
google-cloud-

messaging

#google-

cloud-

messaging

Table of Contents

About 1

Chapter 1: Getting started with google-cloud-messaging 2

Remarks 2

Examples 4

Send downstream messages from the cloud 4

Handling downstream message in Android 7

Handling downstream message in iOS 8

Chapter 2: Differences between sending to Android and iOS devices 9

Examples 9

Make device receive notification even when sleeping 9

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: google-cloud-messaging

It is an unofficial and free google-cloud-messaging ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official google-cloud-
messaging.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/google-cloud-messaging
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with google-cloud-
messaging

Remarks

Google Cloud Messaging: Overview

Google Cloud Messaging (GCM) is a free service that enables developers to send messages
between servers and client apps. This includes downstream messages from servers to client apps,
and upstream messages from client apps to servers.

For example, a lightweight downstream message could inform a client app that there is new data
to be fetched from the server, as in the case of a "new email" notification. For use cases such as
instant messaging, a GCM message can transfer up to 4kb of payload to the client app. The GCM
service handles all aspects of queueing of messages and delivery to and from the target client
app.

Architectural Overview

A GCM implementation includes a Google connection server, an app server in your environment
that interacts with the connection server via HTTP or XMPP protocol, and a client app.

Here's how these components interact:

Google GCM Connection Servers accept downstream messages from your app server and
send them to a client app. The XMPP connection server can also accept messages sent
upstream from the client app and forward them to your app server. For more information, see
About GCM Connection Server.

•

On your App Server, you implement the HTTP and/or XMPP protocol to communicate with
the GCM connection server(s). App servers send downstream messages to a GCM
connection server; the connection server enqueues and stores the message, and then sends
it to the client app. If you implement XMPP, your app server can receive messages sent from
the client app.

•

The Client App is a GCM-enabled client app. To receive and send GCM messages, this app
must register with GCM and get a unique identifier called a registration token. For more
information on how to implement the client app, see the documentation for your platform.

•

Key Concepts

Below summarizes the key terms and concepts involved in GCM. It is divided into these
categories:

Components — The entities that play a primary role in GCM.•
Credentials — The IDs and tokens that are used in GCM to ensure that all parties have •

https://riptutorial.com/ 2

https://developers.google.com/cloud-messaging/ccs.html
https://developers.google.com/cloud-messaging/server
https://developers.google.com/cloud-messaging/http.html
https://developers.google.com/cloud-messaging/ccs

been authenticated, and that the message is going to the correct place.

GCM components and credentials.

Components

GCM Connection Servers - Google servers involved in sending messages between the app
server and the client app.

•

Client App - A GCM-enabled client app that communicates with your app server.•
App Server - An app server that you write as part of implementing GCM. The app server
sends data to a client app via the GCM connection server. If your app server implements the
XMPP protocol, it can also receive messages sent upstream from client apps.

•

Credentials

Sender ID
A unique numerical value created when you configure your API project. The sender ID is
used in the registration process to identify an app server that is permitted to send messages
to the client app.

•

Server key
A key saved on the app server that gives the app server authorized access to Google
services. In HTTP, the server key is included in the header of POST requests that send
messages. In XMPP, the server key is used in the SASL PLAIN authentication request as a
password to authenticate the connection. Do not include the server key anywhere in your
client code. You obtain the server key when you create your API project.

•

Application ID
The client app that is registering to receive messages. How this is implemented is platform-
dependent:

Android: use the package name from the app manifest.○

iOS: use the app's bundle identifier.○

Chrome: use the Chrome extension name.○

•

Registration Token
An ID issued by the GCM connection servers to the client app that allows it to receive
messages. Note that registration tokens must be kept secret.

•

Lifecycle Flow

Register to enable GCM. An instance of a client app registers to receive messages. For
more discussion, see Registering Client Apps.

•

Send and receive downstream messages.
Send a message. The app server sends messages to the client app:

The app server sends a message to GCM connection servers.1.
The GCM connection server enqueues and stores the message if the device is
offline.

2.

○

•

https://riptutorial.com/ 3

https://developers.google.com/cloud-messaging/registration
https://developers.google.com/cloud-messaging/registration
https://developers.google.com/cloud-messaging/server.html#send-msg

When the device is online, the GCM connection server sends the message to the
device.

3.

On the device, the client app receives the message according to the platform-
specific implementation. See your platform-specific documentation for details.

4.

Receive a message. A client app receives a message from a GCM connection server.
See your platform-specific documentation for details on how a client app in that
environment processes the messages it receives.

○

Send and receive upstream messages. This feature is only available if you're using the
XMPP connection server.

Send a message. A client app sends messages to the app server:
On the device, the client app sends messages to the XMPP connection server.
See your platform-specific documentation for details on how a client app can
send a message via XMPP.

1.

The XMPP connection server enqueues and stores the message if the server is
disconnected.

2.

When the app server is re-connected, the XMPP connection server sends the
message to the app server.

3.

