
hadoop

#hadoop

Table of Contents

About 1

Chapter 1: Getting started with hadoop 2

Remarks 2

What is Apache Hadoop? 2

Apache Hadoop includes these modules: 2

Reference: 2

Versions 2

Examples 3

Installation or Setup on Linux 3

Installation of Hadoop on ubuntu 5

Creating Hadoop User: 5

Adding a user: 5

Configuring SSH: 6

Add hadoop user to sudoer's list: 8

Disabling IPv6: 8

Installing Hadoop: 8

Hadoop overview and HDFS 9

Chapter 2: Debugging Hadoop MR Java code in local eclipse dev environment. 12

Introduction 12

Remarks 12

Examples 12

Steps for configuration 12

Chapter 3: Hadoop commands 14

Syntax 14

Examples 14

Hadoop v1 Commands 14

1. Print the Hadoop version 14

2. List the contents of the root directory in HDFS 14

h11 14

3. Report the amount of space used and 14

available on currently mounted filesystem 14

h12 14

4. Count the number of directories,files and bytes under 14

the paths that match the specified file pattern 14

h13 14

5. Run a DFS filesystem checking utility 15

h14 15

6. Run a cluster balancing utility 15

h15 15

7. Create a new directory named “hadoop” below the 15

/user/training directory in HDFS. Since you’re 15

currently logged in with the “training” user ID, 15

/user/training is your home directory in HDFS. 15

h16 15

8. Add a sample text file from the local directory 15

named “data” to the new directory you created in HDFS 15

during the previous step. 16

h17 16

9. List the contents of this new directory in HDFS. 16

h18 16

10. Add the entire local directory called “retail” to the 16

/user/training directory in HDFS. 16

h19 16

11. Since /user/training is your home directory in HDFS, 16

any command that does not have an absolute path is 16

interpreted as relative to that directory. The next 16

command will therefore list your home directory, and 16

should show the items you’ve just added there. 17

h110 17

12. See how much space this directory occupies in HDFS. 17

h111 17

13. Delete a file ‘customers’ from the “retail” directory. 17

h112 17

14. Ensure this file is no longer in HDFS. 17

h113 17

15. Delete all files from the “retail” directory using a wildcard. 17

h114 17

16. To empty the trash 17

h115 18

17. Finally, remove the entire retail directory and all 18

of its contents in HDFS. 18

h116 18

18. List the hadoop directory again 18

h117 18

19. Add the purchases.txt file from the local directory 18

named “/home/training/” to the hadoop directory you created in HDFS 18

h118 18

20. To view the contents of your text file purchases.txt 18

which is present in your hadoop directory. 18

h119 18

21. Add the purchases.txt file from “hadoop” directory which is present in HDFS directory 19

to the directory “data” which is present in your local directory 19

h120 19

22. cp is used to copy files between directories present in HDFS 19

h121 19

23. ‘-get’ command can be used alternaively to ‘-copyToLocal’ command 19

h122 19

24. Display last kilobyte of the file “purchases.txt” to stdout. 19

h123 19

25. Default file permissions are 666 in HDFS 19

Use ‘-chmod’ command to change permissions of a file 19

h124 20

26. Default names of owner and group are training,training 20

Use ‘-chown’ to change owner name and group name simultaneously 20

h125 20

27. Default name of group is training 20

Use ‘-chgrp’ command to change group name 20

h126 20

28. Move a directory from one location to other 20

h127 20

29. Default replication factor to a file is 3. 20

Use ‘-setrep’ command to change replication factor of a file 20

h128 21

30. Copy a directory from one node in the cluster to another 21

Use ‘-distcp’ command to copy, 21

-overwrite option to overwrite in an existing files 21

-update command to synchronize both directories 21

h129 21

31. Command to make the name node leave safe mode 21

h130 21

32. List all the hadoop file system shell commands 21

h131 21

33. Get hdfs quota values and the current count of names and bytes in use. 22

h132 22

34. Last but not least, always ask for help! 22

h133 22

Hadoop v2 Commands 22

Chapter 4: Hadoop load data 26

Examples 26

Load data into hadoop hdfs 26

hadoop fs -mkdir: 26

Usage: 26

Example: 26

hadoop fs -put: 26

Usage: 26

Example: 26

hadoop fs -copyFromLocal: 26

Usage: 27

Example: 27

hadoop fs -moveFromLocal: 27

Usage: 27

Example: 27

Usage: 27

Example: 27

Chapter 5: hue 29

Introduction 29

Examples 29

Setup process 29

Instalation Dependencies 29

Hue Installation in Ubuntu 30

Chapter 6: Introduction to MapReduce 32

Syntax 32

Remarks 32

Examples 32

Word Count Program(in Java & Python) 32

Chapter 7: What is HDFS? 36

Remarks 36

Examples 36

HDFS - Hadoop Distributed File System 36

Finding files in HDFS 36

Blocks and Splits HDFS 37

Credits 39

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: hadoop

It is an unofficial and free hadoop ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official hadoop.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/hadoop
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with hadoop

Remarks

What is Apache Hadoop?

The Apache Hadoop software library is a framework that allows for the distributed processing of
large data sets across clusters of computers using simple programming models. It is designed to
scale up from single servers to thousands of machines, each offering local computation and
storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to
detect and handle failures at the application layer, so delivering a highly-available service on top of
a cluster of computers, each of which may be prone to failures.

Apache Hadoop includes these modules:

Hadoop Common: The common utilities that support the other Hadoop modules.•
Hadoop Distributed File System (HDFS): A distributed file system that provides high-
throughput access to application data.

