
gradle

#gradle

Table of Contents

About 1

Chapter 1: Getting started with gradle 2

Remarks 2

Highlighted Gradle features 2

More information 2

Examples 2

Gradle Installation 2

Installation with homebrew on OS X / macOS 3

Installing with SdkMan 3

Install Gradle plugin for Eclipse 3

Hello World 3

More about tasks 4

Questions about task dependencies and ordering examined here 5

Simple: 5

Enhanced 5

Chapter 2: Auto Increment Version Number Using Gradle Script For Android Applications 7

Examples 7

How To Call Auto Increment Method When Build 7

Auto Increment Method Definition 7

Read and Assign Version Number from a property file to a variable 7

Chapter 3: Dependencies 8

Examples 8

Add a Local JAR File Dependency 8

Single JAR 8

Directory of JARs 8

Directory of JARs as repository 8

Add a Dependency 8

Depend on Another Gradle Project 9

List Dependencies 9

Adding repositories 10

Add .aar file to Android project using gradle 10

Chapter 4: Gradle Init Scripts 11

Examples 11

Add default repository for all projects 11

Chapter 5: Gradle Performance 12

Examples 12

Profiling a Build 12

Configure on Demand 14

Tuning JVM Memory Usage Parameters for Gradle 14

Use the Gradle Daemon 15

Gradle Parallel builds 16

Use latest Gradle version 16

Chapter 6: Gradle Plugins 17

Examples 17

Simple gradle plugin from `buildSrc` 17

How to write a standalone plugin 19

Setup gradle configuration 19

Create the Plugin 19

Plugin Class declaration 20

How to build and publish it 20

How to use it 21

Chapter 7: Gradle Wrapper 22

Examples 22

Gradle Wrapper and Git 22

Gradle Wrapper introduction 22

Use locally served Gradle in the Gradle Wrapper 23

Using the Gradle Wrapper behind a proxy 23

Chapter 8: Including Native Source - Experimental 25

Parameters 25

Examples 25

Basic JNI Gradle Config 25

Using prebuilt libraries and OpenGL ES 2.0 26

Chapter 9: Initializing Gradle 29

Remarks 29

Terminology 29

Examples 29

Initializing a New Java Library 29

Chapter 10: IntelliJ IDEA Task Customization 31

Syntax 31

Remarks 31

Examples 31

Add a Basic Run Configuration 32

Chapter 11: Ordering tasks 34

Remarks 34

Examples 34

Ordering with the mustRunAfter method 34

Chapter 12: Task dependencies 36

Remarks 36

Examples 36

Adding dependencies using task names 36

Adding dependencies from another project 36

Adding dependency using task object 37

Adding multiple dependencies 37

Multiple dependencies with the dependsOn method 38

Chapter 13: Using third party plugins 40

Examples 40

Adding a third party plugin to build.gradle 40

build.gradle with multiple third party plugins 40

Credits 42

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: gradle

It is an unofficial and free gradle ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official gradle.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/gradle
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with gradle

Remarks

Gradle is an open-source, general-purpose build tool. It is popular in the Java community and is
the preferred build tool for Android.

Highlighted Gradle features

Declarative build scripts are code written in Groovy or Kotlin.•
Lots of core and community plugins which use a flexible, convention-based approach•
Incremental builds such that tasks whose dependencies who haven't changed aren't rerun.•
Built-in dependency resolution for Maven and Ivy. Contributed plugins provide dependency
resolution from other repositories such as npm.

•

First-class multi-project builds.•
Integration with other build tools like Maven, Ant and others.•
Build Scans that increase developers' the ability to collaborate on and optimize Gradle
builds.

•

More information

If you want to learn more about Gradle features can look at the Overview part of the Gradle User
Guide.

If you want to try Gradle can check out the guides here. You can walk through a Java quickstart
guide, learn how use Gradle for the first time, and migrate from another build tool.

Examples

Gradle Installation

Requirements: Installed Java JDK or JRE (version 7 or higher for Gradle 3.x version)

Installation steps:

Download Gradle distribution from the official web site1.
Unpack the ZIP2.
Add the GRADLE_HOME environment variable. This variable should point to the unpacked files
from the previous step.

3.

Add GRADLE_HOME/bin to your PATH environment variable, so you can run Gradle from the
command line interface (CLI)

4.

Test your Gradle installation by typing gradle -v in the CLI. The output should contain the
installed Gradle version and the current Gradle configuration details

5.

More information can be found in the official user guide

https://riptutorial.com/ 2

https://gradle.org/
https://developer.android.com/studio/build/index.html
http://www.groovy-lang.org/
http://kotlinlang.org/
https://plugins.gradle.org/
https://gradle.org/blog/feature-spotlight-incremental-builds/
http://ant.apache.org/ivy/
https://www.npmjs.com/
https://maven.apache.org
http://ant.apache.org/
https://scans.gradle.com/
https://docs.gradle.org/current/userguide/overview.html
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/userguide.html
https://gradle.org/getting-started-gradle-java/
https://gradle.org/gradle-download/
https://docs.gradle.org/current/userguide/installation.html

Installation with homebrew on OS X / macOS

Users of homebrew can install gradle by running

brew install gradle

Installing with SdkMan

Users of SdkMan can install Gradle by running:

sdk install gradle

Install specific version

sdk list gradle
sdk install gradle 2.14

Switch versions

sdk use gradle 2.12

Install Gradle plugin for Eclipse

Here are the steps required to install Gradle plugin in Eclipse:

Open Eclipse and go to Help -> Eclipse Marketplace1.
In the search bar, enter buildship and hit enter2.
Select "Buildship Gradle Integration 1.0" and click Install3.
In the next window, click Confirm4.
Then, accept the terms and license of agreement, then click Finish5.
After installation, Eclipse will need to restart, click Yes6.

Hello World

Gradle tasks can be written using Groovy code from inside a projects build.gradle file. These tasks
can then be executed using > gradle [taskname] at the terminal or by executing the task from
within an IDE such as Eclipse.

To create the Hello World example in gradle we must define a task that will print a string to the
console using Groovy. We will use Groovy's printLn to call Java's System.out.printLn method to
print the text to the console.

build.gradle

task hello {
 doLast {
 println 'Hello world!'

https://riptutorial.com/ 3

http://brew.sh
http://sdkman.io

 }
}

We can then execute this task by using > gradle hello or > gradle -q hello. The -q is used to
suppress gradle log messages so that only the output of the task will be shown.

Output of > gradle -q hello:

> gradle -q hello
Hello world!

More about tasks

First of all: operator << (leftShift) is equivalent of doLast {closure}. From gradle 3.2 it is
deprecated. All the task code are writing in a build.gradle.

