsntos

66 Type conversions Adrian, Florian Hämmerle

https://riptutorial.com/ 284

https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/2191105/david-hoelzer
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/5388039/joost
https://riptutorial.com/contributor/514863/mal-curtis
https://riptutorial.com/contributor/5802335/metmirr
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/5310423/skunkmb
https://riptutorial.com/contributor/581665/mbb
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/5536005/radbrawler
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/37416/mike-houston
https://riptutorial.com/contributor/6559048/ganesh-kumar
https://riptutorial.com/contributor/3205784/mammothbane
https://riptutorial.com/contributor/5536005/radbrawler
https://riptutorial.com/contributor/5004662/harshal-sheth
https://riptutorial.com/contributor/4551301/kaedys
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/3936063/utahcon
https://riptutorial.com/contributor/3936063/utahcon
https://riptutorial.com/contributor/2692215/1lann
https://riptutorial.com/contributor/5688488/benjamin-kadish
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/450989/grzegorz-zur
https://riptutorial.com/contributor/857728/guillaume
https://riptutorial.com/contributor/3872894/jared-hooper
https://riptutorial.com/contributor/5388039/joost
https://riptutorial.com/contributor/352876/jukurrpa
https://riptutorial.com/contributor/107156/kyle-brandt
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/5310423/skunkmb
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/7426/adrian
https://riptutorial.com/contributor/5754223/artamonovdev
https://riptutorial.com/contributor/21548/bernardn
https://riptutorial.com/contributor/392753/francesco-pasa
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/66907/sascha
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/4399982/wrfly
https://riptutorial.com/contributor/1892060/ainar-g
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/5180802/raulsntos
https://riptutorial.com/contributor/3129778/abhink
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/1428643/anthony-atkinson
https://riptutorial.com/contributor/119081/blixt
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3119050/fredmaggiowski
https://riptutorial.com/contributor/5328069/howl
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/2828227/kin
https://riptutorial.com/contributor/1683251/mac
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/151825/matt-s
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/2432477/nouney
https://riptutorial.com/contributor/486035/patrick
https://riptutorial.com/contributor/1034613/quentin-skousen
https://riptutorial.com/contributor/5536005/radbrawler
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/225757/roland-illig
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/2315473/sunkuet02
https://riptutorial.com/contributor/4038448/vojtech-kane
https://riptutorial.com/contributor/6787033/wojciech-kazior
https://riptutorial.com/contributor/6634768/pavel-kazhevets
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6178021/tanmay-garg
https://riptutorial.com/contributor/7426/adrian
https://riptutorial.com/contributor/3968921/ankit-deshpande
https://riptutorial.com/contributor/5004662/harshal-sheth
https://riptutorial.com/contributor/1144203/ivan-sim
https://riptutorial.com/contributor/6316473/jared-ririe
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/119707/omid
https://riptutorial.com/contributor/11792/pavel-nikolov
https://riptutorial.com/contributor/4804690/rodolfo-carvalho
https://riptutorial.com/contributor/407054/seriousdev
https://riptutorial.com/contributor/5810474/toni-villena
https://riptutorial.com/contributor/3528562/zoyd
https://riptutorial.com/contributor/789559/stephen-rudolph
https://riptutorial.com/contributor/6559048/ganesh-kumar
https://riptutorial.com/contributor/5004662/harshal-sheth
https://riptutorial.com/contributor/563941/ingve
https://riptutorial.com/contributor/3299523/lanzafame
https://riptutorial.com/contributor/3387925/mayank-patel
https://riptutorial.com/contributor/4443226/nevermore
https://riptutorial.com/contributor/1034613/quentin-skousen
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/6004489/theflametrooper
https://riptutorial.com/contributor/1742474/vikash
https://riptutorial.com/contributor/3299523/lanzafame
https://riptutorial.com/contributor/6532640/natngs
https://riptutorial.com/contributor/5180802/raulsntos
https://riptutorial.com/contributor/7426/adrian
https://riptutorial.com/contributor/8088868/florian-hammerle

67 Variables Community, FredMaggiowski, Jon Chan, Simone Carletti

68 Vendoring
Abhilekh Singh, Boris Le Méec, burfl, Dmitri Goldring, Ivan
Mikushin, Mark Henderson, Martin Campbell, Michael, Sam
Whited, Vardius

