
gulp

#gulp

Table of Contents

About 1

Chapter 1: Getting started with gulp 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

1. Install Node.js and NPM: 2

2. Install gulp globally: 2

3. Initialize your project directory: 3

4. Install gulp in your project devDependencies: 3

5. Create a gulpfile.js at the root of your project: 3

6. Run gulp: 3

Task dependency 3

Concat js file in sub folder using gulp 4

gulp CLI docs 4

Flags 4

Task specific flags 5

Tasks 5

Compilers 5

Chapter 2: Comprehensive Guide to a Front end Workflow with Gulpjs 2 of 2 6

Remarks 6

References 6

Examples 6

Setting up Browser sync And Configuring Watchers for Style and Script 6

NOTE 6

Gulp Watchdog Task 6

Snippet - 1 - inside watchdog boilerplate 7

snippet - 2 - inside watchdog boilerplate 8

Note 8

Snippet - 3 - inside Watchdog task boilerplate 9

Note 9

Defining a Default Task 10

Chapter 3: Comprehensive Guide to a Front-end Workflow Automation with Gulpjs -1 of 2 11

Syntax 11

Remarks 11

Examples 11

Loading All The Plugins from Package.JSON 11

Note 11

NOTE 12

Installing Plugins for Responsive images|Css Minification|Js minification 12

Image processing plugins 12

Asset optimizer plugins 13

Anatomy of a gulp function 13

Note 13

$ - > gulp 13

$$ - > gulp-load-plugins 13

Asset Optimization and Minification 13

Style Optimizer 14

Note 15

Script Optimiser 15

Note 15

Generate Responsive Images 16

Note 18

Further references 18

HTML Minifier 18

Anatomy of a gulp task 19

Adding Gulp Tasks 19

Chapter 4: Concatenating files 21

Examples 21

Concat all css files into one using gulp-concat 21

Concat and Uglify JS and CSS files 21

Chapter 5: Create a watcher 23

Examples 23

Watcher task 23

Chapter 6: Create documentation with gulp-jsdoc3 24

Examples 24

Installation 24

Chapter 7: Delete Files Using Gulp 25

Remarks 25

Examples 25

Delete files using del 25

Chapter 8: Gulp Path 26

Examples 26

Creating Simple Gulp Path to the app 26

Chapter 9: Image lossless compression (with gulp-imagemin) 28

Syntax 28

Parameters 28

Remarks 28

Examples 28

Installation and usage 28

Chapter 10: Minifying CSS 30

Examples 30

Using gulp-clean-css and gulp-rename 30

Sass and Css - Preprocessing with Gulp 30

Chapter 11: Minifying HTML 32

Examples 32

Minify HTML using gulp-htmlmin 32

Chapter 12: Minifying JS 33

Syntax 33

Remarks 33

Examples 33

Minify JS using gulp-minify 33

Chapter 13: Show errors with gulp-jslint 35

Examples 35

Installation and usage 35

Chapter 14: Using Browserify 36

Parameters 36

Examples 36

Using Browserify with Vanilla Javascript 36

Using Browserify with Coffeescript 36

Chapter 15: Using file filters. 38

Examples 38

Creating Images, JS, and CSS(SASS) rule for ordering files 38

Installing Gulp and His Tasks 38

Determining Folder Structure 38

Gulp Preprocessing 38

Gulp Task 38

Gulp Watch 39

Credits 40

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: gulp

It is an unofficial and free gulp ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official gulp.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/gulp
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with gulp

Remarks

Gulp is a JavaScript build system, node.js-based task runner like Grunt. It allows you to automate
common tasks during your development process. Gulp uses the streams-concept and code-over-
configuration for a simpler and more intuitive build process. The code-over-configuration concept
allows to create more readable and simple tasks, whereas grunt tasks are highly over-configured.

Versions

Version Release date

3.4 2014-01-17

3.7 2014-06-01

3.8 2014-06-10

3.9 2015-06-02

3.9.1 2016-02-09

4.0.0 2016-06-21

Examples

Installation or Setup

1. Install Node.js and NPM:

Gulp requires Node.js and NPM, Node's package manager. Most installers include NPM with
Node.js. Refer to the installation documentation or confirm it is already installed by running the
following command in your terminal,

npm -v
// will return NPM version or error saying command not found

2. Install gulp globally:

If you have previously installed a version of gulp globally, please run npm rm --global gulp to make
sure your old version doesn't collide with gulp-cli.

https://riptutorial.com/ 2

http://gulpjs.com/
http://nodejs.org/api/stream.html
/questions/tagged/grunt
http://www.riptutorial.com/topic/340
http://www.riptutorial.com/node-js/topic/1294/installing-node-js

$ npm install --global gulp-cli

3. Initialize your project directory:

$ npm init

4. Install gulp in your project devDependencies:

$ npm install --save-dev gulp

5. Create a gulpfile.js at the root of your project:

var gulp = require('gulp');

gulp.task('default', function() {
 // place code for your default task here
});

6. Run gulp:

$ gulp

The default task will run and do nothing.

To run individual tasks, use gulp <task> <othertask>.

Task dependency

You can run tasks in series, by passing a second parameter to gulp.task().

This parameters is an array of tasks to be executed and completed before your task will run:

var gulp = require('gulp');

gulp.task('one', function() {
 // compile sass css
});

gulp.task('two', function() {
 // compile coffeescript
});

// task three will execute only after tasks one and two have been completed
// note that task one and two run in parallel and order is not guaranteed
gulp.task('three', ['one', 'two'], function() {
 // concat css and js
});

https://riptutorial.com/ 3

// task four will execute only after task three is completed
gulp.task('four', ['three'], function() {
 // save bundle to dist folder
});

You can also omit the function if you only want to run a bundle of dependency tasks:

gulp.task('build', ['array', 'of', 'task', 'names']);

Note: The tasks will run in parallel (all at once), so don't assume that the tasks will start/finish in
order. Starting gulp v4, gulp.series() should be used if the order of execution of dependency tasks
is important.

Concat js file in sub folder using gulp

var gulp = require('gulp');

// include plug-ins
var uglify = require('gulp-uglify'),
 concat = require('gulp-concat');

// Minified file
gulp.task('packjsMin', function() {
 return gulp.src('node_modules/angular/*.js')
 .pipe(concat('script.js'))
 .pipe(uglify())
 .pipe(gulp.dest('Scripts'));
});

//Not minified file
gulp.task('packjs', function () {
 return gulp.src('node_modules/angular/*.js')
 .pipe(concat('allPackages.js'))
 .pipe(gulp.dest('Scripts'));
});

gulp CLI docs

Flags

gulp has very few flags to know about. All other flags are for tasks to use if needed.

