[]] FREE eBook

LEARNING Haskell Language

Free unaffiliated eBook created from Stack Overflow contributors.

Table of Contents

About 1
Chapter 1: Getting started with Haskell Language 2
Remarks 2
Features: 2
Versions 2
Examples 3
Hello, World! 3
Explanation: 4
Factorial 5
Variation 1 5
Variation 2 5
Fibonacci, Using Lazy Evaluation 6
Getting started 7
Online REPL 7
GHC(i) 7
More advanced tools 9
Primes 9
Below 100 9
Unlimited 10
Traditional 10
Optimal trial division 10
Transitional 10
The Shortest Code 10
Declaring Values 10
Chapter 2: Applicative Functor 12
Introduction 12
Remarks 12
Definition 12
Examples 12
Alternative definition 12
Common instances of Applicative 13
Maybe 13
Lists 13
Infinite streams and zip-lists 13
Functions 14
Chapter 3: Arbitrary-rank polymorphism with RankNTypes 16
Introduction 16
Syntax 16
Examples 16
RankNTypes 16
Chapter 4: Arithmetic 17
Introduction 17
Remarks 17
The numeric typeclass hierarchy 17
Examples 19
Basic examples 19
Could not deduce (Fractional Int) 19
Function examples 20
Chapter 5: Arrows 21
Examples 21
Function compositions with multiple channels 21
Chapter 6: Attoparsec 23
Introduction 23
Parameters 23
Examples 23
Combinators 23
Bitmap - Parsing Binary Data 24
Chapter 7: Bifunctor 26
Syntax 26
Remarks 26
Examples 26
Common instances of Bifunctor 26
Two-element tuples 26
Either 26
first and second 27
Definition of Bifunctor 27
Chapter 8: Cabal 28
Syntax 28
Examples 29
Install packages 29
Working with sandboxes 29
Chapter 9: Category Theory 31
Examples 31
Category theory as a system for organizing abstraction 31
An example 31
A hint of Category Theory 31
Definition of a Category 32
Haskell types as a category 33
Definition of the category 33
Isomorphisms 33
Functors 33
Monads 34
Product of types in Hask 34
Categorical products 34
Products in Hask 35
Uniqueness up to isomorphism 35
Uniqueness of the decomposition 36
Coproduct of types in Hask 36
Intuition 36
Categorical coproducts 36
Coproducts in Hask 36
Haskell Applicative in terms of Category Theory 37
Chapter 10: Common functors as the base of cofree comonads 38
Examples 38
Cofree Empty ~ Empty 38
Cofree (Const c) ~~Writer c 38
Cofree Identity ~~Stream 38
Cofree Maybe ~~NonEmpty 39
Cofree (Writer w) ~~WriterT w Stream 39
Cofree (Either e) ~~NonEmptyT (Writer e) 39
Cofree (Reader x) ~~Moore x 40
Chapter 11: Common GHC Language Extensions 41
Remarks 41
Examples 41
MultiParamTypeClasses 41
FlexibleInstances 41
OverloadedStrings 42
TupleSections 42
N -tuples 42
Mapping 43
UnicodeSyntax 43
BinaryLiterals 44
ExistentialQuantification 44
LambdaCase 45
RankNTypes 46
OverloadedLists 47
FunctionalDependencies 47
GADTs 48
ScopedTypeVariables 49
PatternSynonyms 49
RecordWildCards 50
Chapter 12: Common monads as free monads 51
Examples 51
Free Empty ~ ~ Identity 51
Free Identity ~~ (Nat,) ~~ Writer Nat 51
Free Maybe ~~ MaybeT (Writer Nat) 52
Free (Writer w) ~~ Writer [w] 52
Free (Const c) ~~ Either c 52
Free (Reader x) ~~ Reader (Stream x) 53
Chapter 13: Concurrency 54
Remarks 54
Examples 54
Spawning Threads with `forkIO` 54
Communicating between Threads with `MVar` 54
Atomic Blocks with Software Transactional Memory 55
atomically :: STM a -> IO a 56
readTVar :: TVar a -> STM a 56
writeTVar :: TVar a -> a -> STM () 56
Chapter 14: Containers - Data.Map 57
Examples 57
Constructing 57
Checking If Empty 57
Finding Values 57
Inserting Elements 58
Deleting Elements 58
Importing the Module 58
Monoid instance 58
Chapter 15: Creating Custom Data Types 60
Examples 60
Creating a simple data type 60
Creating variables of our custom type 60
Creating a data type with value constructor parameters 60
Creating variables of our custom type 61
Creating a data type with type parameters 61
Creating variables of our custom type 61
Custom data type with record parameters. 61
Chapter 16: Data.Aeson - JSON in Haskell 63
Examples 63
Smart Encoding and Decoding using Generics 63
A quick way to generate a Data.Aeson.Value 64
Optional Fields 64
Chapter 17: Data.Text 65
Remarks 65
Examples 65
Text Literals 65
Stripping whitespace 65
Splitting Text Values 66
Encoding and Decoding Text 66
Checking if a Text is a substring of another Text 67
Indexing Text 67
Chapter 18: Databases 69
Examples 69
Postgres 69
Parameter substitution 69
Executing inserts or updates 69
Chapter 19: Date and Time 70
Syntax 70
Remarks 70
Examples 70
Finding Today's Date 70
Adding, Subtracting and Comparing Days. 70
Chapter 20: Fixity declarations 72
Syntax 72
Parameters 72
Remarks 72
Examples 73
Associativity 73
Binding precedence 73
Remarks 73
Example declarations 74
Chapter 21: Foldable 75
Introduction 75
Remarks 75
Examples 75
Counting the elements of a Foldable structure 75
Folding a structure in reverse 75
An instance of Foldable for a binary tree. 76
Flattening a Foldable structure into a list. 77
Performing a side-effect for each element of a Foldable structure 77
Flattening a Foldable structure into a Monoid 78
Definition of Foldable 79
Checking if a Foldable structure is empty 79
Chapter 22: Foreign Function Interface 80
Syntax 80
Remarks 80
Examples 80
Calling C from Haskell. 80
Passing Haskell functions as callbacks to C code. 81
Chapter 23: Free Monads 83
Examples 83
Free monads split monadic computations into data structures and interpreters 83
Free Monads are like fixed points 84
How do foldFree and iterM work? 84
The Freer monad 85
Chapter 24: Function call syntax 87
Introduction 87
Remarks 87
Examples 87
Parentheses in a basic function call 87
Parentheses in embedded function calls 87
Partial application - Part 1 88
Partial application - Part 2 88
Chapter 25: Function composition 90
Remarks 90
Examples 91
Right-to-left composition 91
Left-to-right composition 91
Composition with binary function 91
Chapter 26: Functor 93
Introduction 93
Remarks 93
Identity 93
Composition 93
Examples 93
Common instances of Functor 93
Maybe 93
Lists 94
Functions 95
Class Definition of Functor and Laws 95
Replacing all elements of a Functor with a single value 96
Polynomial functors 96
The identity functor 96
The constant functor 97
Functor products 97
Functor coproducts 97
Functor composition 98
Polynomial functors for generic programming 98
Functors in Category Theory 99
Deriving Functor 100
Chapter 27: Generalized Algebraic Data Types 101
Examples 101
Basic Usage 101
Chapter 28: GHCJS 102
Introduction 102
Examples 102
Running "Hello World!" with Node.js 102
Chapter 29: Google Protocol Buffers 103
Remarks 103
Examples 103
Creating, building and using a simple .proto file 103
Chapter 30: Graphics with Gloss 105
Examples 105
Installing Gloss 105
Getting something on the screen 105
Chapter 31: Gtk3 107
Syntax 107
Remarks 107
Examples 107
Hello World in Gtk 107
Chapter 32: Higher-order functions 109
Remarks 109
Examples 109
Basics of Higher Order Functions 109
Lambda Expressions 110
Currying 110
Chapter 33: Infix operators 112
Remarks 112
Examples 112
Prelude 112
Logical 112
Arithmetic operators 112
Lists 112
Control flow 113
Custom operators 113
Finding information about infix operators 114
Chapter 34: IO 115
Examples 115
Reading all contents of standard input into a string 115
Reading a line from standard input 115
Parsing and constructing an object from standard input 115
Reading from file handles 116
Checking for end-of-file conditions 117
Reading words from an entire file 117
IO defines your program's `main` action 118
Role and Purpose of 10 119
Manipulating IO values 119
IO semantics 120
Lazy IO 121
IO and do notation 121
Getting the 'a' "out of" 'IO a' 122
Writing to stdout 122
putChar :: Char -> IO () - writes a char to stdout 122
putStr :: String -> IO () - writes a String to stdout 122
putStrLn :: String -> IO () - writes a String to stdout and adds a new line 122
print :: Show a => a -> IO () - writes a an instance of Show to stdout 123
Reading from `stdin` 123
getChar :: IO Char - read a Char from stdin 123
getLine :: IO String - read a String from stdin, sans new line character 123
read $::$ Read a => String -> a - convert a String to a value 124
Chapter 35: Lens 125
Introduction 125
Remarks 125
What is a Lens? 125
Focusing 125
Other Optics 125
Composition 126
In Haskell 126
Examples 126
Manipulating tuples with Lens 126
Lenses for records 127
Simple record 127
Managing records with repeating fields names 127
Stateful Lenses 128
Getting rid of \& chains 128
Imperative code with structured state 128
Writing a lens without Template Haskell 129
Lens and Prism 129
Traversals 130
Lenses compose 130
Classy Lenses 131
Fields with makeFields 131
Chapter 36: List Comprehensions 134
Examples 134
Basic List Comprehensions 134
Patterns in Generator Expressions 134
Guards 135
Nested Generators 135
Parallel Comprehensions 135
Local Bindings 136
Do Notation 136
Chapter 37: Lists 137
Syntax 137
Remarks 137
Examples 138
List Literals 138
List Concatenation 138
List basics 138
Processing lists 139
Accessing elements in lists 139
Ranges 140
Basic Functions on Lists 141
fold 141
foldr 142
Transforming with `map` 142
Filtering with `filter 143 Zipping and Unzipping Lists 143 Chapter 38: Logging 145 Introduction 145 Examples 145 Logging with hslogger 145 Chapter 39: Modules 146 Syntax 146 Remarks 146 Examples 146 Defining Your Own Module 146 Exporting Constructors 147 Importing Specific Members of a Module 147 Hiding Imports 147 Qualifying Imports 148 Hierarchical module names 148 Chapter 40: Monad Transformers 149 Examples 149 A monadic counter 149 Adding an environment 149 The requirements changed: we need logging! 150 Doing everything in one go 151 Chapter 41: Monads 153 Introduction 153 Examples 153 The Maybe monad 153 10 monad 155 List Monad 156 Monad as a Subclass of Applicative 157 No general way to extract value from a monadic computation 157 do-notation 157 Definition of Monad 158 Chapter 42: Monoid 160 Examples 160 An instance of Monoid for lists 160 Collapsing a list of Monoids into a single value 160 Numeric Monoids 160 An instance of Monoid for () 161 Chapter 43: Optimization 162 Examples 162 Compiling your Program for Profiling 162 Cost Centers 163 Chapter 44: Overloaded Literals 164 Remarks 164 Integer Literals 164 Fractional Literals 164 String Literals 164 List Literals 164 Examples 165 Integer Numeral 165 The type of the literal 165 choosing a concrete type with annotations 165 Floating Numeral 165 The type of the literal 165 Choosing a concrete type with annotations 165 Strings 166 The type of the literal 166 Using string literals 166 List Literals 167 Chapter 45: Parallelism 168 Parameters 168 Remarks 168 Examples 169 The Eval Monad 169 rpar 169 rseq 170 Chapter 46: Parsing HTML with taggy-lens and lens 171 Examples 171 Extract the text contents from a div with a particular id 171 Filtering elements from the tree 171 Chapter 47: Partial Application 173 Remarks 173 Examples 173 Partially Applied Adding Function 173 Returning a Partially Applied Function 174 Sections 174 A Note on Subtraction 174 Chapter 48: Phantom types 176 Examples 176 Use Case for Phantom Types: Currencies 176 Chapter 49: Pipes 177 Remarks 177 Examples 177 Producers. 177 Consumers 177 Pipes 178 Running Pipes with runEffect 178 Connecting Pipes 178 The Proxy monad transformer 179 Combining Pipes and Network communication 179 Chapter 50: Profunctor 182 Introduction 182 Syntax 182 Remarks 182 Examples 182 (->) Profunctor 183 Chapter 51: Proxies 184 Examples 184 Using Proxy 184 The "polymorphic proxy" idiom 184 Proxy is like () 185 Chapter 52: QuickCheck 186 Examples 186 Declaring a property 186 Checking a single property 186 Checking all the properties in a file 186 Randomly generating data for custom types 187 Using implication (==>) to check properties with preconditions 187 Limiting the size of test data 187 Chapter 53: Reactive-banana 189 Examples 189 Injecting external events into the library 189 Event type 189 Behavior type 190 Actuating EventNetworks 191 Chapter 54: Reader / ReaderT 192 Introduction 192 Examples 192 Simple demonstration 192 Chapter 55: Record Syntax 194 Examples 194 Basic Syntax 194 Copying Records while Changing Field Values 195 Records with newtype 195 RecordWildCards 196 Defining a data type with field labels 196 Pattern Matching 197 Pattern Matching with NamedFieldPuns 197 Pattern Matching with RecordWildcards 197 Record Updates 197 Chapter 56: Recursion Schemes 198 Remarks 198 Examples 198 Fixed points 198 Folding up a structure one layer at a time 199 Unfolding a structure one layer at a time 199 Unfolding and then folding, fused 199 Primitive recursion 200 Primitive corecursion 200 Chapter 57: Rewrite rules (GHC) 201 Examples 201 Using rewrite rules on overloaded functions 201 Chapter 58: Role 202 Introduction 202 Remarks 202 Examples 202 Nominal Role 202 Representational Role 202 Phantom Role 203 Chapter 59: Sorting Algorithms 204 Examples. 204 Insertion Sort 204 Merge Sort 204 Quicksort 205 Bubble sort 205 Permutation Sort 205 Selection sort 205 Chapter 60: Stack 207 Examples 207 Installing Stack 207 Creating a simple project. 207 Structure 207 File structure 207 Running the program 207 Stackage Packages and changing the LTS (resolver) version 208 Adding lens to a project. 208 Build and Run a Stack Project 208 Stack install. 209 Profiling with Stack 209 Viewing dependencies 209 Chapter 61: State Monad 211 Introduction 211 Remarks 211 Examples 211 Numbering the nodes of a tree with a counter 211 The long way 211 Refactoring 212 Split out the counter into a postIncrement action 212 Split out the tree walk into a higher-order function 212 Use the Traversable class 213 Getting rid of the Traversable boilerplate 213 Chapter 62: Streaming IO 214 Examples 214 Streaming IO 214 Chapter 63: Strictness 215 Examples 215 Bang Patterns 215 Normal forms 215 Reduced normal form 215 Weak head normal form 215 Lazy patterns 216 Strict fields 217 Chapter 64: Syntax in Functions 219 Examples 219 Guards 219 Pattern Matching 219 Using where and guards 220 Chapter 65: Template Haskell \& QuasiQuotes 221 Remarks 221 What is Template Haskell? 221 What are stages? (Or, what is the stage restriction?) 221 Using Template Haskell causes not-in-scope errors from unrelated identifiers? 221 Examples 222 The Q type 222 An n-arity curry 223 Syntax of Template Haskell and Quasiquotes 224 Splices 224 Expression quotations (note: not a QuasiQuotation) 225 Typed splices and quotations 225 QuasiQuotes 225 Names 226 Chapter 66: Testing with Tasty 227 Examples 227 SmallCheck, QuickCheck and HUnit 227 Chapter 67: Traversable 228 Introduction 228 Examples 228 Instantiating Functor and Foldable for a Traversable structure 228 An instance of Traversable for a binary tree 229 Traversing a structure in reverse 230 Definition of Traversable 230 Transforming a Traversable structure with the aid of an accumulating parameter 231 Traversable structures as shapes with contents 232 Transposing a list of lists 232 Chapter 68: Tuples (Pairs, Triples, ...) 234 Remarks 234 Examples 234 Construct tuple values 234 Write tuple types 234 Pattern Match on Tuples 235 Extract tuple components 235 Apply a binary function to a tuple (uncurrying) 236 Apply a tuple function to two arguments (currying) 236 Swap pair components 236 Strictness of matching a tuple 237 Chapter 69: Type algebra 238 Examples 238 Natural numbers in type algebra 238 Finite union types 238 Uniqueness up to isomorphism 238 One and Zero 239 Addition and multiplication 239 Rules of addition and multiplication 240 Recursive types 240 Lists 240 Trees 240 Derivatives 241 Functions 241 Chapter 70: Type Application 242 Introduction 242 Examples 242 Avoiding type annotations 242 Type applications in other languages 243 Order of parameters 243 Interaction with ambiguous types 244 Chapter 71: Type Classes 245 Introduction 245 Remarks 245 Examples 245 Maybe and the Functor Class 245 Type class inheritance: Ord type class 246 Eq. 247 Required methods 247 Defines 247 Direct superclasses 247 Notable subclasses 247 Ord 248 Required methods 248 Defines 248 Direct superclasses 248 Monoid 248 Required methods 249 Direct superclasses 249 Num 249 The methods 249 Chapter 72: Type Families 252 Examples 252 Type Synonym Families 252 Closed type-synonym families 252 Open type-synonym families 252 Class-associated type synonyms 252 Datatype Families 253 Standalone data families 253 Associated data families 253 Injectivity 254 Chapter 73: Typed holes 255 Remarks 255 Examples 255 Syntax of typed holes 255 Controlling behaviour of typed holes 255 Semantics of typed holes 255 Using typed holes to define a class instance 256 Chapter 74: Using GHCi 259 Remarks 259 Examples 259 Starting GHCi 259 Changing the GHCi default prompt 259 The GHCi configuration file 259 Loading a file 259 Quitting GHCi 260 Reloading a already loaded file. 260 Breakpoints with GHCi 260 Multi-line statements 261 Chapter 75: Vectors 262 Remarks 262 Examples 262 The Data.Vector Module 262 Filtering a Vector 263 Mapping ('map') and Reducing ('fold') a Vector 263 Working on Multiple Vectors 263 Chapter 76: Web Development 264 Examples 264 Servant 264 Yesod 265 Chapter 77: XML 267 Introduction 267 Examples 267 Encoding a record using the 'xml` library 267
Chapter 78: zipWithM 268
Introduction 268
Syntax 268
Examples 268
Calculatings sales prices 268
Credits 269

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version from: haskell-language

It is an unofficial and free Haskell Language ebook created for educational purposes. All the content is extracted from Stack Overflow Documentation, which is written by many hardworking individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Haskell Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each chapter are provided in the credits section at the end of this book. Images may be copyright of their respective owners unless otherwise specified. All trademarks and registered trademarks are the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor accurate, please send your feedback and corrections to info@zzzprojects.com

Chapter 1: Getting started with Haskell Language

Remarks

》=Haskell

Haskell is an advanced purely-functional programming language.

Features:

- Statically typed: Every expression in Haskell has a type which is determined at compile time. Static type checking is the process of verifying the type safety of a program based on analysis of a program's text (source code). If a program passes a static type checker, then the program is guaranteed to satisfy some set of type safety properties for all possible inputs.
- Purely functional: Every function in Haskell is a function in the mathematical sense. There are no statements or instructions, only expressions which cannot mutate variables (local or global) nor access state like time or random numbers.
- Concurrent: Its flagship compiler, GHC, comes with a high-performance parallel garbage collector and light-weight concurrency library containing a number of useful concurrency primitives and abstractions.
- Lazy evaluation: Functions don't evaluate their arguments. Delays the evaluation of an expression until its value is needed.
- General-purpose: Haskell is built to be used in all contexts and environments.
- Packages: Open source contribution to Haskell is very active with a wide range of packages available on the public package servers.

The latest standard of Haskell is Haskell 2010. As of May 2016, a group is working on the next version, Haskell 2020.

The official Haskell documentation is also a comprehensive and useful resource. Great place to find books, courses, tutorials, manuals, guides, etc.

Versions

Version	Release Date
Haskell 2010	$2012-07-10$
Haskell 98	$2002-12-01$

Examples

Hello, World!

A basic "Hello, World!" program in Haskell can be expressed concisely in just one or two lines:

```
main :: IO ()
main = putStrLn "Hello, World!"
```

The first line is an optional type annotation, indicating that main is a value of type io (), representing an I/O action which "computes" a value of type () (read "unit"; the empty tuple conveying no information) besides performing some side effects on the outside world (here, printing a string at the terminal). This type annotation is usually omitted for main because it is its only possible type.

Put this into a helloworld.hs file and compile it using a Haskell compiler, such as GHC:

```
ghc helloworld.hs
```

Executing the compiled file will result in the output "He11o, World!" being printed to the screen:

```
./helloworld
Hello, World!
```

Alternatively, runhaskell or runghc make it possible to run the program in interpreted mode without having to compile it:

```
runhaskell helloworld.hs
```

The interactive REPL can also be used instead of compiling. It comes shipped with most Haskell environments, such as ghci which comes with the GHC compiler:

```
ghci> putStrLn "Hello World!"
Hello, World!
ghci>
```

Alternatively, load scripts into ghci from a file using load (or :1):

```
ghci> :load helloworld
```

:reload (or :r) reloads everything in ghci:

```
Prelude> :l helloworld.hs
[1 of 1] Compiling Main ( helloworld.hs, interpreted )
<some time later after some edits>
*Main> :r
```

```
Ok, modules loaded: Main.
```


Explanation:

This first line is a type signature, declaring the type of main:

```
main :: IO ()
```

Values of type io () describe actions which can interact with the outside world.
Because Haskell has a fully-fledged Hindley-Milner type system which allows for automatic type inference, type signatures are technically optional: if you simply omit the main :: io (), the compiler will be able to infer the type on its own by analyzing the definition of main. However, it is very much considered bad style not to write type signatures for top-level definitions. The reasons include:

- Type signatures in Haskell are a very helpful piece of documentation because the type system is so expressive that you often can see what sort of thing a function is good for simply by looking at its type. This "documentation" can be conveniently accessed with tools like GHCi. And unlike normal documentation, the compiler's type checker will make sure it actually matches the function definition!
- Type signatures keep bugs local. If you make a mistake in a definition without providing its type signature, the compiler may not immediately report an error but instead simply infer a nonsensical type for it, with which it actually typechecks. You may then get a cryptic error message when using that value. With a signature, the compiler is very good at spotting bugs right where they happen.

This second line does the actual work:

```
main = putStrLn "Hello, World!"
```

If you come from an imperative language, it may be helpful to note that this definition can also be written as:

```
main = do {
    putStrLn "Hello, World!" ;
    return ()
    }
```

Or equivalently (Haskell has layout-based parsing; but beware mixing tabs and spaces inconsistently which will confuse this mechanism):

```
main = do
    putStrLn "Hello, World!"
    return ()
```

Each line in a do block represents some monadic (here, I/O) computation, so that the whole do block represents the overall action comprised of these sub-steps by combining them in a manner specific to the given monad (for I/O this means just executing them one after another).

The do syntax is itself a syntactic sugar for monads, like io here, and return is a no-op action producing its argument without performing any side effects or additional computations which might be part of a particular monad definition.

The above is the same as defining main = putStrin "Hello, World!", because the value putStrln "Hello, World!" already has the type io (). Viewed as a "statement", putStrln "Hello, World!" can be seen as a complete program, and you simply define main to refer to this program.

You can look up the signature of putStrin online:

```
putStrLn :: String -> IO ()
-- thus,
putStrLn (v :: String) :: IO ()
```

putstrin is a function that takes a string as its argument and outputs an I/O-action (i.e. a value representing a program that the runtime can execute). The runtime always executes the action named main, so we simply need to define it as equal to putStrin "Hello, world!".

Factorial

The factorial function is a Haskell "Hello World!" (and for functional programming generally) in the sense that it succinctly demonstrates basic principles of the language.

Variation 1

```
fac :: (Integral a) => a -> a
fac n = product [1..n]
```


Live demo

- Integral is the class of integral number types. Examples include Int and Integer.
- (Integral a) => places a constraint on the type a to be in said class
- fac :: a -> a says that fac is a function that takes an a and returns an a
- product is a function that accumulates all numbers in a list by multiplying them together.
- $[1 . . \mathrm{n}]$ is special notation which desugars to enumFromTo 1 n , and is the range of numbers $1 \leq$ $x \leq n$.

Variation 2

```
fac :: (Integral a) => a -> a
fac 0 = 1
fac n = n * fac (n - 1)
```


Live demo

This variation uses pattern matching to split the function definition into separate cases. The first definition is invoked if the argument is o (sometimes called the stop condition) and the second definition otherwise (the order of definitions is significant). It also exemplifies recursion as fac refers to itself.

It is worth noting that, due to rewrite rules, both versions of $f a c$ will compile to identical machine code when using GHC with optimizations activated. So, in terms of efficiency, the two would be equivalent.

Fibonacci, Using Lazy Evaluation

Lazy evaluation means Haskell will evaluate only list items whose values are needed.
The basic recursive definition is:

```
f (0) <- 0
f (1) <- 1
f (n) <- f (n-1) + f (n-2)
```

If evaluated directly, it will be very slow. But, imagine we have a list that records all the results,

```
fibs !! n <- f (n)
```

Then

This is coded as:

```
fibn n = fibs !! n
    where
    fibs = 0 : 1 : map f [2..]
    f n = fibs !! (n-1) + fibs !! (n-2)
```

Or even as

```
GHCi> let fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```

zipwith makes a list by applying a given binary function to corresponding elements of the two lists given to it, SO zipWith (+) [x1, x2, ...] [y1, y2, ...] is equal to [x1 + y1, x2 + y2, ...].

Another way of writing f fibs is with the scanı function:

```
GHCi> let fibs = 0 : scanl (+) 1 fibs
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```

scan builds the list of partial results that foldı would produce, working from left to right along the input list. That is, scanl f z0 $[x 1, x 2, \ldots]$ is equal to $[z 0, z 1, z 2, \ldots]$ where $z 1=f z 0 x 1 ; z 2=f$ z1 x2;

Thanks to lazy evaluation, both functions define infinite lists without computing them out entirely. That is, we can write a fib function, retrieving the nth element of the unbounded Fibonacci sequence:

```
GHCi> let fib n = fibs !! n -- (!!) being the list subscript operator
-- or in point-free style:
GHCi> let fib = (fibs !!)
GHCi> fib 9
34
```


Getting started

Online REPL

The easiest way to get started writing Haskell is probably by going to the Haskell website or Try Haskell and use the online REPL (read-eval-print-loop) on the home page. The online REPL supports most basic functionality and even some IO. There is also a basic tutorial available which can be started by typing the command help. An ideal tool to start learning the basics of Haskell and try out some stuff.

GHC(i)

For programmers that are ready to engage a little bit more, there is GHCi , an interactive environment that comes with the Glorious/Glasgow Haskell Compiler. The GHC can be installed separately, but that is only a compiler. In order to be able to install new libraries, tools like Cabal and Stack must be installed as well. If you are running a Unix-like operating system, the easiest installation is to install Stack using:

```
curl -sSL https://get.haskellstack.org/ | sh
```

This installs GHC isolated from the rest of your system, so it is easy to remove. All commands must be preceded by stack though. Another simple approach is to install a Haskell Platform. The platform exists in two flavours:

1. The minimal distribution contains only GHC (to compile) and Cabal/Stack (to install and build packages)
2. The full distribution additionally contains tools for project development, profiling and coverage analysis. Also an additional set of widely-used packages is included.

These platforms can be installed by downloading an installer and following the instructions or by using your distribution's package manager (note that this version is not guaranteed to be up-todate):

- Ubuntu, Debian, Mint:

```
sudo apt-get install haskell-platform
```

- Fedora:

```
sudo dnf install haskell-platform
```

- Redhat:

```
sudo yum install haskell-platform
```

- Arch Linux:

```
sudo pacman -S ghc cabal-install haskell-haddock-api \
    haskell-haddock-library happy alex
```

- Gentoo:

```
sudo layman -a haskell
sudo emerge haskell-platform
```

- OSX with Homebrew:

```
brew cask install haskell-platform
```

- OSX with MacPorts:

```
sudo port install haskell-platform
```

Once installed, it should be possible to start GHCi by invoking the ghci command anywhere in the terminal. If the installation went well, the console should look something like

```
me@notebook:~$ ghci
GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help
```

possibly with some more information on what libraries have been loaded before the Prelude>. Now, the console has become a Haskell REPL and you can execute Haskell code as with the online REPL. In order to quit this interactive environment, one can type :qor :quit. For more information on what commands are available in $G H C i$, type :? as indicated in the starting screen.

Because writing the same things again and again on a single line is not always that practically, it might be a good idea to write the Haskell code in files. These files normally have .hs for an extension and can be loaded into the REPL by using :1 or :load.

As mentioned earlier, $G H C i$ is a part of the $G H C$, which is actually a compiler. This compiler can be used to transform a .hs file with Haskell code into a running program. Because a .hs file can contain a lot of functions, a main function must be defined in the file. This will be the starting point for the program. The file test.hs can be compiled with the command

```
ghc test.hs
```

this will create object files and an executable if there were no errors and the main function was defined correctly.

More advanced tools

1. It has already been mentioned earlier as package manager, but stack can be a useful tool for Haskell development in completely different ways. Once installed, it is capable of

- installing (multiple versions of) GHC
- project creation and scaffolding
- dependency management
- building and testing projects
- benchmarking

2. IHaskell is a haskell kernel for IPython and allows to combine (runnable) code with markdown and mathematical notation.

Primes

A few most salient variants:

Below 100

```
import Data.List ( (\\) )
ps100=((([2..100] \\ [4,6..100]) \\ [6,9..100]) \\ [10,15..100]) \\ [14,21..100]
    -- = (((2:[3,5..100]) \\ [9,15..100]) \\ [25,35..100]) \\ [49,63..100]
```

```
-- = (2:[3,5..100]) \\ ([9,15..100] ++ [25,35..100] ++ [49,63..100])
```


Unlimited

Sieve of Eratosthenes, using data-ordlist package:

```
import qualified Data.List.Ordered
ps = 2 : _Y ((3:) . minus [5,7..] . unionAll . map (\p -> [p*p, p*p+2*p..]))
_Y g=g(_Y g) -- = g (g (_Y g)) = g (g (g (g (...)))) = g. g. g. g . ...
```


Traditional

(a sub-optimal trial division sieve)

```
ps = sieve [2..]
    where
    sieve (x:xs) = [x] ++ sieve [y | y <- xs, rem y x > 0]
-- = map head ( iterate (\(x:xs) -> filter ((> 0).(`rem` x)) xs) [2..] )
```

Optimal trial division

```
ps = 2 : [n | n <- [3..], all ((> 0).rem n) $ takeWhile ((<= n). (^2)) ps]
-- = 2 : [n | n <- [3..], foldr (\p r-> p*p>n || (rem n p > 0 && r)) True ps]
```


Transitional

From trial division to sieve of Eratosthenes:

```
[n | n <- [2..], []==[i | i <- [2..n-1], j <- [0,i..n], j==n]]
```

The Shortest Code

```
nubBy (((>1).).gcd) [2..] -- i.e., nubBy (\a b -> gcd a b > 1) [2..]
```

nubBy is also from Data. List, like (\backslash).

Declaring Values

We can declare a series of expressions in the REPL like this:

```
Prelude> let x = 5
Prelude> let y = 2 * 5 + x
Prelude> let result = y * 10
Prelude> x
```

```
5
Prelude> y
1 5
Prelude> result
150
```

To declare the same values in a file we write the following:

```
-- demo.hs
module Demo where
-- We declare the name of our module so
-- it can be imported by name in a project.
x = 5
y = 2 * 5 + x
result = y * 10
```

Module names are capitalized, unlike variable names.
Read Getting started with Haskell Language online:
https://riptutorial.com/haskell/topic/251/getting-started-with-haskell-language

Chapter 2: Applicative Functor

Introduction

Applicative is the class of types $\mathrm{f}:$: * -> * which allows lifted function application over a structure where the function is also embedded in that structure.

Remarks

Definition

```
class Functor f => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b
```

Note the ${ }_{\text {Functor }}$ constraint on f. The pure function returns its argument embedded in the Applicative structure. The infix function <*> (pronounced "apply") is very similar to fmap except with the function embedded in the Applicative structure.

A correct instance of Applicative should satisfy the applicative laws, though these are not enforced by the compiler:

```
pure id <*> a = a -- identity
pure (.) <*> a <*> b <*> c = a <*> (b <*> c) -- composition
pure f <*> pure a = pure (f a) -- homomorphism
a <*> pure b = pure ($ b) <*> a -- interchange
```


Examples

Alternative definition

Since every Applicative Functor is a Functor, fmap can always be used on it; thus the essence of Applicative is the pairing of carried contents, as well as the ability to create it:

```
class Functor f => PairingFunctor f where
    funit :: f () -- create a context, carrying nothing of import
    fpair :: (f a,f b) -> f (a,b) -- collapse a pair of contexts into a pair-carrying context
```

This class is isomorphic to Applicative.

```
pure a = const a <$> funit = a <$ funit
fa <*> fb = (\(a,b) -> a b) <$> fpair (fa, fb) = uncurry ($) <$> fpair (fa, fb)
```

Conversely,

```
funit = pure ()
fpair (fa, fb) = (,) <$> fa <*> fb
```


Common instances of Applicative

Maybe

Maybe is an applicative functor containing a possibly-absent value.

```
instance Applicative Maybe where
    pure = Just
    Just f <*> Just x = Just $ f x
    _ <*> _ = Nothing
```

pure lifts the given value into maybe by applying Just to it. The (<*>) function applies a function wrapped in a maybe to a value in a maybe. If both the function and the value are present (constructed with Just), the function is applied to the value and the wrapped result is returned. If either is missing, the computation can't proceed and Nothing is returned instead.

Lists

One way for lists to fit the type signature <*> :: [a -> b] -> [a] -> [b] is to take the two lists' Cartesian product, pairing up each element of the first list with each element of the second one:

```
fs <*> XS = [f x | f <- fs, x <- XS]
    -- = do { f <- fs; x <- xs; return (f x) }
pure x = [x]
```

This is usually interpreted as emulating nondeterminism, with a list of values standing for a nondeterministic value whose possible values range over that list; so a combination of two nondeterministic values ranges over all possible combinations of the values in the two lists:

```
ghci> [(+1),(+2)] <*> [3,30,300]
[4,31,301,5,32,302]
```


Infinite streams and zip-lists

There's a class of ApplicativeS which "zip" their two inputs together. One simple example is that of infinite streams:

```
data Stream a = Stream { headS :: a, tailS :: Stream a }
```

Stream'S Applicative instance applies a stream of functions to a stream of arguments point-wise, pairing up the values in the two streams by position. pure returns a constant stream - an infinite list of a single fixed value:

```
instance Applicative Stream where
    pure x = let s = Stream x s in s
    Stream f fs <*> Stream x xs = Stream (f x) (fs <*> xS)
```

Lists too admit a "zippy" Applicative instance, for which there exists the zipList newtype:

```
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
    ZipList xs <*> ZipList ys = ZipList $ zipWith ($) xs ys
```

Since zip trims its result according to the shortest input, the only implementation of pure that satisfies the Applicative laws is one which returns an infinite list:

```
pure a = ZipList (repeat a) -- ZipList (fix (a:)) = ZipList [a,a,a,a,...
```

For example:

```
ghci> getZipList $ ZipList [(+1),(+2)] <*> ZipList [3, 30,300]
[4,32]
```

The two possibilities remind us of the outer and the inner product, similar to multiplying a 1-column $(\mathrm{n} \times 1)$ matrix with a 1-row ($1 \times \mathrm{m}$) one in the first case, getting the $\mathrm{n} \times \mathrm{m}$ matrix as a result (but flattened); or multiplying a 1-row and a 1-column matrices (but without the summing up) in the second case.

