
guava

#guava

Table of Contents

About 1

Chapter 1: Getting started with guava 2

Remarks 2

Versions 2

Examples 3

Setup 3

Chapter 2: I/O 4

Examples 4

Handling existing InputStreams and OutputStreams 4

Handling existing Readers and Writers 5

Sources and sinks 5

Creating sources and sinks 6

Reading from a file 6

Writing to a file 6

Reading from a URL 6

Reading from in memory data 6

Converting from bytes to chars 6

Converting from chars to bytes 6

Using sources and sinks 6

Common operations 7

Source operations 7

Typical usage 8

Chapter 3: Strings 9

Examples 9

Checking a string for unwanted characters 9

Finding and counting characters in a string 11

Removing unwanted characters from a string 13

Removing characters 13

Trimming leading and trailing characters 13

Replacing characters 14

Splitting a string into a list 15

Why not use Java's splitting capabilities? 15

Splitting strings with Guava 16

Credits 19

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: guava

It is an unofficial and free guava ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official guava.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/guava
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with guava

Remarks

This section provides an overview of what guava is, and why a developer might want to use it.

It should also mention any large subjects within guava, and link out to the related topics. Since the
Documentation for guava is new, you may need to create initial versions of those related topics.

Versions

Version Release Date

r01% 2009-09-15

r02 2010-01-04

r03 2010-04-09

r04 2010-04-27

r05 2010-05-28

r06 2010-07-07

7.0 2010-09-22

8.0 2011-01-27

9.0 2011-04-07

10.0 2011-09-28

11.0 2011-12-18

12.0 2012-04-30

13.0 2012-08-03

14.0 2013-02-25

15.0 2013-09-06

16.0 2014-01-17

17.0 2014-04-22

18.0 2014-08-25

https://riptutorial.com/ 2

Version Release Date

19.0 2015-12-09

% did not include Google Collections, which existed separately at that time

Note: Releases 1.0 through 11.0 require JDK 1.5 or newer. Releases 12.0 through 20.0 require
JDK 1.6 or newer. Release 21.0 is expected to require JDK 1.8 or newer.

Examples

Setup

Dependency on Guava can be added in your Java project by using any build system.

Maven:

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>19.0</version>
</dependency>

Gradle:

dependencies {
 compile 'com.google.guava:guava:19.0'
}

Ivy

<dependency org="com.google.guava" name="guava" rev="19.0" />

Buildr

compile.with 'com.google.guava:guava:jar:19.0'

Manual Dependency

You can also just manually download JARs from Guava's release page for the classes, sources
and javadocs.

Note that JDK 1.6 or newer is required for Guava 12.0 through 20.0. See Version list for more info.
Guava users who target Java 5 should use the Guava JDK5 backport. This includes users who
target Android Froyo and earlier.

Read Getting started with guava online: https://riptutorial.com/guava/topic/4391/getting-started-
with-guava

https://riptutorial.com/ 3

https://github.com/google/guava/wiki/ReleaseHistory
http://mvnrepository.com/artifact/com.google.guava/guava-jdk5
https://riptutorial.com/guava/topic/4391/getting-started-with-guava
https://riptutorial.com/guava/topic/4391/getting-started-with-guava

Chapter 2: I/O

Examples

Handling existing InputStreams and OutputStreams

Reading the content of an InputStream as a byte array:

// Reading from a file
try (InputStream in = new FileInputStream("in.dat")) {
 byte[] content = ByteStreams.toByteArray(in);
 // do something with content
}

Copying an InputStream to an OutputStream:

// Copying the content from a file in.dat to out.dat.
try (InputStream in = new FileInputStream("in.dat");
 OutputStream out = new FileOutputStream("out.dat")) {
 ByteStreams.copy(in, out);
}

Note: to copy files directly, it's better to use Files.copy(sourceFile, destinationFile).

