
google-chrome-

extension

#google-

chrome-

extension

Table of Contents

About 1

Chapter 1: Getting started with google-chrome-extension 2

Remarks 2

TODO: Short description of Chrome Extensions 2

Official documentation 2

Further reading 2

TODO: Populate with links to important overview topics 2

Examples 2

Absolute minimum example 2

Background Page 3

Content Scripts 4

See also 4

Options Page 4

Version 2 5

Version 1 (deprecated) 5

Storage 6

Official documentation 6

Create a new tab 6

Chapter 2: Background pages 7

Examples 7

Declaring background page in the manifest 7

Chapter 3: Content scripts 8

Remarks 8

Official documentation 8

Examples 8

Declaring content scripts in the manifest 8

Minimal example 8

Important note 9

Injecting content scripts from an extension page 9

Minimal example 9

Inline code 9

Choosing the tab 9

Permissions 10

Checking for errors 10

Multiple content scripts in the manifest 10

Same conditions, multiple scripts 10

Same scripts, multiple sites 10

Different scripts or different sites 10

Chapter 4: Debugging Chrome Extensions 12

Examples 12

Using the Developer tools to debug your extension 12

Chapter 5: Developer Tool Integration 14

Examples 14

Programmatic Breakpoint Hinting 14

Debugging the background page/script 14

Debugging the popup window 15

Chapter 6: manifest.json 16

Remarks 16

Official documentation 16

Format 16

Examples 17

Absolute minimum manifest.json 17

Obtaining manifest from extension code 17

Chapter 7: Message Passing 18

Remarks 18

Official documentation 18

Examples 18

Send a response asynchronously 18

Chapter 8: Porting to/from Firefox 20

Remarks 20

Examples 20

Porting through WebExtensions 21

Compatible extensions based on WebExtension 21

A simple extension that can work in Firefox and Google Chrome 21

If the current add-on is based on Add-on SDK or XUL 23

Credits 25

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: google-chrome-extension

It is an unofficial and free google-chrome-extension ebook created for educational purposes. All
the content is extracted from Stack Overflow Documentation, which is written by many
hardworking individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official
google-chrome-extension.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/google-chrome-extension
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with google-
chrome-extension

Remarks

TODO: Short description of Chrome Extensions

Official documentation

What are extensions? (documentation hub)•
Getting Started tutorial (basic tutorial)•
Overview•
JavaScript APIs (comprehensive list of chrome.* APIs)•

Further reading

TODO: Populate with links to important overview topics

Examples

Absolute minimum example

Any Chrome extension starts as an unpacked extension: a folder containing the extension's files.

One file it must contain is manifest.json, which describes the basic properties of the extension.
Many of the properties in that file are optional, but here is an absolute minimum manifest.json file:

{
 "manifest_version": 2,
 "name": "My Extension",
 "version": "1.0"
}

Create a folder (for example, myExtension) somewhere, add manifest.json as listed above to it.

Then, you need to load the extension in Chrome.

Open the chrome://extensions/ page, accessible though Menu > More tools > Extensions.1.
Enable Developer Mode with a checkbox in the top right, if it's not enabled already.2.
Click on Load unpacked extension... button and select the created myExtension folder. 3.

https://riptutorial.com/ 2

https://developer.chrome.com/extensions
https://developer.chrome.com/extensions/getstarted
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/manifest

That's it! Your first extension is loaded by Chrome:

Of course, it doesn't do anything yet, so it's a good moment to read an overview of extension
architecture to start adding parts you need.

Important: When you do any changes to your extension, do not forget to return to
chrome://extensions/ and press the Reload link for your extension after you make changes. In
case of content scripts, reload the target page as well.

Background Page

Background pages are implicit pages which contain background scripts. A background script is a
single long-running script to manage some task or state. It exists for the lifetime of your extension,
and only one instance of it at a time is active.