-v or --version will display the global and local gulp versions•
--require <module path> will require a module before running the gulpfile. This is useful for
transpilers but also has other applications. You can use multiple --require flags

•

--gulpfile <gulpfile path> will manually set path of gulpfile. Useful if you have multiple
gulpfiles. This will set the CWD to the gulpfile directory as well

•

--cwd <dir path> will manually set the CWD. The search for the gulpfile, as well as the
relativity of all requires will be from here

•

-T or --tasks will display the task dependency tree for the loaded gulpfile•
--tasks-simple will display a plaintext list of tasks for the loaded gulpfile•
--color will force gulp and gulp plugins to display colors even when no color support is •

https://riptutorial.com/ 4

https://github.com/gulpjs/gulp/blob/4.0/CHANGELOG.md

detected
--no-color will force gulp and gulp plugins to not display colors even when color support is
detected

•

--silent will disable all gulp logging•

The CLI adds process.env.INIT_CWD which is the original cwd it was launched from.

Task specific flags

Refer to this StackOverflow link for how to add task specific flags

Tasks

Tasks can be executed by running gulp <task> <othertask>. Just running gulp will execute the task
you registered called default. If there is no default task gulp will error.

Compilers

You can find a list of supported languages at interpret. If you would like to add support for a new
language send pull request/open issues there.

Read Getting started with gulp online: https://riptutorial.com/gulp/topic/1341/getting-started-with-
gulp

https://riptutorial.com/ 5

http://stackoverflow.com/questions/23023650/is-it-possible-to-pass-a-flag-to-gulp-to-have-it-run-tasks-in-different-ways
https://github.com/tkellen/node-interpret#jsvariants
https://riptutorial.com/gulp/topic/1341/getting-started-with-gulp
https://riptutorial.com/gulp/topic/1341/getting-started-with-gulp

Chapter 2: Comprehensive Guide to a Front
end Workflow with Gulpjs 2 of 2

Remarks

Cool. So we are all done with our workflow automation.

We now have a gulp file , that

Responsifies and minifies images•
cleans,autoprefixes,concatenates and minifies Css•
Concatenates and minifies JS•
Watches for changes to assets be it HTML | CSS | JS and triggers associated tasks•
Creates a build directory , and stores all processed deployment ready code inside it. And all
that , in the background, while you just develop your app.

•

References

Run-Sequence Browser-sync

Examples

Setting up Browser sync And Configuring Watchers for Style and Script

NOTE

This page illustrates use of gulp plugins like browser-sync , gulp-watch and run-
sequence , and continues discussing gulp-workflow-automation from where we
left off at Gulpjs-workflow-automation-1 of 2. In case you landed here , consider
going through that post first.

Default Task•
Watchdog task - to continually build your deployment ready assets on the fly , whenever
anything image | JS | css changes on the course of development.

•

Let us begin with browser-sync.

Gulp Watchdog Task

Let us begin with the watchdog task.

The goal , is to watch for changes you make while developing. Any change , should trigger the

https://riptutorial.com/ 6

https://www.npmjs.com/package/run-sequence
https://www.npmjs.com/package/browser-sync

corresponding gulp task.

Also , we need a functionality that syncs your changes on the browser.

Browser sync

So , we need to install Browser Sync.

bash $ npm install browser-sync --save-dev

With that premise, let us open our gulpfile.js and add the watch functionality. Let us require
browser sync and define some variables to use its functionality.

At the top of the gulpfile , add the below snippet. Place it just below the image compression
declarations.

like so:

//Browser-sync

var sync = require('browser-sync').create();
var reload = sync.reload;

Having browser sync sync your development on to the browser , is a simple configuration. Let us
create a task called watchdog.

like so:

$.task('watchdog', function() {

})

Now , If we browse through browser sync options here , and search for the server setting , we can
see how easy it is .

We just need to place the below inside of our watchdog task

Snippet - 1 - inside watchdog boilerplate

/*
 Initiate Browser sync
 @documentation - https://www.browsersync.io/docs/options/
 */
 sync.init({
 server: {
 baseDir: "./"
 },
 port: 8000 //change it as required
 });

https://riptutorial.com/ 7

https://www.browsersync.io/docs/options/

Insert the above inside of your watchdog boilerplate above.

The next snippet , is to define a watcher for styles, with a goal to reprocess changed css files or
new ones , and trigger a browser reload automatically.

snippet - 2 - inside watchdog boilerplate

$.watch(['css/**/*', 'fonts/google/**/*.css'], reload).on('change', function(event) {
console.log(event.type + ':' + event.path)
if (event.type === 'deleted') {
uncache('styles', event.path);
$$.remember.forget('auto-prefixed-stylesheets', event.path);
}
sequence('optimizeStyles')
});

Insert the above inside of your watchdog boilerplate above.

So we are monitoring" [fonts/google/**/*.css , /**/*.css]" i.e,

all css files under css/ all css files under fonts/google/ When anything changes, or a new file is
added , it triggers the reload method, which is defined at the top of our gulpfile , in the
browsersync declaration.

Note : You might notice , that we have a .on event handler attached to the watcher.

$.watch(['css/**/*', 'fonts/google/**/*.css'], reload).on('change', function(event)

Basically , anything CUD(Create| Update | Delete) triggers the reload function , and passes an
event Object as a parameter to the callback function.

The callback is a vital function , where we can achieve operations like uncache on asset
deletion.Now the event object has parameters like

path•
type - Create/Update/Delete•

If an asset is deleted , we need to make sure the caches we built in our earlier minification
functions , via gulp-cached and gulp-remember , need updation.

we are handling that in the snippet below , which is inside the callback on change.

if (event.type === 'deleted') {
uncache('styles', event.path);
$$.remember.forget('auto-prefixed-stylesheets', event.path);
}

Note

https://riptutorial.com/ 8

$ - >alias for gulp

$$ - > alias for gulp-load-plugins

you might also notice , that I have a sequence('optimizeStyles'); after I wrote the uncache
invocation

The sequence method , ensures , synchronous method runs in an asynchronous by default
javascript.

installing it is simple

DO

bash $ npm install run-sequence

then , declare it in your gulpfile just below the browser sync declaration.

var sequence = require('run-sequence');

So with that understanding , the watcher for scripts is an easy one to write. just different globs!

So, add this snippet below the style watcher inside the watchdog boilerplate.

Snippet - 3 - inside Watchdog task boilerplate

/*
on addition or change or deletion of a file in the watched directories
the change event is triggered. An event object with properties like
path,
event-type
is available for perusal passed to the callback

*/
$.watch('js/**/*', reload).on('change', function(event) {
console.log(event.type + ':' + event.path)
if (event.type === 'deleted') {
uncache('scripts', event.path);
$$.remember.forget('linted-scripts', event.path);
}
sequence('optimizeScripts');
});

Note

We used two functions in our snippets above.

uncache•

https://riptutorial.com/ 9

$$.remember.forget Note:•

$-> Alias for gulp

$$-> Alias for gulp-load-plugins

Let us define the function uncache somewhere in our gulpfile.js , before it is invoked.