A task represents some atomic piece of work which a build performs. This might be
compiling some classes, creating a JAR, generating Javadoc, or publishing some
archives to a repository.

Gradle supports two big types of tasks: simple and enhanced.

Let's observe some task definition styles:

task hello {
 doLast{
 //some code
 }
}

Or the:

task(hello) {
 doLast{
 //some code
 }
}

This tasks above are equivalents. Also, you can provide some extensions to the task, such as:
dependsOn,mustRunAfter, type etc. You can extend task by adding actions after task definition, like
this:

task hello {
 doLast{
 println 'Inside task'
 }
}
hello.doLast {
 println 'added code'
}

https://riptutorial.com/ 4

When we'll execute this we got:

> gradle -q hello
 Inside task
 added code

Questions about task dependencies and ordering examined
here

Let's talk about two big types of task.

Simple:

Tasks which we define with an action closure:

 task hello {
 doLast{
 println "Hello from a simple task"
 }
 }

Enhanced

Enhanced it is a task with a preconfigured behavior. All plugins that you using in your project are
the extended, or the enhanced tasks. Let's create ours and you will understand how it works:

task hello(type: HelloTask)

class HelloTask extends DefaultTask {
 @TaskAction
 def greet() {
 println 'hello from our custom task'
 }
}

Also, we can pass parameters to our task, like this:

class HelloTask extends DefaultTask {
 String greeting = "This is default greeting"
 @TaskAction
 def greet() {
 println greeting
 }
}

And from now on we can rewrite our task like so:

https://riptutorial.com/ 5

http://www.riptutorial.com/gradle/topic/5545/task-dependencies

 //this is our old task definition style
task oldHello(type: HelloTask)
 //this is our new task definition style
task newHello(type: HelloTask) {
 greeting = 'This is not default greeting!'
}

When we'll execute this we got:

> gradle -q oldHello
This is default greeting

> gradle -q newHello
This is not default greeting!

All questions about development gradle plugins onto official site

Read Getting started with gradle online: https://riptutorial.com/gradle/topic/894/getting-started-
with-gradle

https://riptutorial.com/ 6

https://docs.gradle.org/current/userguide/custom_plugins.html
https://riptutorial.com/gradle/topic/894/getting-started-with-gradle
https://riptutorial.com/gradle/topic/894/getting-started-with-gradle

Chapter 2: Auto Increment Version Number
Using Gradle Script For Android Applications

Examples

How To Call Auto Increment Method When Build

gradle.taskGraph.whenReady {taskGraph ->
 if (taskGraph.hasTask(assembleDebug)) { /* when run debug task */
 autoIncrementBuildNumber()
 } else if (taskGraph.hasTask(assembleRelease)) { /* when run release task */
 autoIncrementBuildNumber()
 }
}

Auto Increment Method Definition

 /*Wrapping inside a method avoids auto incrementing on every gradle task run. Now it runs
only when we build apk*/
ext.autoIncrementBuildNumber = {

 if (versionPropsFile.canRead()) {
 def Properties versionProps = new Properties()
 versionProps.load(new FileInputStream(versionPropsFile))
 versionBuild = versionProps['VERSION_BUILD'].toInteger() + 1
 versionProps['VERSION_BUILD'] = versionBuild.toString()
 versionProps.store(versionPropsFile.newWriter(), null)
 } else {
 throw new GradleException("Could not read version.properties!")
 }
}

Read and Assign Version Number from a property file to a variable

def versionPropsFile = file('version.properties') def versionBuild

/*Setting default value for versionBuild which is the last incremented value stored in the
file */
if (versionPropsFile.canRead()) {
 def Properties versionProps = new Properties()
 versionProps.load(new FileInputStream(versionPropsFile))
 versionBuild = versionProps['VERSION_BUILD'].toInteger()
} else {
 throw new GradleException("Could not read version.properties!")
}

Read Auto Increment Version Number Using Gradle Script For Android Applications online:
https://riptutorial.com/gradle/topic/10696/auto-increment-version-number-using-gradle-script-for-
android-applications

https://riptutorial.com/ 7

https://riptutorial.com/gradle/topic/10696/auto-increment-version-number-using-gradle-script-for-android-applications
https://riptutorial.com/gradle/topic/10696/auto-increment-version-number-using-gradle-script-for-android-applications

Chapter 3: Dependencies

Examples

Add a Local JAR File Dependency

Single JAR

Sometimes you have a local JAR file you need to add as a dependency to your Gradle build.
Here's how you can do this:

dependencies {
 compile files('path/local_dependency.jar')
}

Where path is a directory path on your filesystem and local_dependency.jar is the name of your
local JAR file. The path can be relative to the build file.

Directory of JARs

It's also possible to add a directory of jars to compile. This can be done like so:

dependencies {
 compile fileTree(dir: 'libs', include: '*.jar')
}

Where libs would be the directory containing the jars and *.jar would be the filter of which files to
include.

Directory of JARs as repository

If you only want to lookup jars in a repository instead of directly adding them as a dependency with
their path you can use a flatDir repository.

repositories {
 flatDir {
 dirs 'libs'
 }
}

Looks for jars in the libs directory and its child directories.

Add a Dependency

https://riptutorial.com/ 8

Dependencies in Gradle follow the same format as Maven. Dependencies are structured as
follows:

group:name:version

Here's an example:

'org.springframework:spring-core:4.3.1.RELEASE'

To add as a compile-time dependency, simply add this line in your dependency block in the Gradle
build file:

compile 'org.springframework:spring-core:4.3.1.RELEASE'

An alternative syntax for this names each component of the dependency explicitly, like so:

compile group: 'org.springframework', name: 'spring-core', version: '4.3.1.RELEASE'

This adds a dependency at compile time.

You can also add dependencies only for tests. Here's an example:

testCompile group: 'junit', name: 'junit', version: '4.+'

Depend on Another Gradle Project

In the case of a multi-project gradle build, you may sometimes need to depend on another project
in your build. To accomplish this, you'd enter the following in your project's dependencies:

dependencies {
 compile project(':OtherProject')
}

Where ':OtherProject' is the gradle path for the project, referenced from the root of the directory
structure.

To make ':OtherProject' available in the context of the build.gradle file add this to the
corresponding settings.gradle

include ':Dependency'
project(':Dependency').projectDir = new File('/path/to/dependency')

For a more detailed explanation, you can reference Gradle's official documentation here.