You can declare it like this in your manifest.json:

"background": {
 "scripts": ["background.js"]
}

A background page will be generated by the extension system that includes each of the files listed
in the scripts property.

You have access to all permitted chrome.* APIs.

There are two types of background pages: persistent background pages which is always open,
and event pages that is opened and closed as needed.

If you want your background page to be non-persistent, you just have to set the persistent-flag to
false:

"background": {
 "scripts": ["eventPage.js"],
 "persistent": false
}

https://riptutorial.com/ 3

http://i.stack.imgur.com/ketf6.png
http://i.stack.imgur.com/FYha1.png
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview

This background script is only active if an event is fired on which you have a listener registered. In
general you use a addListener for registration.

Example: The app or extension is first installed.

chrome.runtime.onInstalled.addListener(function() {
 console.log("The Extension is installed!");
});

Content Scripts

A content script is extension code that runs alongside a normal page.

They have full access to the web page's DOM (and are, in fact, the only part of the extension
that can access a page's DOM), but the JavaScript code is isolated, a concept called Isolated
World. Each extension has its own content script JavaScript context invisible to others and the
page, preventing code conflicts.

Example definition in manifest.json:

 "content_scripts": [
 {
 "matches": ["http://www.stackoverflow.com/*"],
 "css": ["style.css"],
 "js": ["jquery.js", "myscript.js"]
 }
]

The attributes have the following meaning:

Attribute Description

matches
Specifies which pages this content script will be injected into. Follows the Match
Pattern format.

css List of CSS files to be injected into matching pages.

js List of JS files to be injected into matching pages. Executed in order listed.

Content scripts can also be injected on demand using chrome.tabs.executeScript, which is called
Programmatic Injection.

See also

Official documentation: Content Scripts•
Stack Overflow documentation: Content Scripts•

Options Page

https://riptutorial.com/ 4

https://developer.chrome.com/extensions/content_scripts#execution-environment
https://developer.chrome.com/extensions/content_scripts#execution-environment
http://www.riptutorial.com/google-chrome-extension/topic/948/manifest-json
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/content_scripts#pi
https://developer.chrome.com/extensions/content_scripts
http://www.riptutorial.com/google-chrome-extension/topic/2850/content-scripts

Options pages are used to give the user the possibility to maintain settings for your extension.

Version 2

Since Chrome 40 there is the possibility to have the option page as a predefined dialogue at
chrome://extensions.

The way to define an option page in the manifest.json is like the following:

"options_ui": {
 "page": "options.html",
 "chrome_style": true
}

This option page will behave as a dialogue, it will open as a popup, where the options.html will be
displayed. chrome_style will apply a Chrome stylesheet for style consistency reasons to your
options page.

The options will be automatically exposed via the context menu of the extension button or the
chrome://extensions page.

You can also open the options page programmatically, for example from a popup UI:

chrome.runtime.openOptionsPage();

Version 1 (deprecated)

https://riptutorial.com/ 5

http://www.riptutorial.com/google-chrome-extension/topic/948/manifest-json
https://i.stack.imgur.com/vulsA.png
https://i.stack.imgur.com/E4Knv.png
https://developer.chrome.com/extensions/runtime#method-openOptionsPage

Example definition in manifest.json:

"options_page": "options.html"

It is recommended to use Version 2 since the options_ui behavior will be soon applied to Version 1
options pages.

Storage

Normally the settings need to persist, so using chrome.storage API is recommended. The
permissions can be declared like this in the manifest.json:

"permissions": [
 "storage"
]

Official documentation

Options Page – Version 1•
Options Page – Version 2•
Storage API•

Create a new tab

In the extension code you can use any chrome.* API if you decalared the required permissions. In
addition, some API's works only from background pages, and some API's works only from content
scripts.