/*
Deletes a cache entry
*/
var uncache = function(cacheName, cacheKey) {
 var cache = $$.cached;
 if (cache.caches[cacheName] && cache.caches[cacheName][cacheKey])
 return delete cache.caches[cacheName][cacheKey];
 return false;
 }
 /*
 logs current cache created via gulp-cached
 */
var viewCache = function() {
 console.log($$.cached.caches)
}

Defining a Default Task

So now, let us finish the gulpfile code , by defining a Default task.

the default task is the one that runs, when you just say

gulp

on a command prompt under the root of your project.

$.task('default', ['generateResponsiveImages'], function() {
 $.start('watchdog');
 console.log('Starting Incremental Build');
});

Read Comprehensive Guide to a Front end Workflow with Gulpjs 2 of 2 online:
https://riptutorial.com/gulp/topic/6343/comprehensive-guide-to-a-front-end-workflow-with-gulpjs-2-
of-2

https://riptutorial.com/ 10

https://riptutorial.com/gulp/topic/6343/comprehensive-guide-to-a-front-end-workflow-with-gulpjs-2-of-2
https://riptutorial.com/gulp/topic/6343/comprehensive-guide-to-a-front-end-workflow-with-gulpjs-2-of-2

Chapter 3: Comprehensive Guide to a Front-
end Workflow Automation with Gulpjs -1 of 2

Syntax

npm install [plugin-name] --save-dev•
npm install [plugin-name] --save•
Function <function-name> (glob) { $.src(glob).pipe([plugin 1]).pipe([plugin 2])....pipe([plugin
n]).pipe($.dest(<destination-name>) }

•

$.task(<taskname> , [dependencies] , <body>);•

Remarks

Continue Reading - Creating a default task and setting up browser-sync

References

Gulp-Clean-Css•
Gulp-Uglify•
Gulp-Autoprefixer - for Css Prefixes that maintain browser compatibility•
Gulp-Cached•
Gulp-Remember•
Gulp-Jshint•

Step-By-Step Guide to Gulp Workflow Automation for absolute beginners that I documented iny
my blog

Examples

Loading All The Plugins from Package.JSON

Assuming , you have a grasp of how to install gulp, let us dive right down to requiring all the gulp-
dependencies from package.json under your projects root folder.

In case you do not have a gulpfile yet , please create an empty file with the name

gulpfile.js

First , we require gulp. like so:

var $ = require('gulp');

Next up , let us load all our plugins, into our gulpfile , by the below snippet

https://riptutorial.com/ 11

http://stackoverflow.com/documentation/gulp/drafts/76017
https://www.npmjs.com/package/gulp-clean-css
https://www.npmjs.com/package/gulp-uglify
https://www.npmjs.com/package/gulp-autoprefixer
https://github.com/contra/gulp-cached
https://www.npmjs.com/package/gulp-remember
https://www.npmjs.com/package/gulp-jshint
http://blog.nitinprabhakar.com/gulp-workflow-automation-1/
http://blog.nitinprabhakar.com/gulp-workflow-automation-1/

Note

Please read through the comments in all of the snippets we will be including in this read, they
provide more insight into every functionality

/*
require gulp-load-plugins, and call it
gulp-load-plugins will require individually,
all the plugins installed in package.json at the root directory
these required plugins, are lazy loaded
that is, gulp-load-plugins will only require them when they are referenced in this file
plugins are available for perusal, via camelcased names, minus gulp
eg: gulp-clean-css is accessed by $$.cleanCss
*/
var $$ = require('gulp-load-plugins')();

NOTE

Throughout the many examples we will have in the article , we alias

gulp as $ and1.
gulp-load-plugins as $$2.

purely for ease of typing.

Installing Plugins for Responsive images|Css Minification|Js minification

Our goal , is to

Make your Images conform to widths and scale appropriately, by generating a battery of
images of varied widths, and to minify them

1.

Lint your Javascript2.
Minimize your assets - JS/CSS/HTML , thus enabling you to host a lighter than lightest code3.
Watch the css/js/image files for change , and rebuild optimizations4.
Synching your changes while in development, on to a browser serving your site.5.

We need a number of plugins, so let us install all of them. Please run all these in the project's root
folder.

Image processing plugins

bash $ npm install --save-dev gulp-responsive
bash $ npm install --save-dev gulp-imagemin
bash $ npm install --save-dev imagemin
bash $ npm install --save-dev imagemin-jpeg-recompress
bash $ npm install --save-dev imagemin-pngquant

https://riptutorial.com/ 12

Asset optimizer plugins

bash $ npm install --save-dev gulp-clean-css
bash $ npm install --save-dev gulp-uglify
bash $ npm install --save-dev gulp-minify-html
bash $ npm install --save-dev gulp-jshint
bash $ npm install --save-dev gulp-concat
bash $ npm install --save-dev gulp-autoprefixer

Anatomy of a gulp function

[Function <name>] (glob) {

$.src(glob)

.pipe([plugin 1])
.pipe([plugin 2])
.
.
.
.pipe([plugin n])
.pipe($.dest(<destination-name>)

}

Note

pipe is a method that streams all the files matching the glob input , to our plugins(
minifyhtml in this case) .

It is simple to picture it like so:

$.src is what builds the stream and pipe pipes out each individual file matching the glob
downwards to each plugin in the pipeline.Each plugin the file is passed to , modifies its
contents in memory only until $.dest is reached , which then updates/creates files
streamed by $.src

Where ,

$ - > gulp

$$ - > gulp-load-plugins

Asset Optimization and Minification

So, Before writing out optimiser functions , we need to install a couple of caching plugins.

bash $ npm install --save-dev gulp-cached

https://riptutorial.com/ 13

bash $ npm install --save-dev gulp-remember

You might wonder why two caches eh!. gulp-cached , passes only modified or new content down
the pipeline to other plugins. So, Since we want files without change to be used for concatenating
into a single file per asset(css | js) as well, we need gulp-remember in addition to gulp-cached

First we use gulp-cached to build a list of files that have changed

Second , we need gulp-remember to keep a track of all files that are passed through by that list in
memory.

First Run : No files are cached , so gulp-cached will pass them all to gulp-remember

Subsequent runs : Only modified or new files are piped down by gulp-cached. Since the content of
the current file has changed , gulp-remember updates its cache.