List Dependencies

Calling the dependencies task allows you to see the dependencies of the root project:

https://riptutorial.com/ 9

http://stackoverflow.com/documentation/maven/2313/pom-file/7590/declaring-dependencies#t=201607240644599954015
https://docs.gradle.org/current/userguide/multi_project_builds.html#sec:project_jar_dependencies

gradle dependencies

The results are dependency graphs (taking into account transitive dependencies), broken down by
configuration. To restrict the displayed configurations, you can pass the --configuration option
followed by one chosen configuration to analyse:

gradle dependencies --configuration compile

To display dependencies of a subproject, use <subproject>:dependencies task. For example to list
dependencies of a subproject named api:

gradle api:dependencies

Adding repositories

You have to point Gradle to the location of your plugins so Gradle can find them. Do this by adding
a repositories { ... } to your build.gradle.

Here's an example of adding three repositories, JCenter, Maven Repository, and a custom
repository that offers dependencies in Maven style.

repositories {
 // Adding these two repositories via method calls is made possible by Gradle's Java plugin
 jcenter()
 mavenCentral()

 maven { url "http://repository.of/dependency" }
}

Add .aar file to Android project using gradle

Navigate to project's app module and create libs directory.1.
Place your .aar file there. For example myLib.aar.2.
Add the code below to android block of app level's build.gradle file.3.

 repositories {
 flatDir {
 dirs 'libs'
 }
 }

This way you defined a new extra repository that points to app module's libs folder.

Add the code below to dependencies block or the build.gradle file:4.

compile(name:'myLib', ext:'aar')

Read Dependencies online: https://riptutorial.com/gradle/topic/2524/dependencies

https://riptutorial.com/ 10

https://bintray.com/bintray/jcenter
http://mvnrepository.com/
https://riptutorial.com/gradle/topic/2524/dependencies

Chapter 4: Gradle Init Scripts

Examples

Add default repository for all projects

Add a init.gradle to your user gradle folder. The init.gradle is recognized on every project.

Unix: ~/.gradle/init.gradle

These are also alternative locations where init script can be placed and loaded
automatically:-

Any *.gradle file in USER_HOME/.gradle/init.d•
Any *.gradle file in the Gradle installation’s init.d directory•

init.gradle with mavenLocal as repository in all projects.

allprojects {
 repositories {
 mavenLocal()
 }
}

With that you have your local maven cache available in all repositories. A use case could be to
use a jar that you put in ther with "gradle install" in another project without adding the mavenLocal
repository to the build.gradle or adding a nexus/artifactory server.

Read Gradle Init Scripts online: https://riptutorial.com/gradle/topic/4234/gradle-init-scripts

https://riptutorial.com/ 11

https://riptutorial.com/gradle/topic/4234/gradle-init-scripts

Chapter 5: Gradle Performance

Examples

Profiling a Build

Before you begin tuning your Gradle build for performance, you should establish a baseline and
figure out which portions of the build are taking the most time. To do this, you can profile your build
by adding the --profile argument to your Gradle command:

gradle --profile
./gradlew --profile

After the build is complete, you will see an HTML profile report for the build under
./build/reports/profile/, looking something like this:

https://riptutorial.com/ 12

https://docs.gradle.org/current/userguide/tutorial_gradle_command_line.html#sec:profiling_build

By clicking on the tabs next to Summaryhttps://riptutorial.com/ 13

http://i.stack.imgur.com/bGSFN.png

, you can see a more-detailed breakdown of where time is spent.

Configure on Demand

If profiling your build shows significant time spend in Configuring Projects, the Configure on
Demand option might improve your performance.

You can enable Configure on Demand mode by editing
$GRADLE_USER_HOME/.gradle/gradle.properties (~/.gradle/gradle.properties by default), and setting
org.gradle.configureondemand.

org.gradle.configureondemand=true

To enable it only for a specific project, edit that project's gradle.properties file instead.

If Configure on Demand is enabled, instead of configuring all projects up front, Gradle will only
configure projects that are needed for the task being run.

From the Gralde Manual:

Configuration on demand mode attempts to configure only projects that are relevant for
requested tasks, i.e. it only executes the build.gradle file of projects that are
participating in the build. This way, the configuration time of a large multi-project build
can be reduced. In the long term, this mode will become the default mode, possibly the
only mode for Gradle build execution.

Tuning JVM Memory Usage Parameters for Gradle

You can set or increase memory usage limits (or other JVM arguments) used for Gradle builds
and the Gradle Daemon by editing $GRADLE_USER_HOME/.gradle/gradle.properties (
~/.gradle/gradle.properties by default), and setting org.gradle.jvmargs.

To configure these limits only for a specific project, edit that project's gradle.properties file instead.

The default memory usage settings for Gradle builds and the Gradle Daemon are:

org.gradle.jvmargs=-Xmx1024m -XX:MaxPermSize=256m

This allows a general maximum memory allocation (heap size) of 1GB, and a maximum memory
allocation for permanent "internal" objects of 256MB. When these sizes are reached, Garbage
Collection occurs, which can decrease performance significantly.

Assuming you have the memory to spare, you could easily double these like so:

org.gradle.jvmargs=-Xmx2024m -XX:MaxPermSize=512m

Note that you'll stop seeing benefit from increasing XX:MaxPermSize sooner than when Xmx increases
stop becoming beneficial.

https://riptutorial.com/ 14

https://docs.gradle.org/current/userguide/multi_project_builds.html#sec:configuration_on_demand

Use the Gradle Daemon

You can enable the Gradle Daemon to improve the performance of your builds.

The Gradle Daemon keeps the Gradle Framework initialized and running, and caches project data
in memory to improve performance.

For a Single Build

To enable the Daemon for a single build, you can simply pass the --daemon argument to your
gradle command or Gradle Wrapper script.

gradle --daemon
./gradlew --daemon

For All Builds of a Project

To enable the Daemon for all builds of a project, you can add:

org.gradle.daemon=true

To your project's gradle.properties file.

For All Builds

To enable the Gradle Daemon by default, for every build made by your user account on your
system, edit $GRADLE_USER_HOME/.gradle/gradle.properties (~/.gradle/gradle.properties by default)
and add this line:

org.gradle.daemon=true

You can also do this in a single command on Mac/Linux/*nix systems:

touch ~/.gradle/gradle.properties && echo "org.gradle.daemon=true" >>
~/.gradle/gradle.properties

Or on Windows:

(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo
org.gradle.daemon=true >> "%USERPROFILE%/.gradle/gradle.properties")

Disabling the Daemon

You can disable the Daemon for a specific build using the --no-daemon argument, or disable it for a
specific project by explicitly setting org.gradle.daemon=false in the project's gradle.properties file.