You can use most of chrome.tabs methods declaring any permissions. Now we focus on
chrome.tabs.create

Note: The new tab will be opened without any popup warning.

chrome.tabs.create({
 url:"http://stackoverflow.com",
 selected:false // We open the tab in the background
})

You can learn more about tab object, in the official chrome developer

Read Getting started with google-chrome-extension online: https://riptutorial.com/google-chrome-
extension/topic/787/getting-started-with-google-chrome-extension

https://riptutorial.com/ 6

http://www.riptutorial.com/google-chrome-extension/topic/948/manifest-json
http://www.riptutorial.com/google-chrome-extension/topic/948/manifest-json
https://developer.chrome.com/extensions/options
https://developer.chrome.com/extensions/optionsV2
https://developer.chrome.com/extensions/storage
https://developer.chrome.com/extensions/tabs#method-create
https://riptutorial.com/google-chrome-extension/topic/787/getting-started-with-google-chrome-extension
https://riptutorial.com/google-chrome-extension/topic/787/getting-started-with-google-chrome-extension

Chapter 2: Background pages

Examples

Declaring background page in the manifest

There are two ways to register a background page in the extension manifest.

The scripts property

In the common case, a background page doesn't require any HTML markup. We can register
these kinds of background pages using the scripts property.

In this case, a background page will be generated by the extension system that includes
each of files listed in the scripts property.

{
 ...
 "background": {
 "scripts": ["background1.js", "background2.js"],
 "persistent": true
 },
 ...
}

1.

The page property

In some cases, we may want to specify HTML in background page, we can achieve that
using the page property.

{
 ...
 "background": {
 "page": "background.html",
 "persistent": true
 },
 ...
}

2.

scripts VS page

It's hard to say which one is better. we could use page property and have some elements declared
in HTML page for future use. We could also dynamically create such elements in the scripts
without explicitly declaring HTML page. It all depends on the actual needs.

Read Background pages online: https://riptutorial.com/google-chrome-
extension/topic/4066/background-pages

https://riptutorial.com/ 7

https://riptutorial.com/google-chrome-extension/topic/4066/background-pages
https://riptutorial.com/google-chrome-extension/topic/4066/background-pages

Chapter 3: Content scripts

Remarks

Official documentation

Content Scripts•
Content Security Policy > Content Scripts•

Examples

Declaring content scripts in the manifest

Content scripts can be declared in manifest.json to be always injected into pages that match a set
of URL patterns.

Minimal example

"content_scripts" : [
 {
 "js": ["content.js"],
 "css": ["content.css"]
 "matches": ["http://example.com/*"]
 }
]

This manifest entry instructs Chrome to inject a content script content.js, along with the CSS file
content.css, after any navigation to a page matching the match pattern http://example.com/*

Both js and css keys are optional: you can have only one of them or both depending on what you
need.

content_scripts key is an array, and you can declare several content script definitions:

"content_scripts" : [
 {
 "js": ["content.js"],
 "matches": ["http://*.example.com/*"]
 },
 {
 "js": ["something_else.js"],
 "matches": ["http://*.example.org/*"]
 }
]

Note that both js and matches are arrays, even if you only have one entry.

https://riptutorial.com/ 8

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
http://www.riptutorial.com/google-chrome-extension/topic/948/manifest-json
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns

More options are available in the official documentation and other Examples.

Important note

Content scripts declared in the manifest will only be injected on new navigations after the
extension load. They will not be injected in existing tabs. This also applies to extension reloads
while developing, and extension updates after release.

If you need to ensure that currently opened tabs are covered, consider also doing programmatic
injection on startup.

Injecting content scripts from an extension page

If, instead of always having a content script injected based on the URL, you want to directly control
when a content script is injected, you can use Programmatic Injection.

Minimal example

JavaScript

chrome.tabs.executeScript({file: "content.js"});

•

CSS

chrome.tabs.insertCSS({file: "content.css"});

•

Called from an extension page (e.g. background or popup), and assuming you have permission to
inject, this will execute content.js or insert content.css as a content script in the top frame of the
current tab.