•

Hadoop YARN: A framework for job scheduling and cluster resource management.•
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.•

Reference:

Apache Hadoop

Versions

Version Release Notes Release Date

3.0.0-alpha1 2016-08-30

2.7.3 Click here - 2.7.3 2016-01-25

2.6.4 Click here - 2.6.4 2016-02-11

2.7.2 Click here - 2.7.2 2016-01-25

2.6.3 Click here - 2.6.3 2015-12-17

2.6.2 Click here - 2.6.2 2015-10-28

2.7.1 Click here - 2.7.1 2015-07-06

https://riptutorial.com/ 2

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.6.4/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.6.3/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.6.2/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/releasenotes.html

Examples

Installation or Setup on Linux

A Pseudo Distributed Cluster Setup Procedure

Prerequisites

Install JDK1.7 and set JAVA_HOME environment variable.•

Create a new user as "hadoop".

useradd hadoop

•

Setup password-less SSH login to its own account

 su - hadoop
 ssh-keygen
 << Press ENTER for all prompts >>
 cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
 chmod 0600 ~/.ssh/authorized_keys

•

Verify by performing ssh localhost•

Disable IPV6 by editing /etc/sysctl.conf with the followings:

 net.ipv6.conf.all.disable_ipv6 = 1
 net.ipv6.conf.default.disable_ipv6 = 1
 net.ipv6.conf.lo.disable_ipv6 = 1

•

Check that using cat /proc/sys/net/ipv6/conf/all/disable_ipv6

(should return 1)

•

Installation and Configuration:

Download required version of Hadoop from Apache archives using wget command.

 cd /opt/hadoop/
 wget http:/addresstoarchive/hadoop-2.x.x/xxxxx.gz
 tar -xvf hadoop-2.x.x.gz
 mv hadoop-2.x.x.gz hadoop
(or)

 ln -s hadoop-2.x.x.gz hadoop
 chown -R hadoop:hadoop hadoop

•

Update .bashrc/.kshrc based on your shell with below environment variables

 export HADOOP_PREFIX=/opt/hadoop/hadoop
 export HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop
 export JAVA_HOME=/java/home/path

•

https://riptutorial.com/ 3

 export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin:$JAVA_HOME/bin

In $HADOOP_HOME/etc/hadoop directory edit below files

core-site.xml

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:8020</value>
 </property>
</configuration>

○

mapred-site.xml

Create mapred-site.xml from its template

cp mapred-site.xml.template mapred-site.xml

 <configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
 </configuration>

○

yarn-site.xml

 <configuration>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value>localhost</value>
 </property>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 </configuration>

○

hdfs-site.xml

 <configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
 <property>
 <name>dfs.namenode.name.dir</name>
 <value>file:///home/hadoop/hdfs/namenode</value>
 </property>
 <property>
 <name>dfs.datanode.data.dir</name>
 <value>file:///home/hadoop/hdfs/datanode</value>
 </property>
 </configuration>

○

•

https://riptutorial.com/ 4

Create the parent folder to store the hadoop data

mkdir -p /home/hadoop/hdfs

Format NameNode (cleans up the directory and creates necessary meta files)

hdfs namenode -format

•

Start all services:

start-dfs.sh && start-yarn.sh
mr-jobhistory-server.sh start historyserver

•

Instead use start-all.sh (deprecated).

Check all running java processes

jps

•

Namenode Web Interface: http://localhost:50070/•

Resource manager Web Interface: http://localhost:8088/•

To stop daemons(services):

stop-dfs.sh && stop-yarn.sh
mr-jobhistory-daemon.sh stop historyserver

•

Instead use stop-all.sh (deprecated).

Installation of Hadoop on ubuntu

Creating Hadoop User:

sudo addgroup hadoop

Adding a user:

sudo adduser --ingroup hadoop hduser001

https://riptutorial.com/ 5

http://localhost:50070/
http://localhost:8088/

Configuring SSH:

su -hduser001
ssh-keygen -t rsa -P ""
cat .ssh/id rsa.pub >> .ssh/authorized_keys

Note: If you get errors [bash: .ssh/authorized_keys: No such file or directory] whilst writing the
authorized key. Check here.

https://riptutorial.com/ 6

https://i.stack.imgur.com/dRsz0.png
http://askubuntu.com/questions/466549/bash-home-user-ssh-authorized-keys-no-such-file-or-directory

https://riptutorial.com/ 7

https://i.stack.imgur.com/6pNSe.png
https://i.stack.imgur.com/cpau3.png

Add hadoop user to sudoer's list:

sudo adduser hduser001 sudo

Disabling IPv6:

Installing Hadoop:

https://riptutorial.com/ 8

https://i.stack.imgur.com/3c2nb.png
https://i.stack.imgur.com/ICB9j.png
https://i.stack.imgur.com/UzX4h.png
https://i.stack.imgur.com/znIbd.png

sudo add-apt-repository ppa:hadoop-ubuntu/stable
sudo apt-get install hadoop

Hadoop overview and HDFS

Hadoop is an open-source software framework for storage and large-scale processing of
data-sets in a distributed computing environment. It is sponsored by Apache Software
Foundation. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage.

https://riptutorial.com/ 9

https://i.stack.imgur.com/xj5jD.png
https://i.stack.imgur.com/oamjE.png
https://i.stack.imgur.com/gEskB.jpg

History

Hadoop was created by Doug Cutting and Mike Cafarella in 2005.•
Cutting, who was working at Yahoo! at the time, named it after his son's toy elephant.•
 It was originally developed to support distribution for the search engine project.•

Major modules of hadoop

Hadoop Distributed File System (HDFS): A distributed file system that provides high-
throughput access to application data. Hadoop MapReduce: A software framework for
distributed processing of large data sets on compute clusters.

Hadoop File System Basic Features

Highly fault-tolerant. High throughput. Suitable for applications with large data sets. Can be
built out of commodity hardware.