Stopping the Daemon

If you wish to stop a Daemon process manually, you can either kill the process via your operating

https://riptutorial.com/ 15

system task manager or run the gradle --stop command. The --stop switch causes Gradle to
request that all running Daemon processes, of the same Gradle version used to run the command,
terminate themselves. Ordinarily, Daemon processes will automatically terminate themselves
*after *3 hours of inactivity or less.

Gradle Parallel builds

Gradle will only run one task at a time by default, regardless of the project structure. By using the -
-parallel switch, you can force Gradle to execute independent subprojects - those that have no
implicit or explicit project dependencies between one another - in parallel, allowing it to run
multiple tasks at the same time as long as those tasks are in different projects.

To build a projects in parallel mode:

gradle build --parallel

You can also make building in parallel the default for a project by adding the following setting to
the project’s gradle.properties file:

org.gradle.parallel=true

Use latest Gradle version

The Gradle team works regularly on improving the performance of different aspects of Gradle
builds. If you’re using an old version of Gradle, you’re missing out on the benefits of that work. Try
upgrading to the latest version of Gradle to see what kind of impact it has. Doing so is low risk
because very few things break between minor versions of Gradle.

The properties file for the Gradle wrapper can be found in your project folder under gradle/wrapper/
and is called gradle-wrapper.properties. The content of that file might look like this:

distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-X.X.X.zip

You can manually change the version number X.X.X(current version) to Y.Y.Y(newer version) and
the next time you run the wrapper, the new version is downloaded automatically.

Read Gradle Performance online: https://riptutorial.com/gradle/topic/3443/gradle-performance

https://riptutorial.com/ 16

https://riptutorial.com/gradle/topic/3443/gradle-performance

Chapter 6: Gradle Plugins

Examples

Simple gradle plugin from `buildSrc`

Simple example of how to create a custom plugin and DSL for your gradle project.
This sample uses one of the three possible ways of creating plugins.
The three ways are:

inline•
buildSrc•
standalone plugins•

This example shows creating a plugin from the buildSrc folder.

This sample will create five files

// project's build.gradle
build.gradle
// build.gradle to build the `buildSrc` module
buildSrc/build.gradle
// file name will be the plugin name used in the `apply plugin: $name`
// where name would be `sample` in this example
buildSrc/src/main/resources/META-INF/gradle-plugins/sample.properties
// our DSL (Domain Specific Language) model
buildSrc/src/main/groovy/so/docs/gradle/plugin/SampleModel.groovy
// our actual plugin that will read the values from the DSL
buildSrc/src/main/groovy/so/docs/gradle/plugin/SamplePlugin.groovy

build.gradle:

group 'so.docs.gradle'
version '1.0-SNAPSHOT'

apply plugin: 'groovy'
// apply our plugin... calls SamplePlugin#apply(Project)
apply plugin: 'sample'

repositories {
 mavenCentral()
}

dependencies {
 compile localGroovy()
}

// caller populates the extension model applied above
sample {
 product = 'abc'
 customer = 'zyx'
}

https://riptutorial.com/ 17

// dummy task to limit console output for example
task doNothing <<{}

buildSrc/build.gradle

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile localGroovy()
}

buildSrc/src/main/groovy/so/docs/gradle/plugin/SamplePlugin.groovy:

package so.docs.gradle.plugin

import org.gradle.api.Plugin
import org.gradle.api.Project

class SamplePlugin implements Plugin<Project> {
 @Override
 void apply(Project target) {
 // create our extension on the project for our model
 target.extensions.create('sample', SampleModel)
 // once the script has been evaluated the values are available
 target.afterEvaluate {
 // here we can do whatever we need to with our values
 println "populated model: $target.extensions.sample"
 }
 }
}

buildSrc/src/main/groovy/so/docs/gradle/plugin/SampleModel.groovy:

package so.docs.gradle.plugin

// define our DSL model
class SampleModel {
 public String product;
 public String customer;

 @Override
 public String toString() {
 final StringBuilder sb = new StringBuilder("SampleModel{");
 sb.append("product='").append(product).append('\'');
 sb.append(", customer='").append(customer).append('\'');
 sb.append('}');
 return sb.toString();
 }
}

buildSrc/src/main/resources/META-INF/gradle-plugins/sample.properties

https://riptutorial.com/ 18

implementation-class=so.docs.gradle.plugin.SamplePlugin

Using this setup we can see the values supplied by the caller in your DSL block

 $./gradlew -q doNothing
SampleModel{product='abc', customer='zyx'}

How to write a standalone plugin

To create a custom standalone Gradle plug-in using java (you can also use Groovy) you have to
create a structure like this:

plugin
|-- build.gradle
|-- settings.gradle
|-- src
 |-- main
 | |-- java
 | |-- resources
 | |-- META-INF
 | |-- gradle-plugins
 |-- test

Setup gradle configuration

In the build.gradle file you define your project.

apply plugin: 'java'
apply plugin: 'maven'

dependencies {
 compile gradleApi()
}

The java plugin will be used to write java code.
The gradleApi() dependency will give us all method and propertiess needed to create a Gradle
plugin.

In the settings.gradle file:

rootProject.name = 'myplugin'

It will define the artifact id in Maven.
If settings.gradle file is not present in the plugin directory the default value will be the name of the
directory.

Create the Plugin

https://riptutorial.com/ 19

Define a class in the src/main/java/org/sample/MyPlugin.java implementing the Plugin interface.

import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyPlugin implements Plugin<Project> {

 @Override
 public void apply(Project project) {
 project.getTasks().create("myTask", MyTask.class);
 }

}

Define the task extending the DefaultTask class:

import org.gradle.api.DefaultTask;
import org.gradle.api.tasks.TaskAction;

public class MyTask extends DefaultTask {

 @TaskAction
 public void myTask() {
 System.out.println("Hello World");
 }
}

Plugin Class declaration

In the META-INF/gradle-plugins folder you have to create a properties file defining the
implementation-class property that identifies the Plugin implementation class.

In the META-INF/gradle-plugins/testplugin.properties

implementation-class=org.sample.MyPlugin.java

Notice that the properties filename matches the plugin id.

How to build and publish it

Change the build.gradle file adding some info to upload the plugin in a maven repo:

apply plugin: 'java'
apply plugin: 'maven'

dependencies {
 compile gradleApi()
}

repositories {
 jcenter()

https://riptutorial.com/ 20

}

group = 'org.sample'
version = '1.0'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: mavenLocal().url)
 }
 }
}

You can build and publish the Gradle plug-in to the Maven repo defined in the plugin/build.gradle
file using the following command.