Inline code

You can execute inline code instead of a file as a content script:

var code = "console.log('This code will execute as a content script');";
chrome.tabs.executeScript({code: code});

Choosing the tab

You can provide a tab ID (usually from other chrome.tabs methods or messaging) to execute in a
tab other than the currently active.

chrome.tabs.executeScript({
 tabId: tabId,
 file: "content.js"

https://riptutorial.com/ 9

https://developer.chrome.com/extensions/content_scripts#registration
https://developer.chrome.com/extensions/content_scripts#pi

});

More options are available in the chrome.tabs.executeScript() documentation and in other
Examples.

Permissions

Using chrome.tabs.executeScript() does not require "tabs" permission, but requires host
permissions for the page's URL.

Checking for errors

If script injection fails, one can catch it in the optional callback:

chrome.tabs.executeScript({file: "content.js"}, function() {
 if(chrome.runtime.lastError) {
 console.error("Script injection failed: " + chrome.runtime.lastError.message);
 }
});

Multiple content scripts in the manifest

Same conditions, multiple scripts

If you need to inject multiple files with all other conditions being the same, for example to include a
library, you can list all of them in the "js" array:

"content_scripts" : [
 {
 "js": ["library.js", "content.js"],
 "matches": ["http://*.example.com/*"]
 }
]

Order matters: library.js will be executed before content.js.

Same scripts, multiple sites

If you need to inject the same files into multiple sites, you can provide multiple match patterns:

"matches": ["http://example.com/*", "http://example.org/*"]

If you need to inject in basically every page, you can use broad match patterns such as "*://*/*"
(matches every HTTP(S) page) or "<all_urls>" (matches every supported page).

https://riptutorial.com/ 10

https://developer.chrome.com/extensions/tabs#method-executeScript
https://developer.chrome.com/extensions/tabs#method-executeScript
https://developer.chrome.com/extensions/xhr#requesting-permission
https://developer.chrome.com/extensions/xhr#requesting-permission
https://developer.chrome.com/extensions/match_patterns

Different scripts or different sites

"content_scripts" section is an array as well, so one can define more than one content script
block:

"content_scripts" : [
 {
 "js": ["content.js"],
 "matches": ["http://*.example.com/*"]
 },
 {
 "js": ["something_else.js"],
 "matches": ["http://*.example.org/*"]
 }
]

Read Content scripts online: https://riptutorial.com/google-chrome-extension/topic/2850/content-
scripts

https://riptutorial.com/ 11

https://riptutorial.com/google-chrome-extension/topic/2850/content-scripts
https://riptutorial.com/google-chrome-extension/topic/2850/content-scripts

Chapter 4: Debugging Chrome Extensions

Examples

Using the Developer tools to debug your extension

A chrome extension is seperated into a maximum of 4 parts:

the background page•
the popup page•
one or more content scripts•
the options page•

Each part, since they are innately separate, require individual debugging.

Keep in mind that these pages are separate, meaning that variables are not directly shared
between them and that a console.log() in one of these pages will not be visible in any other
part's logs.

Using the chrome devtools:

Chrome extensions are debugged similar as to other webapps and webpages. Debugging is most
often done with the use of chrome's devtools inspector opened by using the keyboard shortcut for
windows and macs respectively: ctrl+shift+i and cmd+shift+i or by right clicking on the page and
selecting inspect.

From the inspector a developer can check html elements and how css affects them, or use the
console to inspect the values of javascript variables and read the outputs from any console.log()s
the developer(s) set up.

More information about the usage of the inspector can be found at Chrome Devtools.

Inspecting the popup, options page, and other pages accessible using
chrome://.....yourExtensionId.../:

The popup page and options page can each be accessed simply by inspecting them when they
are open.

Additional html pages that are part of the extension, but are neither the popup nor the options
page are also debugged the same way.