Namenode and Datanodes

Master/slave architecture. HDFS cluster consists of a single Namenode, a master server that
manages the file system namespace and regulates access to files by clients. The
DataNodes manage storage attached to the nodes that they run on. HDFS exposes a file
system namespace and allows user data to be stored in files. A file is split into one or more
blocks and set of blocks are stored in DataNodes. DataNodes: serves read, write requests,
performs block creation, deletion, and replication upon instruction from Namenode.

HDFS is designed to store very large files across machines in a large cluster. Each file is a

https://riptutorial.com/ 10

https://i.stack.imgur.com/kt1kT.gif

sequence of blocks. All blocks in the file except the last are of the same size. Blocks are
replicated for fault tolerance. The Namenode receives a Heartbeat and a BlockReport from
each DataNode in the cluster. BlockReport contains all the blocks on a Datanode.

Hadoop Shell Commands

Common commands used:-
ls Usage: hadoop fs –ls Path(dir/file path to list). Cat Usage: hadoop fs -cat
PathOfFileToView

Link for hadoop shell commands:- https://hadoop.apache.org/docs/r2.4.1/hadoop-project-
dist/hadoop-common/FileSystemShell.html

Read Getting started with hadoop online: https://riptutorial.com/hadoop/topic/926/getting-started-
with-hadoop

https://riptutorial.com/ 11

https://i.stack.imgur.com/qMrYh.jpg
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://riptutorial.com/hadoop/topic/926/getting-started-with-hadoop
https://riptutorial.com/hadoop/topic/926/getting-started-with-hadoop

Chapter 2: Debugging Hadoop MR Java code
in local eclipse dev environment.

Introduction

The basic thing to remember here is that debugging a Hadoop MR job is going to be similar to any
remotely debugged application in Eclipse.

A debugger or debugging tool is a computer program that is used to test and debug other
programs (the “target” program). It is greatly useful specially for a Hadoop environment wherein
there is little room for error and one small error can cause a huge loss.

Remarks

That is all you need to do.

Examples

Steps for configuration

As you would know, Hadoop can be run in the local environment in 3 different modes :

Local Mode1.
Pseudo Distributed Mode2.
Fully Distributed Mode (Cluster)3.

Typically you will be running your local hadoop setup in Pseudo Distributed Mode to leverage
HDFS and Map Reduce(MR). However you cannot debug MR programs in this mode as each
Map/Reduce task will be running in a separate JVM process so you need to switch back to Local
mode where you can run your MR programs in a single JVM process.

Here are the quick and simple steps to debug this in your local environment:

Run hadoop in local mode for debugging so mapper and reducer tasks run in a single JVM
instead of separate JVMs. Below steps help you do it.

1.

Configure HADOOP_OPTS to enable debugging so when you run your Hadoop job, it will be
waiting for the debugger to connect. Below is the command to debug the same at port 8080.

2.

(export HADOOP_OPTS=”-
agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=8008“)

Configure fs.default.name value in core-site.xml to file:/// from hdfs://. You won’t be using
hdfs in local mode.

3.

https://riptutorial.com/ 12

Configure mapred.job.tracker value in mapred-site.xml to local. This will instruct Hadoop to
run MR tasks in a single JVM.

4.

Create debug configuration for Eclipse and set the port to 8008 – typical stuff. For that go to
the debugger configurations and create a new Remote Java Application type of configuration
and set the port as 8080 in the settings.

5.

Run your hadoop job (it will be waiting for the debugger to connect) and then launch Eclipse
in debug mode with the above configuration. Do make sure to put a break-point first.

6.

Read Debugging Hadoop MR Java code in local eclipse dev environment. online:
https://riptutorial.com/hadoop/topic/10063/debugging-hadoop-mr-java-code-in-local-eclipse-dev-
environment-

https://riptutorial.com/ 13

https://riptutorial.com/hadoop/topic/10063/debugging-hadoop-mr-java-code-in-local-eclipse-dev-environment-
https://riptutorial.com/hadoop/topic/10063/debugging-hadoop-mr-java-code-in-local-eclipse-dev-environment-

Chapter 3: Hadoop commands

Syntax

Hadoop v1 commands: hadoop fs -<command>•

Hadoop v2 commands: hdfs dfs -<command>•

Examples

Hadoop v1 Commands

1. Print the Hadoop version

hadoop version

2. List the contents of the root directory in
HDFS

hadoop fs -ls /

3. Report the amount of space used and

available on currently mounted filesystem

hadoop fs -df hdfs:/

4. Count the number of directories,files and
bytes under

the paths that match the specified file pattern

https://riptutorial.com/ 14

hadoop fs -count hdfs:/

5. Run a DFS filesystem checking utility

hadoop fsck – /

6. Run a cluster balancing utility

hadoop balancer

7. Create a new directory named “hadoop”
below the

/user/training directory in HDFS. Since you’re

currently logged in with the “training” user
ID,

/user/training is your home directory in
HDFS.

hadoop fs -mkdir /user/training/hadoop

8. Add a sample text file from the local
directory

named “data” to the new directory you

https://riptutorial.com/ 15

created in HDFS

during the previous step.

hadoop fs -put data/sample.txt /user/training/hadoop

9. List the contents of this new directory in
HDFS.

hadoop fs -ls /user/training/hadoop

10. Add the entire local directory called
“retail” to the

/user/training directory in HDFS.

hadoop fs -put data/retail /user/training/hadoop

11. Since /user/training is your home
directory in HDFS,

any command that does not have an absolute
path is

interpreted as relative to that directory. The
next

https://riptutorial.com/ 16

command will therefore list your home
directory, and

should show the items you’ve just added
there.