Functions

When specialised to functions (->) r, the type signatures of pure and <*> match those of the k and s combinators, respectively:

```
pure :: a -> (r -> a)
<*> :: (r -> (a -> b)) -> (r -> a) -> (r -> b)
```

pure must be const, and <*> takes a pair of functions and applies them each to a fixed argument, applying the two results:

```
instance Applicative ((->) r) where
    pure = const
    f <*> g = \x -> f x (g x)
```

Functions are the prototypical "zippy" applicative. For example, since infinite streams are isomorphic to (->) Nat, ...

```
-- | Index into a stream
to :: Stream a -> (Nat -> a)
to (Stream x xs) Zero = x
to (Stream x xs) (Suc n) = to xs n
-- | List all the return values of the function in order
from :: (Nat -> a) -> Stream a
from f = from' Zero
    where from' n = Stream (f n) (from' (Suc n))
```

.. representing streams in a higher-order way produces the zippy Applicative instance automatically.

Read Applicative Functor online: https://riptutorial.com/haskell/topic/8162/applicative-functor

Chapter 3: Arbitrary-rank polymorphism with RankNTypes

Introduction

GHC's type system supports arbitrary-rank explicit universal quantification in types through the use of the Rank 2 Types 2 and Rankntypes language extensions.

Syntax

- Arbitrary rank quantification is enabled with either the Rank2Types or Rankntypes language extension.
- With this extension enabled, the forall keyword can be used to add higher-rank quantification.

Examples

RankNTypes

StackOverflow forces me to have one example. If this topic is approved, we should move this example here.

Read Arbitrary-rank polymorphism with RankNTypes online:
https://riptutorial.com/haskell/topic/8984/arbitrary-rank-polymorphism-with-rankntypes

Chapter 4: Arithmetic

Introduction

In Haskell, all expressions (which includes numerical constants and functions operating on those) have a decidable type. At compile time, the type-checker infers the type of an expression from the types of the elementary functions that compose it. Since data is immutable by default, there are no "type casting" operations, but there are functions that copy data and generalize or specialize the types within reason.

Remarks

The numeric typeclass hierarchy

Num sits at the root of the numeric typeclass hierarchy. Its characteristic operations and some common instances are shown below (the ones loaded by default with Prelude plus those of Data.Complex):

```
\lambda> :i Num
class Num a where
    (+) :: a -> a -> a
    (-) :: a -> a -> a
    (*) :: a -> a -> a
    negate :: a -> a
    abs :: a -> a
    signum :: a -> a
    fromInteger :: Integer -> a
    {-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}
        -- Defined in 'GHC.Num'
instance RealFloat a => Num (Complex a) -- Defined in 'Data.Complex'
instance Num Word -- Defined in 'GHC.Num'
instance Num Integer -- Defined in 'GHC.Num'
instance Num Int -- Defined in 'GHC.Num'
instance Num Float -- Defined in 'GHC.Float'
instance Num Double -- Defined in 'GHC.Float'
```

We have already seen the Fractional class, which requires num and introduces the notions of "division" (/) and reciprocal of a number:

```
\lambda> :i Fractional
class Num a => Fractional a where
    (/) :: a -> a -> a
    recip :: a -> a
    fromRational :: Rational -> a
    {-# MINIMAL fromRational, (recip | (/)) #-}
        -- Defined in 'GHC.Real'
instance RealFloat a => Fractional (Complex a) -- Defined in 'Data.Complex'
instance Fractional Float -- Defined in 'GHC.Float'
instance Fractional Double -- Defined in 'GHC.Float'
```

The Real class models .. the real numbers. It requires Num and ord, therefore it models an ordered numerical field. As a counterexample, Complex numbers are not an ordered field (i.e. they do not possess a natural ordering relationship):

```
\lambda> :i Real
class (Num a, Ord a) => Real a where
    toRational :: a -> Rational
    {-# MINIMAL toRational #-}
            -- Defined in 'GHC.Real'
instance Real Word -- Defined in 'GHC.Real'
instance Real Integer -- Defined in 'GHC.Real'
instance Real Int -- Defined in 'GHC.Real'
instance Real Float -- Defined in 'GHC.Float'
instance Real Double -- Defined in 'GHC.Float'
```

RealFrac represents numbers that may be rounded

```
\lambda> :i RealFrac
class (Real a, Fractional a) => RealFrac a where
    properFraction :: Integral b => a -> (b, a)
    truncate :: Integral b => a -> b
    round :: Integral b => a -> b
    ceiling :: Integral b => a -> b
    floor :: Integral b => a -> b
    {-# MINIMAL properFraction #-}
            -- Defined in 'GHC.Real'
instance RealFrac Float -- Defined in 'GHC.Float'
instance RealFrac Double -- Defined in 'GHC.Float'
```

Floating (which implies Fractional) represents constants and operations that may not have a finite decimal expansion.

```
\lambda> :i Floating
class Fractional a => Floating a where
    pi :: a
    exp :: a -> a
    log :: a -> a
    sqrt :: a -> a
    (**) :: a -> a -> a
    logBase :: a -> a -> a
    sin :: a -> a
    cos :: a -> a
    tan :: a -> a
    asin :: a -> a
    acos :: a -> a
    atan :: a -> a
    sinh :: a -> a
    cosh :: a -> a
    tanh :: a -> a
    asinh :: a -> a
    acosh :: a -> a
    atanh :: a -> a
    GHC.Float.log1p :: a -> a
    GHC.Float.expm1 :: a -> a
    GHC.Float.log1pexp :: a -> a
    GHC.Float.log1mexp :: a -> a
    {-# MINIMAL pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh,
```

```
        asinh, acosh, atanh #-}
    -- Defined in 'GHC.Float'
instance RealFloat a => Floating (Complex a) -- Defined in 'Data.Complex'
instance Floating Float -- Defined in 'GHC.Float'
instance Floating Double -- Defined in 'GHC.Float'
```

Caution: while expressions such as sqrt . negate :: Float ing a => a -> a are perfectly valid, they might return NaN ("not-a-number"), which may not be an intended behaviour. In such cases, we might want to work over the Complex field (shown later).

Examples

Basic examples

```
\lambda> :t 1
1 :: Num t => t
\lambda> :t pi
pi :: Floating a => a
```

In the examples above, the type-checker infers a type-class rather than a concrete type for the two constants. In Haskell, the Num class is the most general numerical one (since it encompasses integers and reals), but pi must belong to a more specialized class, since it has a nonzero fractional part.

```
list0 :: [Integer]
list0 = [1, 2, 3]
list1 :: [Double]
list1 = [1, 2, pi]
```

The concrete types above were inferred by GHC. More general types like 1 isto :: Num a => [a] would have worked, but would have also been harder to preserve (e.g. if one consed a Double onto a list of Nums), due to the caveats shown above.

`Could not deduce (Fractional Int) ...'

The error message in the title is a common beginner mistake. Let's see how it arises and how to fix it.

Suppose we need to compute the average value of a list of numbers; the following declaration would seem to do it, but it wouldn't compile:

```
averageOfList ll = sum ll / length ll
```

The problem is with the division (/) function: its signature is (/) :: Fractional a => a -> a -> a, but in the case above the denominator (given by length :: Foldable $t \Rightarrow t a \rightarrow$ Int) is of type Int (and Int does not belong to the fractional class) hence the error message.

We can fix the error message with fromIntegral :: (Num b, Integral a) => a -> b. One can see that this function accepts values of any Integral type and returns corresponding ones in the Num class:

```
averageOfList' :: (Foldable t, Fractional a) => t a -> a
averageOfList' ll = sum ll / fromIntegral (length ll)
```


Function examples

What's the type of $(+)$?

```
\lambda> :t (+)
(+) :: Num a => a -> a -> a
```

What's the type of sqrt ?

```
\lambda> :t sqrt
sqrt :: Floating a => a -> a
```

What's the type of sqrt . fromIntegral?

```
sqrt . fromIntegral :: (Integral a, Floating c) => a -> c
```

Read Arithmetic online: https://riptutorial.com/haskell/topic/8616/arithmetic

Chapter 5: Arrows

Examples

Function compositions with multiple channels

Arrow is, vaguely speaking, the class of morphisms that compose like functions, with both serial composition and "parallel composition". While it is most interesting as a generalisation of functions, the Arrow ($->$) instance itself is already quite useful. For instance, the following function:

```
spaceAround :: Double -> [Double] -> Double
spaceAround x ys = minimum greater - maximum smaller
where (greater, smaller) = partition (>x) ys
```

can also be written with arrow combinators:

```
spaceAround x = partition (>x) >>> minimum *** maximum >>> uncurry (-)
```

This kind of composition can best be visualised with a diagram:

Here,

- The >>> operator is just a flipped version of the ordinary. composition operator (there's also a <<< version that composes right-to-left). It pipes the data from one processing step to the next.
- the out-going / indicate the data flow is split up in two "channels". In terms of Haskell types, this is realised with tuples:

```
partition (>x) :: [Double] -> ([Double], [Double])
```

splits up the flow in two [Double] channels, whereas

```
uncurry (-) :: (Double,Double) -> Double
```

merges two Double channels.

- *** is the parallel ${ }^{\dagger}$ composition operator. It lets maximum and minimum operate independently on different channels of the data. For functions, the signature of this operator is

```
(***) :: (b->c) -> ( 
```

${ }^{\dagger}$ At least in the Hask category (i.e. in the Arrow ($->$) instance), $\mathrm{f}^{\star * * * g}$ does not actually compute f and g in parallel as in, on different threads. This would theoretically be possible, though.

Read Arrows online: https://riptutorial.com/haskell/topic/4912/arrows

Chapter 6: Attoparsec

Introduction

Attoparsec is a parsing combinator library that is "aimed particularly at dealing efficiently with network protocols and complicated text/binary file formats".

Attoparsec offers not only speed and efficiency, but backtracking and incremental input.
Its API closely mirrors that of another parser combinator library, Parsec.
There are submodules for compatibility with Bytestring, Text and char8. Use of the overloadedStrings language extension is recommended.

Parameters

Type Detail
 Parser i
 a
 The core type for representing a parser. i is the string type, e.g. ByteString.
 IResult i
 The result of a parse, with Fail i [String] String, Partial (i -> IResult i r) and Done i r as constructors.

Examples

Combinators

Parsing input is best achieved through larger parser functions that are composed of smaller, single purpose ones.

Let's say we wished to parse the following text which represents working hours:
Monday: 08001600.
We could split these into two "tokens": the day name -- "Monday" -- and a time portion "0800" to "1600".

To parse a day name, we could write the following:

```
data Day = Day String
day :: Parser Day
day = do
    name <- takeWhile1 (/= ':')
    skipMany1 (char ':')
    skipSpace
```

```
return $ Day name
```

To parse the time portion we could write:

```
data TimePortion = TimePortion String String
time = do
    start <- takeWhile1 isDigit
    skipSpace
    end <- takeWhile1 isDigit
    return $ TimePortion start end
```

Now we have two parsers for our individual parts of the text, we can combine these in a "larger" parser to read an entire day's working hours:

```
data WorkPeriod = WorkPeriod Day TimePortion
work = do
    d <- day
    t <- time
    return $ WorkPeriod d t
```

and then run the parser:

```
parseOnly work "Monday: 0800 1600"
```


Bitmap - Parsing Binary Data

Attoparsec makes parsing binary data trivial. Assuming these definitions:

```
import Data.Attoparsec.ByteString (Parser, eitherResult, parse, take)
import Data.Binary.Get (getWord32le, runGet)
import Data.ByteString (ByteString, readFile)
import Data.ByteString.Char8 (unpack)
import Data.ByteString.Lazy (fromStrict)
import Prelude hiding (readFile, take)
-- The DIB section from a bitmap header
data DIB = BM | BA | CI | CP | IC | PT
    deriving (Show, Read)
type Reserved = ByteString
-- The entire bitmap header
data Header = Header DIB Int Reserved Reserved Int
    deriving (Show)
```

We can parse the header from a bitmap file easily. Here, we have 4 parser functions that represent the header section from a bitmap file:

Firstly, the DIB section can be read by taking the first 2 bytes

```
dibP :: Parser DIB
dibP = read . unpack <$> take 2
```

Similarly, the size of the bitmap, the reserved sections and the pixel offset can be read easily too:

```
sizeP :: Parser Int
sizeP = fromIntegral . runGet getWord32le . fromStrict <$> take 4
reservedP :: Parser Reserved
reservedP = take 2
addressP :: Parser Int
addressP = fromIntegral . runGet getWord32le . fromStrict <$> take 4
```

which can then be combined into a larger parser function for the entire header:

```
bitmapHeader :: Parser Header
bitmapHeader = do
    dib <- dibP
    sz <- sizeP
    reservedP
    reservedP
    offset <- addressP
    return $ Header dib sz "" "" offset
```

Read Attoparsec online: https://riptutorial.com/haskell/topic/9681/attoparsec

Chapter 7: Bifunctor

Syntax

- bimap :: (a -> b) -> (c ->d) -> p a c $->p$ b d
- first $::(\mathrm{a}->\mathrm{b})->\mathrm{pac}->\mathrm{pbc}$
- second $\because:(b->c)->p a b->p a c$

Remarks

A run of the mill Functor is covariant in a single type parameter. For instance, if f is a Functor, then

A Bifunctor is covariant in two type parameters. If f is a bifunctor, then given an $\mathrm{f}_{\mathrm{a}} \mathrm{b}$, and two functions, one from $a \rightarrow c$, and another from $b \rightarrow d$, then one can obtain $\mathrm{an}_{\mathrm{f}}^{\mathrm{c}} \mathrm{c}$ d (using bimap).
first should be thought of as an fmap over the first type parameter, second as an fmap over the second, and bimap should be conceived as mapping two functions covariantly over the first and second type parameters, respectively.

Examples

Common instances of Bifunctor

Two-element tuples

$($,$) is an example of a type that has a Bifunctor instance.$

```
instance Bifunctor (,) where
    bimap f g (x, y) = (f x, g y)
```

bimap takes a pair of functions and applies them to the tuple's respective components.

```
bimap (+ 2) (++ "nie") (3, "john") --> (5,"johnnie")
bimap ceiling length (3.5 :: Double, "john" :: String) --> (4,4)
```

Either

Either's instance of bifunctor selects one of the two functions to apply depending on whether the value is Left or Right.

```
instance Bifunctor Either where
    bimap f g (Left x) = Left (f x)
    bimap f g (Right y) = Right (g y)
```


first and second

If mapping covariantly over only the first argument, or only the second argument, is desired, then first or second ought to be used (in lieu of bimap).

```
first :: Bifunctor f => (a -> c) -> f a b -> f c b
first f = bimap f id
second :: Bifunctor f => (b -> d) -> f a b -> f a d
second g = bimap id g
```

For example,

```
ghci> second (+ 2) (Right 40)
Right 42
ghci> second (+ 2) (Left "uh oh")
Left "uh oh"
```


Definition of Bifunctor

Bifunctor is the class of types with two type parameters (f : : * -> * -> *), both of which can be covariantly mapped over simultaneously.

```
class Bifunctor f where
    bimap :: (a -> c) -> (b -> d) -> f a b -> f c d
```

bimap can be thought of as applying a pair of fmap operations to a datatype.
A correct instance of Bifunctor for a type f must satisfy the bifunctor laws, which are analogous to the functor laws:

```
bimap id id = id -- identity
bimap (f . g) (h . i) = bimap f h . bimap g i -- composition
```

The Bifunctor class is found in the Data.Bifunctor module. For GHC versions >7.10, this module is bundled with the compiler; for earlier versions you need to install the bifunctors package.

Read Bifunctor online: https://riptutorial.com/haskell/topic/8020/bifunctor

Chapter 8: Cabal

Syntax

- cabal <command> where <command> is one of:
- [global]
update
Updates list of known packages
install
Install packages
help
Help about commands
info
Display detailed information about a particular package
list
List packages matching a search string
fetch
Downloads packages for later installation
user-config
Display and update the user's global cabal configuration
- [package]
get
Download/Extract a package's source code (repository)
init
Create a new .cabal package file (interactively)
configure
Prepare to build the package
build
Compile all/specific components
clean
Clean up after a build
run
Builds and runs an executable
repl
Open an interpreter session for the given component
test
Run all/specific tests in the test suite
bench
Run all/specific benchmarks
check
Check the package for common mistakes
sdist
Generate a source distribution file (.tar.gz)
upload

Uploads source packages or documentation to Hackage

- report

Upload build reports to a remote server

- freeze

Freeze dependencies
gen-bounds
Generate dependency bounds
haddock

- Generate Haddock HTML documentation
hscolour
Generate HsColour colourised code, in HTML format
copy
Copy the files into the install locations
register
- Register this package with the compiler

- [sandbox]

sandbox
Create/modify/delete a sandbox
cabal sandbox init [FLAGS]

- cabal sandbox delete [FLAGS]
- cabal sandbox add-source [FLAGS] PATHS
- cabal sandbox delete-source [FLAGS] PATHS
cabal sandbox list-sources [FLAGS]
- cabal sandbox hc-pkg [FLAGS] [--] COMMAND [--] [ARGS]
exec
-Give a command access to the sandbox package repository
repl
Open interpreter with access to sandbox packages

Examples

Install packages

To install a new package, e.g. aeson:

```
cabal install aeson
```


Working with sandboxes

A Haskell project can either use the system wide packages or use a sandbox. A sandbox is an isolated package database and can prevent dependency conflicts, e. g. if multiple Haskell projects use different versions of a package.

To initialize a sandbox for a Haskell package go to its directory and run:

```
cabal sandbox init
```

Now packages can be installed by simply running cabal install.
Listing packages in a sandbox:

```
cabal sandbox hc-pkg list
```

Deleting a sandbox:

```
cabal sandbox delete
```

Add local dependency:

```
cabal sandbox add-source /path/to/dependency
```

Read Cabal online: https://riptutorial.com/haskell/topic/4740/cabal

Chapter 9: Category Theory

Examples

Category theory as a system for organizing abstraction

Category theory is a modern mathematical theory and a branch of abstract algebra focused on the nature of connectedness and relation. It is useful for giving solid foundations and common language to many highly reusable programming abstractions. Haskell uses Category theory as inspiration for some of the core typeclasses available in both the standard library and several popular third-party libraries.

An example

The Functor typeclass says that if a type F_{in} instantiates Functor (for which we write Functor F) then we have a generic operation

```
fmap :: (a -> b) -> (F a -> F b)
```

which lets us "map" over ${ }_{F}$. The standard (but imperfect) intuition is that F a is a container full of values of type a and fmap lets us apply a transformation to each of these contained elements. An example is Maybe

```
instance Functor Maybe where
    fmap f Nothing = Nothing -- if there are no values contained, do nothing
    fmap f (Just a) = Just (f a) -- else, apply our transformation
```

Given this intuition, a common question is "why not call Functor something obvious like mappable?".

$\overline{\text { A hint of Category Theory }}$

The reason is that Functor fits into a set of common structures in Category theory and therefore by calling functor "Functor" we can see how it connects to this deeper body of knowledge.

In particular, Category Theory is highly concerned with the idea of arrows from one place to another. In Haskell, the most important set of arrows are the function arrows a \rightarrow b. A common thing to study in Category Theory is how one set of arrows relates to another set. In particular, for any type constructor ${ }_{F}$, the set of arrows of the shape F_{a} a $\rightarrow \mathrm{Fb}$ bre also interesting.

So a Functor is any ${ }_{F}$ such that there is a connection between normal Haskell arrows $a->b$ and the ${ }_{\mathrm{F}}$-Specific arrows F a $\rightarrow \mathrm{F}$ b. The connection is defined by fmap and we also recognize a few laws which must hold

```
forall (x :: F a) . fmap id x == x
forall (f :: a -> b) (g :: b -> c) . fmap g . fmap f = fmap (g . f)
```

All of these laws arise naturally from the Category Theoretic interpretation of Functor and would not be as obviously necessary if we only thought of Functor as relating to "mapping over elements".

Definition of a Category

A category c consists of:

- A collection of objects called obj (C) ;
- A collection (called Hom (C) $^{(C)}$) of morphisms between those objects. If a and b are in $\mathrm{obj}_{\mathrm{j}}(\mathrm{C})$, then a morphism f in $\mathrm{Hom}_{(\mathrm{C})}$ is typically denoted f : a -> b, and the collection of all morphism between a and b is denoted hom (a, b);
- A special morphism called the identity morphism - for every a : obj (c) there exists a morphism id : a -> a;
- A composition operator (.), taking two morphisms $f: a->b, g: b$-> c and producing a morphism a -> c
which obey the following laws:

```
For all f : a -> x, g : x -> b, then id. f = f and g. id = g
For all f : a -> b, g : b -> c and h : c -> d, then h . (g. f) = (h . g) . f
```

In other words, composition with the identity morphism (on either the left or right) does not change the other morphism, and composition is associative.

In Haskell, the Category is defined as a typeclass in Control.Category:

```
-- | A class for categories.
-- id and (.) must form a monoid.
class Category cat where
    -- | the identity morphism
    id :: cat a a
    -- | morphism composition
    (.) :: cat b c -> cat a b -> cat a c
```

In this case, cat :: k \rightarrow k \rightarrow * objectifies the morphism relation - there exists a morphism cat a b if and only if cat a b is inhabited (i.e. has a value). a, b and c are all in $\left.\mathrm{obj}_{\mathrm{j}}(\mathrm{C}) \cdot \mathrm{obj}^{\mathrm{j}} \mathrm{C}\right)$ itself is represented by the kind k - for example, when $k \sim$, as is typically the case, objects are types.

The canonical example of a Category in Haskell is the function category:

```
instance Category (->) where
    id = Prelude.id
    (.) = Prelude..
```

Another common example is the Category of kleisli arrows for a monad:

```
newtype Kleisli m a b = Kleisli (a -> m b)
class Monad m => Category (Kleisli m) where
    id = Kleisli return
    Kleisli f . Kleisli g = Kleisli (f >=> g)
```


Haskell types as a category

Definition of the category

The Haskell types along with functions between types form (almost \dagger) a category. We have an identity morphism (function) (id :: a -> a) for every object (type) a; and composition of morphisms ((.) :: (b -> c) -> (a -> b) -> a -> c), which obey category laws:

```
f . id = f = id . f
h . (g . f) = (h . g) . f
```

We usually call this category Hask.

Isomorphisms

In category theory, we have an isomorphism when we have a morphism which has an inverse, in other words, there is a morphism which can be composed with it in order to create the identity. In Hask this amounts to have a pair of morphisms f, g such that:

```
f . g == id == g . f
```

If we find a pair of such morphisms between two types, we call them isomorphic to one another.
An example of two isomorphic types would be ($(1$, a) and a for some a. We can construct the two morphisms:

```
f :: ((), a) -> a
f ((),x) = x
g :: a -> ((),a)
g x = ((),x)
```

And we can check that f . $\mathrm{g}==\mathrm{id}==\mathrm{g}$. f .

Functors

A functor, in category theory, goes from a category to another, mapping objects and morphisms. We are working only on one category, the category Hask of Haskell types, so we are going to see only functors from Hask to Hask, those functors, whose origin and destination category are the
same, are called endofunctors. Our endofunctors will be the polymorphic types taking a type and returning another:

```
F :: * -> *
```

To obey the categorical functor laws (preserve identities and composition) is equivalent to obey the Haskell functor laws:

```
fmap (f . g) = (fmap f) . (fmap g)
fmap id = id
```

So, we have, for example, that [], Maybe or (-> r) are functors in Hask.

Monads

A monad in category theory is a monoid on the category of endofunctors. This category has endofunctors as objects F :: * -> * and natural transformations (transformations between them forall a . F a -> G a) as morphisms.

A monoid object can be defined on a monoidal category, and is a type having two morphisms:

```
zero :: () -> M
mappend :: (M,M) -> M
```

We can translate this roughly to the category of Hask endofunctors as:

```
return :: a -> m a
join :: m (m a) -> m a
```

And, to obey the monad laws is equivalent to obey the categorical monoid object laws.
\dagger In fact, the class of all types along with the class of functions between types do not strictly form a category in Haskell, due to the existance of undefined. Typically this is remedied by simply defining the objects of the Hask category as types without bottom values, which excludes non-terminating functions and infinite values (codata). For a detailed discussion of this topic, see here.

Product of types in Hask

Categorical products

In category theory, the product of two objects \mathbf{X}, \mathbf{Y} is another object \mathbf{Z} with two projections: $\boldsymbol{\pi}_{\mathbf{1}}: \mathbf{Z}$ $\rightarrow \mathbf{X}$ and $\boldsymbol{\pi}_{\mathbf{2}}: \mathbf{Z} \rightarrow \mathbf{Y}$; such that any other two morphisms from another object decompose uniquely through those projections. In other words, if there exist $f_{1}: \mathbf{W} \rightarrow \mathbf{X}$ and $f_{2}: \mathbf{W} \rightarrow \mathbf{Y}$, exists a unique morphism $\mathbf{g}: \mathbf{W} \rightarrow \mathbf{Z}$ such that $\boldsymbol{\pi}_{\mathbf{1}} \bigcirc \mathrm{g}=\mathrm{f}_{\mathbf{1}}$ and $\boldsymbol{\pi}_{\mathbf{2}} \bigcirc \mathrm{g}=\mathrm{f}_{\mathbf{2}}$.

Products in Hask

This translates into the Hask category of Haskell types as follows, z is product of ${ }_{\mathrm{A}}, \mathrm{B}$ when:

```
-- if there are two functions
f1 :: W -> A
f2 :: W -> B
-- we can construct a unique function
g : : W -> Z
-- and we have two projections
p1 :: Z -> A
p2 :: Z -> B
-- such that the other two functions decompose using g
p1 . g == f1
p2 . g == f2
```

The product type of two types A, B, which follows the law stated above, is the tuple of the two types (A, B), and the two projections are fst and snd. We can check that it follows the above rule, if we have two functions f 1 :: w -> A and f 2 :: w -> в we can decompose them uniquely as follow:

```
decompose :: (W -> A) -> (W -> B) -> (W -> (A,B))
decompose f1 f2 = (\x -> (f1 x, f2 x))
```

And we can check that the decomposition is correct:

```
fst . (decompose f1 f2) = f1
snd . (decompose f1 f2) = f2
```


Uniqueness up to isomorphism

The choice of (A, B) as the product of A and B is not unique. Another logical and equivalent choice would have been:

```
data Pair a b = Pair a b
```

Moreover, we could have also chosen (B, A) as the product, or even ($B, A,(1)$, and we could find a decomposition function like the above also following the rules:

```
decompose2 :: (W -> A) -> (W -> B) -> (W -> (B,A, ()))
decompose2 f1 f2 = (\x -> (f2 x, f1 x, ()))
```

This is because the product is not unique but unique up to isomorphism. Every two products of A_{A} and $\overline{\text { в }}$ do not have to be equal, but they should be isomorphic. As an example, the two different products we have just defined, (A, B) and ($B, A,()$), are isomorphic:

```
iso1 :: (A,B) -> (B,A,())
iso1 (x,y) = (y,x,())
iso2 :: (B,A,()) -> (A,B)
```

```
iso2 (y,x,()) = (x,y)
```


Uniqueness of the decomposition

It is important to remark that also the decomposition function must be unique. There are types which follow all the rules required to be product, but the decomposition is not unique. As an example, we can try to use ($\mathrm{A},(\mathrm{B}, \mathrm{Bool})$) with projections $\mathrm{fst}_{\mathrm{fst}}$. snd as a product of A_{A} and B :

```
decompose3 :: (W -> A) -> (W -> B) -> (W -> (A, (B,Bool)))
decompose3 f1 f2 = (\x -> (f1 x, (f2 x, True)))
```

We can check that it does work:

```
fst . (decompose3 f1 f2) = f1 x
(fst . snd) . (decompose3 f1 f2) = f2 x
```

But the problem here is that we could have written another decomposition, namely:

```
decompose3' :: (W -> A) -> (W -> B) -> (W -> (A, (B,Bool)))
decompose3' f1 f2 = (\x -> (f1 x, (f2 x, False)))
```

And, as the decomposition is not unique, $\left(A,(B, B \circ 01)\right.$) is not the product of ${ }_{A}$ and B in Hask

Coproduct of types in Hask

Intuition

The categorical product of two types \mathbf{A} and \mathbf{B} should contain the minimal information necessary to contain inside an instance of type A or type B. We can see now that the intuitive coproduct of two types should be Either a b. Other candidates, such as Either a (b, Bool), would contain a part of unnecessary information, and they wouldn't be minimal.

The formal definition is derived from the categorical definition of coproduct.

Categorical coproducts

A categorical coproduct is the dual notion of a categorical product. It is obtained directly by reversing all the arrows in the definition of the product. The coproduct of two objects \mathbf{X}, \mathbf{Y} is another object \mathbf{Z} with two inclusions: $\mathbf{i} \mathbf{1}: \mathbf{X} \rightarrow \mathbf{Z}$ and $\mathbf{i} \mathbf{2}: \mathbf{Y} \rightarrow \mathbf{Z}$; such that any other two morphisms from \mathbf{X} and \mathbf{Y} to another object decompose uniquely through those inclusions. In other words, if there are two morphisms $\mathbf{f}_{\mathbf{1}}: \mathbf{X} \rightarrow \mathbf{W}$ and $\mathbf{f}_{\mathbf{2}}: \mathbf{Y} \rightarrow \mathbf{W}$, exists a unique morphism $\mathbf{g : Z} \boldsymbol{Z}$ W such that $\mathbf{g ~ O} i_{1}=f_{1}$ and $g \circ i_{2}=f_{2}$

Coproducts in Hask

The translation into the Hask category is similar to the translation of the product:

```
-- if there are two functions
f1 :: A -> W
f2 :: B -> W
-- and we have a coproduct with two inclusions
il :: A -> Z
i2 :: B -> Z
-- we can construct a unique function
g :: Z -> W
-- such that the other two functions decompose using g
g . il == f1
g . i2 == f2
```

The coproduct type of two types A_{A} and B_{B} in Hask is Either a b or any other type isomorphic to it:

```
-- Coproduct
-- The two inclusions are Left and Right
data Either a b = Left a | Right b
-- If we have those functions, we can decompose them through the coproduct
decompose :: (A -> W) -> (B -> W) -> (Either A B -> W)
decompose f1 f2 (Left x) = f1 x
decompose f1 f2 (Right y) = f2 y
```


Haskell Applicative in terms of Category Theory

A Haskell's Functor allows one to map any type a (an object of Hask) to a type F_{a} and also map a function a -> b (a morphism of Hask) to a function with type F a -> F b. This corresponds to a Category Theory definition in a sense that functor preserves basic category structure.

A monoidal category is a category that has some additional structure:

- A tensor product (see Product of types in Hask)
- A tensor unit (unit object)

Taking a pair as our product, this definition can be translated to Haskell in the following way:

```
class Functor f => Monoidal f where
    mcat :: f a -> f b -> f (a,b)
    munit :: f ()
```

The Applicative class is equivalent to this monoidal one and thus can be implemented in terms of it:

```
instance Monoidal f => Applicative f where
    pure x = fmap (const x) munit
    f <*> fa = (\(f, a) -> f a) <$> (mcat f fa)
```

Read Category Theory online: https://riptutorial.com/haskell/topic/2261/category-theory

Chapter 10: Common functors as the base of cofree comonads

Examples

Cofree Empty ~~ Empty
Given

```
data Empty a
```

we have

```
data Cofree Empty a
    -- = a :< ... not possible!
```

Cofree (Const c) ~~Writer c
Given

```
data Const c a = Const c
```

we have

```
data Cofree (Const c) a
    = a :< Const c
```

which is isomorphic to

```
data Writer c a = Writer c a
```

Cofree Identity ~~Stream

Given

```
data Identity a = Identity a
```

we have

```
data Cofree Identity a
    = a :< Identity (Cofree Identity a)
```

which is isomorphic to

```
data Stream a = Stream a (Stream a)
```


Cofree Maybe ~~ NonEmpty

Given

```
data Maybe a = Just a
    | Nothing
```

we have

```
data Cofree Maybe a
    = a :< Just (Cofree Maybe a)
    | a :< Nothing
```

which is isomorphic to

```
data NonEmpty a
    = NECons a (NonEmpty a)
    | NESingle a
```


Cofree (Writer w) ~~ WriterT w Stream

Given

```
data Writer w a = Writer w a
```

we have

```
data Cofree (Writer w) a
    = a :< (w, Cofree (Writer w) a)
```

which is equivalent to

```
data Stream (w,a)
    = Stream (w,a) (Stream (w,a))
```

which can properly be written as WriterT w Stream with

```
data WriterT w m a = WriterT (m (w,a))
```

Cofree (Either e) ~~NonEmptyT (Writer e)

Given

```
data Either e a = Left e
    | Right a
```

we have

```
data Cofree (Either e) a
    = a :< Left e
    | a :< Right (Cofree (Either e) a)
```

which is isomorphic to

```
data Hospitable e a
    = Sorry_AllIHaveIsThis_Here'sWhy a e
    | EatThis a (Hospitable e a)
```

or, if you promise to only evaluate the log after the complete result, NonEmptyT (Writer e) a with

```
data NonEmptyT (Writer e) a = NonEmptyT (e,a,[a])
```


Cofree (Reader x) ~~ Moore x

Given

```
data Reader x a = Reader (x -> a)
```


we have

```
data Cofree (Reader x) a
    = a :< (x -> Cofree (Reader x) a)
```

which is isomorphic to

```
data Plant x a
    = Plant a (x -> Plant x a)
```

aka Moore machine.
Read Common functors as the base of cofree comonads online:
https://riptutorial.com/haskell/topic/8258/common-functors-as-the-base-of-cofree-comonads

Chapter 11: Common GHC Language Extensions

Remarks

These language extensions are typically available when using the Glasgow Haskell Compiler (GHC) as they are not part of the approved Haskell 2010 language Report. To use these extensions, one must either inform the compiler using a flag or place a language programa before the module keyword in a file. The official documentation can be found in section 7 of the GCH users guide.

The format of the language programa is $\{-\#$ Language extensionone, extensionTwo ... \#-\}. That is the literal $\{-\#$ followed by language followed by a comma separated list of extensions, and finally the closing \#-\}. Multiple language programas may be placed in one file.

Examples

MultiParamTypeClasses

It's a very common extension that allows type classes with multiple type parameters. You can think of MPTC as a relation between types.

```
{-# LANGUAGE MultiParamTypeClasses #-}
class Convertable a b where
    convert :: a -> b
instance Convertable Int Float where
    convert i = fromIntegral i
```

The order of parameters matters.
MPTCs can sometimes be replaced with type families.