Reading an entire predefined byte array from an InputStream:

try (InputStream in = new FileInputStream("in.dat")) {
 byte[] bytes = new byte[16];
 ByteStreams.readFully(in, bytes);
 // bytes is totally filled with 16 bytes from the InputStream.
} catch (EOFException ex) {
 // there was less than 16 bytes in the InputStream.
}

Skipping n bytes from the InputStream:

try (InputStream in = new FileInputStream("in.dat")) {
 ByteStreams.skipFully(in, 20);
 // the next byte read will be the 21st.
 int data = in.read();
} catch (EOFException e) {
 // There was less than 20 bytes in the InputStream.
}

Creating an OutputStream that discards everything that is written to it:

try (InputStream in = new FileInputStream("in.dat");
 OutputStream out = ByteStreams.nullOutputStream()) {
 ByteStreams.copy(in, out);
 // The whole content of in is read into... nothing.
}

https://riptutorial.com/ 4

Handling existing Readers and Writers

Reading the content of a Reader as a String:

// Reading from a file
try (Reader reader = new FileReader("in.txt")) {
 String content = CharStreams.toString(reader);
 // do something with content
}

Reading the content of a Reader as a list of line contents:

try (Reader reader = new FileReader("in.txt")) {
 List<String> lines = CharStreams.readLines(reader);
 for (String line: lines) {
 // Do something with line
 }
}

Copying a Reader to a Writer:

try (Reader reader = new FileReader("in.txt");
 Writer writer = new FileWriter("out.txt")) {
 CharStreams.copy(reader, writer);
}

Note: to copy files directly, it's better to use Files.copy(sourceFile, destinationFile).

Skipping n bytes from the Reader:

try (Reader reader = new FileReader("in.txt")) {
 CharStreams.skipFully(reader, 20);
 // The next char read will be the 21st.
} catch (EOFException e) {
 // There was less than 20 chars in the Reader.
}

Creating a Writer that discards everything that is written to it:

try (Reader reader = new FileReader("in.txt");
 Writer writer = CharStreams.nullWriter()) {
 CharStreams.copy(reader, writer);
 // The whole content of reader is read into... nothing.
}

Sources and sinks

Sources and sinks are objects that know how to open streams.

Bytes Chars

Reading ByteSource CharSource

https://riptutorial.com/ 5

Bytes Chars

Writing ByteSink CharSink

Creating sources and sinks

Note: for all examples, consider UTF_8 as if the following import is set:

import static java.nio.charset.StandardCharsets.UTF_8;

Reading from a file

ByteSource dataSource = Files.asByteSource(new File("input.dat"));
CharSource textSource = Files.asCharSource(new File("input.txt"), UTF_8);

Writing to a file

ByteSink dataSink = Files.asByteSink(new File("output.dat"));
CharSink textSink = Files.asCharSink(new File("output.txt"), UTF_8);

Reading from a URL

ByteSource dataSource = Resources.asByteSource(url);
CharSource textSource = Resources.asCharSource(url, UTF_8);

Reading from in memory data

ByteSource dataSource = ByteSource.wrap(new byte[] {1, 2, 3});
CharSource textSource = CharSource.wrap("abc");

Converting from bytes to chars

ByteSource originalSource = ...
CharSource textSource = originalSource.asCharSource(UTF_8);

Converting from chars to bytes

(From Guava 20 onwards)

CharSource originalSource = ...
ByteSource dataSource = originalSource.asByteSource(UTF_8);

https://riptutorial.com/ 6

Using sources and sinks

Common operations

Opening a stream

InputStream inputStream = byteSource.openStream();
OutputStream outputStream = byteSink.openStream();
Reader reader = charSource.openStream();
Writer writer = charSink.openStream();

Opening a buffered stream

InputStream bufferedInputStream = byteSource.openBufferedStream();
OutputStream bufferedOutputStream = byteSink.openBufferedStream();
BufferedReader bufferedReader = charSource.openBufferedStream();
Writer bufferedWriter = charSink.openBufferedStream();

Source operations

Reading from a source:

ByteSource source = ...
byte[] bytes = source.read();

CharSource source = ...
String text = source.read();

Reading lines from a source:

CharSource source = ...
ImmutableList<String> lines = source.readLines();

Reading the first line from a source:

CharSource source = ...
String firstLine = source.readFirstLine();

Copying from a source to a sink:

ByteSource source = ...
ByteSink sink = ...
source.copyTo(sink);

CharSource source = ...
CharSink sink = ...
source.copyTo(sink);

https://riptutorial.com/ 7

Typical usage

CharSource source = ...
try (Reader reader = source.openStream()) {
 // use the reader
}

Read I/O online: https://riptutorial.com/guava/topic/6929/i-o

https://riptutorial.com/ 8

https://riptutorial.com/guava/topic/6929/i-o

Chapter 3: Strings

Examples

Checking a string for unwanted characters

As a developer, you frequently find yourself dealing with strings that are not created by your own
code.