hadoop fs -ls

12. See how much space this directory
occupies in HDFS.

hadoop fs -du -s -h hadoop/retail

13. Delete a file ‘customers’ from the “retail”
directory.

hadoop fs -rm hadoop/retail/customers

14. Ensure this file is no longer in HDFS.

hadoop fs -ls hadoop/retail/customers

15. Delete all files from the “retail” directory
using a wildcard.

hadoop fs -rm hadoop/retail/*

https://riptutorial.com/ 17

16. To empty the trash

hadoop fs -expunge

17. Finally, remove the entire retail directory
and all

of its contents in HDFS.

hadoop fs -rm -r hadoop/retail

18. List the hadoop directory again

hadoop fs -ls hadoop

19. Add the purchases.txt file from the local
directory

named “/home/training/” to the hadoop
directory you created in HDFS

hadoop fs -copyFromLocal /home/training/purchases.txt hadoop/

20. To view the contents of your text file
purchases.txt

which is present in your hadoop directory.

https://riptutorial.com/ 18

hadoop fs -cat hadoop/purchases.txt

21. Add the purchases.txt file from “hadoop”
directory which is present in HDFS directory

to the directory “data” which is present in
your local directory

hadoop fs -copyToLocal hadoop/purchases.txt /home/training/data

22. cp is used to copy files between
directories present in HDFS

hadoop fs -cp /user/training/*.txt /user/training/hadoop

23. ‘-get’ command can be used alternaively
to ‘-copyToLocal’ command

hadoop fs -get hadoop/sample.txt /home/training/

24. Display last kilobyte of the file
“purchases.txt” to stdout.

hadoop fs -tail hadoop/purchases.txt

25. Default file permissions are 666 in HDFS

https://riptutorial.com/ 19

Use ‘-chmod’ command to change
permissions of a file

hadoop fs -ls hadoop/purchases.txt
sudo -u hdfs hadoop fs -chmod 600 hadoop/purchases.txt

26. Default names of owner and group are
training,training

Use ‘-chown’ to change owner name and
group name simultaneously

hadoop fs -ls hadoop/purchases.txt
sudo -u hdfs hadoop fs -chown root:root hadoop/purchases.txt

27. Default name of group is training

Use ‘-chgrp’ command to change group name

hadoop fs -ls hadoop/purchases.txt
sudo -u hdfs hadoop fs -chgrp training hadoop/purchases.txt

28. Move a directory from one location to
other

hadoop fs -mv hadoop apache_hadoop

29. Default replication factor to a file is 3.

https://riptutorial.com/ 20

Use ‘-setrep’ command to change replication
factor of a file

hadoop fs -setrep -w 2 apache_hadoop/sample.txt

30. Copy a directory from one node in the
cluster to another

Use ‘-distcp’ command to copy,

-overwrite option to overwrite in an existing
files

-update command to synchronize both
directories

hadoop fs -distcp hdfs://namenodeA/apache_hadoop hdfs://namenodeB/hadoop

31. Command to make the name node leave
safe mode

hadoop fs -expunge
sudo -u hdfs hdfs dfsadmin -safemode leave

32. List all the hadoop file system shell
commands

https://riptutorial.com/ 21

hadoop fs

33. Get hdfs quota values and the current
count of names and bytes in use.

hadoop fs -count -q [-h] [-v] <directory>...<directory>

34. Last but not least, always ask for help!

hadoop fs -help

Hadoop v2 Commands

appendToFile: Append single src, or multiple srcs from local file system to the destination file
system. Also reads input from stdin and appends to destination file system. Keep the as -

 hdfs dfs -appendToFile [localfile1 localfile2 ..] [/HDFS/FILE/PATH..]

cat: Copies source paths to stdout.

 hdfs dfs -cat URI [URI …]

chgrp: Changes the group association of files. With -R, makes the change recursively by way of
the directory structure. The user must be the file owner or the superuser.

 hdfs dfs -chgrp [-R] GROUP URI [URI …]

chmod: Changes the permissions of files. With -R, makes the change recursively by way of the
directory structure. The user must be the file owner or the superuser

 hdfs dfs -chmod [-R] <MODE[,MODE]... | OCTALMODE> URI [URI …]

chown: Changes the owner of files. With -R, makes the change recursively by way of the directory
structure. The user must be the superuser.

 hdfs dfs -chown [-R] [OWNER][:[GROUP]] URI [URI]

copyFromLocal: Works similarly to the put command, except that the source is restricted to a
local file reference.

https://riptutorial.com/ 22

 hdfs dfs -copyFromLocal <localsrc> URI

copyToLocal: Works similarly to the get command, except that the destination is restricted to a
local file reference.

 hdfs dfs -copyToLocal [-ignorecrc] [-crc] URI <localdst>

count: Counts the number of directories, files, and bytes under the paths that match the specified
file pattern.

 hdfs dfs -count [-q] [-h] <paths>

cp: Copies one or more files from a specified source to a specified destination. If you specify
multiple sources, the specified destination must be a directory.

 hdfs dfs -cp URI [URI …] <dest>

du: Displays the size of the specified file, or the sizes of files and directories that are contained in
the specified directory. If you specify the -s option, displays an aggregate summary of file sizes
rather than individual file sizes. If you specify the -h option, formats the file sizes in a "human-
readable" way.

 hdfs dfs -du [-s] [-h] URI [URI …]

dus: Displays a summary of file sizes; equivalent to hdfs dfs -du –s.

 hdfs dfs -dus <args>

expunge: Empties the trash. When you delete a file, it isn't removed immediately from HDFS, but
is renamed to a file in the /trash directory. As long as the file remains there, you can undelete it if
you change your mind, though only the latest copy of the deleted file can be restored.

 hdfs dfs –expunge

get: Copies files to the local file system. Files that fail a cyclic redundancy check (CRC) can still
be copied if you specify the -ignorecrc option. The CRC is a common technique for detecting data
transmission errors. CRC checksum files have the .crc extension and are used to verify the data
integrity of another file. These files are copied if you specify the -crc option.