Flexiblelnstances

Regular instances require:

```
All instance types must be of the form (T a1 ... an)
where al ... an are *distinct type variables*,
and each type variable appears at most once in the instance head.
```

That means that, for example, while you can create an instance for [a] you can't create an instance for specifically [Int].; FlexibleInstances relaxes that:

```
class C a where
```

```
-- works out of the box
instance C [a] where
-- requires FlexibleInstances
instance C [Int] where
```


OverloadedStrings

Normally, string literals in Haskell have a type of string (which is a type alias for [Char]). While this isn't a problem for smaller, educational programs, real-world applications often require more efficient storage such as text or ByteString.

OverloadedStrings simply changes the type of literals to

```
"test" :: Data.String.IsString a => a
```

Allowing them to be directly passed to functions expecting such a type. Many libraries implement this interface for their string-like types including Data. Text and Data.ByteString which both provide certain time and space advantages over [char].

There are also some unique uses of overloadedstrings like those from the Postgresql-simple library which allows SQL queries to be written in double quotes like a normal string, but provides protections against improper concatenation, a notorious source of SQL injection attacks.

To create a instance of the isstring class you need to impliment the fromstring function. Example ${ }^{\dagger}$:

```
data Foo = A | B | Other String deriving Show
instance IsString Foo where
    fromString "A" = A
    fromString "B" = B
    fromString xs = Other xs
tests :: [ Foo ]
tests = [ "A", "B", "Testing" ]
```

\dagger This example courtesy of Lyndon Maydwell (sordina on GitHub) found here.

TupleSections

A syntactic extension that allows applying the tuple constructor (which is an operator) in a section way:

```
(a,b) == (,) a b
-- With TupleSections
(a,b) == (,) a b == (a,) b == (,b) a
```


N-tuples

It also works for tuples with arity greater than two

```
(,2,) 1 3 == (1,2,3)
```


Mapping

This can be useful in other places where sections are used:

```
map (,"tag") [1,2,3] == [(1,"tag"), (2, "tag"), (3, "tag")]
```

The above example without this extension would look like this:

```
map (\a -> (a, "tag")) [1,2,3]
```


UnicodeSyntax

An extension that allows you to use Unicode characters in lieu of certain built-in operators and names.

ASCII	Unicode	Use(s)
:	::	has type
->	\rightarrow	function types, lambdas, case branches, etc.
=>	\rightarrow	class constraints
forall	*	explicit polymorphism
<-	-	do notation
*	*	the type (or kind) of types (e.g., Int : :)
>-	\square	proc notation for Arrows
-<	\square	proc notation for Arrows
>>-	\square	proc notation for Arrows
-<<	\square	proc notation for Arrows

For example:

```
runST :: (forall s. ST s a) -> a
```

would become

```
runST :: (}\forall\textrm{S}.\textrm{ST}s\textrm{s})->\textrm{a
```

Note that the * vs. » example is slightly different: since * isn't reserved, « also works the same way as * for multiplication, or any other function named (*), and vice-versa. For example:

```
ghci> 2 \star 3
6
ghci> let (*) = (+) in 2 * 3
5
ghci> let (\star) = (-) in 2 * 3
-1
```


BinaryLiterals

Standard Haskell allows you to write integer literals in decimal (without any prefix), hexadecimal (preceded by 0 x or 0 x), and octal (preceded by $0 \circ$ or 00). The BinaryLiterals extension adds the option of binary (preceded by ob or ов).

```
0b1111 == 15 -- evaluates to: True
```


ExistentialQuantification

This is a type system extension that allows types that are existentially quantified, or, in other words, have type variables that only get instantiated at runtime ${ }^{\dagger}$.

A value of existential type is similar to an abstract-base-class reference in OO languages: you don't know the exact type in contains, but you can constrain the class of types.

```
data S = forall a. Show a => S a
```

or equivalently, with GADT syntax:

```
{-# LANGUAGE GADTs #-}
data S where
    S :: Show a => a -> S
```

Existential types open the door to things like almost-heterogenous containers: as said above, there can actually be various types in an s value, but all of them can be shown, hence you can also do

```
instance Show S where
    show (S a) = show a -- we rely on (Show a) from the above
```

Now we can create a collection of such objects:

```
ss = [S 5, S "test", S 3.0]
```

Which also allows us to use the polymorphic behaviour:

```
mapM_ print ss
```

Existentials can be very powerful, but note that they are actually not necessary very often in Haskell. In the example above, all you can actually do with the show instance is show (duh!) the values, i.e. create a string representation. The entire s type therefore contains exactly as much information as the string you get when showing it. Therefore, it is usually better to simply store that string right away, especially since Haskell is lazy and therefore the string will at first only be an unevaluated thunk anyway.

On the other hand, existentials cause some unique problems. For instance, the way the type information is "hidden" in an existential. If you pattern-match on an s value, you will have the contained type in scope (more precisely, its show instance), but this information can never escape its scope, which therefore becomes a bit of a "secret society": the compiler doesn't let anything escape the scope except values whose type is already known from the outside. This can lead to strange errors like couldn't match type 'a0' with '()' 'a0' is untouchable.
${ }^{\dagger}$ Contrast this with ordinary parametric polymorphism, which is generally resolved at compile time (allowing full type erasure).

Existential types are different from Rank-N types - these extensions are, roughly speaking, dual to each other: to actually use values of an existential type, you need a (possibly constrained-) polymorphic function, like show in the example. A polymorphic function is universally quantified, i.e. it works for any type in a given class, whereas existential quantification means it works for some particular type which is a priori unknown. If you have a polymorphic function, that's sufficient, however to pass polymorphic functions as such as arguments, you need \{-\# LANGUAGE Rank2Types \#-\}:

```
genShowSs :: ( }\forall\textrm{x}\mathrm{ . Show x => x -> String) -> [S] -> [String]
genShowSs f = map (\(S a) -> f a)
```


LambdaCase

A syntactic extension that lets you write \case in place of \arg \rightarrow case arg of.
Consider the following function definition:

```
dayOfTheWeek :: Int -> String
dayOfTheWeek 0 = "Sunday"
dayOfTheWeek 1 = "Monday"
dayOfTheWeek 2 = "Tuesday"
dayOfTheWeek 3 = "Wednesday"
```

```
dayOfTheWeek 4 = "Thursday"
dayOfTheWeek 5 = "Friday"
dayOfTheWeek 6 = "Saturday"
```

If you want to avoid repeating the function name, you might write something like:

```
dayOfTheWeek :: Int -> String
dayOfTheWeek i = case i of
    0 -> "Sunday"
    1 -> "Monday"
    2 -> "Tuesday"
    3 -> "Wednesday"
    4 -> "Thursday"
    5 -> "Friday"
    6 -> "Saturday"
```

Using the LambdaCase extension, you can write that as a function expression, without having to name the argument:

```
{-# LANGUAGE LambdaCase #-}
dayOfTheWeek :: Int -> String
dayOfTheWeek = \case
    0 -> "Sunday"
    1 -> "Monday"
    2 -> "Tuesday"
    3 -> "Wednesday"
    4 -> "Thursday"
    5 -> "Friday"
    6 -> "Saturday"
```


RankNTypes

Imagine the following situation:

```
foo :: Show a => (a -> String) -> String -> Int -> IO ()
foo show' string int = do
    putStrLn (show' string)
    putStrLn (show' int)
```

Here, we want to pass in a function that converts a value into a String, apply that function to both a string parameter and and int parameter and print them both. In my mind, there is no reason this should fail! We have a function that works on both types of the parameters we're passing in.

Unfortunately, this won't type check! GHC infers the a type based off of its first occurrence in the function body. That is, as soon as we hit:

```
putStrLn (show' string)
```

GHC will infer that show' :: String \rightarrow String, since string is a string. It will proceed to blow up while trying to show' int.
lets you instead write the type signature as follows, quantifying over all functions that satisfy the show' type:

```
foo :: (forall a. Show a => (a -> String)) -> String -> Int -> IO ()
```

This is rank 2 polymorphism: We are asserting that the show' function must work for all as within our function, and the previous implementation now works.

The Rankntypes extension allows arbitrary nesting of forall ... blocks in type signatures. In other words, it allows rank N polymorphism.

OverloadedLists

added in GHC 7.8.

OverloadedLists, similar to OverloadedStrings, allows list literals to be desugared as follows:

```
[] -- fromListN 0 []
[x] -- fromListN 1 (x : [])
[x .. ] -- fromList (enumFrom x)
```

This comes handy when dealing with types such as set, vector and maps.

```
['0' .. '9'] :: Set Char
[1 .. 10] :: Vector Int
[("default",0), (k1,v1)] :: Map String Int
['a' .. 'z'] :: Text
```

IsList class in GHC.Exts is intended to be used with this extension.
IsList is equipped with one type function, Item, and three functions, fromList :: [Item 1] -> 1, toList :: l -> [Item l] and fromListN :: Int -> [Item l] -> 1 where fromListN is optional. Typical implementations are:

```
instance IsList [a] where
    type Item [a] = a
    fromList = id
    toList = id
instance (Ord a) => IsList (Set a) where
    type Item (Set a) = a
    fromList = Set.fromList
    toList = Set.toList
```

Examples taken from OverloadedLists - GHC.

FunctionalDependencies

If you have a multi-parameter type-class with arguments a, b, c, and x, this extension lets you express that the type x can be uniquely identified from a, b, and c :

```
class SomeClass a b c x | a b c -> x where ...
```

When declaring an instance of such class, it will be checked against all other instances to make sure that the functional dependency holds, that is, no other instance with same a b c but different x exists.

You can specify multiple dependencies in a comma-separated list:

```
class OtherClass a b c d | a b -> c d, a d -> b where ...
```

For example in MTL we can see:

```
class MonadReader r m| m -> r where ...
instance MonadReader r ((->) r) where ...
```

Now, if you have a value of type monadReader a ((->) Foo) => a, the compiler can infer that a ~ Foo, since the second argument completely determines the first, and will simplify the type accordingly.

The someclass class can be thought of as a function of the arguments abcthat results in x . Such classes can be used to do computations in the typesystem.

GADTs

Conventional algebraic datatypes are parametric in their type variables. For example, if we define an ADT like

```
data Expr a = IntLit Int
    | BoolLit Bool
    | If (Expr Bool) (Expr a) (Expr a)
```

with the hope that this will statically rule out non-well-typed conditionals, this will not behave as expected since the type of IntLit :: Int \rightarrow Expr a is universially quantified: for any choice of a, it produces a value of type Expr a. In particular, for a ~ Bool, we have IntLit :: Int -> Expr Bool, allowing us to construct something like If (IntLit 1) e1 e2 which is what the type of the if constructor was trying to rule out.

Generalised Algebraic Data Types allows us to control the resulting type of a data constructor so that they are not merely parametric. We can rewrite our Expr type as a GADT like this:

```
data Expr a where
    IntLit :: Int -> Expr Int
    BoolLit :: Bool -> Expr Bool
    If :: Expr Bool -> Expr a -> Expr a -> Expr a
```

Here, the type of the constructor IntLit is Int -> Expr Int, and SO IntLit 1 :: Expr Bool will not typecheck.

Pattern matching on a GADT value causes refinement of the type of the term returned. For example, it is possible to write an evaluator for Expr a like this:

```
crazyEval :: Expr a -> a
crazyEval (IntLit x) =
    -- Here we can use `(+)` because x :: Int
    x + 1
crazyEval (BoolLit b) =
    -- Here we can use `not` because b :: Bool
    not b
crazyEval (If b thn els) =
    -- Because b :: Expr Bool, we can use `crazyEval b :: Bool`.
    -- Also, because thn :: Expr a and els :: Expr a, we can pass either to
    -- the recursive call to `crazyEval` and get an a back
    crazyEval $ if crazyEval b then thn else els
```

Note that we are able to use (+) in the above definitions because when e.g. Int tit x is pattern matched, we also learn that a ~ Int (and likewise for not and if_then_el se_ when a ~ Boor).

ScopedTypeVariables

ScopedTypevariables let you refer to universally quantified types inside of a declaration. To be more explicit:

```
import Data.Monoid
foo :: forall a b c. (Monoid b, Monoid c) => (a, b, c) -> (b, c) -> (a, b, c)
foo (a, b, c) (b', c') = (a :: a, b'', c'')
    where (b'', c'') = (b <> b', c <> c') : : (b, c)
```

The important thing is that we can use a, b and c to instruct the compiler in subexpressions of the declaration (the tuple in the where clause and the first a in the final result). In practice, scopedTypevariables assist in writing complex functions as a sum of parts, allowing the programmer to add type signatures to intermediate values that don't have concrete types.

PatternSynonyms

Pattern synonyms are abstractions of patterns similar to how functions are abstractions of expressions.

For this example, let's look at the interface Data. sequence exposes, and let's see how it can be improved with pattern synonyms. The seq type is a data type that, internally, uses a complicated representation to achieve good asymptotic complexity for various operations, most notably both $\mathrm{O}(1)$ (un)consing and (un)snocing.

But this representation is unwieldy and some of its invariants cannot be expressed in Haskell's type system. Because of this, the seq type is exposed to users as an abstract type, along with invariant-preserving accessor and constructor functions, among them:

```
empty :: Seq a
(<|) :: a -> Seq a -> Seq a
data ViewL a = EmptyL | a :< (Seq a)
viewl :: Seq a -> ViewL a
```

```
(|>) :: Seq a -> a -> Seq a
data ViewR a = EmptyR | (Seq a) :> a
viewr :: Seq a -> ViewR a
```

But using this interface can be a bit cumbersome:

```
uncons :: Seq a -> Maybe (a, Seq a)
uncons xs = case viewl xs of
    x :< xs' -> Just (x, xs')
    EmptyL -> Nothing
```

We can use view patterns to clean it up somewhat:

```
{-# LANGUAGE ViewPatterns #-}
uncons :: Seq a -> Maybe (a, Seq a)
uncons (viewl -> x :< xs) = Just (x, xs)
uncons _ = Nothing
```

Using the Patternsynonyms language extension, we can give an even nicer interface by allowing pattern matching to pretend that we have a cons- or a snoc-list:

```
{-# LANGUAGE PatternSynonyms #-}
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
pattern Empty :: Seq a
pattern Empty <- (Seq.viewl -> Seq.EmptyL)
pattern (:<) :: a -> Seq a -> Seq a
pattern x :< xs <- (Seq.viewl -> x Seq.:< xs)
pattern (:>) :: Seq a -> a -> Seq a
pattern xs :> x <- (Seq.viewr -> xs Seq.:> x)
```

This allows us to write uncons in a very natural style:

```
uncons :: Seq a -> Maybe (a, Seq a)
uncons (x :< xs) = Just (x, xs)
uncons _ = Nothing
```


RecordWildCards

See RecordWildCards
Read Common GHC Language Extensions online:
https://riptutorial.com/haskell/topic/1274/common-ghc-language-extensions

Chapter 12: Common monads as free monads

Examples

Free Empty ~~ Identity
Given

```
data Empty a
```

we have

```
data Free Empty a
    = Pure a
-- the Free constructor is impossible!
```

which is isomorphic to

```
data Identity a
    = Identity a
```

Free Identity ~~ (Nat,) ~~ Writer Nat

Given

```
data Identity a = Identity a
```

we have

```
data Free Identity a
    = Pure a
    | Free (Identity (Free Identity a))
```

which is isomorphic to

```
data Deferred a
    = Now a
    | Later (Deferred a)
```

or equivalently (if you promise to evaluate the fst element first) (Nat, a), aka writer Nat a, with

```
data Nat = Z | S Nat
data Writer Nat a = Writer Nat a
```


Free Maybe ~~ MaybeT (Writer Nat)

Given

```
data Maybe a = Just a
    | Nothing
```

we have

```
data Free Maybe a
    = Pure a
    | Free (Just (Free Maybe a))
    | Free Nothing
```

which is equivalent to

```
data Hopes a
    = Confirmed a
    | Possible (Hopes a)
    | Failed
```

or equivalently (if you promise to evaluate the fst element first) (Nat, Maybe a), aka Maybet (Writer Nat) a with

```
data Nat = Z | S Nat
data Writer Nat a = Writer Nat a
data MaybeT (Writer Nat) a = MaybeT (Nat, Maybe a)
```

Free (Writer w) ~~ Writer [w]
Given

```
data Writer w a = Writer w a
```

we have

```
data Free (Writer w) a
    = Pure a
    | Free (Writer w (Free (Writer w) a))
```

which is isomorphic to

```
data ProgLog w a
    = Done a
    | After w (ProgLog w a)
```

or, equivalently, (if you promise to evaluate the log first), Writer [w] a.
Free (Const c) ~~ Either c

Given

```
data Const c a = Const c
```

we have

```
data Free (Const c) a
    = Pure a
    | Free (Const c)
```

which is isomorphic to

```
data Either c a
    = Right a
    | Left c
```


Free (Reader x) ~~Reader (Stream x)

Given

```
data Reader x a = Reader (x -> a)
```

we have

```
data Free (Reader x) a
    = Pure a
    | Free (x -> Free (Reader x) a)
```

which is isomorphic to

```
data Demand x a
    = Satisfied a
    | Hungry (x -> Demand x a)
```

or equivalently Stream x -> a with

```
data Stream x = Stream x (Stream x)
```

Read Common monads as free monads online: https://riptutorial.com/haskell/topic/8256/common-monads-as-free-monads

Chapter 13: Concurrency

Remarks

Good resources for learning about concurrent and parallel programming in Haskell are:

- Parallel and Concurrent Programming in Haskell
- the Haskell Wiki

Examples

\section*{Spawning Threads with `forkIO`}

Haskell supports many forms of concurrency and the most obvious being forking a thread using forkio.

The function forkIo :: Io () -> Io ThreadId takes an io action and returns its ThreadId, meanwhile the action will be run in the background.

We can demonstrate this quite succinctly using ghci:

```
Prelude Control.Concurrent> forkIO $ (print . sum) [1..100000000]
ThreadId 290
Prelude Control.Concurrent> forkIO $ print "hi!"
"hi!"
-- some time later....
Prelude Control.Concurrent> 50000005000000
```

Both actions will run in the background, and the second is almost guaranteed to finish before the last!

\section*{Communicating between Threads with `MVar`}

It is very easy to pass information between threads using the mvar a type and its accompanying functions in control.concurrent:

- newEmptyMVar :: Io (MVar a) -- Creates a new mVar a
- newMVar :: a -> IO (MVar a) -- creates a new mvar with the given value
- takeMVar :: MVar a -> Io a -- retrieves the value from the given mVar, or blocks until one is available
- putmVar :: mVar a -> a -> Io () -- puts the given value in the mVar, or blocks until it's empty

Let's sum the numbers from 1 to 100 million in a thread and wait on the result:

```
import Control.Concurrent
main = do
```

```
m <- newEmptyMVar
forkIO $ putMVar m $ sum [1..10000000]
print =<< takeMVar m -- takeMVar will block 'til m is non-empty!
```

A more complex demonstration might be to take user input and sum in the background while waiting for more input:

```
main2 = loop
    where
        loop = do
            m <- newEmptyMVar
            n <- getLine
            putStrLn "Calculating. Please wait"
            -- In another thread, parse the user input and sum
            forkIO $ putMVar m $ sum [1..(read n :: Int)]
            -- In another thread, wait 'til the sum's complete then print it
            forkIO $ print =<< takeMVar m
            loop
```

As stated earlier, if you call takemvar and the mvar is empty, it blocks until another thread puts something into the mvar, which could result in a Dining Philosophers Problem. The same thing happens with putmvar: if it's full, it'll block 'til it's empty!

Take the following function:

```
concurrent ma mb = do
    a <- takeMVar ma
    b <- takeMVar mb
    putMVar ma a
    putMVar mb b
```

We run the the two functions with some mvars

```
concurrent ma mb
-- new thread 1
concurrent mb ma -- new thread 2
```

What could happen is that:

1. Thread 1 reads ma and blocks ma
2. Thread 2 reads mb and thus blocks mb

Now Thread 1 cannot read mb as Thread 2 has blocked it, and Thread 2 cannot read ma as Thread 1 has blocked it. A classic deadlock!

Atomic Blocks with Software Transactional Memory

Another powerful \& mature concurrency tool in Haskell is Software Transactional Memory, which allows for multiple threads to write to a single variable of type tvar a in an atomic manner.

тVar a is the main type associated with the sтм monad and stands for transactional variable.
They're used much like mvar but within the sтм monad through the following functions:
atomically :: STM a -> IO a
Perform a series of STM actions atomically.
readTVar : : TVar a \rightarrow STM a

Read the tvar's value, e.g.:

```
value <- readTVar t
```

writeTVar : : TVar a -> a -> STM ()

Write a value to the given rvar.

```
t <- newTVar Nothing
writeTVar t (Just "Hello")
```

This example is taken from the Haskell Wiki:

```
import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM
main = do
    -- Initialise a new TVar
    shared <- atomically $ newTVar 0
    -- Read the value
    before <- atomRead shared
    putStrLn $ "Before: " ++ show before
    forkIO $ 25 `timesDo` (dispVar shared >> milliSleep 20)
    forkIO $ 10 `timesDo` (appV ((+) 2) shared >> milliSleep 50)
    forkIO $ 20 `timesDo` (appV pred shared >> milliSleep 25)
    milliSleep 800
    after <- atomRead shared
    putStrLn $ "After: " ++ show after
    where timesDo = replicateM_
        milliSleep = threadDelay . (*) 1000
atomRead = atomically . readTVar
dispVar x = atomRead x >>= print
appV fn x = atomically $ readTVar x >>= writeTVar x . fn
```

Read Concurrency online: https://riptutorial.com/haskell/topic/4426/concurrency

Chapter 14: Containers - Data.Map

Examples

Constructing

We can create a Map from a list of tuples like this:

```
Map.fromList [("Alex", 31), ("Bob", 22)]
```

A Map can also be constructed with a single value:

```
> Map.singleton "Alex" 31
fromList [("Alex",31)]
```

There is also the empty function.

```
empty :: Map k a
```

Data.Map also supports typical set operations such as union, difference and

Checking If Empty

We use the null function to check if a given Map is empty:

```
> Map.null $ Map.fromList [("Alex", 31), ("Bob", 22)]
False
> Map.null $ Map.empty
True
```


Finding Values

There are many querying operations on maps.
member :: Ord $k=>k$ Map k a \rightarrow Bool yields True if the key of type k is in Map k a:

```
> Map.member "Alex" $ Map.singleton "Alex" 31
True
> Map.member "Jenny" $ Map.empty
False
```

notMember is similar:

```
> Map.notMember "Alex" $ Map.singleton "Alex" 31
False
> Map.notMember "Jenny" $ Map.empty
```

You can also use findwithDefault :: ord $k \Rightarrow a \rightarrow k$ Map k a \rightarrow a to yield a default value if the key isn't present:

```
Map.findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
Map.findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
```


Inserting Elements

Inserting elements is simple:

```
> let m = Map.singleton "Alex" 31
fromList [("Alex",31)]
> Map.insert "Bob" 99 m
fromList [("Alex",31),("Bob",99)]
```


Deleting Elements

```
> let m = Map.fromList [("Alex", 31), ("Bob", 99)]
fromList [("Alex",31),("Bob",99)]
> Map.delete "Bob" m
fromList [("Alex",31)]
```


Importing the Module

The Data.map module in the containers package provides a map structure that has both strict and lazy implementations.

When using Data.Map, one usually imports it qualified to avoid clashes with functions already defined in Prelude:

```
import qualified Data.Map as Map
```

So we'd then prepend map function calls with Map., e.g.

```
Map.empty -- give me an empty Map
```


Monoid instance

Map k v provides a Monoid instance with the following semantics:

- mempty is the empty map, i.e. the same as Map.empty
- $m 1<>\mathrm{m} 2$ is the left-biased union of m 1 and m 2 , i.e. if any key is present both $\mathrm{in} \mathrm{m}_{1}$ and m 2 , then the value from $\mathrm{m1}$ is picked for $\mathrm{m} 1<>\mathrm{m} 2$. This operation is also available outside the monoid instance as Map.union.

Read Containers - Data.Map online: https://riptutorial.com/haskell/topic/4591/containers---datamap

Chapter 15: Creating Custom Data Types

Examples

Creating a simple data type

The easiest way to create a custom data type in Haskell is to use the data keyword:

```
data Foo = Bar | Biz
```

The name of the type is specified between data and $=$, and is called a type constructor. After = we specify all value constructors of our data type, delimited by the । sign. There is a rule in Haskell that all type and value constructors must begin with a capital letter. The above declaration can be read as follows:

Define a type called Foo, which has two possible values: Bar and Biz.

Creating variables of our custom type

```
let x = Bar
```

The above statement creates a variable named x of type Foo. Let's verify this by checking its type.

```
:t x
```

prints

```
x :: FOO
```


Creating a data type with value constructor parameters

Value constructors are functions that return a value of a data type. Because of this, just like any other function, they can take one or more parameters:

```
data Foo = Bar String Int | Biz String
```

Let's check the type of the Bar value constructor.

```
:t Bar
```

prints

```
Bar :: String -> Int -> Foo
```

which proves that Bar is indeed a function.

Creating variables of our custom type

```
let x = Bar "Hello" 10
let y = Biz "Goodbye"
```


Creating a data type with type parameters

Type constructors can take one or more type parameters:

```
data Foo a b = Bar a b | Biz a b
```

Type parameters in Haskell must begin with a lowercase letter. Our custom data type is not a real type yet. In order to create values of our type, we must substitute all type parameters with actual types. Because a and b can be of any type, our value constructors are polymorphic functions.

Creating variables of our custom type

```
let x = Bar "Hello" 10 -- x :: Foo [Char] Integer
let y = Biz "Goodbye" 6.0 -- y :: Fractional b => Foo [Char] b
let z = Biz True False -- z :: Foo Bool Bool
```


Custom data type with record parameters

Assume we want to create a data type Person, which has a first and last name, an age, a phone number, a street, a zip code and a town.

We could write

```
data Person = Person String String Int Int String String String
```

If we want now to get the phone number, we need to make a function

```
getPhone :: Person -> Int
getPhone (Person _ _ _ phone _ _ _) = phone
```

Well, this is no fun. We can do better using parameters:

```
data Person' = Person' { firstName :: String
    , lastName :: String
    , age :: Int
    , phone :: Int
    , street :: String
    , code :: String
    , town :: String }
```

Now we get the function phone where

```
:t phone
phone :: Person' -> Int
```

We can now do whatever we want, eg:

```
printPhone :: Person' -> IO ()
printPhone = putStrLn . show . phone
```

We can also bind the phone number by Pattern Matching:

```
getPhone' :: Person' -> Int
getPhone' (Person {phone = p}) = p
```

For easy use of the parameters see RecordWildCards
Read Creating Custom Data Types online: https://riptutorial.com/haskell/topic/4057/creating-custom-data-types

Chapter 16: Data.Aeson - JSON in Haskell

Examples

Smart Encoding and Decoding using Generics

The easiest and quickest way to encode a Haskell data type to JSON with Aeson is using generics.

```
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics
import Data.Text
import Data.Aeson
import Data.ByteString.Lazy
```

First let us create a data type Person:

```
data Person = Person { firstName :: Text
    , lastName :: Text
    , age :: Int
    } deriving (Show, Generic)
```

In order to use the encode and decode function from the Data.Aeson package we need to make Person an instance of ToJson and FromJSon. Since we derive Generic for Person, we can create empty instances for these classes. The default definitions of the methods are defined in terms of the methods provided by the Generic type class.

```
instance ToJSON Person
instance FromJSON Person
```

Done! In order to improve the encoding speed we can slightly change the touson instance:

```
instance ToJSON Person where
    toEncoding = genericToEncoding defaultOptions
```

Now we can use the encode function to convert Person to a (lazy) Bytestring:

```
encodeNewPerson :: Text -> Text -> Int -> ByteString
encodeNewPerson first last age = encode $ Person first last age
```

And to decode we can just use decode:

```
> encodeNewPerson "Hans" "Wurst" 30
"{\"lastName\":\"Wurst\",\"age\":30,\"firstName\":\"Hans\"}"
> decode $ encodeNewPerson "Hans" "Wurst" 30
```

```
Just (Person {firstName = "Hans", lastName = "Wurst", age = 30})
```


A quick way to generate a Data.Aeson.Value

```
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Data.Aeson
main :: IO ()
main = do
    let example = Data.Aeson.object [ "key" .= (5 :: Integer), "somethingElse" .= (2 :: Integer)
] :: Value
    print . encode $ example
```


Optional Fields

Sometimes, we want some fields in the JSON string to be optional. For example,

```
data Person = Person { firstName :: Text
    , lastName :: Text
    , age :: Maybe Int
    }
```

This can be achieved by

```
import Data.Aeson.TH
$(deriveJSON defaultOptions{omitNothingFields = True} ''Person)
```

Read Data.Aeson - JSON in Haskell online: https://riptutorial.com/haskell/topic/4525/data-aeson---json-in-haskell

Chapter 17: Data.Text

Remarks

Text is a more efficient alternative to Haskell's standard string type. string is defined as a linked list of characters in the standard Prelude, per the Haskell Report:

```
type String = [Char]
```

Text is represented as a packed array of Unicode characters. This is similar to how most other high-level languages represent strings, and gives much better time and space efficiency than the list version.

Text should be preferred over string for all production usage. A notable exception is depending on a library which has a string API, but even in that case there may be a benefit of using text internally and converting to a string just before interfacing with the library.

All of the examples in this topic use the overloadedstrings language extension.

Examples

Text Literals

The overloadedstrings language extension allows the use of normal string literals to stand for Text values.

```
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
myText :: T.Text
myText = "overloaded"
```


Stripping whitespace

```
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
myText :: T.Text
myText = "\n\r\t leading and trailing whitespace \t\r\n"
```

strip removes whitespace from the start and end of a rext value.

```
ghci> T.strip myText
"leading and trailing whitespace"
```

stripstart removes whitespace only from the start.

```
ghci> T.stripStart myText
"leading and trailing whitespace \t\r\n"
```

stripend removes whitespace only from the end.

```
ghci> T.stripEnd myText
"\n\r\t leading and trailing whitespace"
```

filter can be used to remove whitespace, or other characters, from the middle.

```
ghci> T.filter /=' ' "spaces in the middle of a text string"
"spacesinthemiddleofatextstring"
```


Splitting Text Values

```
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
myText :: T.Text
myText = "mississippi"
```

spliton breaks a rext up into a list of texts on occurrences of a substring.

```
ghci> T.splitOn "ss" myText
["mi","i","ippi"]
```

spliton is the inverse of intercalate.

```
ghci> intercalate "ss" (splitOn "ss" "mississippi")
"mississippi"
```

split breaks a rext value into chunks on characters that satisfy a Boolean predicate.

```
ghci> T.split (== 'i') myText
["m","ss","ss","pp",""]
```


Encoding and Decoding Text

Encoding and decoding functions for a variety of Unicode encodings can be found in the Data. Text.Encoding module.

```
ghci> import Data.Text.Encoding
ghci> decodeUtf8 (encodeUtf8 "my text")
"my text"
```

Note that decodeut $f 8$ will throw an exception on invalid input. If you want to handle invalid UTF-8
yourself, use decodeut $£ 8$ With.

```
ghci> decodeUtf8With (\errorDescription input -> Nothing) messyOutsideData
```


Checking if a Text is a substring of another Text

```
ghci> :set -XOverloadedStrings
ghci> import Data.Text as T
```

isInfixOf : : Text -> Text -> Bool checks whether a Text is contained anywhere within another Text.

```
ghci> "rum" `T.isInfixOf` "crumble"
True
```

isPrefixof : : Text -> Text -> Bool checks whether a Text appears at the beginning of another Text

```
ghci> "crumb" `T.isPrefixOf` "crumble"
True
```

isSuffixof : : Text \rightarrow Text \rightarrow Bool checks whether a Text appears at the end of another Text.

```
ghci> "rumble" `T.isSuffixOf` "crumble"
True
```


Indexing Text

```
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
myText :: T.Text
myText = "mississippi"
```

Characters at specific indices can be returned by the index function.

```
ghci> T.index myText 2
's'
```

The findIndex function takes a function of type (Char -> Bool) and Text and returns the index of the first occurrence of a given string or Nothing if it doesn't occur.

```
ghci> T.findIndex ('s'==) myText
Just 2
ghci> T.findIndex ('c'==) myText
Nothing
```

The count function returns the number of times a query text occurs within another text.

```
ghci> count ("miss"::T.Text) myText
1
```

Read Data.Text online: https://riptutorial.com/haskell/topic/3406/data-text

Chapter 18: Databases

Examples

Postgres

Postgresql-simple is a mid-level Haskell library for communicating with a PostgreSQL backend database. It is very simple to use and provides a type-safe API for reading/writing to a DB.

Running a simple query is as easy as:

```
{-# LANGUAGE OverloadedStrings #-}
import Database.PostgreSQL.Simple
main :: IO ()
main = do
    -- Connect using libpq strings
    conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
    [Only i] <- query_ conn "select 2 + 2" -- execute with no parameter substitution
    print i
```


Parameter substitution

PostreSQL-Simple supports parameter substitution for safe parameterised queries using query:

```
main :: IO ()
main = do
    -- Connect using libpq strings
    conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
    [Only i] <- query conn "select ? + ?" [1, 1]
    print i
```


Executing inserts or updates

You can run inserts/update SQL queries using execute:

```
main :: IO ()
main = do
    -- Connect using libpq strings
    conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
    execute conn "insert into people (name, age) values (?, ?)" ["Alex", 31]
```

Read Databases online: https://riptutorial.com/haskell/topic/4444/databases

Chapter 19: Date and Time

Syntax

- addDays :: Integer -> Day -> Day
- diffDays :: Day -> Day -> Integer
- fromGregorian :: Integer -> Int -> Int -> Day

```
convert from proleptic Gregorian calendar. First argument is year, second month number
(1-12), third day (1-31). Invalid values will be clipped to the correct range, month
first, then day.
```

- getCurrentTime :: IO UTCTime

Remarks

The Data. Time module from time package provides support for retrieving \& manipulating date \& time values:

Examples

Finding Today's Date

Current date and time can be found with getCurrentime:

```
import Data.Time
print =<< getCurrentTime
-- 2016-08-02 12:05:08.937169 UTC
```

Alternatively, just the date is returned by fromGregorian:

```
fromGregorian 1984 11 17 -- yields a Day
```


Adding, Subtracting and Comparing Days

Given a day, we can perform simple arithmetic and comparisons, such as adding:

```
import Data.Time
addDays 1 (fromGregorian 2000 1 1)
-- 2000-01-02
addDays 1 (fromGregorian 2000 12 31)
_- 2001-01-01
```


Subtract:

```
addDays (-1) (fromGregorian 2000 1 1)
-- 1999-12-31
addDays (-1) (fromGregorian 0 1 1)
-- -0001-12-31
-- wat
```

and even find the difference:

```
diffDays (fromGregorian 2000 12 31) (fromGregorian 2000 1 1)
365
```

note that the order matters:

```
diffDays (fromGregorian 2000 1 1) (fromGregorian 2000 12 31)
-365
```

Read Date and Time online: https://riptutorial.com/haskell/topic/4950/date-and-time

Chapter 20: Fixity declarations

Syntax

1. infix [integer] ops
2. infixl [integer] ops
3. infixr [integer] ops

Parameters

Declaration component	Meaning
infixr	the operator is right-associative
infixl	the operator is left-associative
infix	the operator is non-associative
optional digit	binding precedence of the operator (range 0...9, default 9)
op1, ..., opn	operators

Remarks

To parse expressions involving operators and functions, Haskell uses fixity declarations to figure out where parenthesis go. In order, it

1. wraps function applications in parens
2. uses binding precendence to wrap groups of terms all seperated by operators of the same precedence
3. uses the associativity of those operators to figure out how to add parens to these groups

Notice that we assume here that the operators in any given group from step 2 must all have the same associativity. In fact, Haskell will reject any program where this condition is not met.