These will often be supplied by third party libraries, external systems, or even end users.
Validating strings of unclear provenance is considered to be one of the hallmarks of defensive
programming, and in most cases you will want to reject string input that does not meet your
expectations.

A fairly common case is where you would only want to allow alphanumeric characters in an input
string, so we'll use that as an example. In plain Java, the following two methods both serve the
same purpose:

public static boolean isAlphanumeric(String s) {
 for (char c : s.toCharArray()) {
 if (!Character.isLetterOrDigit(c)) {
 return false;
 }
 }

 return true;
}

public static boolean isAlphanumeric(String s) {
 return s.matches("^[0-9a-zA-Z]*$");
}

The first version converts the string to a character array, and then uses the Character class' static
isLetterOrDigit method to determine whether the characters contained in the array are
alphanumeric or not. This approach is predictable and readable, albeit a little bit verbose.

The second version uses a regular expression to achieve the same purpose. It is more concise,
but can be somewhat enigmatic to developers with limited or no knowledge of regular expressions.

Guava introduces the CharMatcher class to deal with these types of situations. Our alphanumeric
test, using Guava, would look as follows:

import static com.google.common.base.CharMatcher.javaLetterOrDigit;

/* ... */

public static boolean isAlphanumeric(String s) {
 return javaLetterOrDigit().matchesAllOf(s);
}

https://riptutorial.com/ 9

The method body contains only one line, but there's actually a lot going on here, so let's break
things down a little bit further.

If you take a look at the API of Guava's CharMatcher class, you'll notice that it implements the
Predicate<Character> interface. If you would create a class that implements Predicate<Character>
yourself, it could look something like this:

import com.google.common.base.Predicate;

public class AlphanumericPredicate implements Predicate<Character> {
 @Override
 public boolean apply(Character c) {
 return Character.isLetterOrDigit(c);
 }
}

In Guava, as in a number of other programming languages and libraries that cater to a functional
style of programming, a predicate is a construct that evaluates a given input to either true or false.
In Guava's Predicate<T> interface, this is made evident by the presence of the sole boolean apply(T
t) method. The CharMatcher class is built on this concept, and will evaluate a character or
sequence of characters to check whether or not they match the criteria laid out by the used
CharMatcher instance.

Guava currently provides the following predefined character matchers:

Matcher Description

any() Matches any character.

none() Matches no characters.

javaDigit() Matches digits, according to the Java definition.

javaUpperCase() Matches any upper case character, according to Java's definition.

javaLowerCase() Matches any lower case character, according to Java's definition.

javaLetter() Matches any letter, according to Java's definition.

javaLetterOrDigit() Matches any letter or digit, according to Java's definition.

javaIsoControl() Matches any ISO control character, according to Java's definition.

ascii() Matches any character in the ASCII character set.

invisible()
Matches characters that are not visible, according to the Unicode
standard.

digit() Matches any digit, according to the Unicode specification.

Matches any whitespace character, according to the Unicode whitespace()

https://riptutorial.com/ 10

Matcher Description

specification.

breakingWhitespace()
Matches any breaking whitespace character, according to the unicode
specification.

singleWidth() Matches any single-width character.

If you have read through the above table, you've undoubtedly noticed the amount of definition and
specification involved in determining which characters belong to a certain category. Guava's
approach, so far, has been to provide CharMatcher wrappers for a number of the character
categories defined by Java, and you can consult the API of Java's Character class to get more
information about these categories. On the other hand, Guava attempts to supply a number of
CharMatcher instances that are in line with the current Unicode specification. For the nitty-gritty
details, consult the CharMatcher API documentation.

Getting back to our example of checking a string for unwanted characters, the following
CharMatcher methods provide the capabilities you need to check whether a given string's character
usage meets your requirements:

boolean matchesNoneOf(CharSequence sequence)
Returns true if none of the characters in the argument string match the CharMatcher instance.

•

boolean matchesAnyOf(CharSequence sequence)
Returns true if at least one character in the argument string matches the CharMatcher
instance.