Inspecting the background page:

To access your background page you must first navigate to the chrome extension page at
chrome://extensions/. Make sure the 'Developer mode' checkmark is enabled.

https://riptutorial.com/ 12

https://developers.google.com/web/tools/chrome-devtools/?hl=en
http://chrome//extensions/

Then click on your background script beside "Inspect views" to inspect your background page.

Inspecting content scripts:

Content scripts run along-side the websites they were inserted into. You can inspect the content
script by first inspecting the website where the content script is inserted. In the console you will be
able to view any console.log()s outputted by your extension, but you will not be able to change or
inspect the content script's variables.

To fix this you must click on the drop down that is usually set to 'top' and select your extension
from the list of extensions.

From there you will have access to the variables within your extension.

Read Debugging Chrome Extensions online: https://riptutorial.com/google-chrome-
extension/topic/5730/debugging-chrome-extensions

https://riptutorial.com/ 13

http://i.stack.imgur.com/324jW.png
http://i.stack.imgur.com/vfaTF.png
http://i.stack.imgur.com/TaSeq.png
http://i.stack.imgur.com/PZhUU.png
https://riptutorial.com/google-chrome-extension/topic/5730/debugging-chrome-extensions
https://riptutorial.com/google-chrome-extension/topic/5730/debugging-chrome-extensions

Chapter 5: Developer Tool Integration

Examples

Programmatic Breakpoint Hinting

Add the debugger statement in your content script

var foo = 1;
debugger;

foo = 2;

Open the Developer Tool on the web page where your content script is injected to see the code
execution pause at those lines.

Debugging the background page/script

The background script is like any other JavaScript code. You can debug it using same tools you
debug other JavaScript code in Chrome.

To open the Chrome Developer Tools, go to chrome://extensions, and turn on Developer mode:

Now you can debug any extension that have a background page or script. Just scroll to the
extension you want to debug and click on the background page link to inspect it.

Tip: To reload the extension, you can press F5 inside the developer tools window. You can put
breakpoints in the initialization code before reloading.

Tip: Right-clicking the extension action button and selecting "Manage extensions" will open
chrome://extensions page scrolled to that extension.

https://riptutorial.com/ 14

http://i.stack.imgur.com/7NCn6.png
http://i.stack.imgur.com/5qFGT.png

Debugging the popup window

You have 2 ways to debug the popup window. Both ways are by using the Chrome DevTools.

Option 1: Right click the extension's action button, and choose Inspect popup

Option 2: Open the popup window, directly in your browser as a tab.

For example, if you extension id is abcdefghijkmnop, and your popup html file is popup.html. Go to
the address and navigate to:

chrome-extension://abcdefghijklmnop/popup.html

Now you see the poup in regular tab. And you can press F12 to open the developer tools.

Read Developer Tool Integration online: https://riptutorial.com/google-chrome-
extension/topic/5938/developer-tool-integration

https://riptutorial.com/ 15

http://i.stack.imgur.com/f8Fzd.png
https://riptutorial.com/google-chrome-extension/topic/5938/developer-tool-integration
https://riptutorial.com/google-chrome-extension/topic/5938/developer-tool-integration

Chapter 6: manifest.json

Remarks

Official documentation

Manifest File Format

Format

Manifest file is written in JSON (JavaScript Object Notation) format.

This format differs from more loose rules of writing object literals in JavaScript code. Among
important differences:

Every key name and string literal must be in double quotes.

Correct: "key": "value"○

Wrong: key: "value", 'key': 'value'○

•

No comments are allowed by the format.

Wrong: "key": "value" // This controls feature foo○

•

Strict comma rules: items separated by commas, no dangling commas.

Correct:

{
 "foo": "bar",
 "baz": "qux"
}

○

Wrong (comma missing):

{
 "foo": "bar"
 "baz": "qux"
}

○

Wrong (dangling comma):

{
 "foo": "bar",
 "baz": "qux",

○

•

https://riptutorial.com/ 16

https://developer.chrome.com/extensions/manifest
http://json.org/

}

Examples

Absolute minimum manifest.json

manifest.json gives information about the extension, such as the most important files and the
capabilities that the extension might use. Among the supported manifest fields for extensions, the
following three are required.