As an example of the above algorithm, we can step though the process of adding parenthesis to 1 + negate $5 \star 2-3 \star 4 \wedge 2 \wedge 1$.

```
infixl 6 +
infixl 6 -
infixl 7 *
infixr 8 ^
```

1. $1+($ negate 5) * $2-3 * 4 \wedge 2 \wedge 1$
2. $1+(($ negate 5$) * 2)-(3 *(4 \wedge 2 \wedge 1))$
3. $(1+(($ negate 5$) * 2))-(3 *(4 \wedge(2 \wedge 1)))$

More details in section 4.4.2 of the Haskell 98 report.

Examples

Associativity

infixl vs infixr vs infix describe on which sides the parens will be grouped. For example, consider the following fixity declarations (in base)

```
infixl 6 -
infixr 5 :
infix 4 ==
```

The infixl tells us that - has left associativity, which means that $1-2-3-4$ gets parsed as

```
((1-2) - 3) - 4
```

The infixr tells us that : has right associativity, which means that $1: 2: 3:[]$ gets parsed as

```
1 : (2 : (3 : []))
```

The infix tells us that == cannot be used without us including parenthesis, which means that true $==$ False $==$ True is a syntax error. On the other hand, True == (False == True) Or (True == False) $==$ True are fine.

Operators without an explicit fixity declaration are infixi 9.

Binding precedence

The number that follows the associativity information describes in what order the operators are applied. It must always be between 0 and 9 inclusive. This is commonly referred to as how tightly the operator binds. For example, consider the following fixity declarations (in base)

```
infixl 6 +
infixl 7 *
```

Since * has a higher binding precedence than + we read $1 * 2+3$ as

```
(1 * 2) + 3
```

In short, the higher the number, the closer the operator will "pull" the parens on either side of it.

Remarks

- Function application always binds higher than operators, sofx ‘op` g y must be interpreted as (\(£ \mathrm{x}) \mathrm{Op}(\mathrm{g} y\)) no matter what the operator 'op` and its fixity declaration are.
- If the binding precedence is omitted in a fixity declaration (for example we have infixl *!?) the default is 9 .

Example declarations

- infixr 5 ++
- infixl 4 <*>, <*, *>, <**>
- infixl 8 `shift`, ‘rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR`
- infix 4 ==, $/=,<,<=,>=,>$
- infix ??

Read Fixity declarations online: https://riptutorial.com/haskell/topic/4691/fixity-declarations

Chapter 21: Foldable

Introduction

 elements of a structure in a well-defined order, using a combining function.

Remarks

If t is Foldable it means that for any value t a we know how to access all of the elements of a from "inside" of t a in a fixed linear order. This is the meaning of foldmap :: Monoid m => (a -> m) -> (t a $->m$): we "visit" each element with a summary function and smash all the summaries together. MonoidS respect order (but are invariant to different groupings).

Examples

Counting the elements of a Foldable structure

length counts the occurences of elements a in a foldable structure t a.

```
ghci> length [7, 2, 9] -- t ~ []
3
ghci> length (Right 'a') -- t ~ Either e
1 -- 'Either e a' may contain zero or one 'a'
ghci> length (Left "foo") -- t ~ Either String
O
ghci> length (3, True) -- t ~ (,) Int
1 -- '(c, a)' always contains exactly one 'a'
```

length is defined as being equivalent to:

```
class Foldable t where
    -- ...
    length :: t a -> Int
    length = foldl' (\c _ -> c+1) 0
```

Note that this return type int restricts the operations that can be performed on values obtained by calls to the length function. fromintegralis a useful function that allows us to deal with this problem.

Folding a structure in reverse

Any fold can be run in the opposite direction with the help of the Dual monoid, which flips an existing monoid so that aggregation goes backwards.

```
newtype Dual a = Dual { getDual :: a }
instance Monoid m => Monoid (Dual m) where
```

```
mempty = Dual mempty
(Dual x) `mappend` (Dual y) = Dual (y `mappend` x)
```

When the underlying monoid of a foldmap call is flipped with Dual, the fold runs backwards; the following Reverse type is defined in Data.Functor. Reverse:

```
newtype Reverse t a = Reverse { getReverse :: t a }
instance Foldable t => Foldable (Reverse t) where
    foldMap f = getDual . foldMap (Dual . f) . getReverse
```

We can use this machinery to write a terse reverse for lists:

```
reverse :: [a] -> [a]
reverse = toList . Reverse
```


An instance of Foldable for a binary tree

To instantiate Foldable you need to provide a definition for at least foldmap or foldr.

```
data Tree a = Leaf
    | Node (Tree a) a (Tree a)
instance Foldable Tree where
    foldMap f Leaf = mempty
    foldMap f (Node l x r) = foldMap f l `mappend` f x `mappend` foldMap f r
    foldr f acc Leaf = acc
    foldr f acc (Node l x r) = foldr f (f x (foldr f acc r)) l
```

This implementation performs an in-order traversal of the tree.

```
ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)
-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
ghci> toList myTree
"abc"
```

The DeriveFoldable extension allows GHC to generate Foldable instances based on the structure of the type. We can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.

```
data Inorder a = ILeaf
    | INode (Inorder a) a (Inorder a) -- as before
    deriving Foldable
data Preorder a = PrLeaf
    | PrNode a (Preorder a) (Preorder a)
```

```
deriving Foldable
data Postorder a = PoLeaf
    | PoNode (Postorder a) (Postorder a) a
    deriving Foldable
-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)
preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)
postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x
ghci> toList (inorder myTree)
"abc"
ghci> toList (preorder myTree)
"bac"
ghci> toList (postorder myTree)
"acb"
```


Flattening a Foldable structure into a list

toList flattens a Foldable structure t a into a list of as.

```
ghci> toList [7, 2, 9] -- t ~ []
[7, 2, 9]
ghci> toList (Right 'a') -- t ~ Either e
"a"
ghci> toList (Left "foo") -- t ~ Either String
[]
ghci> toList (3, True) -- t ~ (,) Int
[True]
```

toList is defined as being equivalent to:

```
class Foldable t where
    -- ...
    toList :: t a -> [a]
    toList = foldr (:) []
```


Performing a side-effect for each element of a Foldable structure

traverse_ executes an Applicative action for every element in a Foldable structure. It ignores the action's result, keeping only the side-effects. (For a version which doesn't discard results, use Traversable.)

```
-- using the Writer applicative functor (and the Sum monoid)
ghci> runWriter $ traverse_ (\x -> tell (Sum x)) [1,2,3]
((), Sum {getSum = 6})
```

```
-- using the IO applicative functor
ghci> traverse_ putStrLn (Right "traversing")
traversing
ghci> traverse_ putStrLn (Left False)
-- nothing printed
```

for_ is traverse_ with the arguments flipped. It resembles a foreach loop in an imperative language.

```
ghci> let greetings = ["Hello", "Bonjour", "Hola"]
ghci> :{
ghci| for_ greetings $ \greeting -> do
ghci| print (greeting ++ " Stack Overflow!")
ghci| :}
"Hello Stack Overflow!"
"Bonjour Stack Overflow!"
"Hola Stack Overflow!"
```

sequenceA_ collapses a Foldable full of Applicative actions into a single action, ignoring the result.

```
ghci> let actions = [putStrLn "one", putStLn "two"]
ghci> sequenceA_ actions
one
two
```

traverse_ is defined as being equivalent to:

```
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr (\x action -> f x *> action) (pure ())
```

sequenceA_ is defined as:

```
sequenceA_ :: (Foldable t, Applicative f) -> t (f a) -> f ()
sequenceA__ = traverse_ id
```

Moreover, when the foldable is also a Functor, traverse_ and sequencea_ have the following relationship:

```
traverse_ f = sequenceA_ . fmap f
```


Flattening a Foldable structure into a Monoid

foldmap maps each element of the Foldable structure to a monoid, and then combines them into a single value.
foldmap and foldr can be defined in terms of one another, which means that instances of Foldable need only give a definition for one of them.

```
class Foldable t where
    foldMap :: Monoid m => (a -> m) -> t a -> m
    foldMap f = foldr (mappend . f) mempty
```

Example usage with the Product monoid:

```
product :: (Num n, Foldable t) => t n -> n
product = getProduct . foldMap Product
```


Definition of Foldable

```
class Foldable t where
    {-# MINIMAL foldMap | foldr #-}
    foldMap :: Monoid m => (a -> m) -> t a -> m
    foldMap f = foldr (mappend . f) mempty
    foldr :: (a -> b -> b) -> b -> t a -> b
    foldr f z t = appEndo (foldMap (Endo #. f) t) z
    -- and a number of optional methods
```

Intuitively (though not technically), Foldable structures are containers of elements a which allow access to their elements in a well-defined order. The foldmap operation maps each element of the container to a monoid and collapses them using the monoid structure.

Checking if a Foldable structure is empty

null returns true if there are no elements a in a foldable structure $t a$, and False if there is one or more. Structures for which null is True have a length of 0 .

```
ghci> null []
True
ghci> null [14, 29]
False
ghci> null Nothing
True
ghci> null (Right 'a')
False
ghci> null ('x', 3)
False
```

null is defined as being equivalent to:

```
class Foldable t where
    -- ...
    null :: t a -> Bool
    null = foldr (\_ _ -> False) True
```

Read Foldable online: https://riptutorial.com/haskell/topic/753/foldable

Chapter 22: Foreign Function Interface

Syntax

- foreign import ccall unsafe "foo" hFoo :: Int32 -> IO Int32 \{- Imports a function named foo in some object file, and defines the symbol hFoo which can be called with Haskell code. -\}

Remarks

While cabal has support for including a C and C++ libraries in a Haskell package, there are a few bugs. First, if you have data (rather than a function) defined in $\mathrm{b} . \circ$ that is used in a.o, and list the csources: a.c, b.c, then cabal will be unable to find the data. This is documented in \#12152. A workaround when using cabal is to reorder the c-sources list to be c-sources: b.c, a.c. This may not work when using stack, because stack always links the c-sources alphabetically, regardless of the order in which you list them.

Another issues is that you must surround any C++ code in header (.h) files with \#ifdef __cplusplus guards. This is because GHC doesn't understand C++ code in header files. You can still write C++ code in header files, but you must surround it with guards.
ccall refers to the calling convention; currently ccall and stdcall (Pascal convention) are supported. The unsafe keyword is optional; this reduces overhead for simple functions but may cause deadlocks if the foreign function blocks indefinitely or has insufficient permission to execute 1.

Examples

Calling C from Haskell

For performance reasons, or due to the existence of mature C libraries, you may want to call C code from a Haskell program. Here is a simple example of how you can pass data to a C library and get an answer back.
foo.c:

```
#include <inttypes.h>
int32_t foo(int32_t a) {
    return a+1;
}
```

Foo.hs:

```
import Data.Int
main :: IO ()
```

```
main = print =<< hFoo 41
foreign import ccall unsafe "foo" hFoo :: Int32 -> IO Int32
```

The unsafe keyword generates a more efficient call than 'safe', but requires that the Code never makes a callback to the Haskell system. Since foo is completely in C and will never call Haskell, we can use unsafe.

We also need to instruct cabal to compile and link in C source.
foo.cabal:

```
name: foo
version: 0.0.0.1
build-type: Simple
extra-source-files: *.c
cabal-version: >= 1.10
executable foo
    default-language: Haskell2010
    main-is: Foo.hs
    C-sources: foo.c
    build-depends: base
```

Then you can run:

```
> cabal configure
> cabal build foo
> ./dist/build/foo/foo
42
```


Passing Haskell functions as callbacks to C code.

It is very common for C functions to accept pointers to other functions as arguments. Most popular example is setting an action to be executed when a button is clicked in some GUI toolkit library. It is possible to pass Haskell functions as C callbacks.

To call this C function:

```
void event_callback_add (Object *obj, Object_Event_Cb func, const void *data)
```

we first import it to Haskell code:

```
foreign import ccall "header.h event_callback_add"
    callbackAdd :: Ptr () -> FunPtr Callback -> Ptr () -> IO ()
```

Now looking at how object_Event_cb is defined in C header, define what callback is in Haskell:

```
type Callback = Ptr () -> Ptr () -> IO ()
```

Finally, create a special function that would wrap Haskell function of type callback into a pointer

```
FunPtr Callback:
```

```
foreign import ccall "wrapper"
    mkCallback :: Callback -> IO (FunPtr Callback)
```

Now we can register callback with C code:

```
cbPtr <- mkCallback $ \objPtr dataPtr -> do
    -- callback code
    return ()
callbackAdd cpPtr
```

It is important to free allocated Funptr once you unregister the callback:

```
freeHaskellFunPtr cbPtr
```

Read Foreign Function Interface online: https://riptutorial.com/haskell/topic/7256/foreign-functioninterface

Chapter 23: Free Monads

Examples

Free monads split monadic computations into data structures and interpreters

For instance, a computation involving commands to read and write from the prompt:
First we describe the "commands" of our computation as a Functor data type

```
{-# LANGUAGE DeriveFunctor #-}
data TeletypeF next
    = PrintLine String next
    | ReadLine (String -> next)
    deriving Functor
```

Then we use Free to create the "Free Monad over TeletypeF" and build some basic operations.

```
import Control.Monad.Free (Free, liftF, iterM)
type Teletype = Free TeletypeF
printLine :: String -> Teletype ()
printLine str = liftF (PrintLine str ())
readLine :: Teletype String
readLine = liftF (ReadLine id)
```

Since Free $^{\mathrm{f}}$ is a Monad whenever f is a Functor, we can use the standard Monad combinators (including do notation) to build Teletype computations.

```
import Control.Monad -- we can use the standard combinators
echo :: Teletype ()
echo = readLine >>= printLine
mockingbird :: Teletype a
mockingbird = forever echo
```

Finally, we write an "interpreter" turning teletype a values into something we know how to work with like io a

```
interpretTeletype :: Teletype a -> IO a
interpretTeletype = foldFree run where
    run :: TeletypeF a -> IO a
    run (PrintLine str x) = putStrLn *> return x
    run (ReadLine f) = fmap f getLine
```

Which we can use to "run" the Teletype a computation in io

```
> interpretTeletype mockingbird
hello
hello
goodbye
goodbye
this will go on forever
this will go on forever
```


Free Monads are like fixed points

Compare the definition of Free to that of Fix :

```
data Free f a = Return a
    | Free (f (Free f a))
newtype Fix f = Fix { unFix :: f (Fix f) }
```

In particular, compare the type of the Free constructor with the type of the Fix constructor. Free layers up a functor just like Fix, except that Free has an additional Return a case.

How do foldFree and iterM work?

There are some functions to help tear down Free computations by interpreting them into another monad m : iterm :: (Functor f, Monad m) $\Rightarrow>(f(m a)->m$ a) $->$ (Free f a $\rightarrow m$ a) and foldFree :: Monad $m=>(f o r a l l x$. f $x \rightarrow m$ x) \rightarrow (Free f a $\rightarrow m$ a). What are they doing?

First let's see what it would take to tear down an interpret a Teletype a function into io manually. We can see Free f a as being defined

```
data Free f a
    = Pure a
    | Free (f (Free f a))
```

The Pure case is easy:

```
interpretTeletype :: Teletype a -> IO a
interpretTeletype (Pure x) = return x
interpretTeletype (Free teletypeF) = _
```

Now, how to interpret a Teletype computation that was built with the free constructor? We'd like to arrive at a value of type io a by examining teletyper :: Teletyper (Teletype a). To start with, we'll write a function runio :: Teletyper a \rightarrow Io a which maps a single layer of the free monad to an io action:

```
runIO :: TeletypeF a -> IO a
runIO (PrintLine msg x) = putStrLn msg *> return x
runIO (ReadLine k) = fmap k getLine
```

Now we can use runio to fill in the rest of interpretTeletype. Recall that teletyper :: Teletyper (Teletype a) is a layer of the Teletyper functor which contains the rest of the Free computation. We'll use runio to interpret the outermost layer (so we have runio teletyper :: Io (Teletype a)) and then use the io monad's >>= combinator to interpret the returned Teletype a.

```
interpretTeletype :: Teletype a -> IO a
interpretTeletype (Pure x) = return x
interpretTeletype (Free teletypeF) = runIO teletypeF >>= interpretTeletype
```

The definition of foldFree is just that of interpret Teletype, except that the runio function has been factored out. As a result, foldFree works independently of any particular base functor and of any target monad.

```
foldFree :: Monad m => (forall x. f x -> m x) -> Free f a -> m a
foldFree eta (Pure x) = return x
foldFree eta (Free fa) = eta fa >>= foldFree eta
```

foldFree has a rank-2 type: eta is a natural transformation. We could have given foldFree a type of Monad m => (f (Free fa) -> m (Free fa)) -> Free fa -> ma, but that gives eta the liberty of inspecting the Free computation inside the f layer. Giving foldFree this more restrictive type ensures that eta can only process a single layer at a time.
iterm does give the folding function the ability to examine the subcomputation. The (monadic) result of the previous iteration is available to the next, inside f 's parameter. iterm is analogous to a paramorphism whereas foldfree is like a catamorphism.

```
iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a
iterM phi (Pure x) = return x
iterM phi (Free fa) = phi (fmap (iterM phi) fa)
```


The Freer monad

There's an alternative formulation of the free monad called the Freer (or Prompt, or Operational) monad. The Freer monad doesn't require a Functor instance for its underlying instruction set, and it has a more recognisably list-like structure than the standard free monad.

The Freer monad represents programs as a sequence of atomic instructions belonging to the instruction set i :: * -> *. Each instruction uses its parameter to declare its return type. For example, the set of base instructions for the state monad are as follows:

```
data StateI s a where
    Get :: StateI s s -- the Get instruction returns a value of type 's'
    Put :: s -> StateI s () -- the Put instruction contains an 's' as an argument and returns
()
```

Sequencing these instructions takes place with the :>>= constructor. :>>= takes a single instruction returning an a and prepends it to the rest of the program, piping its return value into the continuation. In other words, given an instruction returning an a and a function to turn an a into a program returning a b , :>>= will produce a program returning a b .

```
data Freer i a where
    Return :: a -> Freer i a
    (:>>=) :: i a -> (a -> Freer i b) -> Freer i b
```

Note that a is existentially quantified in the :>>= constructor. The only way for an interpreter to learn what a is is by pattern matching on the GADT i.

Aside: The co-Yoneda lemma tells us that Freer is isomorphic to Free. Recall the definition of the coyoneda functor:

```
data CoYoneda i b where
    CoYoneda :: i a -> (a -> b) -> CoYoneda i b
```

Freer i is equivalent to Free (CoYoneda i). If you take Free's constructors and set $\mathrm{f} \sim$ coyoneda i, you get:

```
Pure :: a -> Free (CoYoneda i) a
Free :: CoYoneda i (Free (CoYoneda i) b) -> Free (CoYonda i) b ~
    i a -> (a -> Free (CoYoneda i) b) -> Free (CoYoneda i) b
```

from which we can recover Freer i'S constructors by just setting Freer i ~ Free (CoYoneda i).

Because coyoneda i is a functor for any i_{i}, Freer is a Monad for any i_{i}, even if i_{i} isn't a Functor.

```
instance Monad (Freer i) where
    return = Return
    Return x >>= f = f x
    (i :>>= g) >>= f = i :>>= fmap (>>= f) g -- using `(->) r`'s instance of Functor, so fmap
= (.)
```

Interpreters can be built for Freer by mapping instructions to some handler monad.

```
foldFreer :: Monad m => (forall x. i x -> m x) -> Freer i a -> m a
foldFreer eta (Return x) = return x
foldFreer eta (i :>>= f) = eta i >>= (foldFreer eta. f)
```

For example, we can interpret the freer (StateI s) monad using the regular state s monad as a handler:

```
runFreerState :: Freer (StateI s) a -> s -> (a, s)
runFreerState = State.runState . foldFreer toState
    where toState :: StateI s a -> State s a
        toState Get = State.get
        toState (Put x) = State.put x
```

Read Free Monads online: https://riptutorial.com/haskell/topic/1290/free-monads

Chapter 24: Function call syntax

Introduction

Haskell's function call syntax, explained with comparisons to C-style languages where applicable. This is aimed at people who are coming to Haskell from a background in C-style languages.

Remarks

In general, the rule for converting a C-style function call to Haskell, in any context (assignment, return, or embedded in another call), is to replace the commas in the C-style argument list with whitespace, and move the opening parenthesis from the C-style call to contain the function name and its parameters.

If any expressions are wrapped entirely in parentheses, these (external) pairs of parentheses can be removed for readability, as they do not affect the meaning of the expression.
There are some other circumstances where parentheses can be removed, but this only affects readability and maintainability.

Examples

Parentheses in a basic function call

For a C-style function call, e.g.

```
plus(a, b); // Parentheses surrounding only the arguments, comma separated
```

Then the equivalent Haskell code will be

```
(plus a b) -- Parentheses surrounding the function and the arguments, no commas
```

In Haskell, parentheses are not explicitly required for function application, and are only used to disambiguate expressions, like in mathematics; so in cases where the brackets surround all the text in the expression, the parentheses are actually not needed, and the following is also equivalent:

```
plus a b -- no parentheses are needed here!
```

It is important to remember that while in C-style languages, the function

Parentheses in embedded function calls

In the previous example, we didn't end up needing the parentheses, because they did not affect the meaning of the statement. However, they are often necessary in more complex expression,
like the one below.
In C:

```
plus(a, take(b, c));
```

In Haskell this becomes:

```
(plus a (take b c))
-- or equivalently, omitting the outermost parentheses
plus a (take b c)
```

Note, that this is not equivalent to:

```
plus a take b c -- Not what we want!
```

One might think that because the compiler knows that take is a function, it would be able to know that you want to apply it to the arguments b and c , and pass its result to plus.
However, in Haskell, functions often take other functions as arguments, and little actual distinction is made between functions and other values; and so the compiler cannot assume your intention simply because take is a function.

And so, the last example is analogous to the following C function call:

```
plus(a, take, b, c); // Not what we want!
```


Partial application - Part 1

In Haskell, functions can be partially applied; we can think of all functions as taking a single argument, and returning a modified function for which that argument is constant. To illustrate this, we can bracket functions as follows:

```
(((plus) 1) 2)
```

Here, the function (plus) is applied to 1 yielding the function ((plus) 1), which is applied to 2 , yielding the function (((plus) 1) 2). Because plus 12 is a function which takes no arguments, you can consider it a plain value; however in Haskell, there is little distinction between functions and values.

To go into more detail, the function plus is a function that adds its arguments.
The function plus 1 is a function that adds 1 to its argument.
The function plus 12 is a function that adds 1 to 2 , which is always the value 3 .

Partial application - Part 2

As another example, we have the function map, which takes a function and a list of values, and applies the function to each value of the list:

```
map :: (a -> b) -> [a] -> [b]
```

Let's say we want to increment each value in a list. You may decide to define your own function, which adds one to its argument, and map that function over your list

```
addOne x = plus 1 x
map addOne [1,2,3]
```

but if you have another look at addone's definition, with parentheses added for emphasis:

```
(addOne) }\textrm{x}=((\textrm{plus}) 1) \textrm{x
```

The function addone, when applied to any value x , is the same as the partially applied function plus 1 applied to x . This means the functions addone and plus 1 are identical, and we can avoid defining a new function by just replacing addone with plus 1 , remembering to use parentheses to isolate plus 1 as a subexpression:

```
    map (plus 1) [1,2,3]
```

Read Function call syntax online: https://riptutorial.com/haskell/topic/9615/function-call-syntax

Chapter 25: Function composition

Remarks

Function composition operator (.) is defined as

```
(.) :: (b \(\quad\)-> c) \(->(\mathrm{a}->\mathrm{b})\)-> \((\mathrm{a}->\mathrm{c})\)
(.) f \(\mathrm{f} \quad \mathrm{x}=\mathrm{f}(\mathrm{g} x) \quad--\) or, equivalently,
(.) f \(\mathrm{f}=\backslash \mathrm{x} \rightarrow \mathrm{f}(\mathrm{g} x)\)
(.) \(f=\backslash g \quad \rightarrow>\backslash x \rightarrow>f(g x)\)
(.) \(=\backslash f \quad \rightarrow>\quad \backslash g \quad->\quad \backslash x \rightarrow>f(g x)\)
\(()=.\quad \backslash f \quad->(\backslash g \quad \rightarrow>(\backslash x \rightarrow>f(g x)))\)
```

The type (b -> c) -> (a -> b) -> (a -> c) can be written as (b -> c) -> (a -> b) -> a -> c because the $->$ in type signatures "associates" to the right, corresponding to the function application associating to the left,

```
f g x y z ... == (((f g) x) y) z ...
```

So the "dataflow" is from the right to the left: x "goes" into g, whose result goes into f, producing the final result:

```
(.) f g x = r
    where r = f (g x)
-- g :: a -> b
-- f :: b -> c
-- x :: a
-- r ::
(.) f g = q
where q = \x -> f (g x)
-- g :: a -> b
-- f :: b -> c
-- q :: a -> c
```

Syntactically, the following are all the same:

```
(.) f g x = (f.g) x = (f.) g x = (. g) f x
```

which is easy to grasp as the "three rules of operator sections", where the "missing argument" just goes into the empty slot near the operator:

The x, being present on both sides of the equation, can be omitted. This is known as eta-
contraction. Thus, the simple way to write down the definition for function composition is just

```
(f.g) x = f (g x)
```

This of course refers to the "argument" x ; whenever we write just ($\mathrm{f} . \mathrm{g}$) without the x it is known as point-free style.

Examples

Right-to-left composition

(.) lets us compose two functions, feeding output of one as an input to the other:

```
(f . g) x = f (g x)
```

For example, if we want to square the successor of an input number, we can write

```
((^2) . succ) 1 -- 4
```

There is also (<<<) which is an alias to (.). So,

```
(+ 1) <<< sqrt $ 25 -- 6
```


Left-to-right composition

Control.Category defines (>>>), which, when specialized to functions, is

```
-- (>>>) :: Category cat => cat a b -> cat b c -> cat a c
-- (>>>) :: (->) a b -> (->) b c -> (->) a c
-- (>>>) ::(a -> b) -> (b -> c) -> (a -> c)
( f >>> g ) x = g (f x)
```

Example:

```
sqrt >>> (+ 1) $ 25 -- 6.0
```


Composition with binary function

The regular composition works for unary functions. In the case of binary, we can define

```
(f .: g) x y = f (g x y) -- which is also
    =f((g x) y)
    = (f . g x) y -- by definition of (.)
    =(f.) (g x) y
    =((f.) . g) x y
```

Thus, ($\mathrm{f} . \mathrm{:} \mathrm{~g}$) $=((\mathrm{f}$.$) . g) by eta-contraction, and furthermore,$

```
(.:) f g = ((f .) . g)
    = (.) (f .) g
    = (.) ((.) f) g
    =((.) . (.)) f g
```

so (.:) = ((.) . (.)), a semi-famous definition.

Examples:

```
(map (+1) .: filter) even [1..5] -- [3,5]
(length .: filter) even [1..5] -- 2
```

Read Function composition online: https://riptutorial.com/haskell/topic/4430/function-composition

Chapter 26: Functor

Introduction

Functor is the class of types $\mathrm{f}::$ * -> * which can be covariantly mapped over. Mapping a function over a data structure applies the function to all the elements of the structure without changing the structure itself.

Remarks

A Functor can be thought of as a container for some value, or a computation context. Examples are maybe a or [a]. The Typeclassopedia article has a good write-up of the concepts behind Functors.

To be considered a real Functor, an instance has to respect the 2 following laws:

Identity

```
fmap id == id
```


Composition

```
fmap (f . g) = (fmap f) . (fmap g)
```


Examples

Common instances of Functor

Maybe

Maybe is a Functor containing a possibly-absent value:

```
instance Functor Maybe where
    fmap f Nothing = Nothing
    fmap f (Just x) = Just (f x)
```

Maybe's instance of Functor applies a function to a value wrapped in a Just. If the computation has previously failed (so the maybe value is a nothing), then there's no value to apply the function to, so fmap is a no-op.

```
> fmap (+ 3) (Just 3)
Just 6
> fmap length (Just "mousetrap")
```

```
Just 9
> fmap sqrt Nothing
Nothing
```

We can check the functor laws for this instance using equational reasoning. For the identity law,

```
fmap id Nothing
Nothing -- definition of fmap
id Nothing -- definition of id
fmap id (Just x)
Just (id x) -- definition of fmap
Just x -- definition of id
id (Just x) -- definition of id
```

For the composition law,

```
(fmap f . fmap g) Nothing
fmap f (fmap g Nothing) -- definition of (.)
fmap f Nothing -- definition of fmap
Nothing -- definition of fmap
fmap (f . g) Nothing -- because Nothing = fmap f Nothing, for all f
(fmap f . fmap g) (Just x)
fmap f (fmap g (Just x)) -- definition of (.)
fmap f (Just (g x)) -- definition of fmap
Just (f (g x)) -- definition of fmap
Just ((f . g) x) -- definition of (.)
fmap (f . g) (Just x) -- definition of fmap
```


Lists

Lists' instance of Functor applies the function to every value in the list in place.

```
instance Functor [] where
    fmap f [] = []
    fmap f (x:xs) = f x : fmap f xs
```

This could alternatively be written as a list comprehension: fmap f xs $=[\mathrm{f} \mathrm{x} \mid \mathrm{x}<-\mathrm{xs}]$.
This example shows that fmap generalises map. map only operates on lists, whereas fmap works on an arbitrary Functor.

The identity law can be shown to hold by induction:

```
-- base case
fmap id []
[] -- definition of fmap
id [] -- definition of id
-- inductive step
fmap id (x:xs)
id x : fmap id xs -- definition of fmap
```

```
x : fmap id xs -- definition of id
x : id xs -- by the inductive hypothesis
x : xs -- definition of id
id (x : xs) -- definition of id
```

and similarly, the composition law:

```
-- base case
(fmap f . fmap g) []
fmap f (fmap g []) -- definition of (.)
fmap f [] -- definition of fmap
[] -- definition of fmap
fmap (f . g) [] -- because [] = fmap f [], for all f
-- inductive step
(fmap f . fmap g) (x:xs)
fmap f (fmap g (x:xs)) -- definition of (.)
fmap f (g x : fmap g xs) -- definition of fmap
f (g x) : fmap f (fmap g xs) -- definition of fmap
(f . g) x : fmap f (fmap g xs) -- definition of (.)
(f . g) x : fmap (f . g) xs -- by the inductive hypothesis
fmap (f . g) xs -- definition of fmap
```


Functions

Not every Functor looks like a container. Functions' instance of Functor applies a function to the return value of another function.

```
instance Functor ((->) r) where
    fmap f g = \x -> f (g x)
```

Note that this definition is equivalent to fmap $=($.$) . So \mathrm{fmap}^{\text {generalises function composition. }}$
Once more checking the identity law:

```
fmap id g
\x -> id (g x) -- definition of fmap
\x -> g x -- definition of id
g -- eta-reduction
id g -- definition of id
```

and the composition law:

```
(fmap f . fmap g) h
fmap f (fmap g h) -- definition of (.)
fmap f (\x -> g (h x)) -- definition of fmap
\y -> f ((\x -> g (h x)) y) -- definition of fmap
\y -> f (g (h y)) -- beta-reduction
\y -> (f . g) (h y) -- definition of (.)
fmap (f . g) h -- definition of fmap
```

Class Definition of Functor and Laws

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

One way of looking at it is that fmap lifts a function of values into a function of values in a context f .
A correct instance of Functor should satisfy the functor laws, though these are not enforced by the compiler:

```
fmap id = id -- identity
fmap f. fmap g = fmap (f . g) -- composition
```

There's a commonly-used infix alias for fmap called <\$>.

```
infixl 4 <$>
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap
```


Replacing all elements of a Functor with a single value

The Data.Functor module contains two combinators, <\$ and $\$>$, which ignore all of the values contained in a functor, replacing them all with a single constant value.

```
infixl 4 <$, $>
<$ :: Functor f => a -> f b -> f a
(<$) = fmap . const
$> :: Functor f => f a -> b -> f b
($>) = flip (<$)
```

void ignores the return value of a computation.

```
void :: Functor f => f a -> f ()
void = (() <$)
```


Polynomial functors

There's a useful set of type combinators for building big Functors out of smaller ones. These are instructive as example instances of Functor, and they're also useful as a technique for generic programming, because they can be used to represent a large class of common functors.

The identity functor

The identity functor simply wraps up its argument. It's a type-level implementation of the I combinator from SKI calculus.

```
newtype I a = I a
```

```
instance Functor I where
    fmap f (I x) = I (f x)
```

I can be found, under the name of Identity, in the Data. Functor. Identity module.

The constant functor

The constant functor ignores its second argument, containing only a constant value. It's a typelevel analogue of const, the к combinator from SKI calculus.

```
newtype K c a = K c
```

Note that к с a doesn't contain any a-values; к () is isomorphic to proxy. This means that к's implementation of fmap doesn't do any mapping at all!

```
instance Functor (K c) where
    fmap - (K c) = K c
```

k is otherwise known as const, from Data.Functor. Const.
The remaining functors in this example combine smaller functors into bigger ones.

Functor products

The functor product takes a pair of functors and packs them up. It's analogous to a tuple, except that while (,) :: * -> * -> * operates on types *, (:*:) :: (* -> *) -> (* -> *) -> (* -> *) operates on functors * -> *.

```
infixl 7 :*:
data (f :*: g) a = f a :*: g a
instance (Functor f, Functor g) => Functor (f :*: g) where
    fmap f (fx :*: gy) = fmap f fx :*: fmap f gy
```

This type can be found, under the name Product, in the Data. Functor. Product module.

Functor coproducts

Just like : *: is analogous to (,), :+: is the functor-level analogue of Either.

```
infixl 6 :+:
data (f :+: g) a = InL (f a) | InR (g a)
instance (Functor f, Functor g) => Functor (f :+: g) where
    fmap f (InL fx) = InL (fmap f fx)
    fmap f (InR gy) = InR (fmap f gy)
```

:+: can be found under the name sum, in the Data.Functor. Sum module.

Functor composition

Finally, : .: works like a type-level (.), taking the output of one functor and plumbing it into the input of another.

```
infixr 9 :.:
newtype (f :.: g) a = Cmp (f (g a))
instance (Functor f, Functor g) => Functor (f :.: g) where
    fmap f (Cmp fgx) = Cmp (fmap (fmap f) fgx)
```

The compose type can be found in \qquad

Polynomial functors for generic programming

I, к, :*:, :+: and : : : can be thought of as a kit of building blocks for a certain class of simple datatypes. The kit becomes especially powerful when you combine it with fixed points because datatypes built with these combinators are automatically instances of Functor. You use the kit to build a template type, marking recursive points using i, and then plug it into fix to get a type that can be used with the standard zoo of recursion schemes.