•

boolean matchesAllOf(CharSequence sequence)
Returns true if all of the characters in the argument string match the CharMatcher instance.

•

Finding and counting characters in a string

To help you find and count characters in a string, CharMatcher provides the following methods:

int indexIn(CharSequence sequence)
Returns the index of the first character that matches the CharMatcher instance. Returns -1 if
no character matches.

•

int indexIn(CharSequence sequence, int start)
Returns the index of the first character after the specified start position that matches the
CharMatcher instance. Returns -1 if no character matches.

•

int lastIndexIn(CharSequence sequence)
Returns the index of the last character that matches the CharMatcher instance. Returns -1 if
no character matches.

•

int countIn(CharSequence sequence)
Returns the number of characters that match the CharMatcher instance.

•

https://riptutorial.com/ 11

Using these methods, here's a simple console application called NonAsciiFinder that takes a string
as an input argument. First, it prints out the total number of non-ASCII characters contained in the
string. Subsequently, it prints out the Unicode representation of each non-ASCII character it
encounters. Here's the code:

import com.google.common.base.CharMatcher;

public class NonAsciiFinder {
 private static final CharMatcher NON_ASCII = CharMatcher.ascii().negate();

 public static void main(String[] args) {
 String input = args[0];
 int nonAsciiCount = NON_ASCII.countIn(input);

 echo("Non-ASCII characters found: %d", nonAsciiCount);

 if (nonAsciiCount > 0) {
 int position = -1;
 char character = 0;

 while (position != NON_ASCII.lastIndexIn(input)) {
 position = NON_ASCII.indexIn(input, position + 1);
 character = input.charAt(position);

 echo("%s => \\u%04x", character, (int) character);
 }
 }
 }

 private static void echo(String s, Object... args) {
 System.out.println(String.format(s, args));
 }
}

Note in the above example how you can simply invert a CharMatcher by calling its negate method.
Similarly the CharMatcher below matches all double-width characters and is created by negating the
predefined CharMatcher for single-width characters.

final static CharMatcher DOUBLE_WIDTH = CharMatcher.singleWidth().negate();

Running the NonAsciiFinder application produces the following output:

$> java NonAsciiFinder "Maître Corbeau, sur un arbre perché"
Non-ASCII characters found: 2
î => \u00ee
é => \u00e9

$> java NonAsciiFinder "��や��び�む�の�"
NonASCII characters found: 11
� => \u53e4
� => \u6c60
や => \u3084
� => \u86d9
� => \u98db
び => \u3073
� => \u8fbc

https://riptutorial.com/ 12

む => \u3080
� => \u6c34
の => \u306e
� => \u97f3

Removing unwanted characters from a string

The example Checking a string for unwanted characters, describes how to test and reject strings
that don't meet certain criteria. Obviously, rejecting input outright is not always possible, and
sometimes you just have to make do with what you receive. In these cases, a cautious developer
will attempt to sanitize the provided strings to remove any characters that might trip up further
processing.

To remove, trim, and replace unwanted characters, the weapon of choice will again be Guava's
CharMatcher class.

Removing characters

The two CharMatcher methods of interest in this section are:

String retainFrom(CharSequence sequence)
Returns a string containing all the characters that matched the CharMatcher instance.

•

String removeFrom(CharSequence sequence)
Returns a string containing all the characters that did not match the CharMatcher instance.

•

As an example, we'll use CharMatcher.digit(), a predefined CharMatcher instance that,
unsurprisingly, only matches digits.

String rock = "1, 2, 3 o'clock, 4 o'clock rock!";

CharMatcher.digit().retainFrom(rock); // "1234"
CharMatcher.digit().removeFrom(rock); // ", , o'clock, o'clock rock!"
CharMatcher.digit().negate().removeFrom(rock); // "1234"

The last line in this example illustrates that removeFrom is actually the inverse operation of
retainFrom. Invoking retainFrom on a CharMatcher has the same effect as invoking removeFrom on a
negated version of that CharMatcher.

Trimming leading and trailing characters

Removing leading and trailing characters is a very common operation, most frequently used to trim
whitespace from strings. Guava's CharMatcher offers these trimming methods:

String trimLeadingFrom(CharSequence sequence)
Removes all leading characters that match the CharMatcher instance.