69 Worker Pools burfl, photoionized, seriousdev

70 XML ivarg, Sam Whited

71 YAML Nathan Osman, Orr, Sam Whited

72 Zero values Harshal Sheth, raulsntos, Surreal Dreams

https://riptutorial.com/ 285

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3119050/fredmaggiowski
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/6284825/abhilekh-singh
https://riptutorial.com/contributor/6640806/boris-le-meec
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/2061590/dmitri-goldring
https://riptutorial.com/contributor/692283/ivan-mikushin
https://riptutorial.com/contributor/692283/ivan-mikushin
https://riptutorial.com/contributor/69683/mark-henderson
https://riptutorial.com/contributor/8356442/martin-campbell
https://riptutorial.com/contributor/358830/michael
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/2160958/vardius
https://riptutorial.com/contributor/1187678/burfl
https://riptutorial.com/contributor/681679/photoionized
https://riptutorial.com/contributor/407054/seriousdev
https://riptutorial.com/contributor/919665/ivarg
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/1641535/orr
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/5004662/harshal-sheth
https://riptutorial.com/contributor/5180802/raulsntos
https://riptutorial.com/contributor/495935/surreal-dreams

	About
	Chapter 1: Getting started with Go
	Remarks
	Versions
	The latest major version release is in bold below. Full release history can be found here.

	Examples
	Hello, World!

	Output:
	FizzBuzz
	Listing Go Environment Variables
	Setting up the environment
	GOPATH
	GOBIN
	GOROOT
	Accessing Documentation Offline
	Running Go online

	The Go Playground
	Sharing your code
	In action

	Chapter 2: Arrays
	Introduction
	Syntax
	Examples
	Creating arrays
	Multidimensional Array
	Array Indexes

	Chapter 3: Base64 Encoding
	Syntax
	Remarks
	Examples
	Encoding
	Encoding to a String
	Decoding
	Decoding a String

	Chapter 4: Best practices on project structure
	Examples
	Restfull Projects API with Gin

	controllers
	core
	libs
	middlewares
	public
	h21
	routers
	services
	main.go

	Chapter 5: Branching
	Examples
	Switch Statements
	If Statements
	Type Switch Statements
	Goto statements
	Break-continue statements

	Chapter 6: Build Constraints
	Syntax
	Remarks
	Examples
	Separate integration tests
	Optimize implementations based on architecture

	Chapter 7: cgo
	Examples
	Cgo: First steps tutorial

	What
	How
	The example
	Hello World!
	Sum of ints

	Generating a binary
	Chapter 8: cgo
	Examples
	Calling C Function From Go
	Wire C and Go code in all directions

	Chapter 9: Channels
	Introduction
	Syntax
	Remarks
	Examples
	Using range
	Timeouts
	Coordinating goroutines
	Buffered vs unbuffered
	Blocking & unblocking of channels
	Waiting for work to finish

	Chapter 10: Closures
	Examples
	Closure Basics

	Chapter 11: Concurrency
	Introduction
	Syntax
	Remarks
	Examples
	Creating goroutines
	Hello World Goroutine
	Waiting for goroutines
	Using closures with goroutines in a loop
	Stopping goroutines
	Ping pong with two goroutines

	Chapter 12: Console I/O
	Examples
	Read input from console

	Chapter 13: Constants
	Remarks
	Examples
	Declaring a constant
	Multiple constants declaration
	Typed vs. Untyped Constants

	Chapter 14: Context
	Syntax
	Remarks
	Further Reading
	Examples
	Context tree represented as a directed graph
	Using a context to cancel work

	Chapter 15: Cross Compilation
	Introduction
	Syntax
	Remarks
	Examples
	Compile all architectures using a Makefile
	Simple cross compilation with go build
	Cross compilation by using gox

	Installation
	Usage
	Simple Example: Compile helloworld.go for arm architecture on Linux machine

	Chapter 16: Cryptography
	Introduction
	Examples
	Encryption and decryption

	Foreword
	Encryption
	Introduction and data
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Decryption
	Introduction and data
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10

	Chapter 17: Defer
	Introduction
	Syntax
	Remarks
	Examples
	Defer Basics
	Deferred Function Calls

	Chapter 18: Developing for Multiple Platforms with Conditional Compiling
	Introduction
	Syntax
	Remarks
	Examples
	Build tags
	File suffix
	Defining separate behaviours in different platforms

	Chapter 19: Error Handling
	Introduction
	Remarks
	Examples
	Creating an error value
	Creating a custom error type
	Returning an error
	Handling an error
	Recovering from panic

	Chapter 20: Executing Commands
	Examples
	Timing Out with Interrupt and then Kill
	Simple Command Execution
	Executing a Command then Continue and Wait
	Running a Command twice

	Chapter 21: File I/O
	Syntax
	Parameters
	Examples
	Reading and writing to a file using ioutil
	Listing all the files and folders in the current directory
	Listing all folders in the current directory

	Chapter 22: Fmt
	Examples
	Stringer
	Basic fmt

	Format Functions
	Print
	Sprint
	Fprint
	Scan

	Stringer Interface
	Chapter 23: Functions
	Introduction
	Syntax
	Examples
	Basic Declaration
	Parameters
	Return Values
	Named Return Values
	Literal functions & closures
	Variadic functions

	Chapter 24: Getting Started With Go Using Atom
	Introduction
	Examples
	Get, Install And Setup Atom & Gulp
	Create $GO_PATH/gulpfile.js
	Create $GO_PATH/mypackage/source.go
	Creating $GO_PATH/main.go

	Chapter 25: gob
	Introduction
	Examples
	How to encode data and write to file with gob?
	How to read data from file and decode with go?
	How to encode an interface with gob?
	How to decode an interface with gob?