Name	As a datatype	Using the functor kit
Pairs of values	data Pair a = Pair a a	type Pair = I : *: I
Two-by-two grids	type Grid a = Pair (Pair a)	type Grid = Pair :.: Pair
Natural numbers	data Nat = Zero \| Succ Nat	type Nat = Fix (K () :+: I)
Lists	data List a = Nil \| Cons a (List a)	type List a = Fix (K () :+: K a :*: I)
Binary trees	```data Tree a = Leaf \| Node (Tree a) a (Tree a)```	$\begin{aligned} & \text { type Tree a = Fix (K () :+: I :*: K } \\ & \mathrm{a}: \star: \text { I) } \end{aligned}$
Rose trees	data Rose a = Rose a (List (Rose a))	type Rose a = Fix (K a :*: List :.: I)

This "kit" approach to designing datatypes is the idea behind generic programming libraries such as generics-sop. The idea is to write generic operations using a kit like the one presented above, and then use a type class to convert arbitrary datatypes to and from their generic representation:

```
class Generic a where
    type Rep a -- a generic representation built using a kit
```

```
to :: a -> Rep a
from :: Rep a -> a
```


Functors in Category Theory

A Functor is defined in category theory as a structure-preserving map (a 'homomorphism') between categories. Specifically, (all) objects are mapped to objects, and (all) arrows are mapped to arrows, such that the category laws are preserved.

The category in which objects are Haskell types and morphisms are Haskell functions is called Hask. So a functor from Hask to Hask would consist of a mapping of types to types and a mapping from functions to functions.

The relationship that this category theoretic concept bears to the Haskell programming construct Functor is rather direct. The mapping from types to types takes the form of a type $f::$ * -> *, and the mapping from functions to functions takes the form of a function fmap : : (a -> b) -> (f a -> f b). Putting those together in a class,

```
class Functor (f :: * -> *) where
    fmap :: (a -> b) -> f a -> f b
```

fmap is an operation that takes a function (a type of morphism), :: a -> b, and maps it to another function, : : f a \rightarrow f b. It is assumed (but left to the programmer to ensure) that instances of Functor are indeed mathematical functors, preserving Hask's categorical structure:

```
fmap (id {- :: a -> a -}) == id {- :: f a -> f a -}
fmap (h . g) == fmap h . fmap g
```

fmap lifts a function :: a -> b into a subcategory of Hask in a way that preserves both the existence of any identity arrows, and the associativity of composition.

The Functor class only encodes endofunctors on Hask. But in mathematics, functors can map between arbitrary categories. A more faithful encoding of this concept would look like this:

```
class Category c where
    id :: c i i
    (.) :: c j k -> c i j -> c i k
class (Category c1, Category c2) => CFunctor c1 c2 f where
    cfmap :: c1 a b -> c2 (f a) (f b)
```

The standard Functor class is a special case of this class in which the source and target categories are both Hask. For example,

```
instance Category (->) where -- Hask
    id = \x -> x
    f.g = \x -> f (g x)
instance CFunctor (->) (->) [] where
```

```
cfmap = fmap
```


Deriving Functor

The DeriveFunctor language extension allows GHC to generate instances of Functor automatically.

```
{-# LANGUAGE DeriveFunctor #-}
data List a = Nil | Cons a (List a) deriving Functor
-- instance Functor List where -- automatically defined
-- fmap f Nil = Nil
-- fmap f (Cons x xs) = Cons (f x) (fmap f xs)
map :: (a -> b) -> List a -> List b
map = fmap
```

Read Functor online: https://riptutorial.com/haskell/topic/3800/functor

Chapter 27: Generalized Algebraic Data Types

Examples

Basic Usage

When the gadts extension is enabled, besides regular data declarations, you can also declare generalized algebraic datatypes as follows:

```
data DataType a where
    Constr1 :: Int -> a -> Foo a -> DataType a
    Constr2 :: Show a => a -> DataType a
    Constr3 :: DataType Int
```

A GADT declaration lists the types of all constructors a datatype has, explicitly. Unlike regular datatype declarations, the type of a constructor can be any N -ary (including nullary) function that ultimately results in the datatype applied to some arguments.

In this case we've declared that the type DataType has three constructors: constr1, constr2 and Constr3.

The constr1 constructor is no different from one declared using a regular data declaration: data DataType a = Constrl Int a (Foo a) | ...

Constr2 however requires that a has an instance of show, and so when using the constructor the instance would need to exist. On the other hand, when pattern-matching on it, the fact that a is an instance of show comes into scope, so you can write:

```
foo :: DataType a -> String
foo val = case val of
    Constr2 x -> show x
    ...
```

Note that the show a constraint doesn't appear in the type of the function, and is only visible in the code to the right of ->.

Constr3 has type DataType Int, which means that whenever a value of type Datatype a is a constr3, it is known that a ~ Int. This information, too, can be recovered with a pattern match.

Read Generalized Algebraic Data Types online:

https://riptutorial.com/haskell/topic/2971/generalized-algebraic-data-types

Chapter 28: GHCJS

Introduction

GHCJS is a Haskell to JavaScript compiler that uses the GHC API.

Examples

Running "Hello World!" with Node.js

ghcjs can be invoked with the same command line arguments as ghc. The generated programs can be run directly from the shell with Node.js and SpiderMonkey jsshell. for example:

```
$ ghcjs -o helloWorld helloWorld.hs
$ node helloWorld.jsexe/all.js
Hello world!
```

Read GHCJS online: https://riptutorial.com/haskell/topic/9260/ghcjs

Chapter 29: Google Protocol Buffers

Remarks

To use Protocol Buffers with Haskell you should install the htprotoc package:

1. Clone the project from Github
2. Use Stack to build and install

You should now find the hprotoc executable in \$Home/.local/bin/.

Examples

Creating, building and using a simple .proto file

Let us first create a simple .proto file person. proto

```
package Protocol;
message Person {
    required string firstName = 1;
    required string lastName = 2;
    optional int32 age = 3;
}
```

After saving we can now create the Haskell files which we can use in our project by running

```
$HOME/.local/bin/hprotoc --proto_path=. --haskell_out=. person.proto
```

We should get an output similar to this:

```
Loading filepath: "/<path-to-project>/person.proto"
All proto files loaded
Haskell name mangling done
Recursive modules resolved
./Protocol/Person.hs
./Protocol.hs
Processing complete, have a nice day.
```

hprotoc will create a new folder Protocol in the current directory with Person. hs which we can simply import into our haskell project:

```
import Protocol (Person)
```

As a next step, if using Stack add

```
protocol-buffers
protocol-buffers-descriptor
```

to build-depends: and

Protocol
to exposed-modules in your .cabal file.
If we get now a incoming message from a stream, the message will have the type Bytestring.
In order to transform the Bytestring (which obviously should contain encoded "Person" data) into our Haskell data type, we need to call the function messageGet which we import by

```
import Text.ProtocolBuffers (messageGet)
```

which enables to create a value of type Person using:

```
transformRawPerson :: ByteString -> Maybe Person
transformRawPerson raw = case messageGet raw of
    Left _ -> Nothing
    Right (person, _) -> Just person
```

Read Google Protocol Buffers online: https://riptutorial.com/haskell/topic/5018/google-protocolbuffers

Chapter 30: Graphics with Gloss

Examples

Installing Gloss

Gloss is easily installed using the Cabal tool. Having installed Cabal, one can run cabal install gloss to install Gloss.

Alternatively the package can be built from source, by downloading the source from Hackage or GitHub, and doing the following:

1. Enter the gloss/gloss-rendering/ directory and do cabal install
2. Enter the gloss/gloss/ directory and once more do cabal install

Getting something on the screen

In Gloss, one can use the display function to create very simple static graphics.
To use this one needs to first import Graphics.Gloss. Then in the code there should the following:

```
main :: IO ()
main = display window background drawing
```

window is of type Display which can be constructed in two ways:

```
-- Defines window as an actual window with a given name and size
window = InWindow name (width, height) (0,0)
-- Defines window as a fullscreen window
window = FullScreen
```

Here the last argument (0,0) in Inwindow marks the location of the top left corner.
For versions older than 1.11: In older versions of Gloss Fullscreen takes another argument which is meant to be the size of the frame that gets drawn on which in turn gets stretched to fullscreen-size, for example: Fullscreen (1024,768)
background is of type color. It defines the background color, so it's as simple as:

```
background = white
```

Then we get to the drawing itself. Drawings can be very complex. How to specify these will be covered elsewhere ([one can refer to this for the moment][1]), but it can be as simple as the following circle with a radius of 80 :

```
drawing = Circle 80
```


Summarizing example

As more or less stated in the documentation on Hackage, getting something on the screen is as easy as:

```
import Graphics.Gloss
main :: IO ()
main = display window background drawing
    where
        window = InWindow "Nice Window" (200, 200) (0, 0)
        background = white
        drawing = Circle 80
```

Read Graphics with Gloss online: https://riptutorial.com/haskell/topic/5570/graphics-with-gloss

Chapter 31: Gtk3

Syntax

- obj <- < widgetName >New -- How widgets (e.g Windows, Buttons, Grids) are created
- set < widget > [< attributes >] -- Set attributes as defined as Attr self in widget documentation (e.g. buttonLabel)
- on < widget > < event > < IO action > -- Adding an IO action to a widgets Signal self (e.g. buttonActivated)

Remarks

On many Linux distributions, the Haskell Gtk3 library is available as a package in the systems package manager (e.g. libghc-gtk in Ubuntu's APT). However, for some developers it might be preferable to use a tool like stack to manage isolated environments, and have Gtk3 installed via cabal instead of via an global installation by the systems package manager. For this option, gtk2hs-buildtools is required. Run cabal install gtk2hs-buildtools before adding gtk, gtk3 or any other Gtk-based Haskell libraries to your projects build-depends entry in your cabal file.

Examples

Hello World in Gtk

This example show how one may create a simple "Hello World" in Gtk3, setting up a window and button widgets. The sample code will also demonstrate how to set different attributes and actions on the widgets.

```
module Main (Main.main) where
import Graphics.UI.Gtk
main :: IO ()
main = do
    initGUI
    window <- windowNew
    on window objectDestroy mainQuit
    set window [ containerBorderWidth := 10, windowTitle := "Hello World" ]
    button <- buttonNew
    set button [ buttonLabel := "Hello World" ]
    on button buttonActivated $ do
        putStrLn "A \"clicked\"-handler to say \"destroy\""
        widgetDestroy window
    set window [ containerChild := button ]
    widgetShowAll window
    mainGUI -- main loop
```

Read Gtk3 online: https://riptutorial.com/haskell/topic/7342/gtk3

Chapter 32: Higher-order functions

Remarks

Higher Order Functions are functions that take functions as parameters and/or return functions as their return values.

Examples

Basics of Higher Order Functions

Review Partial Application before proceeding.
In Haskell, a function that can take other functions as arguments or return functions is called a higher-order function.

The following are all higher-order functions:

```
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
iterate :: (a -> a) -> a -> [a]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanl :: (b -> a -> b) -> b -> [a] -> [b]
```

These are particularly useful in that they allow us to create new functions on top of the ones we already have, by passing functions as arguments to other functions. Hence the name, higher-order functions.

Consider:

```
Prelude> :t (map (+3))
(map (+3)) :: Num b => [b] -> [b]
Prelude> :t (map (=='c'))
(map (=='c')) :: [Char] -> [Bool]
Prelude> :t (map zipWith)
(map zipWith) :: [a -> b -> c] -> [[a] -> [b] -> [c]]
```

This ability to easily create functions (like e.g. by partial application as used here) is one of the features that makes functional programming particularly powerful and allows us to derive short, elegant solutions that would otherwise take dozens of lines in other languages. For example, the following function gives us the number of aligned elements in two lists.

```
aligned :: [a] -> [a] -> Int
```

```
aligned xs ys = length (filter id (zipWith (==) xs ys))
```


Lambda Expressions

Lambda expressions are similar to anonymous functions in other languages.
Lambda expressions are open formulas which also specify variables which are to be bound.
Evaluation (finding the value of a function call) is then achieved by substituting the bound variables in the lambda expression's body, with the user supplied arguments. Put simply, lambda expressions allow us to express functions by way of variable binding and substitution.

Lambda expressions look like

```
\x -> let {y = ...x...} in y
```

Within a lambda expression, the variables on the left-hand side of the arrow are considered bound in the right-hand side, i.e. the function's body.

Consider the mathematical function

```
f(x) = x^2
```

As a Haskell definition it is

```
f x = x^2
f = \x -> x^2
```

which means that the function f is equivalent to the lambda expression $\backslash x->x^{\wedge} 2$.
Consider the parameter of the higher-order function map, that is a function of type a $->\mathrm{b}$. In case it is used only once in a call to map and nowhere else in the program, it is convenient to specify it as a lambda expression instead of naming such a throwaway function. Written as a lambda expression,

```
\x -> let {y = ...x...} in y
```

x holds a value of type $\mathrm{a}, \ldots \mathrm{x} \ldots$. is a Haskell expression that refers to the variable x , and y holds a value of type b . So, for example, we could write the following

```
map (\x -> x + 3)
map (\(x,y) -> x * y)
map (\xs -> 'c':xs) ["apples", "oranges", "mangos"]
map (\f -> zipWith f [1..5] [1..5]) [(+), (*), (-)]
```


Currying

In Haskell, all functions are considered curried: that is, all functions in Haskell take just one argument.

Let's take the function div:

```
div :: Int -> Int -> Int
```

If we call this function with 6 and 2 we unsurprisingly get 3 :

```
Prelude> div 6 2
3
```

However, this doesn't quite behave in the way we might think. First div 6 is evaluated and returns a function of type Int \rightarrow Int. This resulting function is then applied to the value 2 which yields 3.

When we look at the type signature of a function, we can shift our thinking from "takes two arguments of type Int" to "takes one Int and returns a function that takes an Int". This is reaffirmed if we consider that arrows in the type notation associate to the right, so div can in fact be read thus:

```
div :: Int -> (Int -> Int)
```

In general, most programmers can ignore this behaviour at least while they're learning the language. From a theoretical point of view, "formal proofs are easier when all functions are treated uniformly (one argument in, one result out)."

Chapter 33: Infix operators

Remarks

Most Haskell functions are called with the function name followed by arguments (prefix notation). For functions that accept two arguments like (+), it sometimes makes sense to provide an argument before and after the function (infix).

Examples

Prelude

Logical

$\& \&$ is logical AND, ।। is logical OR.
$==$ is equality, $/=$ non-equality, $</<=$ lesser and $>/>=$ greater operators.

$\overline{\text { Arithmetic operators }}$

The numerical operators +, - and / behave largely as you'd expect. (Division works only on fractional numbers to avoid rounding issues - integer division must be done with quot or div). More unusual are Haskell's three exponentiation operators:

- takes a base of any number type to a non-negative, integral power. This works simply by (fast) iterated multiplication. E.g.

```
4^5 \equiv
```

- ^ does the same in the positive case, but also works for negative exponents. E.g.

```
3^^}(-2) \equiv1/(2*2
```

Unlike ^, this requires a fractional base type (i.e. $4^{\wedge \wedge} 5::$ Int will not work, only $4 \wedge 5::$ Int or 4^^5 :: Rational).

- ** implements real-number exponentiation. This works for very general arguments, but is more computionally expensive than ^or $\wedge \wedge$, and generally incurs small floating-point errors.

```
2**pi \equiv exp (pi * log 2)
```


Lists

There are two concatenation operators:

- : (pronounced cons) prepends a single argument before a list. This operator is actually a constructor and can thus also be used to pattern match ("inverse construct") a list.
- ++ concatenates entire lists.

```
[1,2]++[3,4] \equiv1:2:[3,4] \equiv 1:[2,3,4] \equiv[1,2,3,4]
```

is an indexing operator.

```
[0, 10, 20, 30, 40] !! 3 \equiv 30
```

Note that indexing lists is inefficient (complexity $O(n)$ instead of $O(1)$ for arrays or $O(\log n)$ for maps); it's generally preferred in Haskell to deconstruct lists by folding ot pattern matching instead of indexing.

Control flow

- $\$$ is a function application operator.

```
f $ x \equiv f x
    #f(x) -- disapproved style
```

This operator is mostly used to avoid parentheses. It also has a strict version $\$!$, which forces the argument to be evaluated before applying the function.

- composes functions.

```
(f.g) x \equivf(gx) \equivf f | x
```

- >> sequences monadic actions. E.g. writeFile "foo.txt" "bla" >> putStrLn "Done." will first write to a file, then print a message to the screen.
- >>= does the same, while also accepting an argument to be passed from the first action to the following. readLn >>= $\backslash x$-> print ($x^{\wedge} 2$) will wait for the user to input a number, then output the square of that number to the screen.

Custom operators

In Haskell, you can define any infix operator you like. For example, I could define the listenveloping operator as

```
(>+<) :: [a] -> [a] -> [a]
env >+< l = env ++ l ++ env
GHCi> "**">+<"emphasis"
"**emphasis**"
```

You should always give such operators a fixity declaration, like

```
infixr 5 >+<
```

(which would mean $>+<$ binds as tightly as ++ and : do).

Finding information about infix operators

Because infixes are so common in Haskell, you will regularly need to look up their signature etc.. Fortunately, this is just as easy as for any other function:

- The Haskell search engines Hayoo and Hoogle can be used for infix operators, like for anything else that's defined in some library.
- In GHCi or IHaskell, you can use the :i and :t (info and type) directives to learn the basic properties of an operator. For example,

```
Prelude> :i +
class Num a where
    (+) :: a -> a -> a
    ...
            -- Defined in 'GHC.Num'
infixl 6 +
Prelude> :i ^^
(^^) :: (Fractional a, Integral b) => a -> b -> a
            -- Defined in 'GHC.Real'
infixr 8 ^^
```

This tells me that ^^ binds more tightly than +, both take numerical types as their elements, but $\wedge \wedge$ requires the exponent to be integral and the base to be fractional.
The less verbose :t requires the operator in parentheses, like

```
Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool
```

Read Infix operators online: https://riptutorial.com/haskell/topic/6792/infix-operators

Chapter 34: IO

Examples

Reading all contents of standard input into a string

```
main = do
    input <- getContents
    putStr input
```


Input:

```
This is an example sentence.
And this one is, too!
```

Output:

```
This is an example sentence.
And this one is, too!
```

Note: This program will actually print parts of the output before all of the input has been fully read in. This means that, if, for example, you use getcontents over a 50MiB file, Haskell's lazy evaluation and garbage collector will ensure that only the parts of the file that are currently needed (read: indispensable for further execution) will be loaded into memory. Thus, the 50 MiB file won't be loaded into memory at once.

Reading a line from standard input

```
main = do
    line <- getLine
    putStrLn line
```

Input:

```
This is an example.
```

Output:

```
This is an example.
```


Parsing and constructing an object from standard input

```
readFloat :: IO Float
readFloat =
    fmap read getLine
```

```
main :: IO ()
main = do
    putStr "Type the first number: "
    first <- readFloat
    putStr "Type the second number: "
    second <- readFloat
    putStrLn $ show first ++ " + " ++ show second ++ " = " ++ show ( first + second )
```

Input:

```
Type the first number: 9.5
Type the second number: -2.02
```


Output:

```
9.5+-2.02=7.48
```


Reading from file handles

Like in several other parts of the I/O library, functions that implicitly use a standard stream have a counterpart in system. Io that performs the same job, but with an extra parameter at the left, of type Handle, that represents the stream being handled. For instance, getline :: Io string has a counterpart hGetLine :: Handle -> Io String.

```
import System.IO( Handle, FilePath, IOMode( ReadMode ),
                                    openFile, hGetLine, hPutStr, hClose, hIsEOF, stderr )
import Control.Monad( when )
dumpFile :: Handle -> FilePath -> Integer -> IO ()
dumpFile handle filename lineNumber = do -- show file contents line by line
    end <- hIsEOF handle
    when ( not end ) $ do
        line <- hGetLine handle
        putStrLn $ filename ++ ":" ++ show lineNumber ++ ": " ++ line
        dumpFile handle filename $ lineNumber + 1
main :: IO ()
main = do
    hPutStr stderr "Type a filename: "
    filename <- getLine
    handle <- openFile filename ReadMode
    dumpFile handle filename 1
    hClose handle
```

Contents of file example.txt:

```
This is an example.
Hello, world!
This is another example.
```

Input:

```
Type a filename: example.txt
```

Output:

```
example.txt:1: This is an example.
example.txt:2: Hello, world!
example.txt:3: This is another example
```


Checking for end-of-file conditions

A bit counter-intuitive to the way most other languages' standard I/O libraries do it, Haskell's iseof does not require you to perform a read operation before checking for an EOF condition; the runtime will do it for you.

```
import System.IO( isEOF )
eofTest :: Int -> IO ()
eofTest line = do
    end <- isEOF
    if end then
        putStrLn $ "End-of-file reached at line " ++ show line ++ "."
    else do
        getLine
        eofTest $ line + 1
main :: IO ()
main =
    eofTest 1
```

Input:

```
Line #1.
Line #2.
Line #3.
```

Output:

```
End-of-file reached at line 4.
```


Reading words from an entire file

In Haskell, it often makes sense not to bother with file handles at all, but simply read or write an entire file straight from disk to memory ${ }^{\dagger}$, and do all the partitioning/processing of the text with the
pure string data structure. This avoids mixing IO and program logic, which can greatly help avoiding bugs.

```
-- | The interesting part of the program, which actually processes data
-- but doesn't do any IO!
reverseWords :: String -> [String]
reverseWords = reverse . words
-- | A simple wrapper that only fetches the data from disk, lets
-- 'reverseWords' do its job, and puts the result to stdout.
main :: IO ()
main = do
    content <- readFile "loremipsum.txt"
    mapM_ putStrLn $ reverseWords content
```

If loremipsum.txt Contains

```
Lorem ipsum dolor sit amet,
consectetur adipiscing elit
```

then the program will output

```
elit
adipiscing
consectetur
amet,
sit
dolor
ipsum
Lorem
```

Here, mapm_ went through the list of all words in the file, and printed each of them to a separate line with putStrin.
$\dagger_{\text {If }}$ you think this is wasteful on memory, you have a point. Actually, Haskell's laziness can often avoid that the entire file needs to reside in memory simultaneously... but beware, this kind of lazy IO causes its own set of problems. For performance-critical applications, it often makes sense to enforce the entire file to be read at once, strictly; you can do this with the Data. Text version of readFile.

IO defines your program's `main` action

To make a Haskell program executable you must provide a file with a main function of type io ()

```
main :: IO ()
main = putStrLn "Hello world!"
```

When Haskell is compiled it examines the io data here and turns it into a executable. When we run this program it will print Hello world!.

If you have values of type io a other than main they won't do anything.

```
other :: IO ()
other = putStrLn "I won't get printed"
main :: IO ()
main = putStrLn "Hello world!"
```

Compiling this program and running it will have the same effect as the last example. The code in other is ignored.

In order to make the code in other have runtime effects you have to compose it into main. No io values not eventually composed into main will have any runtime effect. To compose two io values sequentially you can use do-notation:

```
other :: IO ()
other = putStrLn "I will get printed... but only at the point where I'm composed into main"
main :: IO ()
main = do
    putStrLn "Hello world!"
    other
```

When you compile and run this program it outputs

```
Hello world!
I will get printed... but only at the point where I'm composed into main
```

Note that the order of operations is described by how other was composed into main and not the definition order.

Role and Purpose of IO

Haskell is a pure language, meaning that expressions cannot have side effects. A side effect is anything that the expression or function does other than produce a value, for example, modify a global counter or print to standard output.

In Haskell, side-effectful computations (specifically, those which can have an effect on the real world) are modelled using io. Strictly speaking, io is a type constructor, taking a type and producing a type. For example, Io Int is the type of an I/O computation producing an int value. The гo type is abstract, and the interface provided for io ensures that certain illegal values (that is, functions with non-sensical types) cannot exist, by ensuring that all built-in functions which perform IO have a return type enclosed in io.

When a Haskell program is run, the computation represented by the Haskell value named main, whose type can be io x for any type x , is executed.

Manipulating IO values

There are many functions in the standard library providing typical io actions that a general purpose programming language should perform, such as reading and writing to file handles.

General io actions are created and combined primarily with two functions:

```
(>>=) :: IO a -> (a -> IO b) -> IO b
```

This function (typically called bind) takes an io action and a function which returns an io action, and produces the io action which is the result of applying the function to the value produced by the first io action.

```
return :: a -> IO a
```

This function takes any value (i.e., a pure value) and returns the IO computation which does no IO and produces the given value. In other words, it is a no-op I/O action.

There are additional general functions which are often used, but all can be written in terms of the two above. For example, (>>) :: IO a -> IO b -> IO b is similar to (>>=) but the result of the first action is ignored.

A simple program greeting the user using these functions:

```
main :: IO ()
main =
    putStrLn "What is your name?" >>
    getLine >>= \name ->
    putStrLn ("Hello " ++ name ++ "!")
```

This program also uses putStrLn :: String -> Io () and getLine :: Io String.

Note: the types of certain functions above are actually more general than those types given (namely >>=, >> and return).

IO semantics

The го type in Haskell has very similar semantics to that of imperative programming languages. For example, when one writes s1 ; s2 in an imperative language to indicate executing statement s1, then statement s2, one can write s1 >> s2 to model the same thing in Haskell.

However, the semantics of io diverge slightly of what would be expected coming from an imperative background. The return function does not interrupt control flow - it has no effect on the program if another io action is run in sequence. For example, return () >> putStrin "boom" correctly prints "boom" to standard output.

The formal semantics of io can given in terms of simple equalities involving the functions in the previous section:

```
return x >>= f \equivf x, }\textrm{f}f\textrm{f
y >>= return \equiv return y, }\forall\mathrm{ y
```

```
(m >>= f) >>= g \equiv m >>= (\x -> (f x >>= g)), V m f g
```

These laws are typically referred to as left identity, right identity, and composition, respectively. They can be stated more naturally in terms of the function

```
(>=>) :: (a -> IO b) -> (b -> IO c) -> a -> IO c
(f >=> g) x = (f x) >>= g
```

as follows:

```
return >=> f \equivf, }\forall\textrm{f
f >=> return \equiv f, }\forall\textrm{f
(f >=> g) >=> h \equivf >=> (g >=> h), \forall f g h
```


Lazy IO

Functions performing I/O computations are typically strict, meaning that all preceding actions in a sequence of actions must be completed before the next action is begun. Typically this is useful and expected behaviour - putStrLn "X" >> putStrLn "Y" should print "XY". However, certain library functions perform I/O lazily, meaning that the I/O actions required to produce the value are only performed when the value is actually consumed. Examples of such functions are getcontents and readFile. Lazy I/O can drastically reduce the performance of a Haskell program, so when using library functions, care should be taken to note which functions are lazy.

IO and ${ }_{\circ}$ notation

Haskell provides a simpler method of combining different IO values into larger IO values. This special syntax is known as do notation* and is simply syntactic sugar for usages of the >>=, >> and return functions.

The program in the previous section can be written in two different ways using do notation, the first being layout-sensitive and the second being layout insensitive:

```
main = do
    putStrLn "What is your name?"
    name <- getLine
    putStrLn ("Hello " ++ name ++ "!")
main = do {
    putStrLn "What is your name?" ;
    name <- getLine ;
    putStrLn ("Hello " ++ name ++ "!")
    }
```

All three programs are exactly equivalent.
*Note that do notation is also applicable to a broader class of type constructors called monads.

Getting the 'a' "out of" 'IO a'

A common question is "I have a value of 10 a, but I want to do something to that a value: how do I get access to it?" How can one operate on data that comes from the outside world (for example, incrementing a number typed by the user)?

The point is that if you use a pure function on data obtained impurely, then the result is still impure. It depends on what the user did! A value of type 10 a stands for a "side-effecting computation resulting in a value of type a" which can only be run by (a) composing it into main and (b) compiling and executing your program. For that reason, there is no way within pure Haskell world to "get the a out".

Instead, we want to build a new computation, a new io value, which makes use of the a value at runtime. This is another way of composing io values and so again we can use do-notation:

```
-- assuming
myComputation :: IO Int
getMessage :: Int -> String
getMessage int = "My computation resulted in: " ++ show int
newComputation :: IO ()
newComputation = do
    int <- myComputation -- we "bind" the result of myComputation to a name, 'int'
    putStrLn $ getMessage int -- 'int' holds a value of type Int
```

Here we're using a pure function (getMessage) to turn an Int into a string, but we're using do notation to make it be applied to the result of an io computation mycomputation when (after) that computation runs. The result is a bigger io computation, newComputation. This technique of using pure functions in an impure context is called lifting.

Writing to stdout

Per the Haskell 2010 Language Specification the following are standard IO functions available in Prelude, so no imports are required to use them.

```
putChar :: Char -> IO () - WriteS a char tO stdout
    Prelude> putChar 'a'
    aPrelude> -- Note, no new line
```

putStr : : String -> IO () = Writes a string to stdout
Prelude> putStr "This is a string!"
This is a string!Prelude> -- Note, no new line
putStrin :: String -> io () - writes a string to stdout and adds a new line

```
Prelude> putStrLn "Hi there, this is another String!"
Hi there, this is another String!
```

print :: Show a => a -> Io () - Writes a an instance Of show to stdout

```
Prelude> print "hi"
"hi"
Prelude> print 1
1
Prelude> print 'a'
'a'
Prelude> print (Just 'a') -- Maybe is an instance of the `Show` type class
Just 'a'
Prelude> print Nothing
Nothing
```

Recall that you can instantiate show for your own types using deriving:

```
-- In ex.hs
data Person = Person { name :: String } deriving Show
main = print (Person "Alex") -- Person is an instance of `Show`, thanks to `deriving`
```


Loading \& running in GHCi:

```
Prelude> :load ex.hs
[1 of 1] Compiling ex ( ex.hs, interpreted )
Ok, modules loaded: ex.
*Main> main -- from ex.hs
Person {name = "Alex"}
*Main>
```


Reading from `stdin

As-per the Haskell 2010 Language Specification, the following are standard IO functions available in Prelude, so no imports are required to use them.

```
getChar :: Io Char - read a char from stdin
```

```
-- MyChar.hs
main = do
    myChar <- getChar
    print myChar
-- In your shell
runhaskell MyChar.hs
a -- you enter a and press enter
'a' -- the program prints 'a'
```

getLine :: io string - read a string from stdin, sans new line character

```
Prelude> getLine
Hello there! -- user enters some text and presses enter
"Hello there!"
```

read : : Read a => String -> a - convert a String to a value

```
Prelude> read "1" :: Int
1
Prelude> read "1" :: Float
1.0
Prelude> read "True" :: Bool
True
```

Other, less common functions are:

- getContents :: Io String - returns all user input as a single string, which is read lazily as it is needed
- interact :: (String -> String) -> Io () - takes a function of type String->String as its argument. The entire input from the standard input device is passed to this function as its argument

Read IO online: https://riptutorial.com/haskell/topic/1904/io

Chapter 35: Lens

Introduction

Lens is a library for Haskell that provides lenses, isomorphisms, folds, traversals, getters and setters, which exposes a uniform interface for querying and manipulating arbitrary structures, not unlike Java's accessor and mutator concepts.

Remarks

What is a Lens?

Lenses (and other optics) allow us to separate describing how we want to access some data from what we want to do with it. It is important to distinguish between the abstract notion of a lens and the concrete implementation. Understanding abstractly makes programming with lens much easier in the long run. There are many isomorphic representations of lenses so for this discussion we will avoid any concrete implementation discussion and instead give a high-level overview of the concepts.

Focusing

An important concept in understanding abstractly is the notion of focusing. Important optics focus on a specific part of a larger data structure without forgetting about the larger context. For example, the lens _1 focuses on the first element of a tuple but doesn't forget about what was in the second field.

Once we have focus, we can then talk about which operations we are allowed to perform with a lens. Given a Lens s a which when given a datatype of type s focuses on a specific a, we can either

1. Extract the a by forgetting about the additional context or
2. Replace the a by providing a new value

These correspond to the well-known get and set operations which are usually used to characterise a lens.

Other Optics

We can talk about other optics in a similar fashion.

Optic	Focuses on...
Prism	One part of a sum
Traversal	Zero or more parts of a data structure
Isomorphism	\ldots

Each optic focuses in a different way, as such, depending on which type of optic we have we can perform different operations.

Composition

What's more, we can compose any of the two optics we have so-far discussed in order to specify complex data accesses. The four types of optics we have discussed form a lattice, the result of composing two optics together is their upper bound.

For example, if we compose together a lens and a prism, we get a traversal. The reason for this is that by their (vertical) composition, we first focus on one part of a product and then on one part of a sum. The result being an optic which focuses on precisely zero or one parts of our data which is a special case of a traversal. (This is also sometimes called an affine traversal).

In Haskell

The reason for the popularity in Haskell is that there is a very succinct representation of optics. All optics are just functions of a certain form which can be composed together using function composition. This leads to a very light-weight embedding which makes it easy to integrate optics into your programs. Further to this, due to the particulars of the encoding, function composition also automatically computes the upper bound of two optics we compose. This means that we can reuse the same combinators for different optics without explicit casting.

Examples

Manipulating tuples with Lens

Getting

```
("a", 1) ^. _1 -- returns "a"
("a", 1) ^. _2 -- returns 1
```


Setting

```
("a", 1) & _1 . ~ "b" -- returns ("b", 1)
```


Modifying

```
("a", 1) & _2 %~ (+1) -- returns ("a", 2)
```

both Traversal

```
(1, 2) & both *~ 2 -- returns (2, 4)
```

Lenses for records

Simple record

```
{-# LANGUAGE TemplateHaskell #-}
import Control.Lens
data Point = Point {
    _x :: Float,
    _y :: Float
}
makeLenses ''Point
```

Lenses x and y are created.

```
let p = Point 5.0 6.0
p ^. x -- returns 5.0
set x 10 p -- returns Point { _x = 10.0, _y = 6.0 }
p & x +~ 1 -- returns Point { _x = 6.0, _y = 6.0 }
```


Managing records with repeating fields names

```
data Person = Person { _personName :: String }
makeFields ''Person
```

Creates a type class HasName, lens name for Person, and makes Person an instance of HasName. Subsequent records will be added to the class as well:

```
data Entity = Entity { _entityName :: String }
makeFields ''Entity
```

The Template Haskell extension is required for makeFields to work. Technically, it's entirely possible to create the lenses made this way via other means, e.g. by hand.

Stateful Lenses

Lens operators have useful variants that operate in stateful contexts. They are obtained by replacing \sim with $=$ in the operator name.

```
(+~) :: Num a => ASetter s t a a -> a -> s -> t
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
```

Note: The stateful variants aren't expected to change the type, so they have the Lens ' or simple Lens'signatures.

Getting rid of chains

If lens-ful operations need to be chained, it often looks like this:

```
change :: A -> A
change a = a & lensA %~ operationA
    & lensB %~ operationB
    & lensC %~ operationC
```

This works thanks to the associativity of $\&$. The stateful version is clearer, though.

```
change a = flip execState a $ do
    lensA %= operationA
    lensB %= operationB
    lensC %= operationC
```

If lensx is actually $i_{i d}$, the whole operation can of course be executed directly by just lifting it with modify.