Cool , Let us write our first optimizer

Style Optimizer

// Goal

/*

1. cache existing files on the first run
2. each file ,
 a. Is autoprefixed with cross browser compatible prefixes for any css property (
justify-content for e.g)
 b. Is concatenated into app.css
3. app.css is minified
4. On subsequent runs , the above process is implemented on file modifications/additions only

*/

/*
*@src - input a glob pattern - a string eg 'images/**/*' or '**/*.css' or, an array eg
['glob1','glob2']
*/
var optimizeStyles = function(src) {

return $.src(src).
pipe($$.cached('styles')).
pipe($$.autoprefixer({
browsers: ['last 2 versions']
})).
pipe($$.remember('auto-prefixed-stylesheets')).
pipe($$.concat('app.css')).
pipe($.dest('build/css')).
pipe($$.cleanCss()).
pipe($$.rename({
suffix: '.min'
})).
pipe($.dest('build/css'))
}

https://riptutorial.com/ 14

Note

$ - > gulp

$$ - > gulp-load-plugins

$.src - > builds file streams matching the glob passed as src

$.dest - > saves the manipulated file in the path specified

Script Optimiser

// Goal

/*

1. cache existing files on the first run
2. each file ,
 a. Is linted with jshint
 b. Is concatenated into app.js
3. app.js is minified
4. On subsequent runs , the above process is implemented on file modifications/additions only

*/

/*
*@src - input a glob pattern - a string eg 'js/**/*' or '**/*.js' or, an array eg
['glob1','glob2']
*/

var optimizeScripts = function(src) {

 return $.src(src).
 pipe($$.cached('scripts')).
 pipe($$.jshint()).
 pipe($$.jshint.reporter('default')).
 pipe($$.jshint.reporter('fail')).
 pipe($$.remember('linted-scripts')).
 pipe($$.concat('app.js')).
 pipe($.dest('build/js')).
 pipe($$.uglify()).
 pipe($$.rename({
 suffix: '.min'
 })).
 pipe($.dest('build/js'))

}

Note

$ - > gulp

https://riptutorial.com/ 15

$$ - > gulp-load-plugins

$.src - > builds file streams matching the glob passed as src

$.dest - > saves the manipulated file in the path specified

Generate Responsive Images

Let us now move on to image processing. So, the aim , is to have an array of sizes for each image
you are going to serve.

Why?

Well , to understand why we need a battery of images with a range of widths , we need
to ponder over the fact , that there are probably zillions of devices with varied
resolutions. We need an image to scale without much pixelation. At the same time , we
need to improve page load times , by downloading just the one image , which fits the
width it is contained by , and is also with the smallest possible dimension , to do so.
There are scholarly blogs like the one Eric Portis wrote , which highlights the
ineffectiveness of just media queries and serves as a comprehensive guide to
understanding concepts like srcsets and sizes.

You can refer to Eric Portis' epic write up here

Now, Our function , needs to take a glob , and a width as inputs, and do its magic and push the file
each run generates , to a destination and minify the responsified image.

We have installed two image compression plugins in our first example

Since these plugins DO NOT start with a "gulp-" prefixed, we need to manually load them onto our
gulpfile.

SO Let us require them manually , after the gulp-load-plugins declaration at the top of our gulpfile.

like so:

var compressJpg = require('imagemin-jpeg-recompress');
var pngquant = require('imagemin-pngquant');

It is worthwhile to note , that gulp-responsive comes with the sharp image processor ,
which is better than imagemagick BY FAAAAR!. Sharp is what is used by gulp-
responsive , to crop your images to desired widths.

you might look at gulp-responsive-configuration-options,for a comprehensive list of
configuration params. I have only used

width - to crop our images to a width w, passed as a parameter•
rename - to add a suffix to the image name, so that it remains unique•

https://riptutorial.com/ 16

http://ericportis.com/posts/2014/srcset-sizes/
http://www.riptutorial.com/topic/1341

in my configuration function below. so our function , will crop the image to the width
passed as input , for all matching images deciphered via the glob input. then, each
image is compressed using jpeg-recompress or pngquant and saved inside
build/images.

With that in mind, our function would be like so:

/*
@generateResponsiveImages
*@Description:takes in a src of globs, to stream matching image files , a width,
*to resize the matching image to, and a dest to write the resized and minified files to
*@src - input a glob pattern - a string eg 'images/** /*' or 'images/*' or, an array
eg ['glob1','glob2']
*@return returns a stream
*/
var generateResponsiveImages = function(src, width, dest) {

 //declare a default destination
 if (!dest)
 dest = 'build/images';
 //case 1: src glob - images/**/*
 // the base is the directory immediately preceeding the glob - images/ in this case
 //case 2: images/fixed/flourish.png : the base here is images/fixed/ - we are overriding
 // that by setting base to images.This is done so that, the path beginning after images/
 // - is the path under our destination - without us setting the base, dest would be,
 //build/images/flourish.png.But with us setting the base, the destination would be
 // build/images/fixed/flourish.png
 return $.src(src, {
 base: 'images'
 })

 //generate resized images according to the width passed
 .pipe($$.responsive({
 //match all pngs within the src stream
 '**/*.png': [{
 width: width,
 rename: {
 suffix: '-' + width
 },
 withoutEnlargement: false,
 }],
 //match all jpgs within the src stream
 '**/*.jpg': [{
 width: width,
 rename: {
 suffix: '-' + width
 },
 progressive: true,
 withoutEnlargement: false,
 }]
 }, {

 errorOnEnlargement: false,
 errorOnUnusedConfig: false,
 errorOnUnusedImage: false

 }))
 //once the file is resized to width, minify it using the plugins available per format
 .pipe($$.if('*.jpg', compressJpg({

https://riptutorial.com/ 17

 min: 30,
 max: 90,
 target: 0.5
 })()))
 //use file based cache gulp-cache and it will minify only changed or new files
 //if it is not a new file and if the contents havent changed, the file is served from
cache
 .pipe($$.cache($$.imagemin({
 verbose: true
 })))

 //write to destination - dest + path from base
 .pipe($.dest(dest));
}

Note

$ - > gulp

$$ - > gulp-load-plugins

$.src - > builds file streams matching the glob passed as src

$.dest - > saves the manipulated file in the path specified

Further references

Gulp-Responsive•
Gulp-Imagemin•

HTML Minifier

*
 *@minifyHtml
 *Description:takes in a glob src, and minifies all '.html' files matched by the glob
 *@src - input a glob pattern - a string eg '/**/*.html /*' or '*.html' or, an array eg
['glob1','glob2']
 *@dest=file.base means, the modified html file will be in the same directory as the src file
being minified
 *often means, the process is just a modification on the existing src file
 *@return returns a stream
 */
var minifyHtml = function(src) {
 return $.src(src)
 .pipe($$.minifyHtml())
 .pipe($.dest(function(file) {
 //file is provided to a dest callback -
 // Refer here https://github.com/gulpjs/gulp/blob/master/docs/API.md#path
 return file.base;
 }));
}

https://riptutorial.com/ 18

https://www.npmjs.com/package/gulp-responsive
https://www.npmjs.com/package/gulp-imagemin

Anatomy of a gulp task

The anatomy of a task definition is like so:

$.task(<taskname> , [dependencies] , <body>);

dependencies , is an array of tasks that HAVE to finish before the current task you are defining ,
runs. More like forcing a synchronous execution instead of the default Asynchronous functionality.