 hdfs dfs -get [-ignorecrc] [-crc] <src> <localdst>

getmerge: Concatenates the files in src and writes the result to the specified local destination file.
To add a newline character at the end of each file, specify the addnl option.

 hdfs dfs -getmerge <src> <localdst> [addnl]

https://riptutorial.com/ 23

ls: Returns statistics for the specified files or directories.

 hdfs dfs -ls <args>

lsr: Serves as the recursive version of ls; similar to the Unix command ls -R.

 hdfs dfs -lsr <args>

mkdir: Creates directories on one or more specified paths. Its behavior is similar to the Unix mkdir
-p command, which creates all directories that lead up to the specified directory if they don't exist
already.

 hdfs dfs -mkdir <paths>

moveFromLocal: Works similarly to the put command, except that the source is deleted after it is
copied.

 hdfs dfs -moveFromLocal <localsrc> <dest>

mv: Moves one or more files from a specified source to a specified destination. If you specify
multiple sources, the specified destination must be a directory. Moving files across file systems
isn't permitted.

 hdfs dfs -mv URI [URI …] <dest>

put: Copies files from the local file system to the destination file system. This command can also
read input from stdin and write to the destination file system.

 hdfs dfs -put <localsrc> ... <dest>

rm: Deletes one or more specified files. This command doesn't delete empty directories or files.
To bypass the trash (if it's enabled) and delete the specified files immediately, specify the -
skipTrash option.

 hdfs dfs -rm [-skipTrash] URI [URI …]

rm r: Serves as the recursive version of –rm.

 hdfs dfs -rm -r [-skipTrash] URI [URI …]

setrep: Changes the replication factor for a specified file or directory. With -R, makes the change
recursively by way of the directory structure.

 hdfs dfs -setrep <rep> [-R] <path>

stat: Displays information about the specified path.

https://riptutorial.com/ 24

 hdfs dfs -stat URI [URI …]

tail: Displays the last kilobyte of a specified file to stdout. The syntax supports the Unix -f option,
which enables the specified file to be monitored. As new lines are added to the file by another
process, tail updates the display.

 hdfs dfs -tail [-f] URI

test: Returns attributes of the specified file or directory. Specifies -e to determine whether the file
or directory exists; -z to determine whether the file or directory is empty; and -d to determine
whether the URI is a directory.

 hdfs dfs -test -[ezd] URI

text: Outputs a specified source file in text format. Valid input file formats are zip and
TextRecordInputStream.

 hdfs dfs -text <src>

touchz: Creates a new, empty file of size 0 in the specified path.

 hdfs dfs -touchz <path>

Read Hadoop commands online: https://riptutorial.com/hadoop/topic/3870/hadoop-commands

https://riptutorial.com/ 25

https://riptutorial.com/hadoop/topic/3870/hadoop-commands

Chapter 4: Hadoop load data

Examples

Load data into hadoop hdfs

STEP 1: CREATE A DIRECTORY IN HDFS, UPLOAD A FILE AND LIST CONTENTS

Let’s learn by writing the syntax. You will be able to copy and paste the following example
commands into your terminal:

hadoop fs -mkdir:

Takes the path URI’s as an argument and creates a directory or multiple directories.

Usage:

 # hadoop fs -mkdir <paths>

Example:

 hadoop fs -mkdir /user/hadoop
 hadoop fs -mkdir /user/hadoop/dir1 /user/hadoop/dir2 /user/hadoop/dir3

hadoop fs -put:

Copies single src file or multiple src files from local file system to the Hadoop Distributed File
System.

Usage:

 # hadoop fs -put <local-src> ... <HDFS_dest_path>

Example:

 hadoop fs -put popularNames.txt /user/hadoop/dir1/popularNames.txt

https://riptutorial.com/ 26

hadoop fs -copyFromLocal:

Copies single src file or multiple src files from local file system to the Hadoop Distributed File
System.

Usage:

 # hadoop fs -copyFromLocal <local-src> ... <HDFS_dest_path>

Example:

 hadoop fs -copyFromLocal popularNames.txt /user/hadoop/dir1/popularNames.txt

hadoop fs -moveFromLocal:

Similar to put command, except that the source localsrc is deleted after it’s copied.

Usage:

 # hadoop fs -moveFromLocal <local-src> ... <HDFS_dest_path>

Example:

 hadoop fs -moveFromLocal popularNames.txt /user/hadoop/dir1/popularNames.txt

SQOOP DATA TRANSFER TOOL:

We can also load data into HDFS directly from Relational databases using Sqoop(a command line
tool for data transfer from RDBMS to HDFS and vice versa).

Usage:

$ sqoop import --connect CONNECTION_STRING --username USER_NAME --table TABLE_NAME

Example:

https://riptutorial.com/ 27

$ sqoop import --connect jdbc:mysql://localhost/db --username foo --table TEST

Read Hadoop load data online: https://riptutorial.com/hadoop/topic/3846/hadoop-load-data

https://riptutorial.com/ 28

https://riptutorial.com/hadoop/topic/3846/hadoop-load-data

Chapter 5: hue

Introduction

Hue is an User Interface to connect and work with most of the commonly used Bigdata
technologies like HDFS, Hive, Spark, Hbase, Sqoop, Impala, Pig, Oozie etc. Hue also supports
running queries against Relational databases.

Hue, a django web application, was primarily built as a workbench for running Hive queries. Later
the functionality of Hue increased to support different components of Hadoop Ecosystem. It is
available as open source software under Apache License.