•

https://riptutorial.com/ 13

http://www.riptutorial.com/guava/example/16059/checking-a-string-for-unwanted-characters

String trimTrailingFrom(CharSequence sequence)
Removes all trailing characters that match the CharMatcher instance.

•

String trimFrom(CharSequence sequence)
Removes all leading and trailing characters that match the CharMatcher instance.

•

When used with CharMatcher.whitespace(), these methods will effectively take care of all your
whitespace trimming needs:

CharMatcher.whitespace().trimFrom(" Too much space "); // returns "Too much space"

Replacing characters

Often, applications will replace characters that are not allowed in a certain situation with a
placeholder character. To replace characters in a string, CharMatcher's API provides the following
methods:

String replaceFrom(CharSequence sequence, char replacement)
Replaces all occurrences of characters that match the CharMatcher instance with the provided
replacement character.

•

String replaceFrom(CharSequence sequence, CharSequence replacement) Replaces all
occurrences of characters that match the CharMatcher instance with the provided replacement
character sequence (string).

•

String collapseFrom(CharSequence sequence, char replacement)
Replaces groups of consecutive characters that match the CharMatcher instance with a single
instance of the provided replacement character.

•

String trimAndCollapseFrom(CharSequence sequence, char replacement)
Behaves the same as collapseFrom, but matching groups at the start and the end are
removed rather than replaced.

•

Let's look at an example that demonstrates how the behavior of these methods differs. Say that
we're creating an application that lets the user specify output filenames. To sanitize the input
provided by the user, we create a CharMatcher instance that is a combination of the predefined
whitespace CharMatcher and a custom CharMatcher that specifies a set of characters that we would
rather avoid in our filenames.

CharMatcher illegal = CharMatcher.whitespace().or(CharMatcher.anyOf("<>:|?*\"/\\"));

Now, if we invoke the discussed replacement methods as follows on a filename that is in dire need
of cleanup:

String filename = "<A::12> first draft???";

System.out.println(illegal.replaceFrom(filename, '_'));

https://riptutorial.com/ 14

System.out.println(illegal.collapseFrom(filename, '_'));
System.out.println(illegal.trimAndCollapseFrom(filename, '_'));

We'll see the output below in our console.

_A__12___first_draft___
_A_12_first_draft_
A_12_first_draft

Splitting a string into a list

To split strings, Guava introduces the Splitter class.

Why not use Java's splitting capabilities?

As a rule, Guava does not duplicate functionality that is readily available in Java. Why then do we
need an additional Splitter class? Do the split methods in Java's String class not provide us with
all the string splitting mechanics we'll ever need?

The easiest way to answer that question is with a couple of examples. First off, we'll deal with the
following gunslinging duo:

String gunslingers = "Wyatt Earp+Doc Holliday";

To try and split up the legendary lawman and his dentist friend, we might try the following:

String[] result = gunslingers.split("+"); // wrong

At runtime, however, we are confronted with the following exception:

Exception in thread "main" java.util.regex.PatternSyntaxException:
Dangling meta character '+' near index 0

After an involuntary facepalm, we're quick to remember that String's split method takes a regular
expression as an argument, and that the + character is used as a quantifier in regular expressions.
The solution is then to escape the + character, or enclose it in a character class.

String[] result = gunslingers.split("\\+");
String[] result = gunslingers.split("[+]");

Having successfully resolved that issue, we move on to the three musketeers.

String musketeers = ",Porthos , Athos ,Aramis,";

The comma has no special meaning in regular expressions, so let's count the musketeers by
applying the String.split() method and getting the length of the resulting array.

https://riptutorial.com/ 15

System.out.println(musketeers.split(",").length);

Which yields the following result in the console:

4

Four? Given the fact that the string contains a leading and a trailing comma, a result of five would
have been within the realm of normal expectations, but four? As it turns out, the behavior of Java's
split method is to preserve leading, but to discard trailing empty strings, so the actual contents of
the array are ["", "Porthos ", " Athos ", "Aramis"].