$./gradlew clean uploadArchives

How to use it

To use the plugin add in the build.gradle of your project:

buildscript {
 repositories {
 mavenLocal()
 }
 dependencies {
 classpath group: 'org.sample', // Defined in the build.gradle of the plugin
 name: 'myplugin', // Defined by the rootProject.name
 version: '1.0'
 }
 }

apply plugin: 'testplugin' // Defined by the properties filename

Then you can call the task using:

 $./gradlew myTask

Read Gradle Plugins online: https://riptutorial.com/gradle/topic/1900/gradle-plugins

https://riptutorial.com/ 21

https://riptutorial.com/gradle/topic/1900/gradle-plugins

Chapter 7: Gradle Wrapper

Examples

Gradle Wrapper and Git

As discussed in the introduction, the gradle wrapper functionality works because a jar is
downloaded into the project to be used when the gradlew command is run. However this may not
get committed and after the next time the project is checked out, gradlew will fail to run with the
error:

Error: Could not find or load main class org.gradle.wrapper.GradleWrapperMain

This will be because your .gitignore will likely include *jar for Java projects. When the gradle
wrapper was initialised, it copies to the file gradle/wrapper/gradle-wrapper.jar. Thus you need to
add it to the git index and commit it. Do so with:

git add -f gradle/wrapper/gradle-wrapper.jar
git ci

With the -f being to force it.

Gradle Wrapper introduction

Gradle has the ability to add a wrapper to projects. This wrapper alleviates the need for all users
or continuous integration systems to have Gradle installed. It also prevents version issues where
there is some incompatibility between the version the project uses and that which users have
installed. It does this by installing a version of gradle locally in the project.

Users of the project simply run:

> ./gradlew <task> # on *Nix or MacOSX
> gradlew <task> # on Windows

To setup a project to use a wrapper, developers:

Execute:1.

gradle wrapper [--gradle-version 2.0]

Where --gradle-version X is optional and if not provided (or the wrapper task isn't included, as
shown below), the version used is the version of gradle being used.

To force the project to use a specific version, add the following to the build.gradle:1.

task wrapper(type: Wrapper) {

https://riptutorial.com/ 22

 gradleVersion = '2.0'
}

When the gradle wrapper command is run it creates the files:

the_project/
 gradlew
 gradlew.bat
 gradle/wrapper/
 gradle-wrapper.jar
 gradle-wrapper.properties

The official documentation on this feature is at
https://docs.gradle.org/current/userguide/gradle_wrapper.html.

Use locally served Gradle in the Gradle Wrapper

If you want to keep on-premises copy of the Gradle and let the Wrapper use it in the builds, you
can set the distributionUrl pointing to your copy on the wrapper task:

task wrapper(type: Wrapper) {
 gradleVersion = '2.0'
 distributionUrl = "http\://server/dadada/gradle-${gradleVersion}-bin.zip"
}

after executing gradle wrapper, the shell script gradlew is created and the gradle/wrapper/gradle-
wrapper.properties is configured to use provided URL to download the Gradle.

Using the Gradle Wrapper behind a proxy

The first time a user runs a project's gradlew, it should be realized that it will do two key things:

Check to see if the version of the gradle used by the wrapper is already in
~/.gradle/wrapper/dists

1.

If not, download the archive of the version from the internet2.

If you're in an environment that requires all external traffic to go through a proxy, step two is going
to fail (unless it's a transparent proxy environment). As a result, you need to ensure your have the
JVM proxy parameters set.

For example, if you have a basic proxy setup with no authentication, simply set the environment
variable JAVA_OPTS or GRADLE_OPTS with:

-Dhttps.proxyPort=<proxy_port> -Dhttps.proxyHost=<hostname>

So a completed example on windows would be:

set JAVA_OPTS=-Dhttps.proxyPort=8080 -Dhttps.proxyHost=myproxy.mycompany.com

https://riptutorial.com/ 23

https://docs.gradle.org/current/userguide/gradle_wrapper.html

If however your environment also requires authentication, then you'll also want to review your
other options at https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html.

NOTE: This proxy configuration is in addition to any proxy configuration for your dependency
repository access.

Read Gradle Wrapper online: https://riptutorial.com/gradle/topic/3006/gradle-wrapper

https://riptutorial.com/ 24

https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html
https://riptutorial.com/gradle/topic/3006/gradle-wrapper

Chapter 8: Including Native Source -
Experimental

Parameters

Parameters Details

model.android.ndk.toolchain native toolchain found in the ndk-bundle folder

Examples

Basic JNI Gradle Config

root: build.gradle

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle-experimental:0.8.0-alpha4'
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

app: build.gradle

apply plugin: 'com.android.model.application'

dependencies {
 compile "com.android.support:support-v4:23.3.0"
 compile fileTree(dir: 'libs', include: '*.jar')
}

model {
 android {
 compileSdkVersion = 23
 buildToolsVersion = '23.0.3'

 defaultConfig {
 applicationId = 'com.example.hello'
 minSdkVersion.apiLevel = 9
 targetSdkVersion.apiLevel = 23

 buildConfigFields {

https://riptutorial.com/ 25

 create() {
 type "int"
 name "VALUE"
 value "1"
 }
 }
 }

 ndk {
 platformVersion = 9
 moduleName "hello"

 toolchain "clang"

 stl "gnustl_static"
 CFlags.add("-DANDROID_NDK")
 cppFlags.add("-std=c++11")

 ldLibs.add("android")
 ldLibs.add("dl")
 ldLibs.add("log")
 }

 sources {
 main {
 jni {
 exportedHeaders {
 srcDirs "../../common/headers"
 }
 source {
 srcDirs "../../common/src"
 }
 }
 }
 }
 }
}

Using prebuilt libraries and OpenGL ES 2.0

root: build.gradle

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle-experimental:0.8.0-alpha4'
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

app: build.gradle

https://riptutorial.com/ 26

apply plugin: 'com.android.model.application'

dependencies {
 compile "com.android.support:support-v4:23.3.0"
 compile fileTree(dir: 'libs', include: '*.jar')
}

model {
 android {
 compileSdkVersion = 23
 buildToolsVersion = '23.0.3'

 defaultConfig {
 applicationId = 'com.example.glworld'
 minSdkVersion.apiLevel = 9
 targetSdkVersion.apiLevel = 23

 buildConfigFields {
 create() {
 type "int"
 name "VALUE"
 value "1"
 }
 }
 }

 buildTypes {
 release {
 minifyEnabled = false
 proguardFiles.add(file('proguard-rules.txt'))
 }
 }

 ndk {
 platformVersion = 9
 moduleName "glworld"

 toolchain "clang"

 stl "gnustl_static"
 CFlags.add("-DANDROID_NDK")
 CFlags.add("-DDISABLE_IMPORTGL")
 CFlags.add("-DFT2_BUILD_LIBRARY=1")
 cppFlags.add("-std=c++11")

 ldLibs.add("EGL")
 ldLibs.add("android")
 ldLibs.add("GLESv2")
 ldLibs.add("dl")
 ldLibs.add("log")
 }

 sources {
 main {
 jni {
 dependencies {
 library "freetype2" linkage "shared"
 }
 exportedHeaders {
 srcDirs "../../common/headers"
 }

https://riptutorial.com/ 27

 source {
 srcDirs "../../common/src"
 }
 }
 }
 }
 }

 repositories {
 prebuilt(PrebuiltLibraries) {
 freetype2 {
 headers.srcDir "../../common/freetype2-android/include"
 binaries.withType(SharedLibraryBinary) {
 def localLib = "../../common/freetype2-android/Android/libs"
 sharedLibraryFile =
 file("$localLib/${targetPlatform.getName()}/libfreetype2.so")
 }
 }
 }
 }
}