Examples

Setup process

Instalation Dependencies

Hue installation process details are not available for most operating systems, so depending on the
OS, there might be variations on the dependencies you need to install prior to executing the install
script provided in the installation package:

CentOS

sudo yum install ant
sudo yum install python-devel.x86_64
sudo yum install krb5-devel.x86_64
sudo yum install krb5-libs.x86_64
sudo yum install libxml2.x86_64
sudo yum install python-lxml.x86_64
sudo yum install libxslt-devel.x86_64
sudo yum install mysql-devel.x86_64
sudo yum install openssl-devel.x86_64
sudo yum install libgsasl-devel.x86_64
sudo yum install sqlite-devel.x86_64
sudo yum install openldap-devel.x86_64
sudo yum install -y libffi libffi-devel
sudo yum install mysql-devel gcc gcc-devel python-devel
sudo yum install rsync
sudo yum install maven
wget https://bootstrap.pypa.io/ez_setup.py -O - | sudo python

GMP1.

CentOS > 7.x
sudo yum install libgmp3-dev

•

CentOS < 6.x
sudo yum install gmp gmp-devel gmp-status

•

https://riptutorial.com/ 29

http://gethue.com/
http://gethue.com/category/release/

Hue Installation in Ubuntu

This installation assumes hadoop to be pre-installed under hadoop user.

Prerequisites:

Hue depends on these following packages

gcc1.
g++2.
libxml2-dev3.
libxlst-dev4.
libsasl2-dev5.
libsasl2-modules-gssapi-mit6.
libmysqlclient-dev7.
python-dev8.
python-setuptools9.
libsqlite3-dev10.
ant11.
libkrb5-dev12.
libtidy-0.99-013.
libldap2-dev14.
libssl-dev15.
libgmp3-dev16.

Installing all the packages

sudo apt-get update
sudo apt-get install gcc g++ libxml2-dev libxslt-dev libsasl2-dev libsasl2-modules-gssapi-mit
libmysqlclient-dev python-dev python-setuptools libsqlite3-dev ant libkrb5-dev libtidy-0.99-0
libldap2-dev libssl-dev libgmp3-dev

Installation and Configuration

Performing installation as hadoop user.

su - hadoop

Download Hue from gethue.com (this link is an example obtained from Hue website)

wget https://dl.dropboxusercontent.com/u/730827/hue/releases/3.9.0/hue-3.9.0.tgz

1.

Extract the downloaded tarball

tar -xvf hue-3.9.0.tgz

2.

Execute install command

 cd hue-3.9.0
 PREFIX=/home/hadoop/ make install

3.

https://riptutorial.com/ 30

Once the above process is completed,

Update ~/.bashrc file,

 export HUE_HOME=/home/hadoop/hue
 export PATH=$PATH:$HUE_HOME/build/env/bin

source after adding the entries, source ~/.bashrc

4.

Configure Hue (3 files to edit)5.

cd $HUE_HOME/desktop/conf

hue.ini

[desktop]
 server_user=hadoop
 server_group=hadoop
 default_user=hadoop
 default_hdfs_superuser=hadoop

•

cd $HADOOP_CONF_DIR

core-site.xml

<property>
 <name>hadoop.proxyuser.hadoop.hosts</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.hadoop.groups</name>
 <value>*</value>
</property>

•

hdfs-site.xml

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

•

Start Hue (Start Hadoop daemons if not already started)

nohup supervisor &

6.

Login to Hue Web Interface: http://localhost:8888

username: hadoop

password: user_choice

7.

Read hue online: https://riptutorial.com/hadoop/topic/6133/hue

https://riptutorial.com/ 31

http://localhost:8888
https://riptutorial.com/hadoop/topic/6133/hue

Chapter 6: Introduction to MapReduce

Syntax

To run the example, the command syntax is:

bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir>
<out-dir>

•

To copy data into HDFS(from local):

bin/hadoop dfs -mkdir <hdfs-dir> //not required in hadoop 0.17.2 and later
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

•

Remarks

Word Count program using MapReduce in Hadoop.

Examples

Word Count Program(in Java & Python)

The word count program is like the "Hello World" program in MapReduce.

Hadoop MapReduce is a software framework for easily writing applications which process vast
amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of
commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent chunks which are processed
by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps,
which are then input to the reduce tasks. Typically both the input and the output of the job are
stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-
executes the failed tasks.

Word Count Example:

WordCount example reads text files and counts how often words occur. The input is text files and
the output is text files, each line of which contains a word and the count of how often it occured,
separated by a tab.

Each mapper takes a line as input and breaks it into words. It then emits a key/value pair of the
word and each reducer sums the counts for each word and emits a single key/value with the word
and sum.

As an optimization, the reducer is also used as a combiner on the map outputs. This reduces the

https://riptutorial.com/ 32

amount of data sent across the network by combining each word into a single record.

Word Count Code:

package org.myorg;

import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

https://riptutorial.com/ 33

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }

}

To run the example, the command syntax is:

bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir> <out-
dir>

All of the files in the input directory (called in-dir in the command line above) are read and the
counts of words in the input are written to the output directory (called out-dir above). It is assumed
that both inputs and outputs are stored in HDFS.If your input is not already in HDFS, but is rather
in a local file system somewhere, you need to copy the data into HDFS using a command like this:

bin/hadoop dfs -mkdir <hdfs-dir> //not required in hadoop 0.17.2 and later
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

Word Count example in Python:

mapper.py

import sys
for line in sys.stdin:
 # remove leading and trailing whitespace
 line = line.strip()
 # split the line into words
 words = line.split()
 # increase counters
 for word in words:
 print '%s\t%s' % (word, 1)

reducer.py

import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
 # remove leading and trailing whitespaces
 line = line.strip()
 # parse the input we got from mapper.py
 word, count = line.split('\t', 1)
 # convert count (currently a string) to int
 try:
 count = int(count)
 except ValueError:
 # count was not a number, so silently
 # ignore/discard this line
 continue
 if current_word == word:

https://riptutorial.com/ 34

 current_count += count
 else:
 if current_word:
 print '%s\t%s' % (current_word, current_count)
 current_count = count
 current_word = word
if current_word == word:
 print '%s\t%s' % (current_word, current_count)

The above program can be run using cat filename.txt | python mapper.py | sort -k1,1 | python
reducer.py

Read Introduction to MapReduce online: https://riptutorial.com/hadoop/topic/3879/introduction-to-
mapreduce

https://riptutorial.com/ 35

https://riptutorial.com/hadoop/topic/3879/introduction-to-mapreduce
https://riptutorial.com/hadoop/topic/3879/introduction-to-mapreduce

Chapter 7: What is HDFS?