Since we don't need any empty strings, leading nor trailing, let's filter them out with a loop:

for (String musketeer : musketeers.split(",")) {
 if (!musketeer.isEmpty()) {
 System.out.println(musketeer);
 }
}

This gives us the following output:

Porthos
 Athos
Aramis

As you can see in the output above, the extra spaces before and after the comma separators have
been preserved in the output. To get around that, we can trim off the unneeded spaces, which will
finally yield the desired output:

for (String musketeer : musketeers.split(",")) {
 if(!musketeer.isEmpty()) {
 System.out.println(musketeer.trim());
 }
}

(Alternatively, we could also adapt the regular expression to include whitespace surrounding the
comma separators. However, keep in mind that leading spaces before the first entry or trailing
spaces after the last entry would still be preserved.)

After reading through the examples above, we can't help but conclude that splitting strings with
Java is mildly annoying at best.

Splitting strings with Guava

The best way to demonstrate how Guava turns splitting strings into a relatively painfree
experience, is to treat the same two strings again, but this time using Guava's Splitter class.

List<String> gunslingers = Splitter.on('+')

https://riptutorial.com/ 16

 .splitToList("Wyatt Earp+Doc Holliday");

List<String> musketeers = Splitter.on(",")
 .omitEmptyStrings()
 .trimResults()
 .splitToList(",Porthos , Athos ,Aramis,");

As you can see in the code above, Splitter exposes a fluent API, and lets you create instances
through a series of static factory methods:

static Splitter on(char separator)
Lets you specify the separator as a character.

•

static Splitter on(String separator)
Lets you specify the separator as a string.

•

static Splitter on(CharMatcher separatorMatcher)
Lets you specify the separator as a Guava CharMatcher.

•

static Splitter on(Pattern separatorPattern)
Lets you specify the separator as a Java regular expression Pattern.

•

static Splitter onPattern(String separatorPattern)
Lets you specify the separator as a regular expression string.

•

In addition to these separator-based factory methods, there's also a static Splitter
fixedLength(int length) method to create Splitter instances that split strings into chunks of the
specified length.

After the Splitter instance is created, a number of modifiers can be applied:

Splitter omitEmptyStrings()
Instructs the Splitter to exclude empty strings from the results.

•

Splitter trimResults()
Instructs the Splitter to trim results using the predefined whitespace CharMatcher.

•

Splitter trimResults(CharMatcher trimmer)
Instructs the Splitter to trim results using the specified CharMatcher.

•

After creating (and optionally modifying) a Splitter, it can be invoked on a character sequence by
invoking its split method, which will return an object of type Iterable<String>, or its splitToList
method, which will return an (immutable) object of type List<String>.

You might wonder in which cases it would be beneficial to use the split method (which returns an
Iterable) instead of the splitToList method (which returns the more commonly used List type).
The short answer to that is: you probably want to use the split method only for processing very
large strings. The slightly longer answer is that because the split method returns an Iterable, the
split operations can be lazily evaluated (at iteration time), thus removing the need to keep the
entire result of the split operation in memory.

https://riptutorial.com/ 17

Read Strings online: https://riptutorial.com/guava/topic/4576/strings

https://riptutorial.com/ 18

https://riptutorial.com/guava/topic/4576/strings

Credits

S.
No

Chapters Contributors

1
Getting started with
guava

Community, Daniel Käfer, jayantS, Omar Hrynkiewicz

2 I/O Olivier Grégoire

3 Strings jbduncan, Robby Cornelissen, Xaerxess

https://riptutorial.com/ 19

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/2926313/omar-hrynkiewicz
https://riptutorial.com/contributor/180719/olivier-gregoire
https://riptutorial.com/contributor/2252930/jbduncan
https://riptutorial.com/contributor/3558960/robby-cornelissen
https://riptutorial.com/contributor/708434/xaerxess

	About
	Chapter 1: Getting started with guava
	Remarks
	Versions
	Examples
	Setup

	Chapter 2: I/O
	Examples
	Handling existing InputStreams and OutputStreams
	Handling existing Readers and Writers
	Sources and sinks

	Creating sources and sinks
	Reading from a file
	Writing to a file
	Reading from a URL
	Reading from in memory data
	Converting from bytes to chars
	Converting from chars to bytes

	Using sources and sinks
	Common operations
	Source operations
	Typical usage

	Chapter 3: Strings
	Examples
	Checking a string for unwanted characters
	Finding and counting characters in a string
	Removing unwanted characters from a string

	Removing characters
	Trimming leading and trailing characters
	Replacing characters
	Splitting a string into a list

	Why not use Java's splitting capabilities?
	Splitting strings with Guava
	Credits