Imperative code with structured state

Assuming this example state:

```
data Point = Point { _x :: Float, _y :: Float }
data Entity = Entity { _position :: Point, _direction :: Float }
data World = World { _entities :: [Entity] }
makeLenses ''Point
makeLenses ''Entity
makeLenses ''World
```

We can write code that resembles classic imperative languages, while still allowing us to use benefits of Haskell:

```
updateWorld :: MonadState World m => m ()
updateWorld = do
    -- move the first entity
    entities . ix 0 . position . x += 1
    -- do some operation on all of them
    entities . traversed . position %= \p -> p `pointAdd` ...
    -- or only on a subset
    entities . traversed . filtered (\e -> e ^. position.x > 100) %= ...
```


Writing a lens without Template Haskell

To demystify Template Haskell, suppose you have

```
data Example a = Example { _foo :: Int, _bar :: a }
```

then

```
makeLenses 'Example
```

produces (more or less)

```
foo :: Lens' (Example a) Int
bar :: Lens (Example a) (Example b) a b
```

There's nothing particularly magical going on, though. You can write these yourself:

```
foo :: Lens' (Example a) Int
-- :: Functor f => (Int -> f Int) -> (Example a -> f (Example a)) ;; expand the alias
foo wrap (Example foo bar) = fmap (\newFoo -> Example newFoo bar) (wrap foo)
bar :: Lens (Example a) (Example b) a b
-- :: Functor f => (a -> f b) -> (Example a -> f (Example b)) ;; expand the alias
bar wrap (Example foo bar) = fmap (\newBar -> Example foo newBar) (wrap bar)
```

Essentially, you want to "visit" your lens' "focus" with the wrap function and then rebuild the "entire" type.

Lens and Prism

A Lens' s a means that you can always find an a within any s. A prism' s a means that you can sometimes find that s actually just is a but sometimes it's something else.

To be more clear, we have _1 :: Lens' (a, b) a because any tuple always has a first element. We have _Just :: Prism' (Maybe a) a because sometimes maybe a is actually an a value wrapped in Just but sometimes it's Nothing.

With this intuition, some standard combinators can be interpreted parallel to one another

- view :: Lens' s a -> (s -> a) "gets" the a out of the s
- set :: Lens' s a -> (a -> s -> s) "sets" the a slot in s
- review :: Prism' s a -> (a -> s) "realizes" that an a could be an s
- preview :: Prism' s a -> (s -> Maybe a) "attempts" to turn an s into an a.

Another way to think about it is that a value of type Lens' s a demonstrates that s has the same structure as (r, a) for some unknown r. On the other hand, Prism' s a demonstrates that s has the same structure as Either r a for some r. We can write those four functions above with this knowledge:

```
-- `Lens' s a` is no longer supplied, instead we just *know* that `s ~ (r, a)
view :: (r, a) -> a
view (r, a) = a
set :: a -> (r, a) -> (r, a)
set a (r, _) = (r, a)
-- `Prism' s a` is no longer supplied, instead we just *know* that `s ~ Either r a
review :: a -> Either r a
review a = Right a
preview :: Either r a -> Maybe a
preview (Left _) = Nothing
preview (Right a) = Just a
```


Traversals

A Traversal' s a shows that s has 0-to-many as inside of it.

```
toListOf :: Traversal' s a -> (s -> [a])
```

Any type t which is Traversable automatically has that traverse :: Traversal (t a) a.
We can use a Traversal to set or map over all of these a values

```
> set traverse 1 [1..10]
[1,1,1,1,1,1,1,1,1,1]
> over traverse (+1) [1..10]
[2,3,4,5,6,7,8,9,10,11]
```

A $_{\mathrm{f}}$:: Lens' s a says there's exactly one a inside of s . A_{g} : : Prism' a b says there are either 0 or
 there there are 0 -to- 1 bs in s .

Lenses compose

first and then g. Notably:

- Lenses compose as functions (really they just are functions)
- If you think of the view functionality of Lens, it seems like data flows "left to right"-this might feel backwards to your normal intuition for function composition. On the other hand, it ought to feel natural if you think of .-notation like how it happens in OO languages.

More than just composing Lens with Lens, (.) can be used to compose nearly any "Lens-like" type together. It's not always easy to see what the result is since the type becomes tougher to follow, but you can use the lens chart to figure it out. The composition $\mathrm{x} . \mathrm{y}$ has the type of the least-upper-bound of the types of both x and y in that chart.

Classy Lenses

In addition to the standard makeLenses function for generating Lenses, control.Lens.th also offers the makeClassy function. makeclassy has the same type and works in essentially the same way as makeLenses, with one key difference. In addition to generating the standard lenses and traversals, if the type has no arguments, it will also create a class describing all the datatypes which possess the type as a field. For example

```
data Foo = FOo { _fooX, _fooY :: Int }
    makeClassy ''Foo
```

will create

```
class HasFoo t where
    foo :: Simple Lens t Foo
instance HasFoo Foo where foo = id
fooX, fooY :: HasFoo t => Simple Lens t Int
```


Fields with makeFields

(This example copied from this StackOverflow answer)
Let's say you have a number of different data types that all ought to have a lens with the same name, in this case capacity. The makeFields slice will create a class that accomplish this without namespace conflicts.

```
{-# LANGUAGE FunctionalDependencies
    , MultiParamTypeClasses
    , TemplateHaskell
    #-}
module Foo
where
import Control.Lens
data Foo
```

```
    = Foo { fooCapacity :: Int }
    deriving (Eq, Show)
$(makeFields ''Foo)
data Bar
    = Bar { barCapacity :: Double }
    deriving (Eq, Show)
$(makeFields ''Bar)
```

Then in ghci:

```
*FOO
\lambda let f = Foo 3
| b = Bar 7
|
b :: Bar
f :: FOO
*FOO
\lambda fooCapacity f
3
it :: Int
*FOO
\lambda barCapacity b
7.0
it :: Double
*FOO
\lambda f ^. capacity
3
it :: Int
*FOO
\lambda b ^. capacity
7.0
it :: Double
\lambda :info HasCapacity
class HasCapacity s a | s -> a where
    capacity :: Lens' s a
        -- Defined at Foo.hs:14:3
instance HasCapacity Foo Int -- Defined at Foo.hs:14:3
instance HasCapacity Bar Double -- Defined at Foo.hs:19:3
```

So what it's actually done is declared a class HasCapacity s a, where capacity is a Lens' from sto a (a is fixed once s is known). It figured out the name "capacity" by stripping off the (lowercased) name of the data type from the field; I find it pleasant not to have to use an underscore on either the field name or the lens name, since sometimes record syntax is actually what you want. You can use makeFieldsWith and the various lensRules to have some different options for calculating the lens names.

In case it helps, using ghci -ddump-splices Foo.hs:

```
[1 of 1] Compiling Foo
    ( Foo.hs, interpreted )
Foo.hs:14:3-18: Splicing declarations
    makeFields ''Foo
```

```
    class HasCapacity s a | s -> a where
    capacity :: Lens' s a
    instance HasCapacity Foo Int where
        {-# INLINE capacity #-}
        capacity = iso (\ (Foo x_a7fG) -> x_a7fG) Foo
Foo.hs:19:3-18: Splicing declarations
    makeFields ''Bar
    ======>
    instance HasCapacity Bar Double where
        {-# INLINE capacity #-}
        capacity = iso (\ (Bar x_a7ne) -> x_a7ne) Bar
Ok, modules loaded: Foo.
```

So the first splice made the class HasCapcity and added an instance for Foo; the second used the existing class and made an instance for Bar.

This also works if you import the HasCapcity class from another module; makeFields can add more instances to the existing class and spread your types out across multiple modules. But if you use it again in another module where you haven't imported the class, it'll make a new class (with the same name), and you'll have two separate overloaded capacity lenses that are not compatible.

Read Lens online: https://riptutorial.com/haskell/topic/891/lens

Chapter 36: List Comprehensions

Examples

Basic List Comprehensions

Haskell has list comprehensions, which are a lot like set comprehensions in math and similar implementations in imperative languages such as Python and JavaScript. At their most basic, list comprehensions take the following form.

```
[ x | x <- someList ]
```


For example

```
[ x | x <- [1..4] ] -- [1,2,3,4]
```

Functions can be directly applied to x as well:

```
[ f x | x <- someList ]
```

This is equivalent to:

```
map f someList
```


Example:

```
[x+1 | x <- [1..4]] -- [2,3,4,5]
```


Patterns in Generator Expressions

However, x in the generator expression is not just variable, but can be any pattern. In cases of pattern mismatch the generated element is skipped over, and processing of the list continues with the next element, thus acting like a filter:

```
[x | Just x <- [Just 1, Nothing, Just 3]] -- [1, 3]
```

A generator with a variable x in its pattern creates new scope containing all the expressions on its right, where x is defined to be the generated element.

This means that guards can be coded as

```
[ x | x <- [1..4], even x] ==
[ x | x <- [1..4], () <- [() | even x]] ==
[ x | x <- [1..4], () <- if even x then [()] else []]
```


Guards

Another feature of list comprehensions is guards, which also act as filters. Guards are Boolean expressions and appear on the right side of the bar in a list comprehension.

Their most basic use is

```
[x | p x] === if p x then [x] else []
```

Any variable used in a guard must appear on its left in the comprehension, or otherwise be in scope. So,

```
[ f x | x <- list, pred1 x y, pred2 x] -- `y` must be defined in outer scope
```

which is equivalent to

```
map f (filter pred2 (filter (\x -> pred1 x y) list)) -- or,
-- ($ list) (filter (`pred1` y) >>> filter pred2 >>> map f)
-- list >>= (\x-> [x | pred1 x y]) >>= (\x-> [x | pred2 x]) >>= (\x -> [f x])
```

(the >>= operator is infixl 1, i.e. it associates (is parenthesized) to the left). Examples:

```
[ x | x <- [1..4], even x] -- [2,4]
[ x^2 + 1 | x <- [1..100], even x ] -- map (\x -> x^2 + 1) (filter even [1..100])
```


Nested Generators

List comprehensions can also draw elements from multiple lists, in which case the result will be the list of every possible combination of the two elements, as if the two lists were processed in the nested fashion. For example,

```
[ (a,b) | a <- [1,2,3], b <- ['a','b'] ]
-- [(1,'a'), (1,'b'), (2,'a'), (2,'b'), (3,'a'), (3,'b')]
```


Parallel Comprehensions

With Parallel List Comprehensions language extension,

```
[(x,y) | x <- xs | y <- ys]
```

is equivalent to

```
zip xs ys
```


Example:

```
[(x,y) | x <- [1,2,3] | y <- [10,20]]
-- [(1,10), (2, 20)]
```


Local Bindings

List comprehensions can introduce local bindings for variables to hold some interim values:

```
[(x,y) | x <- [1..4], let y=x*x+1, even y] -- [(1,2), (3,10)]
```

Same effect can be achieved with a trick,

```
[(x,y) | x <- [1..4], y <- [x*x+1], even y] -- [(1,2), (3,10)]
```

The let in list comprehensions is recursive, as usual. But generator bindings are not, which enables shadowing:

```
[x | x <- [1..4], x <- [x*x+1], even x] -- [2,10]
```


Do Notation

Any list comprehension can be correspondingly coded with list monad's do notation.

The guards can be handled using
Control. Monad. guard:

```
[x | x <- xs, even x] do { x <- xs ; guard (even x) ; return x }
```

Read List Comprehensions online: https://riptutorial.com/haskel//topic/4970/list-comprehensions

Chapter 37: Lists

Syntax

1. empty list constructor
[] : : [a]
2. non-empty list constructor
(:) :: a $->$ [a] $->$ [a]
3. head - returns the first value of a list
head :: [a] -> a
4. last - returns the last value of a list
last :: [a] -> a
5. tail - returns a list without the first item
```
tail :: [a] -> [a]
```

6. init - returns a list without the last item
```
init :: [a] -> [a]
```

7. xs !! i - return the element at an index i in list xs
(!!) :: Int -> [a] -> a
8. take $\mathrm{n} x \mathrm{x}$ - return new list containing n first elements of the list xs take :: Int -> [a] -> [a]
9. map :: (a -> b) -> [a] -> [b]
10. filter :: (a -> Bool) -> [a] -> [a]
11. (++) :: [a] -> [a]
12. concat :: [[a]] -> [a]

Remarks

1. The type [a] is equivalent to [] a.
2. [] constructs the empty list.
3. [] in a function definition LHS, e.g. f []$=\ldots$, is the empty list pattern.
4. $\mathrm{x}: \mathrm{xs}$ constructs a list where an element x is prepended to the list xs
5. $\mathrm{f}(\mathrm{x}: \mathrm{xs})=\ldots$ is a pattern match for a non-empty list where x is the head and xs is the tail.
6. $\mathrm{f}(\mathrm{a}: \mathrm{b}: \mathrm{cs})=\ldots$
and $f(a:(b: c s))=\ldots$ are the same. They are a pattern match for a list of at least two elements where the first element is a, the second element is b, and the rest of the list is cs.
7. $\mathrm{f}((\mathrm{a}: \mathrm{as}): \mathrm{bs})=\ldots$ is NOT the same as $\mathrm{f}(\mathrm{a}:(\mathrm{as}: \mathrm{bs}))=\ldots$. The former is a pattern match for a non-empty list of lists, where a is the head of the head, as is the tail of the head, and bs is the tail.
8. $\mathrm{f}(\mathrm{x}:[\mathrm{f})=\ldots$ and $\mathrm{f}[\mathrm{x}]=\ldots$ are the same. They are a pattern match for a list of exactly one element.
9. $\mathrm{f}(\mathrm{a}: \mathrm{b}:[\mathrm{f})=\ldots$ and $\mathrm{f}[\mathrm{a}, \mathrm{b}]=\ldots$ are the same. They are a pattern match for a list of exactly two elements.
10. $\mathrm{f}[\mathrm{a}: \mathrm{b}]=\ldots$ is a pattern match for a list of exactly one element where the element is also a list. a is the head of the element and b is the tail of the element.
11. $[a, b, c]$ is the same as (a:b:c:[]). Standard list notation is just syntactic sugar for the (:) and [] Constructors.
12. You can use alle (x:y:ys) in order to refer to the whole list as all (or any other name you choose) instead of repeating ($x: y: y s$) again.

Examples

List Literals

```
emptyList = []
singletonList = [0] -- = 0 : []
listOfNums = [1, 2, 3] -- = 1 : 2 : [3]
listOfStrings = ["A", "B", "C"]
```


List Concatenation

```
listA = [1, 2, 3]
listB = [4, 5, 6]
listAThenB = listA ++ listB
(++) xs [] = xs
(++) [] ys = ys
(++) (x:xs) ys = x : (xs ++ ys)
```


List basics

The type constructor for lists in the Haskell Prelude is []. The type declaration for a list holding values of type int is written as follows:

```
xs :: [Int] -- or equivalently, but less conveniently,
xs :: [] Int
```

Lists in Haskell are homogeneous sequences, which is to say that all elements must be of the
same type. Unlike tuples, list type is not affected by length:

```
[1,2,3] :: [Int]
[1,2,3,4] :: [Int]
```

Lists are constructed using two constructors:

- [] constructs an empty list.
- (:) , pronounced "cons", prepends elements to a list. Consing x (a value of type a) onto xs (a list of values of the same type a) creates a new list, whose head (the first element) is x , and tail (the rest of the elements) is xs .

We can define simple lists as follows:

```
ys :: [a]
ys = []
xs :: [Int]
xs = 12 : (99 : (37 : []))
-- or = 12 : 99 : 37 : [] -- ((:) is right-associative)
-- or = [12, 99, 37] -- (syntactic sugar for lists)
```

Note that (++), which can be used to build lists is defined recursively in terms of (:) and [].

Processing lists

To process lists, we can simply pattern match on the constructors of the list type:

```
listSum :: [Int] -> Int
listSum [] = 0
listSum (x:xs) = x + listSum xs
```

We can match more values by specifying a more elaborate pattern:

```
sumTwoPer :: [Int] -> Int
sumTwoPer [] = 0
sumTwoPer (x1:x2:xs) = x1 + x2 + sumTwoPer xs
sumTwoPer (x:xs) = x + sumTwoPer xs
```

Note that in the above example, we had to provide a more exhaustive pattern match to handle cases where an odd length list is given as an argument.

The Haskell Prelude defines many built-ins for handling lists, like map, filter, etc.. Where possible, you should use these instead of writing your own recursive functions.

Accessing elements in lists

Access the nth element of a list (zero-based):

```
list = [1 .. 10]
firstElement = list !! 0 -- 1
```

Note that !! is a partial function, so certain inputs produce errors:

```
list !! (-1) -- *** Exception: Prelude.!!: negative index
list !! 1000 -- *** Exception: Prelude.!!: index too large
```

There's also Data.List.genericIndex, an overloaded version of !!, which accepts any Integral value as the index.

```
import Data.List (genericIndex)
list `genericIndex` 4 -- 5
```

When implemented as singly-linked lists, these operations take $O(n)$ time. If you frequently access elements by index, it's probably better to use Data.vector (from the vector package) or other data structures.

Ranges

Creating a list from 1 to 10 is simple using range notation:

```
[1..10] -- [1,2,3,4,5,6,7,8,9,10]
```

To specify a step, add a comma and the next element after the start element:

```
[1,3..10] -- [1,3,5,7,9]
```

Note that Haskell always takes the step as the arithmetic difference between terms, and that you cannot specify more than the first two elements and the upper bound:

```
[1,3,5..10] -- error
[1,3,9..20] -- error
```

To generate a range in descending order, always specify the negative step:

```
[5..1] -- []
[5,4..1] -- [5,4,3,2,1]
```

Because Haskell is non-strict, the elements of the list are evaluated only if they are needed, which allows us to use infinite lists. [1..] is an infinite list starting from 1. This list can be bound to a variable or passed as a function argument:

```
take 5 [1..] -- returns [1,2,3,4,5] even though [1..] is infinite
```

Be careful when using ranges with floating-point values, because it accepts spill-overs up to halfdelta, to fend off rounding issues:

```
[1.0,1.5..2.4] -- [1.0,1.5,2.0,2.5], though 2.5 > 2.4
[1.0,1.1..1.2] -- [1.0,1.1,1.2000000000000002], though 1.2000000000000002 > 1.2
```

Ranges work not just with numbers but with any type that implements Enum typeclass. Given some enumerable variables a, b, c, the range syntax is equivalent to calling these enum methods:

```
[a..] == enumFrom a
[a..c] == enumFromTo a c
[a,b..] == enumFromThen a b
[a,b..c] == enumFromThenTo a b c
```

For example, with Bool it's

```
[False ..] -- [False,True]
```

Notice the space after False, to prevent this to be parsed as a module name qualification (i.e. False. . would be parsed as . from a module False).

Basic Functions on Lists

```
head [1..10] -- 1
last [1..20] -- 20
tail [1..5] -- [2, 3, 4, 5]
init [1..5] -- [1, 2, 3, 4]
length [1 .. 10] -- 10
reverse [1 .. 10] -- [10, 9 .. 1]
take 5 [1, 2 .. ] -- [1, 2, 3, 4, 5]
drop 5 [1 .. 10] -- [6, 7, 8, 9, 10]
concat [[1,2], [], [4]] -- [1,2,4]
```


foldl

This is how the left fold is implemented. Notice how the order of the arguments in the step function is flipped compared to foldr (the right fold):

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs -- = foldl f (acc `f` x) xs
```

The left fold, foldı, associates to the left. That is:

```
foldl (+) 0 [1, 2, 3] -- is equivalent to ((0 + 1) + 2) + 3
```

The reason is that foldl is evaluated like this (look at foldr's inductive step):

```
foldl (+) 0 [1, 2, 3] -- foldl (+) 0 [ 1, 2, 3 ]
foldl (+) ((+) 0 1) [2, 3] -- foldl (+) (0 + 1) [ 2, 3 ]
foldl (+) ((+) ((+) 0 1) 2) [3] -- foldl (+) ((0 + 1) + 2) [ 3 ]
foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [] -- foldl (+) (((0 + 1) + 2) + 3) []
((+) ((+) ((+) 0 1) 2) 3) -- (()}
```

The last line is equivalent to $((0+1)+2)+3$. This is because (f a b) is the same as (a ` $f^{\prime} b$ b) in general, and so $((+) 01)$ is the same as $(0+1)$ in particular.

foldr

This is how the right fold is implemented:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xS) = f x (foldr f z xS) -- = x `f` foldr f z xS
```

The right fold, foldr, associates to the right. That is:

```
foldr (+) 0 [1, 2, 3] -- is equivalent to 1 + (2 + (3 + 0))
```

The reason is that foldr is evaluated like this (look at the inductive step of foldr):

```
foldr (+) 0 [1, 2, 3]
(+) 1 (foldr (+) 0 [2, 3]) -- 1 + foldr (+) 0 [2, 3]
(+) 1 ((+) 2 (foldr (+) 0 [3])) -- 1 + (2 + foldr (+) 0 [3])
(+) 1 ((+) 2 ((+) 3 (foldr (+) 0 []))) -- 1 + (2 + (3 + foldr (+) 0 []))
(+) 1 ((+) 2 ((+) 3 0)) -- 1 + (2 + (3 + ) 0 )
```

The last line is equivalent to $1+(2+(3+0))$, because $((+) 30)$ is the same as $(3+0)$.

\section*{Transforming with `map`}

Often we wish to convert, or transform the contents of a collection (a list, or something traversable). In Haskell we use map:

```
-- Simple add 1
map (+ 1) [1,2,3]
[2,3,4]
map odd [1,2,3]
[True,False,True]
data Gender = Male | Female deriving Show
data Person = Person String Gender Int deriving Show
-- Extract just the age from a list of people
```

```
map (\(Person n g a) -> a) [(Person "Alex" Male 31),(Person "Ellie" Female 29)]
[31,29]
```

\section*{Filtering with `filter`}

Given a list:

```
li = [1,2,3,4,5]
```

we can filter a list with a predicate using filter :: (a -> Bool) -> [a] -> [a]:

```
filter (== 1) li -- [1]
filter (even) li -- [2,4]
filter (odd) li -- [1,3,5]
-- Something slightly more complicated
comfy i = notTooLarge && isEven
    where
        notTooLarge = (i + 1) < 5
        isEven = even i
filter comfy li -- [2]
```

Of course it's not just about numbers:

```
data Gender = Male | Female deriving Show
data Person = Person String Gender Int deriving Show
onlyLadies :: [Person] -> Person
onlyLadies x = filter isFemale x
    where
        isFemale (Person _ Female _) = True
        isFemale _ = False
onlyLadies [(Person "Alex" Male 31),(Person "Ellie" Female 29)]
-- [Person "Ellie" Female 29]
```


Zipping and Unzipping Lists

zip takes two lists and returns a list of corresponding pairs:

```
zip [] _ = []
zip _ [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs
> zip [1,3,5] [2,4,6]
> [(1,2), (3,4), (5,6)]
```

Zipping two lists with a function:

```
zipWith f [] _ = []
```

```
zipWith f - [] = []
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
> zipWith (+) [1,3,5] [2,4,6]
> [3,7,11]
```


Unzipping a list:

```
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])
> unzip [(1,2), (3,4), (5,6)]
> ([1, 3,5],[2,4,6])
```

Read Lists online: https://riptutorial.com/haskell/topic/2281/lists

Chapter 38: Logging

Introduction

Logging in Haskell is achieved usually through functions in the io monad, and so is limited to nonpure functions or "IO actions".

There are several ways to log information in a Haskell program: from putstrin (or print), to libraries such as hslogger or through Debug. Trace.

Examples

Logging with hslogger

The hslogger module provides a similar API to Python's logging framework, and supports hierarchically named loggers, levels and redirection to handles outside of stdout and stderr.

By default, all messages of level warning and above are sent to stderr and all other log levels are ignored.

```
import System.Log.Logger (Priority (DEBUG), debugM, infoM, setLevel,
    updateGlobalLogger, warningM)
main = do
    debugM "MyProgram.main" "This won't be seen"
    infoM "MyProgram.main" "This won't be seen either"
    warningM "MyProgram.main" "This will be seen"
```

We can set the level of a logger by its name using updateGlobalLogger:

```
updateGlobalLogger "MyProgram.main" (setLevel DEBUG)
debugM "MyProgram.main" "This will now be seen"
```

Each Logger has a name, and they are arranged hierarchically, so myProgram is a parent of MyParent.Module.

Read Logging online: https://riptutorial.com/haskell/topic/9628/logging

Chapter 39: Modules

Syntax

- module Name where -- export all names declared in this file
- module Name (functionOne, Type (..)) where -- export only functionOne, Type, and Type's constructors
- import Module -- import all of Module's exported names
- import qualified Module as MN -- qualified import
- import Module (justThisFunction) -- import only certain names from a module
- import Module hiding (functionName, Type) -- import all names from a module except functionName and Type

Remarks

Haskell has support for modules:

- a module can export all, or a subset of its member types \& functions
- a module can "re-export" names it imported from other modules

On the consumer end of a module, one can:

- import all, or a subset of module members
- hide imports of a particular member or set of members
haskell.org has a great chapter on module definition.

Examples

Defining Your Own Module

If we have a file called Business.hs, we can define a Business module that can be import-ed, like so:

```
module Business (
    Person (..), -- ^ Export the Person type and all its constructors and field names
    employees -- ^ Export the employees function
) where
-- begin types, function definitions, etc
```

A deeper hierarchy is of course possible; see the Hierarchical module names example.

Exporting Constructors

To export the type and all its constructors, one must use the following syntax:

```
module X (Person (..)) where
```

So, for the following top-level definitions in a file called People.hs:

```
data Person = Friend String | Foe deriving (Show, Eq, Ord)
isFoe Foe = True
isFoe _ = False
```

This module declaration at the top:

```
module People (Person (..)) where
```

would only export Person and its constructors Friend and Foe.
If the export list following the module keyword is omitted, all of the names bound at the top level of the module would be exported:

```
module People where
```

would export Person, its constructors, and the isFoe function.

Importing Specific Members of a Module

Haskell supports importing a subset of items from a module.

```
import qualified Data.Stream (map) as D
```

would only import map from Data. Stream, and calls to this function would require $\quad \mathrm{D}$.:

```
D.map odd [1..]
```

otherwise the compiler will try to use Prelude's map function.

Hiding Imports

Prelude often defines functions whose names are used elsewhere. Not hiding such imports (or using qualified imports where clashes occur) will cause compilation errors.

Data. Stream defines functions named map, head and tail which normally clashes with those defined in Prelude. We can hide those imports from Prelude using hiding:

```
import Data.Stream -- everything from Data.Stream
import Prelude hiding (map, head, tail, scan, foldl, foldr, filter, dropWhile, take) -- etc
```

In reality, it would require too much code to hide Prelude clashes like this, so you would in fact use a qualified import of Data.Stream instead.

Qualifying Imports

When multiple modules define the same functions by name, the compiler will complain. In such cases (or to improve readability), we can use a qualified import:

```
import qualified Data.Stream as D
```

Now we can prevent ambiguity compiler errors when we use map, which is defined in Prelude and Data. Stream:

```
map (== 1) [1,2,3] -- will use Prelude.map
D.map (odd) (fromList [1..]) -- will use Data.Stream.map
```

It is also possible to import a module with only the clashing names being qualified via import

Hierarchical module names

The names of modules follow the filesystem's hierarchical structure. With the following file layout:

```
FOO/
\_Baz/
| L_ Quux.hs
L_Bar.hs
Foo.hs
Bar.hs
```

the module headers would look like this:

```
-- file Foo.hs
module Foo where
-- file Bar.hs
module Bar where
-- file Foo/Bar.hs
module Foo.Bar where
-- file Foo/Baz/Quux.hs
module Foo.Baz.Quux where
```

Note that:

- the module name is based on the path of the file declaring the module
- Folders may share a name with a module, which gives a naturally hierarchical naming structure to modules

Read Modules online: https://riptutorial.com/haskell/topic/5234/modules

Chapter 40: Monad Transformers

Examples

A monadic counter

An example on how to compose the reader, writer, and state monad using monad transformers. The source code can be found in this repository

We want to implement a counter, that increments its value by a given constant.
We start by defining some types, and functions:

```
newtype Counter = MkCounter {cValue :: Int}
    deriving (Show)
-- | 'inc c n' increments the counter by 'n' units.
inc :: Counter -> Int -> Counter
inc (MkCounter c) n = MkCounter (c + n)
```

Assume we want to carry out the following computation using the counter:

- set the counter to 0
- set the increment constant to 3
- increment the counter 3 times
- set the increment constant to 5
- increment the counter 2 times

The state monad provides abstractions for passing state around. We can make use of the state monad, and define our increment function as a state transformer.

```
-- | CounterS is a monad.
type CounterS = State Counter
-- | Increment the counter by 'n' units.
incS :: Int-> CounterS ()
incS n = modify (\c -> inc c n)
```

This already enables us to express a computation in a more clear and succinct way:

```
-- | The computation we want to run, with the state monad.
mComputationS :: CounterS ()
mComputationS = do
    incS 3
    incS 3
    incS 3
    incS 5
    incS 5
```

But we still have to pass the increment constant at each invocation. We would like to avoid this.

Adding an environment

The reader monad provides a convenient way to pass an environment around. This monad is used in functional programming to perform what in the OO world is known as dependency injection.

In its simplest version, the reader monad requires two types:

- the type of the value being read (i.e. our environment, r below),
- the value returned by the reader monad (a below).

Reader ra

However, we need to make use of the state monad as well. Thus, we need to use the Readert transformer:

```
newtype ReaderT r m a :: * -> (* -> *) -> * -> *
```

Using Readert, we can define our counter with environment and state as follows:

```
type CounterRS = ReaderT Int CounterS
```

We define an incr function that takes the increment constant from the environment (using ask), and to define our increment function in terms of our counters monad we make use of the lift function (which belongs to the monad transformer class).

```
-- | Increment the counter by the amount of units specified by the environment.
incR :: CounterRS ()
incR = ask >>= lift . incS
```

Using the reader monad we can define our computation as follows:

```
-- | The computation we want to run, using reader and state monads.
mComputationRS :: CounterRS ()
mComputationRS = do
    local (const 3) $ do
        incR
        incR
        incR
        local (const 5) $ do
        incR
        incR
```


The requirements changed: we need logging!

Now assume that we want to add logging to our computation, so that we can see the evolution of our counter in time.

We also have a monad to perform this task, the writer monad. As with the reader monad, since we are composing them, we need to make use of the reader monad transformer:

```
newtype WriterT w m a :: * -> (* -> *) -> * -> *
```

Here w represents the type of the output to accumulate (which has to be a monoid, which allow us to accumulate this value), m is the inner monad, and a the type of the computation.

We can then define our counter with logging, environment, and state as follows:

```
type CounterWRS = WriterT [Int] CounterRS
```

And making use of lift we can define the version of the increment function which logs the value of the counter after each increment:

```
incW :: CounterWRS ()
incW = lift incR >> get >>= tell . (:[]) . cValue
```

Now the computation that contains logging can be written as follows:

```
mComputationWRS :: CounterWRS ()
mComputationWRS = do
    local (const 3) $ do
        incW
        incW
        incW
        local (const 5) $ do
        incW
        incW
```


Doing everything in one go

This example intended to show monad transformers at work. However, we can achieve the same effect by composing all the aspects (environment, state, and logging) in a single increment operation.

To do this we make use of type-constraints:

```
inc' :: (MonadReader Int m, MonadState Counter m, MonadWriter [Int] m) => m ()
inc' = ask >>= modify . (flip inc) >> get >>= tell . (:[]) . cValue
```

Here we arrive at a solution that will work for any monad that satisfies the constraints above. The computation function is defined thus with type:

```
mComputation' :: (MonadReader Int m, MonadState Counter m, MonadWriter [Int] m) => m ()
```

since in its body we make use of inc'.

We could run this computation, in the ghci REPL for instance, as follows:
runState (runReaderT (runWriterT mComputation') 15) (MkCounter 0)

Read Monad Transformers online: https://riptutorial.com/haskell/topic/7752/monad-transformers

Chapter 41: Monads

Introduction

A monad is a data type of composable actions. Monad is the class of type constructors whose values represent such actions. Perhaps io is the most recognizable one: a value of 10 a is a "recipe for retrieving an a value from the real world".

We say a type constructor m (such as [] or Maybe) forms a monad if there is an instance Monad m satisfying certain laws about composition of actions. We can then reason about m as an "action whose result has type a".

Examples

The Maybe monad

Maybe is used to represent possibly empty values - similar to nulı in other languages. Usually it is used as the output type of functions that can fail in some way.

Consider the following function:

```
halve :: Int -> Maybe Int
halve x
    | even x = Just (x `div` 2)
    | odd x = Nothing
```

Think of halve as an action, depending on an Int, that tries to halve the integer, failing if it is odd.
How do we halve an integer three times?

```
takeOneEighth :: Int -> Maybe Int -- (after you read the 'do' sub-section:)
takeOneEighth x =
    case halve x of -- do {
        Nothing -> Nothing
        Just oneHalf -> -- oneHalf <- halve x
            case halve oneHalf of
                Nothing -> Nothing
                Just oneQuarter -> -- oneQuarter <- halve oneHalf
                case halve oneQuarter of
                        Nothing -> Nothing -- oneEighth <- halve oneQuarter
                        Just oneEighth ->
                        Just oneEighth -- return oneEighth }
```

- takeOneEighth is a sequence of three halve steps chained together.
- If a halve step fails, we want the whole composition takeoneEighth to fail.
- If a halve step succeeds, we want to pipe its result forward.

[^0]```
-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing -- infixl 1 >>=
Just x >>= f = Just (f x) -- also, f =<< m = m >>= f
-- return :: a -> Maybe a
return x = Just x
```

and now we can write:

```
takeOneEighth :: Int -> Maybe Int
takeOneEighth x = halve x >>= halve >>= halve -- or,
 -- return x >>= halve >>= halve >>= halve -- which is parsed as
 -- (((return x) >>= halve) >>= halve) >>= halve -- which can also be written as
 -- (halve =<<) . (halve =<<) . (halve =<<) $ return x -- or, equivalently, as
 -- halve <=< halve <=< halve $ x
```

Kleisli composition <=< is defined as ( $\mathrm{g}<=<\mathrm{f}$ ) $\mathrm{x}=\mathrm{g}=\ll \mathrm{f} \mathrm{x}$, or equivalently as ( $\mathrm{f} \gg=>\mathrm{g}$ ) $\mathrm{x}=\mathrm{f} \mathrm{x}$ >>= $g$. With it the above definition becomes just

```
takeOneEighth :: Int -> Maybe Int
takeOneEighth = halve <=< halve <=< halve -- infixr 1 <=<
 -- or, equivalently,
 -- halve >=> halve >=> halve -- infixr 1 >=>
```

There are three monad laws that should be obeyed by every monad, that is every type which is an instance of the monad typeclass:

```
1. return x >>= f = f x
2. m >>= return = m
3. (m>>= g) >>= h = m >>= (\y -> g y >>= h)
```

where $m$ is a monad, f has type $\mathrm{a} \rightarrow \mathrm{m}$ b and g has type $\mathrm{b} \rightarrow \mathrm{m}$ c.
Or equivalently, using the >=> Kleisli composition operator defined above:

```
1. return >=> g = g -- do { y <- return x ; g y } == g x
2. f >=> return = f -- do { y <- f x ; return y } == f x
3. (f >=> g) >=> h = f >=> (g >=> h) -- do { z <- do { y<- f x; g y } ; h z }
-- == do { y <- f x ; do { z <- g y; h z } }
```

Obeying these laws makes it a lot easier to reason about the monad, because it guarantees that using monadic functions and composing them behaves in a reasonable way, similar to other monads.

Let's check if the maybe monad obeys the three monad laws.

1. The left identity law - return $x \gg=f=f x$
```
return z >>= f
=(Just z) >>= f
=f z
```

2. The right identity law $-m \gg=$ return $=m$

- Just data constructor

```
Just z >>= return
= return z
= Just z
```

- Nothing data constructor

```
Nothing >>= return
= Nothing
```

3. The associativity law - $(\mathrm{m} \gg=\mathrm{f}) \gg=\mathrm{g}=\mathrm{m} \gg=(\backslash \mathrm{x}->\mathrm{f} \mathrm{x} \gg=\mathrm{g})$

- Just data constructor

```
-- Left-hand side
((Just z) >>= f) >>= g
= f z >>= g
-- Right-hand side
(Just z) >>= (\x -> f x >>= g)
(\x -> f x >>= g) z
= f z >>= g
```

- Nothing data constructor

```
-- Left-hand side
(Nothing >>= f) >>= g
= Nothing >>= g
= Nothing
-- Right-hand side
Nothing >>= (\x -> f x >>= g)
= Nothing
```


## IO monad

There is no way to get a value of type a out of an expression of type io a and there shouldn't be. This is actually a large part of why monads are used to model io.

An expression of type io a can be thought of as representing an action that can interact with the real world and, if executed, would result in something of type a. For example, the function gettine :: Io String from the prelude doesn't mean that underneath getLine there is some specific string that I can extract - it means that getLine represents the action of getting a line from standard input.

Not surprisingly, main :: io () since a Haskell program does represent a computation/action that interacts with the real world.

The things you can do to expressions of type 10 a because 10 is a monad:

- Sequence two actions using (>>) to produce a new action that executes the first action, discards whatever value it produced, and then executes the second action.