○

Receive a message. An app server receives a message from the XMPP connection
server and then does the following:

Parses the message header to verify client app sender information.1.
Sends "ack" to the XMPP connection server to acknowledge receiving the
message.

2.

Optionally parses the message payload, as defined by the client app.3.

○

•

Official Documentation Reference can be found here.

Examples

Send downstream messages from the cloud

Send a message using GCM HTTP connection server protocol:

 https://gcm-http.googleapis.com/gcm/send
 Content-Type:application/json
 Authorization:key=AIzaSyZ-1u...0GBYzPu7Udno5aA
 {
 "to": "/topics/foo-bar",
 "data": {
 "message": "This is a GCM Topic Message!",
 }
 }

To do this in Postman, you simply have to set the following (some details are as what is mentioned
above):

Set request type to POST1.
In the Headers, set the following:2.

https://riptutorial.com/ 4

https://developers.google.com/cloud-messaging/ccs.html
https://developers.google.com/cloud-messaging/gcm
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

Content-Type = application/json•
Authorization = < Your GCM Server Key >•

Set the payload parameters in the Body (in this example, we used the raw option, see
screenshot (2))

3.

Send the request to https://gcm-http.googleapis.com/gcm/send4.

Screenshots:

(1)

https://riptutorial.com/ 5

https://gcm-http.googleapis.com/gcm/send

(2)

https://riptutorial.com/ 6

https://i.stack.imgur.com/3zSu7.png

Notice that the request was a success with the message_id in the response.

PS: I'm keeping the sample Server Key visible so that others can still try it out even if they haven't created a Project
yet. BUT, note that the Server Key must be always kept secret.

Handling downstream message in Android

https://riptutorial.com/ 7

https://i.stack.imgur.com/TBdWA.png

Implement onMessageReceived that will catch the notification sent from GCM server.

 @Override
 public void onMessageReceived(String from, Bundle data) {
 String message = data.getString("message");
 Log.d(TAG, "From: " + from);
 Log.d(TAG, "Message: " + message);
 // Handle received message here.
 }

Handling downstream message in iOS

To receive the notification, implement
application:didReceiveRemoteNotification:fetchCompletionHandler: (or
application:didReceiveRemoteNotification: for iOS < 8.0), and call
GCMService:appDidReceiveMessage:message to acknowledge the reception of the message to GCM.

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {
 NSLog(@"Notification received: %@", userInfo);
 // This works only if the app started the GCM service
 [[GCMService sharedInstance] appDidReceiveMessage:userInfo];
 // Handle the received message
 // ...
}

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo
 fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))handler {
 NSLog(@"Notification received: %@", userInfo);
 // This works only if the app started the GCM service
 [[GCMService sharedInstance] appDidReceiveMessage:userInfo];
 // Handle the received message
 // Invoke the completion handler passing the appropriate UIBackgroundFetchResult value
 // ...
}

Read Getting started with google-cloud-messaging online: https://riptutorial.com/google-cloud-
messaging/topic/5811/getting-started-with-google-cloud-messaging

https://riptutorial.com/ 8

https://riptutorial.com/google-cloud-messaging/topic/5811/getting-started-with-google-cloud-messaging
https://riptutorial.com/google-cloud-messaging/topic/5811/getting-started-with-google-cloud-messaging

Chapter 2: Differences between sending to
Android and iOS devices

Examples

Make device receive notification even when sleeping

When sending a notification to an iOS device, you must set priority: "high" for it to wake up.
Otherwise, the notification will not be received while the phone is asleep.

Sets the priority of the message. Valid values are "normal" and "high." On iOS, these
correspond to APNs priorities 5 and 10.

By default, messages are sent with normal priority. Normal priority optimizes the client
app's battery consumption and should be used unless immediate delivery is required.
For messages with normal priority, the app may receive the message with unspecified
delay.

When a message is sent with high priority, it is sent immediately, and the app can
wake a sleeping device and open a network connection to your server.

--- FCM Server Reference

Read Differences between sending to Android and iOS devices online:
https://riptutorial.com/google-cloud-messaging/topic/6492/differences-between-sending-to-
android-and-ios-devices

https://riptutorial.com/ 9

https://firebase.google.com/docs/cloud-messaging/http-server-ref
https://riptutorial.com/google-cloud-messaging/topic/6492/differences-between-sending-to-android-and-ios-devices
https://riptutorial.com/google-cloud-messaging/topic/6492/differences-between-sending-to-android-and-ios-devices

Credits

S.
No

Chapters Contributors

1
Getting started with
google-cloud-
messaging

AL., Community

2
Differences between
sending to Android
and iOS devices

Niels Abildgaard

https://riptutorial.com/ 10

https://riptutorial.com/contributor/4625829/al-
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1080564/niels-abildgaard

	About
	Chapter 1: Getting started with google-cloud-messaging
	Remarks
	Examples
	Send downstream messages from the cloud
	Handling downstream message in Android
	Handling downstream message in iOS

	Chapter 2: Differences between sending to Android and iOS devices
	Examples
	Make device receive notification even when sleeping

	Credits