{
 "manifest_version": 2,
 "name": "My Extension",
 "version": "1.0"
}

Obtaining manifest from extension code

chrome.runtime.getManifest() returns the extension's manifest in a form of a parsed object.

This method works both on content scripts and all extension pages, it requires no permissions,

Example, obtaining the extension's version string:

var version = chrome.runtime.getManifest().version;

Read manifest.json online: https://riptutorial.com/google-chrome-extension/topic/948/manifest-json

https://riptutorial.com/ 17

https://developer.chrome.com/extensions/runtime#method-getManifest
https://riptutorial.com/google-chrome-extension/topic/948/manifest-json

Chapter 7: Message Passing

Remarks

Official documentation

Message Passing•
Native Messaging•
chrome.runtime API (most messaging functions and all messaging events)•

Examples

Send a response asynchronously

In attempt to send a response asynchronously from chrome.runtime.onMessage callback we might try
this wrong code:

chrome.runtime.onMessage.addListener(function(request, sender, sendResponse) {
 $.ajax({
 url: 'https://www.google.com',
 method: 'GET',
 success: function(data) {
 // data won't be sent
 sendResponse(data);
 },
 });
});

However, we would find that data is never sent. This happens because we have put sendResponse
inside an asynchronous ajax call, when the success method is executed, the message channel has
been closed.

The solution would be simple, as long as we explicitly return true; at the end of the callback,
which indicates we wish to send a response asynchronously, so the message channel will be kept
open to the other end (caller) until sendResponse is executed.

chrome.runtime.onMessage.addListener(function(request, sender, sendResponse) {
 $.ajax({
 url: 'https://www.google.com',
 method: 'GET',
 success: function(data) {
 // data would be sent successfully
 sendResponse(data);
 },
 });

 return true; // keeps the message channel open until `sendResponse` is executed
});

https://riptutorial.com/ 18

https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/runtime
https://developer.chrome.com/extensions/runtime
https://developer.chrome.com/extensions/runtime#event-onMessage

Of course, it applies to an explicit return from the onMessage callback as well:

chrome.runtime.onMessage.addListener(function(request, sender, sendResponse) {
 if (request.action == 'get') {
 $.ajax({
 url: 'https://www.google.com',
 method: 'GET',
 success: function(data) {
 // data would be sent successfully
 sendResponse(data);
 },
 });

 return true; // keeps the message channel open until `sendResponse` is executed
 }

 // do something synchronous, use sendResponse

 // normal exit closes the message channel
});

Read Message Passing online: https://riptutorial.com/google-chrome-
extension/topic/2185/message-passing

https://riptutorial.com/ 19

https://riptutorial.com/google-chrome-extension/topic/2185/message-passing
https://riptutorial.com/google-chrome-extension/topic/2185/message-passing

Chapter 8: Porting to/from Firefox

Remarks

If you're using a Firefox version before 48, you'll also need an additional key in
manifest.json called applications:

"applications": {
 "gecko": {
 "id": "borderify@example.com",
 "strict_min_version": "42.0",
 "strict_max_version": "50.*",
 "update_url": "https://example.com/updates.json"
 }
}

applications

Note:

Extension Signing:

With the release of Firefox 48, extension signing can no longer be disabled in the
release and beta channel builds by using a preference. As outlined when extension
signing was announced, we are publishing specialized builds that support this
preference so developers can continue to test against the code that beta and release
builds are generated from.

Status of WebExtensions:

WebExtensions are currently in an experimental alpha state. From Firefox 46, you can
publish WebExtensions to Firefox users, just like any other add-on. We're aiming for a
first stable release in Firefox 48.

UPD: Firefox 48 released 02.08.2016.

Links:

API support status - The list of APIs and their status.