// The next tasks compile a freetype library using a make file.
// These `.so`'s are then used as the shared libraries compiled above.
tasks.withType(JavaCompile) {
 compileTask -> compileTask.dependsOn buildNative
}

// Call regular ndk-build (.cmd) script from the app directory
task buildNative(type: Exec) {
 def ndkDir = "/Development/android-sdk-macosx/ndk-bundle"
 commandLine "$ndkDir/ndk-build",
 '-C',
 file('../../common/freetype2-android/Android/jni').absolutePath
}

task cleanNative(type: Exec) {
 def ndkDir = "/Development/android-sdk-macosx/ndk-bundle"
 commandLine "$ndkDir/ndk-build",
 '-C',
 file('../../common/freetype2-android/Android/jni').absolutePath,
 "clean"
}

clean.dependsOn cleanNative

Read Including Native Source - Experimental online:
https://riptutorial.com/gradle/topic/4460/including-native-source---experimental

https://riptutorial.com/ 28

https://riptutorial.com/gradle/topic/4460/including-native-source---experimental

Chapter 9: Initializing Gradle

Remarks

Terminology

Task - an atomic piece of work which a build performs. Tasks have inputs, outputs and task
dependencies.

•

dependencies {} - Declares File or binary dependencies necessary to execute tasks. For
example, org.slf4j:slf4j-api:1.7.21 is shorthand coordinates to a Maven dependency.

•

repositories {} - How Gradle finds files for external dependencies. Really, just a collection of
files organized by group, name, and version. For example: jcenter() is a convenience
method for maven { url 'http://jcenter.bintray.com/' } }, a Bintray Maven repository.

•

Examples

Initializing a New Java Library

Prerequisite: Installing Gradle

Once you have Gradle installed, you can setup a new or existing project by running

cd $PROJECT_DIR
gradle init --type=java-library

Note that there are other project types like Scala you can get started with, but we'll use Java for
this example.

You will end up with:

.
├── build.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
├── settings.gradle
└── src
 ├── main
 │ └── java
 │ └── Library.java
 └── test
 └── java
 └── LibraryTest.java

You can now run gradle tasks and see that you can build a jar, run tests, produce javadocs and
much more even though your build.gradle file is:

https://riptutorial.com/ 29

https://docs.gradle.org/current/userguide/more_about_tasks.html
https://docs.gradle.org/current/userguide/artifact_dependencies_tutorial.html
https://maven.apache.org/pom.html#Maven_Coordinates
https://docs.gradle.org/current/userguide/artifact_dependencies_tutorial.html#N10660
https://bintray.com/bintray/jcenter
http://www.riptutorial.com/gradle/topic/894/getting-started-with-gradle
https://docs.gradle.org/current/userguide/build_init_plugin.html

apply plugin: 'java'

repositories {
 jcenter()
}

dependencies {
 compile 'org.slf4j:slf4j-api:1.7.21'
 testCompile 'junit:junit:4.12'
}

Read Initializing Gradle online: https://riptutorial.com/gradle/topic/2247/initializing-gradle

https://riptutorial.com/ 30

https://riptutorial.com/gradle/topic/2247/initializing-gradle

Chapter 10: IntelliJ IDEA Task Customization

Syntax

groovy.util.Node = node.find { childNode -> return true || false }•
node.append(nodeYouWantAsAChild)•
groovy.util.Node parsedNode = (new XmlParser()).parseText(someRawXMLString)•
''' mutli-line string (not interpolated) '''•

Remarks

The three basic files of an IntelliJ project - the ipr, iws, and iml files - can be accessed as in gradle
in the idea task through

project.ipr
module.iml
workspace.iws

using the .withXml lets you access the xml. Using the .asNode() on that turns it into a groovy xml
node.

Ex:

project.ipr.withXml { provider ->
 def node = provider.asNode()

From there it's pretty simple - to modify gradle to configure IntelliJ projects for you, take the file as
it starts, perform the actions you'd like gradle to take (inside IntelliJ), and then diff the new file with
the old file. You should see what XML you'll need to customize the idea job. You'll also need to
take note of where in the xml it's located.

One other thing to consider is that you don't want duplicate nodes within the IntelliJ files if you run
the gradle idea multiple times. So, you'll want to search for the node you'd like to make and if it's
not there, you can create and insert it.

Pitfalls:

Sometimes, when using == for string comparison in the find method, it fails. When testing and I
find that to be the case, I use .contains.

When searching for nodes, not all nodes have the attribute you're using as a criteria, so be sure to
check for null.

Examples

https://riptutorial.com/ 31

Add a Basic Run Configuration

Assumptions for this example:

You have a class, foo.bar.Baz.•
You'd like to create a run configuration that runs the main method.•
It's in a module called fooBar.•

In your gradle file:

idea {
 workspace.iws.withXml { provider ->
 // I'm not actually sure why this is necessary
 def node = provider.asNode()

 def runManager = node.find { it.@name.contains('RunManager')}

 // find a run configuration if it' there already
 def runner = runManager.find { it.find ({ mainClass ->
 return mainClass.@name != null && mainClass.@name == "MAIN_CLASS_NAME" &&
mainClass.@value != null && mainClass.@value.contains('Baz');
 }) != null }