Adding Gulp Tasks

So, we now have

A function defined Above to optimise Styles•
A function defined Above to optimise scripts•
A function defined Above to optimise HTML•
A function to generate multiple images per image Above•

All we need to do now, is to invoke them when needed.

Let us write our tasks according to the syntax we defined earlier

/*
* $.task('name','dependency array',function)
results in building a task object as below
task:{
'name':name,
'dep':[array of dependencies],
'fn':function
}
*/

//*@return returns a stream to notify on task completion
$.task('optimizeHtml', function() {
 var src = ['**/*.html', '!{node_modules}/**/*.html'];
 return minifyHtml(src);
});

//*@return returns a stream to notify on task completion
$.task('optimizeScripts', function() {
 var src = ['js/**/*.js'];
 return optimizeScripts(src);
});

//*@return returns a stream to notify on task completion
$.task('optimizeStyles', function() {
 var src = ['css/**/*.css', 'fonts/google/**/*.css'];
 return optimizeStyles(src);
});

//Take in a callback to ensure notifying the gulp engine, that the task is done
//required since, you are not returning a stream in this task
$.task('generateResponsiveImages', function(callback) {
 var src = ['images/**/*.{jpg,png}'];
 for (var i = widths.length - 1; i >= 0; i--) {

https://riptutorial.com/ 19

 generateResponsiveImages(src, widths[i]);
 }
 callback();

});

Read Comprehensive Guide to a Front-end Workflow Automation with Gulpjs -1 of 2 online:
https://riptutorial.com/gulp/topic/6342/comprehensive-guide-to-a-front-end-workflow-automation-
with-gulpjs--1-of-2

https://riptutorial.com/ 20

https://riptutorial.com/gulp/topic/6342/comprehensive-guide-to-a-front-end-workflow-automation-with-gulpjs--1-of-2
https://riptutorial.com/gulp/topic/6342/comprehensive-guide-to-a-front-end-workflow-automation-with-gulpjs--1-of-2

Chapter 4: Concatenating files

Examples

Concat all css files into one using gulp-concat

First, Install gulp and gulp-concat plugin to your project localy

 npm install --save-dev gulp gulp-concat

and add gulp-concat task to your gulpfile.js

var gulp = require('gulp');
var concat = require('gulp-concat');

gulp.task('default', function() {
});

gulp.task('css', function() {
 return gulp.src('css/*.css')
 .pipe(concat('concat.css'))
 .pipe(gulp.dest('css/dist'));
});

gulp.task('default', ['css']);

After starting gulp command, plugin gulp-concat will take all the CSS files located in the css/
directory and concatenate them into a one file css/dist/concat.css

Concat and Uglify JS and CSS files

Remember to npm install all the files into devDependencies first. E.g.

npm install --save-dev gulp gulp-concat gulp-rename gulp-uglify gulp-uglifycss

Gulpfile.js

var gulp = require('gulp');
var gulp_concat = require('gulp-concat');
var gulp_rename = require('gulp-rename');
var gulp_uglify = require('gulp-uglify');
var uglifycss = require('gulp-uglifycss');

var destDir = './public/assets/dist/'; //or any folder inside your public asset folder
var tempDir = './public/assets/temp/'; //any place where you want to store the concatenated,
but unuglified/beautified files
//To concat and Uglify All JS files in a particular folder
gulp.task('js-uglify', function(){
 return gulp.src(['./public/js/**/*.js','./public/assets/js/*.js']) //Use wildcards to
select all files in a particular folder or be specific
 .pipe(gulp_concat('concat.js')) //this will concat all the files into concat.js

https://riptutorial.com/ 21

 .pipe(gulp.dest(tempDir)) //this will save concat.js in a temp directory defined above
 .pipe(gulp_rename('uglify.js')) //this will rename concat.js to uglify.js
 .pipe(gulp_uglify()) //this will uglify/minify uglify.js
 .pipe(gulp.dest(destDir)); //this will save uglify.js into destination Directory
defined above
});
//To Concat and Uglify all CSS files in a particular folder
gulp.task('css-uglify', function () {
 gulp.src('./public/assets/css/*.css') //Use wildcards to select all files in a particular
folder or be specific
 .pipe(gulp_concat('concat.css')) //this will concat all the source files into concat.css
 .pipe(gulp.dest(tempDir)) //this will save concat.css into a temp Directory
 .pipe(gulp_rename('uglify.css')) //this will rename concat.css into uglify.css, but
will not replace it yet.
 .pipe(uglifycss({
 "maxLineLen": 80,
 "uglyComments": true
 })) //uglify uglify.css file
 .pipe(gulp.dest(destDir)); //save uglify.css
});

Run them by following commands

gulp js-uglify
gulp css-uglify

Read Concatenating files online: https://riptutorial.com/gulp/topic/4398/concatenating-files

https://riptutorial.com/ 22

https://riptutorial.com/gulp/topic/4398/concatenating-files

Chapter 5: Create a watcher

Examples

Watcher task

config.paths.html represents the path to your HTML file.

gulp.task("watch", function() {
 gulp.watch(config.paths.html, ["html"]);
});

The task should be added to default as well:

gulp.task("default", ["html", "watch"]);

Read Create a watcher online: https://riptutorial.com/gulp/topic/5026/create-a-watcher

https://riptutorial.com/ 23

https://riptutorial.com/gulp/topic/5026/create-a-watcher

Chapter 6: Create documentation with gulp-
jsdoc3

Examples

Installation

First of all, install gulp and gulp-jsdoc3 to your project:

npm install gulp-jsdoc3 --save-dev

Then add it to your gulpfile.js

var gulp = require('gulp');
var jsdoc = require('gulp-jsoc3');

gulp.task('doc', function (cb){
 gulp.src('src/*.js')
 .pipe(jsdoc(cb));
});

In order to documentate, for example, a function, you have to add a comment just at the top of the
function, like this:

/**
 * @function example
 * @summary This is a short description of example
 * @author Whoever
 * @param {any} cb
 * @returns
 */
function example(cb){
 //Code
}

If you want to know more block tags to use, please visit usejsdoc.org

Read Create documentation with gulp-jsdoc3 online: https://riptutorial.com/gulp/topic/7365/create-
documentation-with-gulp-jsdoc3

https://riptutorial.com/ 24

https://www.npmjs.com/package/gulp-jsdoc3/
http://usejsdoc.org/
https://riptutorial.com/gulp/topic/7365/create-documentation-with-gulp-jsdoc3
https://riptutorial.com/gulp/topic/7365/create-documentation-with-gulp-jsdoc3

Chapter 7: Delete Files Using Gulp

Remarks

Note on using the globbing pattern (**):

The globbing pattern matches all children and the parent. In order to avoid that we add '!public'
to our del task so that the public directory itself doesn't get deleted

Examples

Delete files using del

First, Install gulp and del to project directory locally

npm install --save-dev gulp del

Then add the clean task to your gulpfile.js

var gulp = require('gulp');
var del = require('del');

gulp.task('default', function() {
});

// Task to delete target build folder
gulp.task('clean', function() {
 return del(['public/**', '!public']);
});

gulp.task('default', ['clean']);

This task deletes all files in the public directory

The task in the code is added as a dependency for the 'default' task so every time default will
run, clean will run before it.