	Chapter 26: Goroutines
	Introduction
	Examples
	Goroutines Basic Program

	Chapter 27: HTTP Client
	Syntax
	Parameters
	Remarks
	Examples
	Basic GET
	GET with URL parameters and a JSON response
	Time out request with a context

	1.7+
	Before 1.7
	Further Reading
	PUT request of JSON object

	Chapter 28: HTTP Server
	Remarks
	Examples
	HTTP Hello World with custom server and mux
	Hello World
	Using a handler function
	Create a HTTPS Server

	Generate a certificate
	The necessary Go code
	Responding to an HTTP Request using Templates
	Serving content using ServeMux
	Handling http method, accessing query strings & request body

	Chapter 29: Images
	Introduction
	Examples
	Basic concepts

	Image related type
	Accessing image dimension and pixel
	Loading and saving image

	Save to PNG
	Save to JPEG
	Save to GIF
	Cropping image
	Convert color image to grayscale

	Chapter 30: Inline Expansion
	Remarks
	Examples
	Disabling inline expansion

	Chapter 31: Installation
	Examples
	Install in Linux or Ubuntu

	Chapter 32: Installation
	Remarks

	Downloading Go
	Extracting the download files
	Mac and Windows
	Linux

	Setting Environment Variables
	Windows
	Mac
	Linux

	Finished!
	Examples
	Example .profile or .bash_profile

	Chapter 33: Interfaces
	Remarks
	Examples
	Simple interface
	Determining underlying type from interface
	Compile-time check if a type satisfies an interface
	Type switch
	Type Assertion
	Go Interfaces from a Mathematical Aspect

	Chapter 34: Iota
	Introduction
	Remarks
	Examples
	Simple use of iota
	Using iota in an expression
	Skipping values
	Use of iota in an expression list
	Use of iota in a bitmask
	Use of iota in const

	Chapter 35: JSON
	Syntax
	Remarks
	Examples
	Basic JSON Encoding
	Basic JSON decoding
	Decoding JSON data from a file
	Using anonymous structs for decoding
	Configuring JSON struct fields
	Hide/Skip Certain Fields
	Ignore Empty Fields
	Marshaling structs with private fields
	Encoding/Decoding using Go structs

	Encoding
	Decoding

	Chapter 36: JWT Authorization in Go
	Introduction
	Remarks
	Examples
	Parsing and validating a token using the HMAC signing method
	Creating a token using a custom claims type
	Creating, signing, and encoding a JWT token using the HMAC signing method
	Using the StandardClaims type by itself to parse a token
	Parsing the error types using bitfield checks
	Getting token from HTTP Authorization header

	Chapter 37: Logging
	Examples
	Basic Printing
	Logging to file
	Logging to syslog

	Chapter 38: Loops
	Introduction
	Examples
	Basic Loop
	Break and Continue
	Conditional loop
	Different Forms of For Loop
	Timed loop

	Chapter 39: Maps
	Introduction
	Syntax
	Remarks
	Examples
	Declaring and initializing a map
	Creating a map
	Zero value of a map
	Iterating the elements of a map
	Iterating the keys of a map
	Deleting a map element
	Counting map elements
	Concurrent Access of Maps
	Creating maps with slices as values
	Check for element in a map
	Iterating the values of a map
	Copy a Map
	Using a map as a set

	Chapter 40: Memory pooling
	Introduction
	Examples
	sync.Pool

	Chapter 41: Methods
	Syntax
	Examples
	Basic methods
	Chaining methods
	Increment-Decrement operators as arguments in Methods

	Chapter 42: mgo
	Introduction
	Remarks
	Examples
	Example

	Chapter 43: Middleware
	Introduction
	Remarks
	Examples
	Normal Handler Function
	Middleware Calculate time required for handlerFunc to execute
	CORS Middleware
	Auth Middleware
	Recovery Handler to prevent server from crashing

	Chapter 44: Mutex
	Examples
	Mutex Locking

	Chapter 45: Object Oriented Programming
	Remarks
	Examples
	Structs
	Embedded structs
	Methods
	Pointer Vs Value receiver
	Interface & Polymorphism