 // create and append the run configuration if it doesn't already exists
 if (runManager != null && runner == null){
 def runnerText = '''
 <configuration default="false" name="Baz" type="Application"
factoryName="Application" nameIsGenerated="true">
 <extension name="coverage" enabled="false" merge="false" runner="idea">
 <pattern>
 <option name="PATTERN" value="foo.bar.Baz" />
 <option name="ENABLED" value="true" />
 </pattern>
 </extension>
 <option name="MAIN_CLASS_NAME" value="foo.bar.Baz" />
 <option name="VM_PARAMETERS" value="" />
 <option name="PROGRAM_PARAMETERS" value="" />
 <option name="WORKING_DIRECTORY" value="file://$PROJECT_DIR$" />
 <option name="ALTERNATIVE_JRE_PATH_ENABLED" value="false" />
 <option name="ALTERNATIVE_JRE_PATH" />
 <option name="ENABLE_SWING_INSPECTOR" value="false" />
 <option name="ENV_VARIABLES" />
 <option name="PASS_PARENT_ENVS" value="true" />
 <module name="foobar" />
 <envs />
 <method />
 </configuration>'''
 runner = (new XmlParser()).parseText(runnerText)
 runManager.append(config);
 }

 // If there is no active run configuration, set the newly made one to be it
 if (runManager != null && runManager.@selected == null) {
 runManager.@selected="${runner.@factoryName}.${runner.@name}"
 }
 }
}

https://riptutorial.com/ 32

Read IntelliJ IDEA Task Customization online: https://riptutorial.com/gradle/topic/2297/intellij-idea-
task-customization

https://riptutorial.com/ 33

https://riptutorial.com/gradle/topic/2297/intellij-idea-task-customization
https://riptutorial.com/gradle/topic/2297/intellij-idea-task-customization

Chapter 11: Ordering tasks

Remarks

Please note that mustRunAfter and shouldRunAfter are marked as "incubating" (as of
Gradle 3.0) which means that these are experimental features and their behavior can
be changed in future releases.

There are two ordering rules available:

mustRunAfter•
shouldRunAfter•

When you use the mustRunAfter ordering rule you specify that taskB must always run after taskA,
whenever both taskA and taskB will be run.

The shouldRunAfter ordering rule is similar but less strict as it will be ignored in two situations:

if using that rule introduces an ordering cycle.•
when using parallel execution and all dependencies of a task have been satisfied apart from
the shouldRunAfter task, then this task will be run regardless of whether its shouldRunAfter
dependencies have been run or not.

•

Examples

Ordering with the mustRunAfter method

task A << {
 println 'Hello from A'
}
task B << {
 println 'Hello from B'
}

B.mustRunAfter A

The B.mustRunAfter A line tells Gradle to run task after task specified as an argument.

And the output is:

> gradle -q B A
Hello from A
Hello from B

The ordering rule doesn't introduce dependency between the A and the B tasks, but has an effect
only when both tasks are scheduled for execution.

It means that we can execute tasks A and B independently.

https://riptutorial.com/ 34

http://www.riptutorial.com/gradle/topic/5545/task-dependencies

The output is:

> gradle -q B
Hello from B

Read Ordering tasks online: https://riptutorial.com/gradle/topic/5550/ordering-tasks

https://riptutorial.com/ 35

https://riptutorial.com/gradle/topic/5550/ordering-tasks

Chapter 12: Task dependencies

Remarks

doLast

Note, that in a gradle 3.x more idiomatic way task definition: using explicit doLast{closure}
notation instead "leftShift"(<<) operator preferable.(leftShift has been deprecated in a gradle 3.2
is scheduled to be removed in gradle 5.0.)

task oldStyle << {
 println 'Deprecated style task'
 }

is equivalent to:

task newStyle {
 doLast {
 println 'Deprecated style task'
 }
 }

Examples

Adding dependencies using task names

We can change the tasks execution order with the dependsOn method.

task A << {
 println 'Hello from A'
}
task B(dependsOn: A) << {
 println "Hello from B"
}

Adding `dependsOn: causes:

task B depends on task A•
Gradle to execute A task everytime before the B task execution.•

And the output is:

> gradle -q B
Hello from A
Hello from B

Adding dependencies from another project

https://riptutorial.com/ 36

project('projectA') {
 task A(dependsOn: ':projectB:B') << {
 println 'Hello from A'
 }
}

project('projectB') {
 task B << {
 println 'Hello from B'
 }
}

To refer to a task in another project, you prefix the name of the task with the path of the project it
belongs to :projectB:B.

And the output is:

> gradle -q B
Hello from A
Hello from B

Adding dependency using task object

task A << {
 println 'Hello from A'
}

task B << {
 println 'Hello from B'
}

B.dependsOn A

It is an alternative way to define the dependency instead of using the task name.

And the output is the same:

> gradle -q B
Hello from A
Hello from B

Adding multiple dependencies

You can add multiple dependencies.

task A << {
 println 'Hello from A'
}

task B << {
 println 'Hello from B'
}

https://riptutorial.com/ 37

http://www.riptutorial.com/gradle/example/19705/adding-dependencies-using-task-names

task C << {
 println 'Hello from C'
}

task D << {
 println 'Hello from D'
}

Now you can define a set of dependencies:

B.dependsOn A
C.dependsOn B
D.dependsOn C

The output is:

> gradle -q D
Hello from A
Hello from B
Hello from C
Hello from D

Other example:

B.dependsOn A
D.dependsOn B
D.dependsOn C

The output is:

> gradle -q D
Hello from A
Hello from B
Hello from C
Hello from D

Multiple dependencies with the dependsOn method

You can add multiple dependencies.

task A << {
 println 'Hello from A'
}

task B(dependsOn: A) << {
 println 'Hello from B'
}

task C << {
 println 'Hello from C'
}

task D(dependsOn: ['B', 'C'] << {
 println 'Hello from D'

https://riptutorial.com/ 38

}

The output is:

> gradle -q D
Hello from A
Hello from B
Hello from C
Hello from D

Read Task dependencies online: https://riptutorial.com/gradle/topic/5545/task-dependencies

https://riptutorial.com/ 39

https://riptutorial.com/gradle/topic/5545/task-dependencies

Chapter 13: Using third party plugins

Examples

Adding a third party plugin to build.gradle

Gradle (All Versions) This method works for all versions of gradle

Add the buildscript code at the beginning of your build.gradle file.

buildscript {
 repositories {
 maven {
 url "https://plugins.gradle.org/m2/"
 }
 }
 dependencies {
 classpath "org.example.plugin:plugin:1.1.0"
 }
}

apply plugin: "org.example.plugin"

Gradle (Versions 2.1+) This method only works for projects using Gradle 2.1 or later.

plugins {
 id "org.example.plugin" version "1.1.0"
}

build.gradle with multiple third party plugins

Gradle (All Versions)

When adding multiple third party plugins you do not need to separate them into different instances
of the buildscript(All) or plugin(2.1+) code, new plug ins can be added alongside pre-existing
plugins.