```
-- print the lines "Hello" then "World" to stdout
putStrLn "Hello" >> putStrLn "World"
```

- Sometimes you don't want to discard the value that was produced in the first action - you'd actually like it to be fed into a second action. For that, we have >>=. For io, it has type (>>=)

```
:: IO a -> (a -> IO b) -> IO b.
```

-- get a line from stdin and print it back out
getLine >>= putStrLn

- Take a normal value and convert it into an action which just immediately returns the value you gave it. This function is less obviously useful until you start using do notation.

```
-- make an action that just returns 5
return 5
```

More from the Haskell Wiki on the IO monad here.

## List Monad

The lists form a monad. They have a monad instantiation equivalent to this one:

```
instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)
```

We can use them to emulate non-determinism in our computations. When we use xs >>= $f$, the function $f$ :: a -> [b] is mapped over the list xs, obtaining a list of lists of results of each application of f over each element of xs , and all the lists of results are then concatenated into one list of all the results. As an example, we compute a sum of two non-deterministic numbers using do-notation, the sum being represented by list of sums of all pairs of integers from two lists, each list representing all possible values of a non-deterministic number:

```
sumnd xs ys = do
 x <- xs
 y <- ys
 return (x + y)
```

Or equivalently, using liftm2 in Control. Monad:

```
sumnd = liftM2 (+)
```

we obtain:

```
> sumnd [1,2,3] [0,10]
```


## Monad as a Subclass of Applicative

As of GHC 7.10, Applicative is a superclass of monad (i.e., every type which is a monad must also be an Applicative). All the methods of Applicative (pure, <*>) can be implemented in terms of methods of Monad (return, >>=).

It is obvious that pure and return serve equivalent purposes, so pure = return. The definition for <*> is too relatively clear:

```
mf <*> mx = do { f <- mf; x <- mx; return (f x) }
 -- = mf >>= (\f -> mx >>= (\x -> return (f x)))
 -- = [r | f <- mf, x <- mx, r <- return (f x)] -- with MonadComprehensions
 -- = [f x | f <- mf, x <- mx]
```

This function is defined as ap in the standard libraries.
Thus if you have already defined an instance of monad for a type, you effectively can get an instance of Applicative for it "for free" by defining

```
instance Applicative < type > where
 pure = return
 (<*>) = ap
```

As with the monad laws, these equivalencies are not enforced, but developers should ensure that they are always upheld.

## No general way to extract value from a monadic computation

You can wrap values into actions and pipe the result of one computation into another:

```
return :: Monad m => a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b
```

However, the definition of a Monad doesn't guarantee the existence of a function of type monad m => ma -> a.

That means there is, in general, no way to extract a value from a computation (i.e. "unwrap" it). This is the case for many instances:

```
extract :: Maybe a -> a
extract (Just x) = x -- Sure, this works, but...
extract Nothing = undefined -- We can't extract a value from failure.
```

Specifically, there is no function 10 a -> a, which often confuses beginners; see this example.

## do-notation

do-notation is syntactic sugar for monads. Here are the rules:


For example, these definitions are equivalent:

```
example :: IO Integer
example =
 putStrLn "What's your name?" >> (
 getLine >>= (\name ->
 putStrLn ("Hello, " ++ name ++ ".") >> (
 putStrLn "What should we return?" >> (
 getLine >>= (\line ->
 let n = (read line :: Integer) in
 return (n + n))))))
```

```
example :: IO Integer
example = do
 putStrLn "What's your name?"
 name <- getLine
 putStrLn ("Hello, " ++ name ++ ".")
 putStrLn "What should we return?"
 line <- getLine
 let n = (read line :: Integer)
 return (n + n)
```


## Definition of Monad

```
class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
```

The most important function for dealing with monads is the bind operator >>=:

```
(>>=) :: m a -> (a -> m b) -> m b
```

- Think of $m$ a as "an action with an a result".
- Think of a $->\mathrm{m}$ b as "an action (depending on an a parameter) with a b result.".
>>= sequences two actions together by piping the result from the first action to the second. The other function defined by monad is:

```
return :: a -> m a
```

Its name is unfortunate: this return has nothing to do with the return keyword found in imperative programming languages.
return x is the trivial action yielding $\mathbf{x}$ as its result. (It is trivial in the following sense:)

```
return x >>= f \ f x -- "left identity" monad law
 x >>= return \equiv x -- "right identity" monad law
```

Read Monads online: https://riptutorial.com/haskell/topic/2968/monads

## Chapter 42: Monoid

## Examples

## An instance of Monoid for lists

```
instance Monoid [a] where
 mempty = []
 mappend = (++)
```

Checking the monoid laws for this instance:

```
mempty `mappend` x = x <-> [] ++ xs = xs -- prepending an empty list is a no-op
x `mappend` mempty = x <-> xs ++ [] = xs -- appending an empty list is a no-op
x `mappend` (y `mappend` z) = (x `mappend` y) `mappend` z
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs -- appending lists is associative
```


## Collapsing a list of Monoids into a single value

mconcat :: [a] -> a is another method of the monoid typeclass:

```
ghci> mconcat [Sum 1, Sum 2, Sum 3]
Sum {getSum = 6}
ghci> mconcat ["concat", "enate"]
"concatenate"
```

Its default definition is mconcat $=$ foldr mappend mempty.

## Numeric Monoids

Numbers are monoidal in two ways: addition with 0 as the unit, and multiplication with 1 as the unit. Both are equally valid and useful in different circumstances. So rather than choose a preferred instance for numbers, there are two newtypes, sum and Product to tag them for the different functionality.

```
newtype Sum n = Sum { getSum :: n }
instance Num n => Monoid (Sum n) where
 mempty = Sum 0
 Sum x `mappend` Sum y = Sum (x + y)
newtype Product n = Product { getProduct :: n }
instance Num n => Monoid (Product n) where
 mempty = Product 1
 Product x `mappend` Product y = Product (x * y)
```

This effectively allows for the developer to choose which functionality to use by wrapping the value in the appropriate newtype.

```
Sum 3 <> Sum 5 == Sum 8
Product 3 <> Product 5 == Product 15
```


## An instance of Monoid for ()

() is a monoid. Since there is only one value of type (), there's only one thing mempty and mappend could do:

```
instance Monoid () where
 mempty = ()
 () `mappend` () = ()
```

Read Monoid online: https://riptutorial.com/haskell/topic/2211/monoid

## Chapter 43: Optimization

## Examples

## Compiling your Program for Profiling

The GHC compiler has mature support for compiling with profiling annotations.
Using the -prof and -fprof-auto flags when compiling will add support to your binary for profiling flags for use at runtime.

Suppose we have this program:

```
main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)
```

Compiled it like so:

```
ghc -prof -fprof-auto -rtsopts Main.hs
```

Then ran it with runtime system options for profiling:

```
./Main +RTS -p
```

We will see a main.prof file created post execution (once the program has exited), and this will give us all sorts of profiling information such as cost centers which gives us a breakdown of the cost associated with running the various parts of the code:

| Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main +RTS -p -RTS |  |  |  |  |  |  |  |
| total time $=$ 0.68 secs $(34$ ticks @ 20 ms$)$ <br> total alloc $=204,677,844$ bytes (excludes profiling overheads) |  |  |  |  |  |  |  |
| COST CENTRE MODULE \%time \%alloc |  |  |  |  |  |  |  |
| fib Main 100.0 100.0 |  |  |  |  |  |  |  |
| individual inherited |  |  |  |  |  |  |  |
| COST CENTRE | MODULE | no. | entries | \%time | \%alloc | \%time | \%alloc |
| MAIN | MAIN | 102 | 0 | 0.0 | 0.0 | 100.0 | 100.0 |
| CAF | GHC.IO.Handle.FD | 128 | 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| CAF | GHC.IO.Encoding.Iconv | 120 | 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| CAF | GHC.Conc.Signal | 110 | 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| CAF | Main | 108 | 0 | 0.0 | 0.0 | 100.0 | 100.0 |
| main | Main | 204 | 1 | 0.0 | 0.0 | 100.0 | 100.0 |
| fib | Main | 205 | 2692537 | 100.0 | 100.0 | 100.0 | 100.0 |

## Cost Centers

Cost centers are annotations on a Haskell program which can be added automatically by the GHC compiler -- using -fprot-auto -- or by a programmer using $\{-\#$ Scc "name" \#-\} <expression>, where "name" is any name you wish and <expression> is any valid Haskell expression:

```
-- Main.hs
main :: IO ()
main = do let l = [1..9999999]
 print $ {-# SCC "print_list" #-} (length l)
```

Compiling with -fprof and running with +RTs -pe.g. ghc -prof -rtsopts Main.hs \&\& ./Main.hs +RTS p would produce Main.prof once the program's exited.

Read Optimization online: https://riptutorial.com/haskell/topic/4342/optimization

## Chapter 44: Overloaded Literals

## Remarks

## Integer Literals

is a numeral without a decimal point
for example $0,1,42, \ldots$
is implicitly applied to fromInteger which is part of the sum type class so it indeed has type num a => a - that is it can have any type that is an instance of Num

## Fractional Literals

is a numeral with a decimal point
for example $0.0,-0.1111, \ldots$
is implicitly applied to fromRational which is part of the Fractional type class so it indeed has type a => a - that is it can have any type that is an instance of Fractional

## String Literals

If you add the language extension overloadedStrings to GHC you can have the same for stringliterals which then are applied to fromstring from the Data.String. Isstring type class

This is often used to replace string with Text or ByteString.

## List Literals

Lists can defined with the $[1,2,3]$ literal syntax. In GHC 7.8 and beyond, this can also be used to define other list-like structures with the $\qquad$ extension.

By default, the type of ${ }_{[]}$is:

```
> :t []
[] :: [t]
```

With overloadedLists, this becomes:

```
[] :: GHC.Exts.IsList l => l
```


## Examples

## Integer Numeral

## The type of the literal

```
Prelude> :t 1
1 :: Num a => a
```


## choosing a concrete type with annotations

You can specify the type as long as the target type is num with an annotation:

```
Prelude> 1 :: Int
1
it :: Int
Prelude> 1 :: Double
1.0
it :: Double
Prelude> 1 :: Word
1
it :: Word
```

if not the compiler will complain
Prelude> 1 :: String

```
<interactive>:
 No instance for (Num String) arising from the literal `1'
 In the expression: 1 :: String
 In an equation for `it': it = 1 :: String
```


## Floating Numeral

## The type of the literal

```
Prelude> :t 1.0
1.0 :: Fractional a => a
```


## Choosing a concrete type with annotations

You can specify the type with a type annotation. The only requirement is that the type must have a Fractional instance.

```
Prelude> 1.0 :: Double
1.0
it :: Double
```

```
Prelude> 1.0 :: Data.Ratio.Ratio Int
1 % 1
it :: GHC.Real.Ratio Int
```

if not the compiler will complain

```
Prelude> 1.0 :: Int
<interactive>:
 No instance for (Fractional Int) arising from the literal `1.0'
 In the expression: 1.0 :: Int
 In an equation for `it': it = 1.0 :: Int
```


## Strings

## The type of the literal

Without any extensions, the type of a string literal - i.e., something between double quotes - is just a string, aka list of characters:

```
Prelude> :t "foo"
"foo" :: [Char]
```

However, when the overloadedStrings extension is enabled, string literals become polymorphic, similar to number literals:

```
Prelude> :set -XOverloadedStrings
Prelude> :t "foo"
"foo" :: Data.String.IsString t => t
```

This allows us to define values of string-like types without the need for any explicit conversions. In essence, the overloadedstrings extension just wraps every string literal in the generic fromstring conversion function, so if the context demands e.g. the more efficient Text instead of String, you don't need to worry about that yourself.

## Using string literals

```
{-# LANGUAGE OverloadedStrings #-}
import Data.Text (Text, pack)
import Data.ByteString (ByteString, pack)
withString :: String
withString = "Hello String"
-- The following two examples are only allowed with OverloadedStrings
withText :: Text
withText = "Hello Text" -- instead of: withText = Data.Text.pack "Hello Text"
withBS :: ByteString
```

```
withBS = "Hello ByteString" -- instead of: withBS = Data.ByteString.pack "Hello ByteString"
```

Notice how we were able to construct values of Text $^{\text {and }}$ Bytestring in the same way we construct ordinary string (or [Char]) Values, rather than using each types pack function to encode the string explicitly.

For more information on the overloadedStrings language extension, see the extension documentation.

## List Literals

GHC's OverloadedLists extension allows you to construct list-like data structures with the list literal syntax.

This allows you to Data.Map like this:

```
> :set -XOverloadedLists
> import qualified Data.Map as M
> M.lookup "foo" [("foo", 1), ("bar", 2)]
Just 1
```

Instead of this (note the use of the extra M.fromList):

```
> import Data.Map as M
> M.lookup "foo" (M.fromList [("foo", 1), ("bar", 2)])
Just 1
```

Read Overloaded Literals online: https://riptutorial.com/haskell/topic/369/overloaded-literals

## Chapter 45: Parallelism

## Parameters

| Type/Function | Detail |
| :--- | :--- |
| data Eval a | Eval is a Monad that makes it easier to define parallel strategies |
| type Strategy a $=$ a <br> $\rightarrow>$ Eval a | a function that embodies a parallel evaluation strategy. The function <br> traverses (parts of) its argument, evaluating subexpressions in parallel <br> or in sequence |
| rpar :: Strategy a | sparks its argument (for evaluation in parallel) |
| rseq :: Strategy a | evaluates its argument to weak head normal form |
| force :: nfData a $=>$ <br> a $\rightarrow$ a | evaluates the entire structure of its argument, reducing it to normal <br> form, before returning the argument itself. It is provided by the <br> Control. DeepSeq module |

## Remarks

Simon Marlow's book, Concurrent and Parallel Programming in Haskell, is outstanding and covers a multitude of concepts. It is also very much accessible for even the newest Haskell programmer. It is highly recommended and available in PDF or online for free.

## Parallel vs Concurrent

## Simon Marlow puts it best:

A parallel program is one that uses a multiplicity of computational hardware (e.g., several processor cores) to perform a computation more quickly. The aim is to arrive at the answer earlier, by delegating different parts of the computation to different processors that execute at the same time.

By contrast, concurrency is a program-structuring technique in which there are multiple threads of control. Conceptually, the threads of control execute "at the same time"; that is, the user sees their effects interleaved. Whether they actually execute at the same time or not is an implementation detail; a concurrent program can execute on a single processor through interleaved execution or on multiple physical processors.

## Weak Head Normal Form

It's important to be aware of how lazy-evaluation works. The first section of this chapter will give a strong introduction into WHNF and how this relates to parallel and concurrent programming.

## Examples

## The Eval Monad

Parallelism in Haskell can be expressed using the Eval Monad from Control.Parallel. Strategies, using the rpar and rseq functions (among others).

```
f1 :: [Int]
f1 = [1..100000000]
f2 :: [Int]
f2 = [1..200000000]
main = runEval $ do
 a <- rpar (fl) -- this'll take a while...
 b <- rpar (f2) -- this'll take a while and then some...
 return (a,b)
```

Running main above will execute and "return" immediately, while the two values, a and b are computed in the background through rpar.

Note: ensure you compile with -threaded for parallel execution to occur.

## rpar

rpar :: Strategy a executes the given strategy (recall: type Strategy a = a -> Eval a) in parallel:

```
import Control.Concurrent
import Control.DeepSeq
import Control.Parallel.Strategies
import Data.List.Ordered
main = loop
 where
 loop = do
 putStrLn "Enter a number"
 n <- getLine
 let lim = read n :: Int
 hf = quot lim 2
 result = runEval $ do
 -- we split the computation in half, so we can concurrently calculate primes
 as <- rpar (force (primesBtwn 2 hf))
 bs <- rpar (force (primesBtwn (hf + l) lim))
 return (as ++ bs)
 forkIO $ putStrLn ("\nPrimes are: " ++ (show result) ++ " for " ++ n ++ "\n")
 loop
-- Compute primes between two integers
-- Deliberately inefficient for demonstration purposes
primesBtwn n m = eratos [n..m]
 where
 eratos [] = []
 eratos (p:xs) = p : eratos (xs `minus` [p, p+p..])
```

Running this will demonstrate the concurrent behaviour:

```
Enter a number
12
Enter a number
Primes are: [2,3,5,7,8,9,10,11,12] for 12
100
Enter a number
Primes are:
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,
for 100
200000000
Enter a number
-- waiting for 200000000
200
Enter a number
Primes are:
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,102,103,104,105,106,107,10
for 200
-- still waiting for 200000000
```


## rseq

We can use rseq :: Strategy a to force an argument to Weak Head Normal Form:

```
f1 :: [Int]
f1 = [1..100000000]
f2 :: [Int]
f2 = [1..200000000]
main = runEval $ do
 a <- rpar (f1) -- this'll take a while...
 b <- rpar (f2) -- this'll take a while and then some...
 rseq a
 return (a,b)
```

This subtly changes the semantics of the rpar example; whereas the latter would return immediately whilst computing the values in the background, this example will wait until a can be evaluated to WHNF.

Read Parallelism online: https://riptutorial.com/haskell/topic/6887/parallelism

## Chapter 46: Parsing HTML with taggy-lens and lens

## Examples

## Extract the text contents from a div with a particular id

Taggy-lens allows us to use lenses to parse and inspect HTML documents.

```
#!/usr/bin/env stack
-- stack --resolver lts-7.0 --install-ghc runghc --package text --package lens --package
taggy-lens
{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text.Lazy as TL
import qualified Data.Text.IO as T
import Text.Taggy.Lens
import Control.Lens
someHtml :: TL.Text
someHtml =
 "\
 \<!doctype html><html><body>\
 \<div>first div</div>\
 \<div id=\"thediv\">second div</div>\
 \<div id=\"not-thediv\">third div</div>"
main :: IO ()
main = do
 T.putStrLn
 (someHtml ^. html . allAttributed (ix "id" . only "thediv") . contents)
```


## Filtering elements from the tree

Find div with id="article" and strip out all the inner script tags.

```
#!/usr/bin/env stack
-- stack --resolver lts-7.1 --install-ghc runghc --package text --package lens --package
taggy-lens --package string-class --package classy-prelude
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
import ClassyPrelude
import Control.Lens hiding (children, element)
import Data.String.Class (toText, fromText, toString)
import Data.Text (Text)
import Text.Taggy.Lens
import qualified Text.Taggy.Lens as Taggy
import qualified Text.Taggy.Renderer as Renderer
somehtmlSmall :: Text
```

```
somehtmlSmall =
 "<!doctype html><html><body>\
 \<div id=\"article\"><div>first</div><div>second</div><script>this should be
removed</script><div>third</div></div>\
 \</body></html>"
renderWithoutScriptTag :: Text
renderWithoutScriptTag =
 Let mArticle :: Maybe Taggy.Element
 mArticle =
 (fromText somehtmlSmall) ^? html .
 allAttributed (ix "id" . only "article")
 mArticleFiltered =
 fmap
 (transform
 (children %~
 filter (\n -> n ^? element . name /= Just "script")))
 mArticle
 in maybe "" (toText . Renderer.render) mArticleFiltered
main :: IO ()
main = print renderWithoutScriptTag
-- outputs:
-- "<div id=\"article\"><div>first</div><div>second</div><div>third</div></div>"
```

Contribution based upon @duplode's SO answer
Read Parsing HTML with taggy-lens and lens online:
https://riptutorial.com/haskell/topic/6962/parsing-html-with-taggy-lens-and-lens

## Chapter 47: Partial Application

## Remarks

Let's clear up some misconceptions that beginners might make.
You may have encountered functions such as:

```
max :: (Ord a) => a -> a -> a
max m n
 | m >= n = m
 | otherwise = n
```

Beginners will typically view max :: (Ord a) => a -> a -> a as function that takes two arguments (values) of type a and returns a value of type a. However, what is really happening, is that max is taking one argument of type a and returning a function of type a $\rightarrow$ a. This function then takes an argument of type $a_{a}$ and returns a final value of type a.

Indeed, max can be written as max :: (ord a) => a -> (a -> a)
Consider the type signature of max:

```
Prelude> :t max
max :: Ord a => a -> a -> a
Prelude> :t (max 75)
(max 75) :: (Num a, Ord a) => a -> a
Prelude> :t (max "Fury Road")
(max "Fury Road") :: [Char] -> [Char]
Prelude> :t (max "Fury Road" "Furiosa")
(max "Fury Road" "Furiosa") :: [Char]
```

max 75 and max "Fury Road" may not look like functions, but in actuality, they are.
The confusion stems from the fact that in mathematics and many, other, common programming languages, we are allowed to have functions that take multiple arguments. However, in Haskell, functions can only take one argument and they can return either values such as a, or functions such as a -> a.

## Examples

## Partially Applied Adding Function

We can use partial application to "lock" the first argument. After applying one argument we are left with a function which expects one more argument before returning the result.

```
(+) :: Int -> Int -> Int
addOne :: Int -> Int
addOne = (+) 1
```

We can then use addone in order to add one to an Int.

```
> addOne 5
6
> map addOne [1,2,3]
[2,3,4]
```


## Returning a Partially Applied Function

Returning partially applied functions is one technique to write concise code.

```
add :: Int -> Int -> Int
add x = (+x)
add 5 2
```

In this example (+x) is a partially applied function. Notice that the second parameter to the add function does not need to be specified in the function definition.

The result of calling add 52 is seven.

## Sections

Sectioning is a concise way to partially apply arguments to infix operators.
For example, if we want to write a function which adds "ing" to the end of a word we can use a section to succinctly define a function.

```
> (++ "ing") "laugh"
"laughing"
```

Notice how we have partially applied the second argument. Normally, we can only partially apply the arguments in the specified order.

We can also use left sectioning to partially apply the first argument.

```
> ("re" ++) "do"
"redo"
```

We could equivalently write this using normal prefix partial application:

```
> ((++) "re") "do"
"redo"
```


## A Note on Subtraction

Beginners often incorrectly section negation.

```
> map (-1) [1, 2, 3]
***error: Could not deduce...
```

This does not work as -1 is parsed as the literal -1 rather than the sectioned operator - applied to 1 . The subtract function exists to circumvent this issue.

```
> map (subtract 1) [1,2,3]
[0,1,2]
```

Read Partial Application online: https://riptutorial.com/haskell/topic/1954/partial-application

## Chapter 48: Phantom types

## Examples

## Use Case for Phantom Types: Currencies

Phantom types are useful for dealing with data, that has identical representations but isn't logically of the same type.

A good example is dealing with currencies. If you work with currencies you absolutely never want to e.g. add two amounts of different currencies. What would the result currency of $5.32 €+2.94$ \$ be? It's not defined and there is no good reason to do this.

A solution to this could look something like this:

```
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
data USD
data EUR
newtype Amount a = Amount Double
 deriving (Show, Eq, Ord, Num)
```

The GeneralisedNewt ypeDeriving extension allows us to derive num for the Amount type. GHC reuses Double's Num instance.

Now if you represent Euro amounts with e.g. (5.0 :: Amount EUR) you have solved the problem of keeping double amounts separate at the type level without introducing overhead. Stuff like (1.13 :: Amount EUR) + (5.30 :: Amount USD) will result in a type error and require you to deal with currency conversion appropriately.

More comprehensive documentation can be found in the haskell wiki article
Read Phantom types online: https://riptutorial.com/haskell/topic/5227/phantom-types

## Chapter 49: Pipes

## Remarks

As the hackage page describes:
pipes is a clean and powerful stream processing library that lets you build and connect reusable streaming components

Programs implemented through streaming can often be succinct and composable, with simple, short functions allowing you to "slot in or out" features easily with the backing of the Haskell type system.

```
await :: Monad m => Consumer' a m a
```

Pulls a value from upstream, where a is our input type.

```
yield :: Monad m => a -> Producer' a m ()
```

Produce a value, where a is the output type.
It's highly recommended you read through the embedded Pipes. Tutorial package which gives an excellent overview of the core concepts of Pipes and how Producer, consumer and Effect interact.

## Examples

## Producers

A producer is some monadic action that can yield values for downstream consumption:

```
type Producer b = Proxy X () () b
yield :: Monad m => a -> Producer a m ()
```

For example:

```
naturals :: Monad m => Producer Int m ()
naturals = each [1..] -- each is a utility function exported by Pipes
```

We can of course have producers that are functions of other values too:

```
naturalsUntil :: Monad m => Int -> Producer Int m ()
naturalsUntil n = each [1..n]
```


## Consumers

A consumer can only await values from upstream.

```
type Consumer a = Proxy () a () X
await :: Monad m => Consumer a m a
```


## For example:

```
fancyPrint :: MonadIO m => Consumer String m ()
fancyPrint = forever $ do
 numStr <- await
 liftIO $ putStrLn ("I received: " ++ numStr)
```


## Pipes

Pipes can both await and yield.

```
type Pipe a b = Proxy () a () b
```

This Pipe awaits an Int and converts it to a string:

```
intToStr :: Monad m => Pipe Int String m ()
intToStr = forever $ await >>= (yield . show)
```


## Running Pipes with runEffect

We use runeffect to run our Pipe:

```
main :: IO ()
main = do
 runEffect $ naturalsUntil 10 >-> intToStr >-> fancyPrint
```

Note that runEffect requires an Effect, which is a self-contained Proxy with no inputs or outputs:

```
runEffect :: Monad m => Effect m r -> m r
type Effect = Proxy X () () X
```

(where x is the empty type, also known as void).

## Connecting Pipes

Use >-> to connect Producers, consumers and PipeS to compose larger Pipe functions.

```
printNaturals :: MonadIO m => Effect m ()
printNaturals = naturalsUntil 10 >-> intToStr >-> fancyPrint
```

Producer, Consumer, Pipe, and Effect types are all defined in terms of the general Proxy type.
Therefore >-> can be used for a variety of purposes. Types defined by the left argument must match the type consumed by the right argument:

```
(>->) :: Monad m => Producer b m r -> Consumer b m r -> Effect
```

(>->) :: Monad m => Producer b m r -> Pipe b c m r -> Producer c m r
(>->) :: Monad m => Pipe a b m r -> Consumer b m r -> Consumer a m r
(>->) :: Monad m => Pipe a b m r -> Pipe b c m r -> Pipe a c m r

```

\section*{The Proxy monad transformer}
pipes's core data type is the Proxy monad transformer. Pipe, Producer, Consumer and so on are defined in terms of Proxy.

Since proxy is a monad transformer, definitions of pipeS take the form of monadic scripts which await and yield values, additionally performing effects from the base monad m .

\section*{Combining Pipes and Network communication}

Pipes supports simple binary communication between a client and a server In this example:
1. a client connects and sends a FirstMessage
2. the server receives and answers Dosomething 0
3. the client receives and answers Donothing
4. step 2 and 3 are repeated indefinitely

The command data type exchanged over the network:
```

-- Command.hs
{-\# LANGUAGE DeriveGeneric \#-}
module Command where
import Data.Binary
import GHC.Generics (Generic)
data Command = FirstMessage
| DoNothing
| DoSomething Int
deriving (Show,Generic)
instance Binary Command

```

Here, the server waits for a client to connect:
```

module Server where
import Pipes
import qualified Pipes.Binary as PipesBinary
import qualified Pipes.Network.TCP as PNT
import qualified Command as C
import qualified Pipes.Parse as PP
import qualified Pipes.Prelude as PipesPrelude
pageSize :: Int
pageSize = 4096
-- pure handler, to be used with PipesPrelude.map
pureHandler :: C.Command -> C.Command

```
```

pureHandler c = c -- answers the same command that we have receveid
-- impure handler, to be used with PipesPremude.mapM
sideffectHandler :: MonadIO m => C.Command -> m C.Command
sideffectHandler c = do
liftIO \$ putStrLn \$ "received message = " ++ (show c)
return \$ C.DoSomething 0
-- whatever incoming command `c` from the client, answer DoSomething 0
main :: IO ()
main = PNT.serve (PNT.Host "127.0.0.1") "23456" \$
\(connectionSocket, remoteAddress) -> do
putStrLn \$ "Remote connection from ip = " ++ (show remoteAddress)
_ <- runEffect \$ do
let bytesReceiver = PNT.fromSocket connectionSocket pageSize
let commandDecoder = PP.parsed PipesBinary.decode bytesReceiver
commandDecoder >-> PipesPrelude.mapM sideffectHandler >-> for cat
PipesBinary.encode >-> PNT.toSocket connectionSocket
-- if we want to use the pureHandler
--commandDecoder >-> PipesPrelude.map pureHandler >-> for cat
PipesBinary.Encode >-> PNT.toSocket connectionSocket
return ()

```

\section*{The client connects thus:}
```

module Client where
import Pipes
import qualified Pipes.Binary as PipesBinary
import qualified Pipes.Network.TCP as PNT
import qualified Pipes.Prelude as PipesPrelude
import qualified Pipes.Parse as PP
import qualified Command as C
pageSize :: Int
pageSize = 4096
-- pure handler, to be used with PipesPrelude.amp
pureHandler :: C.Command -> C.Command
pureHandler c = c -- answer the same command received from the server
-- inpure handler, to be used with PipesPremude.mapM
sideffectHandler :: MonadIO m => C.Command -> m C.Command
sideffectHandler c = do
liftIO \$ putStrLn \$ "Received: " ++ (show c)
return C.DoNothing -- whatever is received from server, answer DoNothing
main :: IO ()
main = PNT.connect ("127.0.0.1") "23456" \$
\(connectionSocket, remoteAddress) -> do
putStrLn \$ "Connected to distant server ip = " ++ (show remoteAddress)
sendFirstMessage connectionSocket
_ <- runEffect \$ do
let bytesReceiver = PNT.fromSocket connectionSocket pageSize
let commandDecoder = PP.parsed PipesBinary.decode bytesReceiver
commandDecoder >-> PipesPrelude.mapM sideffectHandler >-> for cat PipesBinary.encode >->
PNT.toSocket connectionSocket
return ()
sendFirstMessage :: PNT.Socket -> IO ()

```
```

sendFirstMessage s = do
_ <- runEffect \$ do
let encodedProducer = PipesBinary.encode C.FirstMessage
encodedProducer >-> PNT.toSocket s
return ()

```

Read Pipes online: https://riptutorial.com/haskell/topic/6768/pipes

\section*{Chapter 50: Profunctor}

\section*{Introduction}

Profunctor is a typeclass provided by the profunctors package in Data. Profunctor.
See the "Remarks" section for a full explanation.

\section*{Syntax}
- \(\operatorname{dimap}::\) Profunctor \(p=>(a->b)->(c->d)->p b c->p\) a d
- Imap :: Profunctor \(p=>(a->b)->p\) b c \(->p\) a c
- rmap :: Profunctor \(p=>(b->c)->p\) ab \(->p\) a c
- dimap id id = id
- Imap id = id
- rmap id = id
- dimap \(\mathrm{f} g=\operatorname{lmap} \mathrm{f} . \mathrm{rmap} \mathrm{g}\)
- \(\operatorname{Imap} f=\operatorname{dimap} f i d\)
- \(\mathrm{rmap} \mathrm{f}=\) dimap id f

\section*{Remarks}

Profunctors are, as described by the docs on Hackage, "a bifunctor where the first argument is contravariant and the second argument is covariant."

So what does this mean? Well, a bifunctor is like a normal functor, except that it has two parameters instead of one, each with its own fmap-like function to map on it.

Being "covariant" means that the second argument to a profunctor is just like a normal functor: its
 maps the function on the second argument.

Being "contravariant" makes the first argument a little weirder. Instead of mapping like a normal
 a c. This seemingly backward mapping makes most sense for inputs to a function: you would run a \(\rightarrow\) b on the input, and then your other function, leaving the new input as a.

Note: The naming for the normal, one argument functors is a little misleading: the Functor typeclass implements "covariant" functors, while "contravariant" functors are implemented in the contravariant typeclass in Data.Functor. Contravariant, and previously the (misleadingly named) cofunctor typeclass in Data. Cofunctor.

\section*{Examples}

\section*{(->) Profunctor}
\((->)\) is a simple example of a profunctor: the left argument is the input to a function, and the right argument is the same as the reader functor instance.
```

instance Profunctor (->) where
lmap f g = g . f
rmap f g = g . g

```

Read Profunctor online: https://riptutorial.com/haskell/topic/9694/profunctor

\section*{Chapter 51: Proxies}

\section*{Examples}

\section*{Using Proxy}

The Proxy :: \(k\)-> * type, found in Data. Proxy, is used when you need to give the compiler some type information - eg, to pick a type class instance - which is nonetheless irrelevant at runtime.
```

{-\# LANGUAGE PolyKinds \#-}
data Proxy a = Proxy

```

Functions which use a proxy typically use scopedTypeVariables to pick a type class instance based on the a type.

For example, the classic example of an ambiguous function,
```

showread :: String -> String
showread = show . read

```
which results in a type error because the elaborator doesn't know which instance of show or Read to use, can be resolved using proxy:
```

{-\# LANGUAGE ScopedTypeVariables \#-}
import Data.Proxy
showread :: forall a. (Show a, Read a) => Proxy a -> String -> String
showread _ = (show :: a -> String) . read

```

When calling a function with proxy, you need to use a type annotation to declare which a you meant.
```

ghci> showread (Proxy :: Proxy Int) "3"
"3"
ghci> showread (Proxy :: Proxy Bool) "'m'" -- attempt to parse a char literal as a Bool
"*** Exception: Prelude.read: no parse

```

\section*{The "polymorphic proxy" idiom}

Since proxy contains no runtime information, there is never a need to pattern-match on the proxy constructor. So a common idiom is to abstract over the proxy datatype using a type variable.
```

showread :: forall proxy a. (Show a, Read a) => proxy a -> String -> String
showread _ = (show :: a -> String) . read

```

Now, if you happen to have \(\mathrm{an}_{\mathrm{f}} \mathrm{a}\) in scope for some f , you don't need to write out Proxy : : Proxy a when calling f .
```

ghci> let chars = "foo" -- chars : : [Char]
ghci> showread chars "'a'"
"'a'"

```

\section*{Proxy is like ()}

Since Proxy contains no runtime information, you can always write a natural transformation f a -> Proxy a for any \(f\).
```

proxy :: f a -> Proxy a
proxy _ = Proxy

```

This is just like how any given value can always be erased to ():
```

unit :: a -> ()
unit _ = ()

```

Technically, Proxy is the terminal object in the category of functors, just like () is the terminal object in the category of values.