	Chapter 46: OS Signals
	Syntax
	Parameters
	Examples
	Assigning signals to a channel

	Chapter 47: Packages
	Examples
	Package initalization
	Managing package dependencies
	Using different package and folder name
	What's the use of this?
	Importing packages

	Chapter 48: Panic and Recover
	Remarks
	Examples
	Panic
	Recover

	Chapter 49: Parsing Command Line Arguments And Flags
	Examples
	Command line arguments
	Flags

	Chapter 50: Parsing CSV files
	Syntax
	Examples
	Simple CSV parsing

	Chapter 51: Plugin
	Introduction
	Examples
	Defining and using a plugin

	Chapter 52: Pointers
	Syntax
	Examples
	Basic Pointers
	Pointer v. Value Methods

	Pointer Methods
	Value Methods
	Dereferencing Pointers
	Slices are Pointers to Array Segments
	Simple Pointers

	Chapter 53: Profiling using go tool pprof
	Remarks
	Examples
	Basic cpu and memory profiling
	Basic memory Profiling
	Set CPU/Block profile rate
	Using Benchmarks to Create Profile
	Accessing Profile File

	Chapter 54: Protobuf in Go
	Introduction
	Remarks
	Examples
	Using Protobuf with Go

	Chapter 55: Readers
	Examples
	Using bytes.Reader to read from a string

	Chapter 56: Reflection
	Remarks
	Examples
	Basic reflect.Value Usage
	Structs
	Slices
	reflect.Value.Elem()
	Type of value - package "reflect"

	Chapter 57: Select and Channels
	Introduction
	Syntax
	Examples
	Simple Select Working with Channels
	Using select with timeouts

	Chapter 58: Send/receive emails
	Syntax
	Examples
	Sending Email with smtp.SendMail()

	Chapter 59: Slices
	Introduction
	Syntax
	Examples
	Appending to slice
	Adding Two slices together
	Removing elements / "Slicing" slices
	Length and Capacity
	Copying contents from one slice to another slice
	Creating Slices
	Filtering a slice
	Zero value of slice

	Chapter 60: SQL
	Remarks
	Examples
	Querying
	MySQL
	Opening a database
	MongoDB: connect & insert & remove & update & query

	Chapter 61: String
	Introduction
	Syntax
	Examples
	String type
	Formatting text
	strings package

	Chapter 62: Structs
	Introduction
	Examples
	Basic Declaration
	Exported vs. Unexported Fields (Private vs Public)
	Composition and Embedding

	Embedding
	Methods
	Anonymous struct
	Tags
	Making struct copies.
	Struct Literals
	Empty struct

	Chapter 63: Templates
	Syntax
	Remarks
	Examples
	Output values of struct variable to Standard Output using a text template
	Defining functions for calling from template

	Chapter 64: Testing
	Introduction
	Examples
	Basic Test
	Benchmark tests
	Table-driven unit tests
	Example tests (self documenting tests)
	Testing HTTP requests
	Set/Reset Mock Function In Tests
	Testing using setUp and tearDown function
	View code coverage in HTML format

	Chapter 65: Text + HTML Templating
	Examples
	Single item template
	Multiple item template
	Templates with custom logic
	Templates with structs
	HTML templates
	How HTML templates prevent malicious code injection

	Chapter 66: The Go Command
	Introduction
	Examples
	Go Run

	Run multiple files in package
	Go Build

	Specify OS or Architecture in build:
	Build multiple files
	Building a package
	Go Clean
	Go Fmt
	Go Get
	Go env

	Chapter 67: Time
	Introduction
	Syntax
	Examples
	Return time.Time Zero Value when function has an Error
	Time parsing
	Comparing Time

	Chapter 68: Type conversions
	Examples
	Basic Type Conversion
	Testing Interface Implementation
	Implement a Unit System with Types

	Chapter 69: Variables
	Syntax
	Examples
	Basic Variable Declaration
	Multiple Variable Assignment
	Blank Identifier
	Checking a variable's type

	Chapter 70: Vendoring
	Remarks
	Examples
	Use govendor to add external packages
	Using trash to manage ./vendor
	Use golang/dep

	Usage
	vendor.json using Govendor tool

	Chapter 71: Worker Pools
	Examples
	Simple worker pool
	Job Queue with Worker Pool

	Chapter 72: XML
	Remarks
	Examples
	Basic decoding / unmarshalling of nested elements with data

	Chapter 73: YAML
	Examples
	Creating a config file in YAML format

	Chapter 74: Zero values
	Remarks
	Examples
	Basic Zero Values
	More Complex Zero Values
	Struct Zero Values
	Array Zero Values

	Chapter 75: Zero values
	Examples
	Explanation

	Credits