You can also call the clean task manually by running the command:

gulp clean

Read Delete Files Using Gulp online: https://riptutorial.com/gulp/topic/7189/delete-files-using-gulp

https://riptutorial.com/ 25

https://riptutorial.com/gulp/topic/7189/delete-files-using-gulp

Chapter 8: Gulp Path

Examples

Creating Simple Gulp Path to the app

Before running gulp you need to install Node.JS and npm

The head of the Gulp.js is:

var gulp = require('gulp');
 clean = require('gulp-clean'); // A gulp plugin for removing files and folders.
 imagemin = require('gulp-imagemin'); // Minify PNG, JPEG, GIF and SVG images

Then assign path of the gulp files

var bases = {
 app: 'app/', // path to your app
 dist: 'dist/', // path to the compiled application
};

var paths = {
 scripts: ['scripts/**/*.js', '!scripts/libs/**/*.js'],
 libs: ['scripts/libs/jquery/dist/jquery.js', 'scripts/libs/underscore/underscore.js',
'scripts/backbone/backbone.js'],
 styles: ['styles/**/*.css'],
 html: ['index.html', '404.html'],
 images: ['images/**/*.png'],
 extras: ['crossdomain.xml', 'humans.txt', 'manifest.appcache', 'robots.txt', 'favicon.ico'],
};

Example 1:

// Copy all other files to dist directly
 gulp.task('copy', ['clean'], function() {
 // Copy html
 gulp.src(index.html)
 .pipe(gulp.dest(bases.dist)); // same as .pipe(gulp.dest('dist'));
 });

Example 2:

// Imagemin images and ouput them in dist
gulp.task('imagemin', ['clean'], function() {
 gulp.src(paths.images, {cwd: bases.app})
 .pipe(imagemin())
 .pipe(gulp.dest(bases.dist + 'images/')); // same as .pipe(gulp.dest('dist/images/'));
});

Default watch

https://riptutorial.com/ 26

// Define the default task as a sequence of the above tasks
gulp.task('default', ['clean', 'imagemin', 'copy']);

Read Gulp Path online: https://riptutorial.com/gulp/topic/7759/gulp-path

https://riptutorial.com/ 27

https://riptutorial.com/gulp/topic/7759/gulp-path

Chapter 9: Image lossless compression (with
gulp-imagemin)

Syntax

imagemin([plugins], {options})1.

Parameters

Argument Description

sourcePath Images' source directory (for example: /assets/images)

buildPath Destination path (for example: /static/dist/)

Remarks

First argument to imagemin constructor is plugin array. By default, following plugins are used:
[imagemin.gifsicle(), imagemin.jpegtran(), imagemin.optipng(), imagemin.svgo()]

Second argument are options. In the above example following options are used:

{
 progressive: true,
 interlaced: true,
 svgoPlugins: [{removeUnknownsAndDefaults: false}, {cleanupIDs: false}]
}

Those are completely optional.

progressive is used by imagemin-jpegtran.

interlaced is used by imagemin-gifsicle.

removeUnknownsAndDefaults and cleanupIDs are used by imagemin-svgo.

Examples

Installation and usage

Dependency installation (https://www.npmjs.com/package/gulp-imagemin)

$ npm install --save-dev gulp-imagemin

https://riptutorial.com/ 28

https://www.npmjs.com/package/imagemin-jpegtran#progressive
https://www.npmjs.com/package/imagemin-gifsicle#interlaced
https://github.com/svg/svgo#what-it-can-do
https://github.com/svg/svgo#what-it-can-do
https://www.npmjs.com/package/gulp-imagemin

Usage

/*
 * Your other dependencies.
 */

var imagemin = require('gulp-imagemin');

/*
 * `gulp images` - Run lossless compression on all the images.
 */
gulp.task('images', function() {
 return gulp.src(sourcePath) // e.g. /assets/images
 .pipe(imagemin({
 progressive: true,
 interlaced: true,
 svgoPlugins: [{removeUnknownsAndDefaults: false}, {cleanupIDs: false}]
 }))
 .pipe(gulp.dest(buildPath + 'images')); // e.g. /static/dist/
});

Read Image lossless compression (with gulp-imagemin) online:
https://riptutorial.com/gulp/topic/6549/image-lossless-compression--with-gulp-imagemin-

https://riptutorial.com/ 29

https://riptutorial.com/gulp/topic/6549/image-lossless-compression--with-gulp-imagemin-

Chapter 10: Minifying CSS

Examples

Using gulp-clean-css and gulp-rename

First, Install gulp, gulp-clean-css and gulp-rename to project directory localy

npm install --save-dev gulp gulp-clean-css gulp-rename

Than add following minify-css task to your gulpfile.js

var gulp = require('gulp');
var cleanCSS = require('gulp-clean-css');
var rename = require('gulp-rename');

gulp.task('minify-css', function() {
 return gulp.src('css/dist/dist.css')
 .pipe(cleanCSS())
 .pipe(rename('dist.min.css'))
 .pipe(gulp.dest('css/dist'));
});

gulp.task('watch', function(){
 gulp.watch('css/dist/**/*.css', ['minify-css']);
 // Other watchers
});

gulp.task('default', ['minify-css', 'watch']);

Here .pipe(cleanCSS()) executes minification of your css/dist/dist.css file and
.pipe(rename('concat.min.css')) renames it to dist.min.css

Sass and Css - Preprocessing with Gulp

Before starting gulp we need to install node.js and npm. Then install gulp-sacc

$ npm i gulp-sass --save-dev // i = install

Gulp Head

var gulp = require('gulp');
// Requires the gulp-sass plugin
var sass = require('gulp-sass');

Gulp Body

gulp.task('sass', function(){
 return gulp.src('app/scss/*.scss') // searching for sass files

https://riptutorial.com/ 30

https://www.npmjs.com/package/gulp-clean-css
https://www.npmjs.com/package/gulp-rename

 .pipe(sass()) // Converts Sass to CSS with gulp-sass
 .pipe(gulp.dest('app/css')) // destination of the css file
});

Gulp watch

gulp.task('watch', function(){
 gulp.watch('app/scss/**/*.scss', ['sass']);
 // Other watchers
})

Read Minifying CSS online: https://riptutorial.com/gulp/topic/4396/minifying-css

https://riptutorial.com/ 31

https://riptutorial.com/gulp/topic/4396/minifying-css

Chapter 11: Minifying HTML

Examples

Minify HTML using gulp-htmlmin

First, Install gulp and gulp-htmlmin to project directory locally

npm install --save-dev gulp gulp-htmlmin

Then add the minify-html task to your gulpfile.js

var gulp = require('gulp');
var htmlmin = require('gulp-htmlmin');

// Task to minify HTML
gulp.task('minify-html', function() {
return gulp.src('source/*.html')
.pipe(htmlmin())
.pipe(gulp.dest('public/'));
});

gulp.task('watch', function (){
 gulp.watch('source/*.html', ['minify-html']);
// other tasks
});

gulp.task('default', ['minify-html', 'watch']);

This task finds all files in the source directory with a .html extension, minifies them and then
outputs the resulting files to the public directory.