Chrome incompatibilities

WebExtensions - JavaScript APIs, keys of manifest.json, tutorials, etc.

Examples

https://riptutorial.com/ 20

https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json/applications
https://blog.mozilla.org/addons/2016/07/29/extension-signing-availability-of-unbranded-builds/
http://arewewebextensionsyet.com/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Chrome_incompatibilities
https://developer.mozilla.org/ru/Add-ons/WebExtensions

Porting through WebExtensions

Before talking about porting Firefox extensions from/to, one should know what WebExtensions is.

WebExtensions - is a platform that represents an API for creating Firefox extensions.

It uses the same architecture of extension as Chromium, as a result, this API is compatible in
many ways with API in Google Chrome and Opera (Opera which based on Chromium). In many
cases, extensions developed for these browsers will work in Firefox with a few changes or even
without them at all.

MDN recommends to use WebExtension for new extensions:

In the future, WebExtensions will be the recommended way to develop Firefox add-
ons, and other systems will be deprecated.

In view of the foregoing, if you want to port extensions to Firefox, you have to know, how the
extension was written.

Extensions for Firefox can be based on WebExtension, Add-on SDK or XUL.

Compatible extensions based on
WebExtension

When using WebExtension, one has to look through the list of incompatibilities, because some
functions are supported fully or partially, that is in other words, one should check one’s
manifest.json.

It also enables to use the same namespace:

At this time, all APIs are accessible through the chrome.* namespace. When we begin
to add our own APIs, we expect to add them to the browser.* namespace. Developers
will be able to use feature detection to determine if an API is available in browser.*.

A simple extension that can work in Firefox and Google
Chrome

manifest.json:

{
 "manifest_version": 2,

 "name": "StackMirror",

 "version": "1.0",

https://riptutorial.com/ 21

https://developer.mozilla.org/en-US/Add-ons/WebExtensions/What_are_WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Chrome_incompatibilities
https://wiki.mozilla.org/WebExtensions#Namespacing

 "description": "Mirror reflection of StackOverflow sites",

 "icons": {
 "48": "icon/myIcon-48.png"
 },

 "page_action": {
 "default_icon": "icon/myIcon-48.png"
 },

 "background": {
 "scripts" : ["js/background/script.js"],
 "persistent": false
 },

 "permissions": ["tabs", "*://*.stackoverflow.com/*"]
}

background script:

function startScript(tabId, changeInfo, tab) {

 if (tab.url.indexOf("stackoverflow.com") > -1) {

 chrome.tabs.executeScript(tabId,

 {code: 'document.body.style.transform = "scaleX(-1)";'}, function () {

 if (!chrome.runtime.lastError) {

 chrome.pageAction.show(tabId);
 }
 });
 }
}

chrome.tabs.onUpdated.addListener(startScript);

Pack project as standard zip file, but with .xpi extensions.

Then,you have to load the extension in Firefox.

https://riptutorial.com/ 22

https://i.stack.imgur.com/Ekfow.png

Open the about:addons page, accessible through Menu > Add-ons.

Click on Tools for all add-ons button.

When the extension is loaded the page about:addons will look like this:

Directions on loading the extension in Google Chrome is in other topic - Getting started with
Chrome Extensions.

The result of extension operation will be same in both browsers (Firefox/Google Chrome):

If the current add-on is based on Add-on SDK
or XUL

When extension being ported is based on Add-on SDK one has to look through the comparison table
for Add-on SDK => WebExtensions, because these technologies have similar features, but differ in
implementation. Each section of table describes the equivalent of Add-on SDK for WebExtension.

Comparison with the Add-on SDK

https://riptutorial.com/ 23

https://i.stack.imgur.com/ACxMK.png
https://i.stack.imgur.com/Vxlvu.png
http://www.riptutorial.com/google-chrome-extension/example/2711/absolute-minimum-example
http://www.riptutorial.com/google-chrome-extension/example/2711/absolute-minimum-example
https://i.stack.imgur.com/v0T9k.png
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Comparison_with_the_Add-on_SDK

A similar approach and for XUL extensions.