buildscript {
 repositories {
 maven {
 url "https://plugins.gradle.org/m2/"
 }
 }
 dependencies {
 classpath "org.example.plugin:plugin:1.1.0"
 Classpath "com.example.plugin2:plugin2:1.5.2"
 }
}

apply plugin: "org.example.plugin"
apply plugin: "com.example.plugin2"

https://riptutorial.com/ 40

Gradle (Versions 2.1+)

plugins {
 id "org.example.plugin" version "1.1.0"
 id "com.example.plugin2" version "1.5.2"
}

Read Using third party plugins online: https://riptutorial.com/gradle/topic/9183/using-third-party-
plugins

https://riptutorial.com/ 41

https://riptutorial.com/gradle/topic/9183/using-third-party-plugins
https://riptutorial.com/gradle/topic/9183/using-third-party-plugins

Credits

S.
No

Chapters Contributors

1
Getting started with
gradle

Afterfield, bassim, Community, Emil Burzo, Eric Wendelin,
Hamzawey, Hillkorn, Matthias Braun, Nikem, Pepper Lebeck-
Jobe, Sergey Yakovlev, Stanislav, user2555595, vanogrid, Will

2

Auto Increment
Version Number
Using Gradle Script
For Android
Applications

Jayakrishnan PM

3 Dependencies
Afshin, Andrii Abramov, GameScripting, Hillkorn, leeor, Matthias
Braun, mcarlin, mszymborski, Will

4 Gradle Init Scripts ambes, Hillkorn

5 Gradle Performance ambes, Sergey Yakovlev, Will

6 Gradle Plugins Gabriele Mariotti, JBirdVegas

7 Gradle Wrapper ajoberstar, Fanick, HankCa, I Stevenson

8
Including Native
Source -
Experimental

iHowell

9 Initializing Gradle Eric Wendelin, Will

10
IntelliJ IDEA Task
Customization

IronHorse, Sam Sieber, Will

11 Ordering tasks Gabriele Mariotti

12 Task dependencies Gabriele Mariotti, Sergey Yakovlev, Stanislav

13
Using third party
plugins

Afterfield

https://riptutorial.com/ 42

https://riptutorial.com/contributor/4759317/afterfield
https://riptutorial.com/contributor/403750/bassim
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1075653/emil-burzo
https://riptutorial.com/contributor/25066/eric-wendelin
https://riptutorial.com/contributor/3277573/hamzawey
https://riptutorial.com/contributor/1372349/hillkorn
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/301650/nikem
https://riptutorial.com/contributor/95724/pepper-lebeck-jobe
https://riptutorial.com/contributor/95724/pepper-lebeck-jobe
https://riptutorial.com/contributor/1979988/sergey-yakovlev
https://riptutorial.com/contributor/4053652/stanislav
https://riptutorial.com/contributor/2555595/user2555595
https://riptutorial.com/contributor/3370842/vanogrid
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/6021927/jayakrishnan-pm
https://riptutorial.com/contributor/1500515/afshin
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/808723/gamescripting
https://riptutorial.com/contributor/1372349/hillkorn
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/775954/matthias-braun
https://riptutorial.com/contributor/3946165/mcarlin
https://riptutorial.com/contributor/5339966/mszymborski
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4052699/ambes
https://riptutorial.com/contributor/1372349/hillkorn
https://riptutorial.com/contributor/4052699/ambes
https://riptutorial.com/contributor/1979988/sergey-yakovlev
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/873237/jbirdvegas
https://riptutorial.com/contributor/657880/ajoberstar
https://riptutorial.com/contributor/2306717/fanick
https://riptutorial.com/contributor/1019307/hankca
https://riptutorial.com/contributor/2666277/i-stevenson
https://riptutorial.com/contributor/1137713/ihowell
https://riptutorial.com/contributor/25066/eric-wendelin
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/2540353/ironhorse
https://riptutorial.com/contributor/4479575/sam-sieber
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/2016562/gabriele-mariotti
https://riptutorial.com/contributor/1979988/sergey-yakovlev
https://riptutorial.com/contributor/4053652/stanislav
https://riptutorial.com/contributor/4759317/afterfield

	About
	Chapter 1: Getting started with gradle
	Remarks
	Highlighted Gradle features
	More information

	Examples
	Gradle Installation
	Installation with homebrew on OS X / macOS
	Installing with SdkMan
	Install Gradle plugin for Eclipse
	Hello World
	More about tasks

	Questions about task dependencies and ordering examined here

	Simple:
	Enhanced
	Chapter 2: Auto Increment Version Number Using Gradle Script For Android Applications
	Examples
	How To Call Auto Increment Method When Build
	Auto Increment Method Definition
	Read and Assign Version Number from a property file to a variable

	Chapter 3: Dependencies
	Examples
	Add a Local JAR File Dependency

	Single JAR
	Directory of JARs
	Directory of JARs as repository
	Add a Dependency
	Depend on Another Gradle Project
	List Dependencies
	Adding repositories
	Add .aar file to Android project using gradle

	Chapter 4: Gradle Init Scripts
	Examples
	Add default repository for all projects

	Chapter 5: Gradle Performance
	Examples
	Profiling a Build
	Configure on Demand
	Tuning JVM Memory Usage Parameters for Gradle
	Use the Gradle Daemon
	Gradle Parallel builds
	Use latest Gradle version

	Chapter 6: Gradle Plugins
	Examples
	Simple gradle plugin from `buildSrc`
	How to write a standalone plugin

	Setup gradle configuration
	Create the Plugin
	Plugin Class declaration
	How to build and publish it
	How to use it
	Chapter 7: Gradle Wrapper
	Examples
	Gradle Wrapper and Git
	Gradle Wrapper introduction
	Use locally served Gradle in the Gradle Wrapper
	Using the Gradle Wrapper behind a proxy

	Chapter 8: Including Native Source - Experimental
	Parameters
	Examples
	Basic JNI Gradle Config
	Using prebuilt libraries and OpenGL ES 2.0

	Chapter 9: Initializing Gradle
	Remarks
	Terminology

	Examples
	Initializing a New Java Library

	Chapter 10: IntelliJ IDEA Task Customization
	Syntax
	Remarks
	Examples
	Add a Basic Run Configuration

	Chapter 11: Ordering tasks
	Remarks
	Examples
	Ordering with the mustRunAfter method

	Chapter 12: Task dependencies
	Remarks
	Examples
	Adding dependencies using task names
	Adding dependencies from another project
	Adding dependency using task object
	Adding multiple dependencies
	Multiple dependencies with the dependsOn method

	Chapter 13: Using third party plugins
	Examples
	Adding a third party plugin to build.gradle
	build.gradle with multiple third party plugins

	Credits