Remarks

A good explanation of HDFS and how it works.

Syntax should contain the commands which maybe use in HDFS.

Examples

HDFS - Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is a Java-based file system that provides scalable and
reliable data storage that is designed to span large clusters of commodity servers. HDFS,
MapReduce, and YARN form the core of Apache™ Hadoop®.

HDFS is designed to be highly fault-tolerant, which is achieved by saving multiple copies(3 by
default) of a given data block across multiple nodes.

Finding files in HDFS

To find a file in the Hadoop Distributed file system:

hdfs dfs -ls -R / | grep [search_term]

In the above command,

-ls is for listing files

-R is for recursive(iterate through sub directories)

/ means from the root directory

| to pipe the output of first command to the second

grep command to extract matching strings

[search_term] file name to be searched for in the list of all files in the hadoop file system.

Alternatively the below command can also be used find and also apply some expressions:

hadoop fs -find / -name test -print

Finds all files that match the specified expression and applies selected actions to them. If no path
is specified then defaults to the current working directory. If no expression is specified then
defaults to -print.

https://riptutorial.com/ 36

The following primary expressions are recognised:

name pattern•
iname pattern•

Evaluates as true if the basename of the file matches the pattern using standard file system
globbing. If -iname is used then the match is case insensitive.

print•
print0Always•

Evaluates to true. Causes the current pathname to be written to standard output. If the -print0
expression is used then an ASCII NULL character is appended.

The following operators are recognised:

expression -a expression
expression -and expression
expression expression

Blocks and Splits HDFS

Block Size and Blocks in HDFS : HDFS has the concept of storing data in blocks whenever
a file is loaded. Blocks are the physical partitions of data in HDFS (or in any other
filesystem, for that matter).

Whenever a file is loaded onto the HDFS, it is splitted physically (yes, the file is divided) into
different parts known as blocks. The number of blocks depend upon the value of
dfs.block.size in hdfs-site.xml

Ideally, the block size is set to a large value such as 64/128/256 MBs (as compared to 4KBs
in normal FS). The default block size value on most distributions of Hadoop 2.x is 128 MB.
The reason for a higher block size is because Hadoop is made to deal with PetaBytes of
data with each file ranging from a few hundred MegaBytes to the order of TeraBytes.

Say for example you have a file of size 1024 MBs. if your block size is 128 MB, you will get 8
blocks of 128MB each. This means that your namenode will need to store metadata of 8 x 3
= 24 files (3 being the replication factor).

Consider the same scenario with a block size of 4 KBs. It will result in 1GB / 4KB = 250000
blocks and that will require the namenode to save the metadata for 750000 blocks for just a
1GB file. Since all these metadata related information is stored in-memory, larger block size
is preferred to save that bit of extra load on the NameNode.

Now again, the block size is not set to an extremely high value like 1GB etc because, ideally,
1 mapper is launched for each block of data. So if you set the block size to 1GB, you might
lose parallelism which might result in a slower throughput overall.

1.

2.) Split Size in HDFS : Splits in Hadoop Processing are the logical chunks of data. When files
are divided into blocks, hadoop doesn't respect any file bopundaries. It just splits the data

https://riptutorial.com/ 37

depending on the block size. Say if you have a file of 400MB, with 4 lines, and each line having
100MB of data, you will get 3 blocks of 128 MB x 3 and 16 MB x 1. But when input splits are
calculated while the prceossing of data, file/record boundaries are kept in mind and in this case we
will have 4 input splits of 100 MB each, if you are using, say, NLineInputFormat.

Split Size can also be set per job using the property mapreduce.input.fileinputformat.split.maxsize

A very good explanation of Blocks vs Splits can be found in this SO Answer/

Read What is HDFS? online: https://riptutorial.com/hadoop/topic/3845/what-is-hdfs-

https://riptutorial.com/ 38

http://stackoverflow.com/questions/17727468/hadoop-input-split-size-vs-block-size
https://riptutorial.com/hadoop/topic/3845/what-is-hdfs-

Credits

S.
No

Chapters Contributors

1
Getting started with
hadoop

Ani Menon, Community, franklinsijo, Harinder, ItayB, Sandeep
Chatterjee, Shailesh Kumar Dayananda, sunkuet02, Udeet
Solanki, Venkata Karthik

2

Debugging Hadoop
MR Java code in
local eclipse dev
environment.