Comparison with XUL/XPCOM extensions

Read Porting to/from Firefox online: https://riptutorial.com/google-chrome-
extension/topic/5731/porting-to-from-firefox

https://riptutorial.com/ 24

https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Comparison_with_XUL_XPCOM_extensions
https://riptutorial.com/google-chrome-extension/topic/5731/porting-to-from-firefox
https://riptutorial.com/google-chrome-extension/topic/5731/porting-to-from-firefox

Credits

S.
No

Chapters Contributors

1
Getting started with
google-chrome-
extension

Aminadav, Community, Deliaz, Haibara Ai, ScientiaEtVeritas,
Xan

2 Background pages Haibara Ai, Noam Hacker

3 Content scripts Haibara Ai, Xan

4
Debugging Chrome
Extensions

Marc Guiselin

5
Developer Tool
Integration

Aminadav, Paul Sweatte, Xan

6 manifest.json Haibara Ai, Xan

7 Message Passing Haibara Ai, wOxxOm, Xan

8
Porting to/from
Firefox

Deliaz, UserName

https://riptutorial.com/ 25

https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2724961/deliaz
https://riptutorial.com/contributor/5741762/haibara-ai
https://riptutorial.com/contributor/2612484/scientiaetveritas
https://riptutorial.com/contributor/934239/xan
https://riptutorial.com/contributor/5741762/haibara-ai
https://riptutorial.com/contributor/4926817/noam-hacker
https://riptutorial.com/contributor/5741762/haibara-ai
https://riptutorial.com/contributor/934239/xan
https://riptutorial.com/contributor/3489291/marc-guiselin
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/1113772/paul-sweatte
https://riptutorial.com/contributor/934239/xan
https://riptutorial.com/contributor/5741762/haibara-ai
https://riptutorial.com/contributor/934239/xan
https://riptutorial.com/contributor/5741762/haibara-ai
https://riptutorial.com/contributor/3959875/woxxom
https://riptutorial.com/contributor/934239/xan
https://riptutorial.com/contributor/2724961/deliaz
https://riptutorial.com/contributor/3851967/username

	About
	Chapter 1: Getting started with google-chrome-extension
	Remarks
	TODO: Short description of Chrome Extensions

	Official documentation
	Further reading
	TODO: Populate with links to important overview topics
	Examples
	Absolute minimum example
	Background Page
	Content Scripts

	See also
	Options Page
	Version 2
	Version 1 (deprecated)
	Storage

	Official documentation
	Create a new tab

	Chapter 2: Background pages
	Examples
	Declaring background page in the manifest

	Chapter 3: Content scripts
	Remarks

	Official documentation
	Examples
	Declaring content scripts in the manifest

	Minimal example
	Important note
	Injecting content scripts from an extension page
	Minimal example
	Inline code
	Choosing the tab

	Permissions
	Checking for errors
	Multiple content scripts in the manifest

	Same conditions, multiple scripts
	Same scripts, multiple sites
	Different scripts or different sites
	Chapter 4: Debugging Chrome Extensions
	Examples
	Using the Developer tools to debug your extension

	Chapter 5: Developer Tool Integration
	Examples
	Programmatic Breakpoint Hinting
	Debugging the background page/script
	Debugging the popup window

	Chapter 6: manifest.json
	Remarks

	Official documentation
	Format
	Examples
	Absolute minimum manifest.json
	Obtaining manifest from extension code

	Chapter 7: Message Passing
	Remarks

	Official documentation
	Examples
	Send a response asynchronously

	Chapter 8: Porting to/from Firefox
	Remarks
	Examples
	Porting through WebExtensions

	Compatible extensions based on WebExtension
	A simple extension that can work in Firefox and Google Chrome

	If the current add-on is based on Add-on SDK or XUL
	Credits