The task in the code is added as a dependency for the 'default' task so every time default will
run, minify-html will run before it.

You can also call the minify-html task manually by running the command:

gulp minify-html

Read Minifying HTML online: https://riptutorial.com/gulp/topic/7187/minifying-html

https://riptutorial.com/ 32

https://riptutorial.com/gulp/topic/7187/minifying-html

Chapter 12: Minifying JS

Syntax

ext An object that specifies output source and minified file extensions.•
source The suffix string of the filenames that output source files ends with.•
min When string: The suffix string of the filenames that output minified files ends with.•
When Array: The regex expressions to be replaced with input filenames. For example: [/.(.*)-
source.js$/, '$1.js']

•

exclude Will not minify files in the dirs.•
noSource Will not output the source code in the dest dirs.•
ignoreFiles Will not minify files which matches the pattern.•
mangle Pass false to skip mangling names.•
output Pass an object if you wish to specify additional output options. The defaults are
optimized for best compression.

•

compress Pass an object to specify custom compressor options. Pass false to skip
compression completely.

•

preserveComments A convenience option for options.output.comments. Defaults to preserving
no comments.

•

all Preserve all comments in code blocks•
somePreserve comments that start with a bang (!) or include a Closure Compiler directive
(@preserve, @license, @cc_on)

•

function Specify your own comment preservation function. You will be passed the current
node and the current comment and are expected to return either true or false.

•

Remarks

Useful Links to gulp-minify

Examples

Minify JS using gulp-minify

First, Install gulp and gulp-minify to project directory locally

npm install --save-dev gulp gulp-minify

Then add following min-js task to your gulpfile.js

var gulp = require('gulp');
var minify = require('gulp-minify');

gulp.task('min-js', function() {
 return gulp.src('lib/*.js')
 .pipe(minify({

https://riptutorial.com/ 33

https://www.npmjs.com/package/gulp-minify

 ext: {
 min: '.min.js'
 },
 ignoreFiles: ['-min.js']
 }))
 .pipe(gulp.dest('lib'))
});

gulp.task('watch', function(){
 gulp.watch('lib/*.js', ['min-js']);
 // Other watchers
});

gulp.task('default', ['min-js', 'watch']);

This task find all js files in lib directory, minfy it and save to lib directory with .min.js suffix. For
example, after minify lib/app.js file will be created a lib/app.min.js file

Besides running as a dependency for the 'default' gulp task, this task can be run manually by
typing the following command:

gulp min-js

Read Minifying JS online: https://riptutorial.com/gulp/topic/4397/minifying-js

https://riptutorial.com/ 34

https://riptutorial.com/gulp/topic/4397/minifying-js

Chapter 13: Show errors with gulp-jslint

Examples

Installation and usage

Installation

$ npm install gulp-jslint --save-dev

Usage

In gulpfile.js add:

var gulp = require('gulp');
var jslint = require('gulp-jslint');

gulp.task('lint', function(){
 return gulp.src(['source.js'])
 .pipe(jslint({ /* this object represents the JSLint directives being passed down */
}))
 .pipe(jslint.reporter('my-reporter'));
});

for use this task:

$./node_modules/gulp/bin/gulp.js lint

Read Show errors with gulp-jslint online: https://riptutorial.com/gulp/topic/7415/show-errors-with-
gulp-jslint

https://riptutorial.com/ 35

https://riptutorial.com/gulp/topic/7415/show-errors-with-gulp-jslint
https://riptutorial.com/gulp/topic/7415/show-errors-with-gulp-jslint

Chapter 14: Using Browserify

Parameters

Options Details

transform
Specifies a pipeline of functions (or module names) through which the
browserified bundle will be run.

debug Enable source map support. !gulp.env.production would work well.

extensions
Array of extensions that you want to skip in require() calls in addition to .js and
.json. Don't forget .

ignore Array of paths which should be passed to the ignore function of browserify.

resolve Custom module name resolution function.

nobuiltins
Remove builtins modules defined in lib/builtins.js (browserify module).
opts.builtins must be not defined and opts.nobuiltins can be an Array of
Strings or simply a String.

Examples

Using Browserify with Vanilla Javascript

First install gulp and browserify via npm i gulp gulp-browserify. This will install browserify into your
node_modules folder.

gulpfile.js

var gulp = require('gulp');
var browserify = require('gulp-browserify');

gulp.task('script', function() {
 gulp.src('./src/script.js')
 .pipe(browserify({
 insertGlobals: true
 })
 .pipe(gulp.dest('./build/'));
}

Using Browserify with Coffeescript

First install gulp and browserify via npm i gulp gulp-coffeeify. This will install browserify into your
node_modules folder.

https://riptutorial.com/ 36

gulpfile.js

var gulp = require('gulp');
var coffeeify = require('gulp-coffeeify');

gulp.task('script', function() {
 gulp.src('./src/script.coffee')
 .pipe(coffeeify())
 .pipe(gulp.dest('./build/'));
}

Read Using Browserify online: https://riptutorial.com/gulp/topic/6364/using-browserify

https://riptutorial.com/ 37

https://riptutorial.com/gulp/topic/6364/using-browserify

Chapter 15: Using file filters.