Manish Verma

3 Hadoop commands Ambrish, Ani Menon, jedijs, philantrovert

4 Hadoop load data Ani Menon, Backtrack, BruceWayne, NeoWelkin, Tejus Prasad

5 hue andriosr, franklinsijo

6
Introduction to
MapReduce

Ani Menon, Arduino_Sentinel, Tejus Prasad, Udeet Solanki,
user3335966

7 What is HDFS?
Ani Menon, NeoWelkin, neuromouse, philantrovert, Suraj Kumar
Yadav, Tejus Prasad

https://riptutorial.com/ 39

https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/7303447/franklinsijo
https://riptutorial.com/contributor/689853/harinder
https://riptutorial.com/contributor/1011253/itayb
https://riptutorial.com/contributor/2058368/sandeep-chatterjee
https://riptutorial.com/contributor/2058368/sandeep-chatterjee
https://riptutorial.com/contributor/3068324/shailesh-kumar-dayananda
https://riptutorial.com/contributor/2315473/sunkuet02
https://riptutorial.com/contributor/4198814/udeet-solanki
https://riptutorial.com/contributor/4198814/udeet-solanki
https://riptutorial.com/contributor/4581745/venkata-karthik
https://riptutorial.com/contributor/774064/manish-verma
https://riptutorial.com/contributor/2421561/ambrish
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/7290507/jedijs
https://riptutorial.com/contributor/7224597/philantrovert
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2037787/backtrack
https://riptutorial.com/contributor/5061680/brucewayne
https://riptutorial.com/contributor/6671085/neowelkin
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/3657087/andriosr
https://riptutorial.com/contributor/7303447/franklinsijo
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/5671842/arduino-sentinel
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/4198814/udeet-solanki
https://riptutorial.com/contributor/3335966/user3335966
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/6671085/neowelkin
https://riptutorial.com/contributor/1819209/neuromouse
https://riptutorial.com/contributor/7224597/philantrovert
https://riptutorial.com/contributor/3419631/suraj-kumar-yadav
https://riptutorial.com/contributor/3419631/suraj-kumar-yadav
https://riptutorial.com/contributor/3409405/tejus-prasad

	About
	Chapter 1: Getting started with hadoop
	Remarks
	What is Apache Hadoop?
	Apache Hadoop includes these modules:
	Reference:
	Versions
	Examples
	Installation or Setup on Linux
	Installation of Hadoop on ubuntu

	Creating Hadoop User:
	Adding a user:
	Configuring SSH:
	Add hadoop user to sudoer's list:
	Disabling IPv6:
	Installing Hadoop:
	Hadoop overview and HDFS

	Chapter 2: Debugging Hadoop MR Java code in local eclipse dev environment.
	Introduction
	Remarks
	Examples
	Steps for configuration

	Chapter 3: Hadoop commands
	Syntax
	Examples
	Hadoop v1 Commands

	1. Print the Hadoop version
	2. List the contents of the root directory in HDFS
	h11
	3. Report the amount of space used and
	available on currently mounted filesystem
	h12
	4. Count the number of directories,files and bytes under
	the paths that match the specified file pattern
	h13
	5. Run a DFS filesystem checking utility
	h14
	6. Run a cluster balancing utility
	h15
	7. Create a new directory named “hadoop” below the
	/user/training directory in HDFS. Since you’re
	currently logged in with the “training” user ID,
	/user/training is your home directory in HDFS.
	h16
	8. Add a sample text file from the local directory
	named “data” to the new directory you created in HDFS
	during the previous step.
	h17
	9. List the contents of this new directory in HDFS.
	h18
	10. Add the entire local directory called “retail” to the
	/user/training directory in HDFS.
	h19
	11. Since /user/training is your home directory in HDFS,
	any command that does not have an absolute path is
	interpreted as relative to that directory. The next
	command will therefore list your home directory, and
	should show the items you’ve just added there.
	h110
	12. See how much space this directory occupies in HDFS.
	h111
	13. Delete a file ‘customers’ from the “retail” directory.
	h112
	14. Ensure this file is no longer in HDFS.
	h113
	15. Delete all files from the “retail” directory using a wildcard.
	h114
	16. To empty the trash
	h115
	17. Finally, remove the entire retail directory and all
	of its contents in HDFS.
	h116
	18. List the hadoop directory again
	h117
	19. Add the purchases.txt file from the local directory
	named “/home/training/” to the hadoop directory you created in HDFS
	h118
	20. To view the contents of your text file purchases.txt
	which is present in your hadoop directory.
	h119
	21. Add the purchases.txt file from “hadoop” directory which is present in HDFS directory
	to the directory “data” which is present in your local directory
	h120
	22. cp is used to copy files between directories present in HDFS
	h121
	23. ‘-get’ command can be used alternaively to ‘-copyToLocal’ command
	h122
	24. Display last kilobyte of the file “purchases.txt” to stdout.
	h123
	25. Default file permissions are 666 in HDFS
	Use ‘-chmod’ command to change permissions of a file
	h124
	26. Default names of owner and group are training,training
	Use ‘-chown’ to change owner name and group name simultaneously
	h125
	27. Default name of group is training
	Use ‘-chgrp’ command to change group name
	h126
	28. Move a directory from one location to other
	h127
	29. Default replication factor to a file is 3.
	Use ‘-setrep’ command to change replication factor of a file
	h128
	30. Copy a directory from one node in the cluster to another
	Use ‘-distcp’ command to copy,
	-overwrite option to overwrite in an existing files
	-update command to synchronize both directories
	h129
	31. Command to make the name node leave safe mode
	h130
	32. List all the hadoop file system shell commands
	h131
	33. Get hdfs quota values and the current count of names and bytes in use.
	h132
	34. Last but not least, always ask for help!
	h133
	Hadoop v2 Commands

	Chapter 4: Hadoop load data
	Examples
	Load data into hadoop hdfs

	hadoop fs -mkdir:
	Usage:
	Example:
	hadoop fs -put:
	Usage:
	Example:
	hadoop fs -copyFromLocal:
	Usage:
	Example:
	hadoop fs -moveFromLocal:
	Usage:
	Example:
	Usage:
	Example:
	Chapter 5: hue
	Introduction
	Examples
	Setup process

	Instalation Dependencies
	Hue Installation in Ubuntu

	Chapter 6: Introduction to MapReduce
	Syntax
	Remarks
	Examples
	Word Count Program(in Java & Python)

	Chapter 7: What is HDFS?
	Remarks
	Examples
	HDFS - Hadoop Distributed File System
	Finding files in HDFS
	Blocks and Splits HDFS

	Credits