Examples

Creating Images, JS, and CSS(SASS) rule for ordering files

Installing Gulp and His Tasks

$ npm install gulp --save-dev
$ npm install gulp-sass --save-dev
$ npm install gulp-uglify --save-dev
$ npm install gulp-imagemin --save-dev

Determining Folder Structure

In this structure, we will use the app folder for development purposes, while the dist folder is used
to contain optimized files for the production site.

|-app
 |-css/
 |-images/
 |-index.html
 |-js/
 |-scss/
|- dist/
|- gulpfile.js
|- node_modules/
|- package.json

Gulp Preprocessing

// Requires the gulp-sass plugin
var gulp = require('gulp');
 sass = require('gulp-sass');
 uglify = require('gulp-uglify');
 imagemin = require('gulp-imagemin');

Gulp Task

gulp.task('sass', function(){
 return gulp.src('app/scss/**/*.scss') //selection all files in this derectory
 .pipe(sass()) // Using gulp-sass
 .pipe(gulp.dest('dist'))

https://riptutorial.com/ 38

});
gulp.task('gulp-uglify', function(){
 return gulp.src('app/js/*.js')
 // Minifies only if it's a JavaScript file
 .pipe(uglify())
 .pipe(gulp.dest('dist'))
});
gulp.task('images', function(){
 return gulp.src('app/images/**/*.+(png|jpg|gif|svg)')
 .pipe(imagemin())
 .pipe(gulp.dest('dist/images'))
});

Gulp Watch

gulp.task('watch', function(){
 gulp.watch('app/js/**/*.js', ['gulp-uglify']);
 gulp.watch('app/scss/**/*.scss', ['sass']);
 gulp.watch('app/images/**/*.*', ['images']);
 // Other watchers
});
gulp.task('build', [`sass`, `gulp-uglify`, `images`], function (){
 console.log('Building files');
});
gulp.task('default', function() {});

Read Using file filters. online: https://riptutorial.com/gulp/topic/7818/using-file-filters-

https://riptutorial.com/ 39

https://riptutorial.com/gulp/topic/7818/using-file-filters-

Credits

S.
No

Chapters Contributors

1
Getting started with
gulp

cl3m, Community, fracz, João Silva, naresh, Nhan, Pejman,
Pierre-Loup Pagniez, Pyloid, Sender, Tim

2

Comprehensive
Guide to a Front end
Workflow with Gulpjs
2 of 2

Schrodinger's cat

3

Comprehensive
Guide to a Front-end
Workflow Automation
with Gulpjs -1 of 2

Schrodinger's cat

4 Concatenating files Andrew Plakhotnyi, fracz, John Strood, maoizm, Mikhail, noob

5 Create a watcher Muaaz Rafi, Nhan

6
Create
documentation with
gulp-jsdoc3

Manuel

7
Delete Files Using
Gulp

Mor Paz

8 Gulp Path GYTO

9
Image lossless
compression (with
gulp-imagemin)

Siegmeyer

10 Minifying CSS fracz, GYTO, Mikhail, SteveLacy

11 Minifying HTML GYTO, Mor Paz

12 Minifying JS fracz, GYTO, Mikhail, Mor Paz, Saiful Azad

13
Show errors with
gulp-jslint

jesussegado

14 Using Browserify dome2k

15 Using file filters. GYTO

https://riptutorial.com/ 40

https://riptutorial.com/contributor/849105/cl3m
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/2486919/joao-silva
https://riptutorial.com/contributor/7155522/naresh
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/5788276/pejman
https://riptutorial.com/contributor/1166719/pierre-loup-pagniez
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/4051181/tim
https://riptutorial.com/contributor/6033241/schrodinger-s-cat
https://riptutorial.com/contributor/6033241/schrodinger-s-cat
https://riptutorial.com/contributor/2794237/andrew-plakhotnyi
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5337834/john-strood
https://riptutorial.com/contributor/3559739/maoizm
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/1079901/noob
https://riptutorial.com/contributor/5224982/muaaz-rafi
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/6192780/manuel
https://riptutorial.com/contributor/4259027/mor-paz
https://riptutorial.com/contributor/5116973/gyto
https://riptutorial.com/contributor/4400065/siegmeyer
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5116973/gyto
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/1041104/stevelacy
https://riptutorial.com/contributor/5116973/gyto
https://riptutorial.com/contributor/4259027/mor-paz
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5116973/gyto
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/4259027/mor-paz
https://riptutorial.com/contributor/1919324/saiful-azad
https://riptutorial.com/contributor/6473132/jesussegado
https://riptutorial.com/contributor/3596172/dome2k
https://riptutorial.com/contributor/5116973/gyto

	About
	Chapter 1: Getting started with gulp
	Remarks
	Versions
	Examples
	Installation or Setup

	1. Install Node.js and NPM:
	2. Install gulp globally:
	3. Initialize your project directory:
	4. Install gulp in your project devDependencies:
	5. Create a gulpfile.js at the root of your project:
	6. Run gulp:
	Task dependency
	Concat js file in sub folder using gulp
	gulp CLI docs
	Flags
	Task specific flags
	Tasks
	Compilers

	Chapter 2: Comprehensive Guide to a Front end Workflow with Gulpjs 2 of 2
	Remarks

	References
	Examples
	Setting up Browser sync And Configuring Watchers for Style and Script

	NOTE
	Gulp Watchdog Task

	Snippet - 1 - inside watchdog boilerplate
	snippet - 2 - inside watchdog boilerplate
	Note

	Snippet - 3 - inside Watchdog task boilerplate
	Note
	Defining a Default Task

	Chapter 3: Comprehensive Guide to a Front-end Workflow Automation with Gulpjs -1 of 2
	Syntax
	Remarks
	Examples
	Loading All The Plugins from Package.JSON

	Note
	NOTE
	Installing Plugins for Responsive images|Css Minification|Js minification

	Image processing plugins
	Asset optimizer plugins
	Anatomy of a gulp function

	Note
	$ - > gulp
	$$ - > gulp-load-plugins
	Asset Optimization and Minification

	Style Optimizer
	Note
	Script Optimiser
	Note
	Generate Responsive Images
	Note

	Further references
	HTML Minifier
	Anatomy of a gulp task
	Adding Gulp Tasks

	Chapter 4: Concatenating files
	Examples
	Concat all css files into one using gulp-concat
	Concat and Uglify JS and CSS files

	Chapter 5: Create a watcher
	Examples
	Watcher task

	Chapter 6: Create documentation with gulp-jsdoc3
	Examples
	Installation

	Chapter 7: Delete Files Using Gulp
	Remarks
	Examples
	Delete files using del

	Chapter 8: Gulp Path
	Examples
	Creating Simple Gulp Path to the app

	Chapter 9: Image lossless compression (with gulp-imagemin)
	Syntax
	Parameters
	Remarks
	Examples
	Installation and usage

	Chapter 10: Minifying CSS
	Examples
	Using gulp-clean-css and gulp-rename
	Sass and Css - Preprocessing with Gulp

	Chapter 11: Minifying HTML
	Examples
	Minify HTML using gulp-htmlmin

	Chapter 12: Minifying JS
	Syntax
	Remarks
	Examples
	Minify JS using gulp-minify

	Chapter 13: Show errors with gulp-jslint
	Examples
	Installation and usage

	Chapter 14: Using Browserify
	Parameters
	Examples
	Using Browserify with Vanilla Javascript
	Using Browserify with Coffeescript

	Chapter 15: Using file filters.
	Examples
	Creating Images, JS, and CSS(SASS) rule for ordering files

	Installing Gulp and His Tasks
	Determining Folder Structure
	Gulp Preprocessing
	Gulp Task
	Gulp Watch
	Credits