Read Proxies online: https://riptutorial.com/haskell/topic/8025/proxies

\section*{Chapter 52: QuickCheck}

\section*{Examples}

\section*{Declaring a property}

At its simplest, a property is a function which returns a Bool.
```

prop_reverseDoesNotChangeLength xs = length (reverse xs) == length xs

```

A property declares a high-level invariant of a program. The QuickCheck test runner will evaluate the function with 100 random inputs and check that the result is always True.

By convention, functions that are properties have names which start with prop_.

\section*{Checking a single property}

The quickCheck function tests a property on 100 random inputs.
```

ghci> quickCheck prop_reverseDoesNotChangeLength
+++ OK, passed 100 tests.

```

If a property fails for some input, quickCheck prints out a counterexample.
```

prop_reverseIsAlwaysEmpty xs = reverse xs == [] -- plainly not true for all xs
ghci> quickCheck prop_reverseIsAlwaysEmpty
*** Failed! Falsifiable (after 2 tests):
[()]

```

\section*{Checking all the properties in a file}
quickCheckAll is a Template Haskell helper which finds all the definitions in the current file whose name begins with prop_ and tests them.
```

{-\# LANGUAGE TemplateHaskell \#-}
import Test.QuickCheck (quickCheckAll)
import Data.List (sort)
idempotent :: Eq a => (a -> a) -> a -> Bool
idempotent f x = f (f x) == f x
prop_sortIdempotent = idempotent sort
-- does not begin with prop_, will not be picked up by the test runner
sortDoesNotChangeLength xs = length (sort xs) == length xs

```
```

return []
main = \$quickCheckAll

```

Note that the return [] line is required. It makes definitions textually above that line visible to Template Haskell.
```

\$ runhaskell QuickCheckAllExample.hs
=== prop_sortIdempotent from tree.hs:7 ===
+++ OK, passed 100 tests.

```

\section*{Randomly generating data for custom types}

The Arbitrary class is for types that can be randomly generated by QuickCheck.
The minimal implementation of Arbitrary is the arbitrary method, which runs in the gen monad to produce a random value.

Here is an instance of Arbitrary for the following datatype of non-empty lists.
```

import Test.QuickCheck.Arbitrary (Arbitrary(..))
import Test.QuickCheck.Gen (oneof)
import Control.Applicative ((<$>), (<*>))
data NonEmpty a = End a | Cons a (NonEmpty a)
instance Arbitrary a => Arbitrary (NonEmpty a) where
    arbitrary = oneof [ -- randomly select one of the cases from the list
        End <$> arbitrary, -- call a's instance of Arbitrary
Cons <\$>
arbitrary <*> -- call a's instance of Arbitrary
arbitrary -- recursively call NonEmpty's instance of Arbitrary
]

```

\section*{Using implication (==>) to check properties with preconditions}
```

prop_evenNumberPlusOneIsOdd :: Integer -> Property
prop_evenNumberPlusOneIsOdd x = even x ==> odd (x + 1)

```

If you want to check that a property holds given that a precondition holds, you can use the ==> operator. Note that if it's very unlikely for arbitrary inputs to match the precondition, QuickCheck can give up early.
```

prop_overlySpecific x y = x == 0 ==> x * y == 0
ghci> quickCheck prop_overlySpecific
*** Gave up! Passed only 31 tests.

```

\section*{Limiting the size of test data}

It can be difficult to test functions with poor asymptotic complexity using quickcheck as the random inputs are not usually size bounded. By adding an upper bound on the size of the input we can still
test these expensive functions.
```

import Data.List(permutations)
import Test.QuickCheck
longRunningFunction :: [a] -> Int
longRunningFunction xs = length (permutations xs)
factorial :: Integral a => a -> a
factorial n = product [1..n]
prop_numberOfPermutations xs =
longRunningFunction xs == factorial (length xs)
ghci> quickCheckWith (stdArgs { maxSize = 10}) prop_numberOfPermutations

```

By using quickcheckwith with a modified version of stdArgs we can limit the size of the inputs to be at most 10. In this case, as we are generating lists, this means we generate lists of up to size 10. Our permutations function doesn't take too long to run for these short lists but we can still be reasonably confident that our definition is correct.

Read QuickCheck online: https://riptutorial.com/haskell/topic/1156/quickcheck

\section*{Chapter 53: Reactive-banana}

\section*{Examples}

\section*{Injecting external events into the library}

This example is not tied to any concrete GUI toolkit, like reactive-banana-wx does, for instance. Instead it shows how to inject arbitary io actions into FRP machinery.

The control.Event. Handler module provides an addHandler function which creates a pair of AddHandler a and a -> Io () values. The former is used by reactive-banana itself to obtain an Event a value, while the latter is a plain function that is used to trigger the corresponding event.
```

import Data.Char (toUpper)
import Control.Event.Handler
import Reactive.Banana
main = do
(inputHandler, inputFire) <- newAddHandler

```

In our case the a parameter of the handler is of type string, but the code that lets compiler infer that will be written later.

Now we define the EventNetwork that describes our FRP-driven system. This is done using compile function:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
inputEvent <- fromAddHandler inputHandler

```

The fromAddHandler function transforms AddHandler a value into a Event a, which is covered in the next example.

Finally, we launch our "event loop", that would fire events on user input:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
...
forever \$ do
input <- getLine
inputFire input

```

\section*{Event type}

In reactive-banana the Event type represents a stream of some events in time. An Event is similar to an analog impulse signal in the sense that it is not continuous in time. As a result, Event is an
instance of the Functor typeclass only. You can't combine two Events together because they may fire at different times. You can do something with an Event's [current] value and react to it with some io action.

Transformations on Events value are done using fmap:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
inputEvent <- fromAddHandler inputHandler
-- turn all characters in the signal to upper case
let inputEvent' = fmap (map toUpper) inputEvent

```

Reacting to an Event is done the same way. First you fmap it with an action of type a -> Io () and then pass it to reactimate function:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
inputEvent <- fromAddHandler inputHandler
-- turn all characters in the signal to upper case
let inputEvent' = fmap (map toUpper) inputEvent
let inputEventReaction = fmap putStrLn inputEvent' -- this has type `Event (IO ())
reactimate inputEventReaction

```

Now whenever inputFire "something" is called, "Something" would be printed.

\section*{Behavior type}

To represent continious signals, reactive-banana features Behavior a type. Unlike Event, a Behavior is an Applicative, which lets you combine \(n\) Behaviors using an \(n\)-ary pure function (using < \(\$>\) and <*>).

To obtain a Behavior a from the Event a there is accume function:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
inputBehavior <- accumE "" \$ fmap (\oldValue newValue -> newValue) inputEvent

```
accume takes Behavior's initial value and an Event, containing a function that would set it to the new value.

As with Events, you can use fmap to work with current Behaviors value, but you can also combine them with (<*>).
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do
inputBehavior <- accumE "" \$ fmap (\oldValue newValue -> newValue) inputEvent

```
```

inputBehavior' <- accumE "" \$ fmap (\oldValue newValue -> newValue) inputEvent
let constantTrueBehavior = (==) <\$> inputBehavior <*> inputBehavior'

```

To react on Behavior changes there is a changes function:
```

main = do
(inputHandler, inputFire) <- newAddHandler
compile \$ do

```
```

        inputBehavior <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
    ```
 inputBehavior <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 inputBehavior' <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 inputBehavior' <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 let constantTrueBehavior = (==) <$> inputBehavior <*> inputBehavior'
 let constantTrueBehavior = (==) <$> inputBehavior <*> inputBehavior'
 inputChanged <- changes inputBehavior
```

        inputChanged <- changes inputBehavior
    ```

The only thing that should be noted is that changes return Event (Future a) instead of Event a. Because of this, reactimate' should be used instead of reactimate. The rationale behind this can be obtained from the documentation.

\section*{Actuating EventNetworks}

EventNetworkS returned by compile must be actuated before reactimated events have an effect.
```

main = do
(inputHandler, inputFire) <- newAddHandler
eventNetwork <- compile \$ do
inputEvent <- fromAddHandler inputHandler
let inputEventReaction = fmap putStrLn inputEvent
reactimate inputEventReaction
inputFire "This will NOT be printed to the console!"
actuate eventNetwork
inputFire "This WILL be printed to the console!"

```

Read Reactive-banana online: https://riptutorial.com/haskell/topic/4186/reactive-banana

\section*{Chapter 54: Reader / ReaderT}

\section*{Introduction}

Reader provides functionality to pass a value along to each function. A helpful guide with some diagrams can be found here: http://adit.io/posts/2013-06-10-three-useful-monads.html

\section*{Examples}

\section*{Simple demonstration}

A key part of the Reader monad is the ask (https://hackage.haskell.org/package/mtl-
2.2.1/docs/Control-Monad-Reader.html\#v:ask) function, which is defined for illustrative purposes:
```

import Control.Monad.Trans.Reader hiding (ask)
import Control.Monad.Trans
ask :: Monad m => ReaderT r m r
ask = reader id
main :: IO ()
main = do
let f = (runReaderT \$ readerExample) :: Integer -> IO String
x <- f 100
print x
--
let fIO = (runReaderT \$ readerExampleIO) :: Integer -> IO String
y <- fIO 200
print y
readerExample :: ReaderT Integer IO String
readerExample = do
x <- ask
return \$ "The value is: " ++ show x
liftAnnotated :: IO a -> ReaderT Integer IO a
liftAnnotated = lift
readerExampleIO :: ReaderT Integer IO String
readerExampleIO = do
x <- reader id
lift \$ print "Hello from within"
liftAnnotated \$ print "Hello from within..."
return \$ "The value is: " ++ show x

```

The above will print out:
```

"The value is: 100"
"Hello from within"
"Hello from within..."
"The value is: 200"

```

Read Reader / ReaderT online: https://riptutorial.com/haskell/topic/9320/reader---readert

\section*{Chapter 55: Record Syntax}

\section*{Examples}

\section*{Basic Syntax}

Records are an extension of sum algebraic data type that allow fields to be named:
```

data StandardType = StandardType String Int Bool --standard way to create a sum type
data RecordType = RecordType { -- the same sum type with record syntax
aString :: String
, aNumber :: Int
, isTrue :: Bool
}

```

The field names can then be used to get the named field out of the record
```

> let r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
> :t r
r :: RecordType
> :t aString
aString :: RecordType -> String
> aString r
"Foobar"

```

Records can be pattern matched against
```

case r of
RecordType{aNumber = x, aString=str} -> ... -- x = 42, str = "Foobar"

```

Notice that not all fields need be named
Records are created by naming their fields, but can also be created as ordinary sum types (often useful when the number of fields is small and not likely to change)
```

r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
r' = RecordType "Foobar" 42 True

```

If a record is created without a named field, the compiler will issue a warning, and the resulting value will be undefined.
```

> let r = RecordType {aString = "Foobar", aNumber= 42}
<interactive>:1:9: Warning:
Fields of RecordType not initialized: isTrue
> isTrue r
Error 'undefined'

```

A field of a record can be updated by setting its value. Unmentioned fields do not change.
```

> let r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
> let r' = r{aNumber=117}
-- r'{aString = "Foobar", aNumber= 117, isTrue = True}

```

It is often useful to create lenses for complicated record types.

\section*{Copying Records while Changing Field Values}

Suppose you have this type:
```

data Person = Person { name :: String, age:: Int } deriving (Show, Eq)

```
and two values:
```

alex = Person { name = "Alex", age = 21 }
jenny = Person { name = "Jenny", age = 36 }

```
a new value of type person can be created by copying from alex, specifying which values to change:
```

anotherAlex = alex { age = 31 }

```

The values of alex and anotherAlex will now be:
```

Person {name = "Alex", age = 21}
Person {name = "Alex", age = 31}

```

\section*{Records with newtype}

Record syntax can be used with newtype with the restriction that there is exactly one constructor with exactly one field. The benefit here is the automatic creation of a function to unwrap the newtype. These fields are often named starting with run for monads, get for monoids, and un for other types.
```

newtype State s a = State { runState :: s -> (s, a) }
newtype Product a = Product { getProduct :: a }
newtype Fancy = Fancy { unfancy :: String }
-- a fancy string that wants to avoid concatenation with ordinary strings

```

It is important to note that the record syntax is typically never used to form values and the field name is used strictly for unwrapping
```

getProduct \$ mconcat [Product 7, Product 9, Product 12]
-- > 756

```

\section*{RecordWildCards}
```

{-\# LANGUAGE RecordWildCards \#-}
data Client = Client { firstName :: String
, lastName :: String
, clientID :: String
} deriving (Show)
printClientName :: Client -> IO ()
printClientName Client{..} = do
putStrLn firstName
putStrLn lastName
putStrLn clientID

```

The pattern client \(\{.\).\(\} brings in scope all the fields of the constructor \mathrm{Client}\), and is equivalent to the pattern
```

Client{ firstName = firstName, lastName = lastName, clientID = clientID }

```

It can also be combined with other field matchers like so:
```

Client { firstName = "Joe", .. }

```

This is equivalent to
```

Client{ firstName = "Joe", lastName = lastName, clientID = clientID }

```

\section*{Defining a data type with field labels}

It is possible to define a data type with field labels.
```

data Person = Person { age :: Int, name :: String }

```

This definition differs from a normal record definition as it also defines *record accessors which can be used to access parts of a data type.

In this example, two record accessors are defined, age and name, which allow us to access the age and name fields respectively.
```

age :: Person -> Int
name :: Person -> String

```

Record accessors are just Haskell functions which are automatically generated by the compiler. As such, they are used like ordinary Haskell functions.

By naming fields, we can also use the field labels in a number of other contexts in order to make our code more readable.

\section*{Pattern Matching}
```

lowerCaseName :: Person -> String
lowerCaseName (Person { name = x }) = map toLower x

```

We can bind the value located at the position of the relevant field label whilst pattern matching to a new value (in this case \(x\)) which can be used on the RHS of a definition.

\section*{Pattern Matching with \({ }_{\text {Namedri iederuns }}\)}
```

lowerCaseName :: Person -> String
lowerCaseName (Person { name }) = map toLower name

```

The namedFieldPuns extension instead allows us to just specify the field label we want to match upon, this name is then shadowed on the RHS of a definition so referring to name refers to the value rather than the record accessor.

\section*{Pattern Matching with \({ }_{\text {Recordwinidcards }}\)}
```

lowerCaseName :: Person -> String
lowerCaseName (Person { .. }) = map toLower name

```

When matching using Recordwildcards, all field labels are brought into scope. (In this specific example, name and age)

This extension is slightly controversial as it is not clear how values are brought into scope if you are not sure of the definition of Person.

\section*{Record Updates}
```

setName :: String -> Person -> Person
setName newName person = person { name = newName }

```

There is also special syntax for updating data types with field labels.
Read Record Syntax online: https://riptutorial.com/haskell/topic/1950/record-syntax

\section*{Chapter 56: Recursion Schemes}

\section*{Remarks}

Functions mentioned here in examples are defined with varying degrees of abstraction in several packages, for example, data-fix and recursion-schemes (more functions here). You can view a more complete list by searching on Hayoo.

\section*{Examples}

\section*{Fixed points}

Fix takes a "template" type and ties the recursive knot, layering the template like a lasagne.
```

newtype Fix f = Fix { unFix :: f (Fix f) }

```

Inside \(\mathbf{a}_{\text {Fix }} \mathrm{f}\) we find a layer of the template f . To fill in \(\mathrm{f}^{\prime} \mathrm{S}\) parameter, fix f plugs in itself. So when you look inside the template f you find a recursive occurrence of \(\mathrm{Fix}_{\mathrm{f}} \mathrm{f}\).

Here is how a typical recursive datatype can be translated into our framework of templates and fixed points. We remove recursive occurrences of the type and mark their positions using the \(r\) parameter.
```

{-\# LANGUAGE DeriveFunctor \#-}
-- natural numbers
-- data Nat = Zero | Suc Nat
data NatF r = Zero_ | Suc_ r deriving Functor
type Nat = Fix NatF
zero :: Nat
zero = Fix Zero_
suc :: Nat -> Nat
suc n = Fix (Suc_ n)
-- lists: note the additional type parameter a
-- data List a = Nil | Cons a (List a)
data ListF a r = Nil_ | Cons_ a r deriving Functor
type List a = Fix (ListF a)
nil :: List a
nil = Fix Nil_
cons :: a -> List a -> List a
cons x xs = Fix (Cons_ x xs)
-- binary trees: note two recursive occurrences
-- data Tree a = Leaf | Node (Tree a) a (Tree a)
data TreeF a r = Leaf_ | Node_r a r deriving Functor
type Tree a = Fix (TreeF a)

```
```

leaf :: Tree a
leaf = Fix Leaf_
node :: Tree a -> a -> Tree a -> Tree a
node l x r = Fix (Node_ l x r)

```

\section*{Folding up a structure one layer at a time}

Catamorphisms, or folds, model primitive recursion. cata tears down a fixpoint layer by layer, using an algebra function (or folding function) to process each layer. cata requires a Functor instance for the template type f .
```

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f = f . fmap (cata f) . unFix
-- list example
foldr :: (a -> b -> b) -> b -> List a -> b
foldr f z = cata alg
where alg Nil_ = z
alg (Cons_ x acc) = f x acc

```

\section*{Unfolding a structure one layer at a time}

Anamorphisms, or unfolds, model primitive corecursion. ana builds up a fixpoint layer by layer, using a coalgebra function (or unfolding function) to produce each new layer. ana requires a Functor instance for the template type \(f\).
```

ana :: Functor f => (a -> f a) -> a -> Fix f
ana f = Fix . fmap (ana f) . f
-- list example
unfoldr :: (b -> Maybe (a, b)) -> b -> List a
unfoldr f = ana coalg
where coalg x = case f x of
Nothing -> Nil_
Just (x, y) -> Cons_ x y

```

Note that ana and cata are dual. The types and implementations are mirror images of one another.

\section*{Unfolding and then folding, fused}

It's common to structure a program as building up a data structure and then collapsing it to a single value. This is called a hylomorphism or refold. It's possible to elide the intermediate structure altogether for improved efficiency.
```

hylo :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
hylo f g = g. fmap (hylo f g) . f -- no mention of Fix!

```

Derivation:
```

hylo f g = cata g . ana f

```
```

= g . fmap (cata g) . unFix . Fix . fmap (ana f) . f -- definition of cata and ana
= g . fmap (cata g) . fmap (ana f) . f -- unfix . Fix = id
= g . fmap (cata g . ana f) . f -- Functor law
= g . fmap (hylo f g) . f -- definition of hylo

```

\section*{Primitive recursion}

Paramorphisms model primitive recursion. At each iteration of the fold, the folding function receives the subtree for further processing.
```

para :: Functor f => (f (Fix f, a) -> a) -> Fix f -> a
para f = f . fmap (\x -> (x, para f x)) . unFix

```

The Prelude's tails can be modelled as a paramorphism.
```

tails :: List a -> List (List a)
tails = para alg
where alg Nil_ = cons nil nil -- [[]]
alg (Cons_ x (xs, xss)) = cons (cons x xs) xss -- (x:xs):xss

```

\section*{Primitive corecursion}

Apomorphisms model primitive corecursion. At each iteration of the unfold, the unfolding function may return either a new seed or a whole subtree.
```

apo :: Functor f => (a -> f (Either (Fix f) a)) -> a -> Fix f
apo f = Fix . fmap (either id (apo f)) . f

```

Note that apo and para are dual. The arrows in the type are flipped; the tuple in para is dual to the Either in apo, and the implementations are mirror images of each other.

Read Recursion Schemes online: https://riptutorial.com/haskell/topic/2984/recursion-schemes

\section*{Chapter 57: Rewrite rules (GHC)}

\section*{Examples}

\section*{Using rewrite rules on overloaded functions}

In this question, @Viclib asked about using rewrite rules to exploit typeclass laws to eliminate some overloaded function calls:

Mind the following class:
```

class ListIsomorphic l where
toList :: l a -> [a]
fromList :: [a] -> l a

```

I also demand that toList . fromList == id. How do I write rewrite rules to tell GHC to make that substitution?

This is a somewhat tricky use case for GHC's rewrite rules mechanism, because overloaded functions are rewritten into their specific instance methods by rules that are implicitly created behind the scenes by GHC (so something like fromList : : seq a -> [a] would be rewritten into seq\$fromList etc.).

However, by first rewriting tolist and fromList into non-inlined non-typeclass methods, we can protect them from premature rewriting, and preserve them until the rule for the composition can fire:
```

{-\# RULES
"protect toList" toList = toList';
"protect fromList" fromList = fromList';
"fromList/toList" forall x . fromList' (toList' x) = x; \#-}
{-\# NOINLINE [0] fromList' \#-}
fromList' :: (ListIsomorphic l) => [a] -> l a
fromList' = fromList
{-\# NOINLINE [O] toList' \#-}
toList' :: (ListIsomorphic l) => l a -> [a]
toList' = toList

```

Read Rewrite rules (GHC) online: https://riptutorial.com/haskell/topic/4914/rewrite-rules--ghc-

\section*{Chapter 58: Role}

\section*{Introduction}

The typefamilies language extension allows the programmer to define type-level functions. What distinguishes type functions from non-GADT type constructors is that parameters of type functions can be non-parametric whereas parameters of type constructors are always parametric. This distinction is important to the correctness of the GeneralizedNewTypeDeriving extension. To explicate this distinction, roles are introduced in Haskell.

\section*{Remarks}

See also safenewtypeDeriving.

\section*{Examples}

\section*{Nominal Role}

Haskell Wiki has an example of a non-parametric parameter of a type function:
```

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool

```

Here x is non-parametric because to determine the outcome of applying inspect to a type argument, the type function must inspect x .

In this case, the role of x is nominal. We can declare the role explicitly with the RoleAnnotations extension:
```

type role Inspect nominal

```

\section*{Representational Role}

An example of a parametric parameter of a type function:
```

data List a = Nil | Cons a (List a)
type family DoNotInspect x
type instance DoNotInspect x = List x

```

Here x is parametric because to determine the outcome of applying DoNot Inspect to a type argument, the type function do not need to inspect x .

In this case, the role of \(x\) is representational. We can declare the role explicitly with the RoleAnnotations

\section*{extension:}
type role DoNotInspect representational

\section*{Phantom Role}

A phantom type parameter has a phantom role. Phantom roles cannot be declared explicitly. Read Role online: https://riptutorial.com/haskell/topic/8753/role

\section*{Chapter 59: Sorting Algorithms}

\section*{Examples}

\section*{Insertion Sort}
```

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) | x < y = x:y:ys
| otherwise = y:(insert x ys)
isort :: Ord a => [a] -> [a]
isort [] = []
isort (x:xs) = insert x (isort xs)

```

\section*{Example use:}
```

> isort [5,4,3,2,1]

```

\section*{Result:}
\[
[1,2,3,4,5]
\]

\section*{Merge Sort}

\section*{Ordered merging of two ordered lists}

Preserving the duplicates:
```

merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) | x <= y = x:merge xs (y:ys)
| otherwise = y:merge (x:xs) ys

```

\section*{Top-down version:}
```

msort :: Ord a => [a] -> [a]
msort [] = []
msort [a] = [a]
msort xs = merge (msort (firstHalf xs)) (msort (secondHalf xs))
firstHalf xs = let { n = length xs } in take (div n 2) xs
secondHalf xs = let { n = length xs } in drop (div n 2) xs

```

It is defined this way for clarity, not for efficiency.

\section*{Example use:}
```

> msort [3,1,4,5,2]

```

\section*{Result:}
\[
[1,2,3,4,5]
\]

\section*{Bottom-up version:}
```

msort [] = []
msort xs = go [[x] | x <- xs]
where
go [a] = a
go xs = go (pairs xs)
pairs (a:b:t) = merge a b : pairs t
pairs t = t

```

\section*{Quicksort}
```

qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort [a | a <- xs, a < x]
++ [x] ++
qsort [b | b <- xs, b >= x]

```

\section*{Bubble sort}
```

bsort :: Ord a => [a] -> [a]
bsort s = case bsort' s of
t | t == s -> t
| otherwise -> bsort t
where bsort' (x:x2:xs) | x > x2 = x2:(bsort' (x:xs))
| otherwise = x:(bsort' (x2:xs))
bsort' s = s

```

\section*{Permutation Sort}

Also known as bogosort.
```

import Data.List (permutations)
sorted :: Ord a => [a] -> Bool
sorted (x:y:xs) = x <= y \&\& sorted (y:xs)
sorted _ = True
psort :: Ord a => [a] -> [a]
psort = head . filter sorted . permutations

```

Extremely inefficient (on today's computers).

\section*{Selection sort}

Selection sort selects the minimum element, repeatedly, until the list is empty.
```

import Data.List (minimum, delete)
ssort :: Ord t => [t] -> [t]
ssort [] = []
ssort xs = let { x = minimum xs }
in x : ssort (delete x xs)

```

Read Sorting Algorithms online: https://riptutorial.com/haskell/topic/2300/sorting-algorithms

\section*{Chapter 60: Stack}

\section*{Examples}

\section*{Installing Stack}

\section*{Mac OSX}

Using Homebrew:
```

brew install haskell-stack

```

\section*{Creating a simple project}

To create a project called helloworld run:
```

stack new helloworld simple

```

This will create a directory called helloworld with the files necessary for a Stack project.

\section*{Structure}

\section*{File structure}

A simple project has the following files included in it:
\(\rightarrow\) helloworld ls
LICENSE Setup.hs helloworld.cabal src stack.yaml
In the folder src there is a file named Main.hs. This is the "starting point" of the helloworld project. By default Main.hs contains a simple "Hello, World!" program.

\section*{Main.hs}
```

module Main where
main :: IO ()
main = do
putStrLn "hello world"

```

\section*{Running the program}

Make sure you are in the directory helloworld and run:
```

stack build \# Compile the program
stack exec helloworld \# Run the program

# prints "hello world"

```

\section*{Stackage Packages and changing the LTS (resolver) version}

Stackage is a repository for Haskell packages. We can add these packages to a stack project.

\section*{Adding lens to a project.}

In a stack project, there is a file called stack.yamı. In stack.yamı there is a segment that looks like:
```

resolver: lts-6.8

```

Stackage keeps a list of packages for every revision of 1 ts. In our case we want the list of packages for lts-6.8 To find these packages visit:
```

https://www.stackage.org/lts-6.8 \# if a different version is used, change 6.8 to the correct
resolver number.

```

Looking through the packages, there is a Lens-4.13.
We can now add the language package by modifying the section of helloworld.cabal:
```

build-depends: base >= 4.7 \&\& < 5

```
to:
```

build-depends: base >= 4.7 \&\& 5,
lens == 4.13

```

Obviously, if we want to change a newer LTS (after it's released), we just change the resolver number, eg.:
```

resolver: lts-6.9

```

With the next stack build Stack will use the LTS 6.9 version and hence download some new dependencies.

\section*{Build and Run a Stack Project}

In this example our project name is "helloworld" which was created with stack new helloworld simple

First we have to build the project with stack build and then we can run it with
```

stack exec helloworld-exe

```

\section*{Stack install}

By running the command
```

stack install

```

Stack will copy a executable file to the folder
```

/Users/<yourusername>/.local/bin/

```

\section*{Profiling with Stack}

Configure profiling for a project via stack. First build the project with the --profile flag:
```

stack build --profile

```

GHC flags are not required in the cabal file for this to work (like -prof). stack will automatically turn on profiling for both the library and executables in the project. The next time an executable runs in the project, the usual +RTs flags can be used:
```

stack exec -- my-bin +RTS -p

```

\section*{Viewing dependencies}

To find out what packages your project directly depends on, you can simply use this command:
```

stack list-dependencies

```

This way you can find out what version of your dependencies where actually pulled down by stack.
Haskell projects frequently find themselves pulling in a lot of libraries indirectly, and sometimes these external dependencies cause problems that you need to track down. If you find yourself with a rogue external dependency that you'd like to identify, you can grep through the entire dependency graph and identify which of your dependencies is ultimately pulling in the undesired package:
```

stack dot --external | grep template-haskell

```
stack dot prints out a dependency graph in text form that can be searched. It can also be viewed:
```

stack dot --external | dot -Tpng -o my-project.png

```

You can also set the depth of the dependency graph if you want:
```

stack dot --external --depth 3 | dot -Tpng -o my-project.png

```

Read Stack online: https://riptutorial.com/haskell/topic/2970/stack

\section*{Chapter 61: State Monad}

\section*{Introduction}

State monads are a kind of monad that carry a state that might change during each computation run in the monad. Implementations are usually of the form state s a which represents a computation that carries and potentially modifies a state of type \(s\) and produces a result of type a, but the term "state monad" may generally refer to any monad which carries a state. The mti and transformers package provide general implementations of state monads.

\section*{Remarks}

Newcomers to Haskell often shy away from the state monad and treat it like a taboo-like the claimed benefit of functional programming is the avoidance of state, so don't you lose that when you use state? A more nuanced view is that:
- State can be useful in small, controlled doses;
- The state type provides the ability to control the dose very precisely.

The reasons being that if you have action :: State s a, this tells you that:
- action is special because it depends on a state;
- The state has type s, so action cannot be influenced by any old value in your program-only an s or some value reachable from some s;
- The runstate :: State s a -> s -> (a, s) puts a "barrier" around the stateful action, so that its effectfulness cannot be observed from outside that barrier.

So this is a good set of criteria for whether to use state in particular scenario. You want to see that your code is minimizing the scope of the state, both by choosing a narrow type for \(s\) and by putting runstate as close to "the bottom" as possible, (so that your actions can be influenced by as few thing as possible.

\section*{Examples}

\section*{Numbering the nodes of a tree with a counter}

We have a tree data type like this:
```

data Tree a = Tree a [Tree a] deriving Show

```

And we wish to write a function that assigns a number to each node of the tree, from an incrementing counter:
```

tag :: Tree a -> Tree (a, Int)

```

\section*{The long way}

First we'll do it the long way around, since it illustrates the state monad's low-level mechanics quite nicely.
```

import Control.Monad.State
-- Function that numbers the nodes of a `Tree`.
tag :: Tree a -> Tree (a, Int)
tag tree =
-- tagStep is where the action happens. This just gets the ball
-- rolling, with `O` as the initial counter value.
evalState (tagStep tree) 0
-- This is one monadic "step" of the calculation. It assumes that
-- it has access to the current counter value implicitly.
tagStep :: Tree a -> State Int (Tree (a, Int))
tagStep (Tree a subtrees) = do
-- The `get :: State s s` action accesses the implicit state
-- parameter of the State monad. Here we bind that value to
-- the variable `counter`.
counter <- get
-- The `put :: s -> State s ()` sets the implicit state parameter
-- of the `State` monad. The next `get` that we execute will see
-- the value of `counter + 1` (assuming no other puts in between).
put (counter + 1)
-- Recurse into the subtrees. `mapM` is a utility function
-- for executing a monadic actions (like `tagStep`) on a list of
-- elements, and producing the list of results. Each execution of
-- `tagStep` will be executed with the counter value that resulted
-- from the previous list element's execution.
subtrees' <- mapM tagStep subtrees
return \$ Tree (a, counter) subtrees'

```

\section*{Refactoring}

\section*{Split out the counter into a postIncrement action}

The bit where we are getting the current counter and then putting counter +1 can be split off into a post Increment action, similar to what many C-style languages provide:
```

postIncrement :: Enum s => State s s
postIncrement = do
result <- get
modify succ
return result

```

\section*{Split out the tree walk into a higher-order function}

The tree walk logic can be split out into its own function, like this:
```

mapTreeM :: Monad m => (a -> m b) -> Tree a -> m (Tree b)
mapTreeM action (Tree a subtrees) = do
a' <- action a
subtrees' <- mapM (mapTreeM action) subtrees
return \$ Tree a' subtrees'

```

With this and the post Increment function we can rewrite tagStep:
```

tagStep :: Tree a -> State Int (Tree (a, Int))
tagStep = mapTreeM step
where step :: a -> State Int (a, Int)
step a = do
counter <- postIncrement
return (a, counter)

```

\section*{Use the \({ }_{\text {Traversable }}\) class}

The mapTreem solution above can be easily rewritten into an instance of the Traversable class:
```

instance Traversable Tree where
traverse action (Tree a subtrees) =
Tree <\$> action a <*> traverse action subtrees

```

Note that this required us to use Applicative (the <*> operator) instead of monad.
With that, now we can write tag like a pro:
```

tag :: Traversable t => t a -> t (a, Int)
tag init t = evalState (traverse step t) 0
where step a = do tag <- postIncrement
return (a, tag)

```

Note that this works for any Traversable type, not just our Tree type!

\section*{Getting rid of the rraversable boilerplate}

GHC has a DeriveTraversable extension that eliminates the need for writing the instance above:
```

{-\# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable \#-}
data Tree a = Tree a [Tree a]
deriving (Show, Functor, Foldable, Traversable)

```

Read State Monad online: https://riptutorial.com/haskell/topic/5740/state-monad

\section*{Chapter 62: Streaming IO}

\section*{Examples}

\section*{Streaming IO}
io-streams is Stream-based library that focuses on the Stream abstraction but for IO. It exposes two types:
- InputStream: a read-only smart handle
- OutputStream: a write-only smart handle

We can create a stream with makeInputStream :: Io (Maybe a) -> Io (InputStream a). Reading from a stream is performed using read :: InputStream a -> IO (Maybe a), where Nothing denotes an EOF:
```

import Control.Monad (forever)
import qualified System.IO.Streams as S
import System.Random (randomRIO)
main :: IO ()
main = do
is <- S.makeInputStream \$ randomInt -- create an InputStream
forever \$ printStream =<< S.read is -- forever read from that stream
return ()
randomInt :: IO (Maybe Int)
randomInt = do
r <- randomRIO (1, 100)
return \$ Just r
printStream :: Maybe Int -> IO ()
printStream Nothing = print "Nada!"
printStream (Just a) = putStrLn \$ show a

```

Read Streaming IO online: https://riptutorial.com/haskell/topic/4984/streaming-io

\section*{Chapter 63: Strictness}

\section*{Examples}

\section*{Bang Patterns}

Patterns annotated with a bang (!) are evaluated strictly instead of lazily.
```

foo (!x, y) !z = [x, y, z]

```

In this example, x and z will both be evaluated to weak head normal form before returning the list. It's equivalent to:
```

foo (x, y) z = x `seq` z `seq` [x, y, z]

```

Bang patterns are enabled using the Haskell 2010 BangPatterns language extension.

\section*{Normal forms}

This example provides a brief overview - for a more in-depth explanation of normal forms and examples, see this question.

\section*{Reduced normal form}

The reduced normal form (or just normal form, when the context is clear) of an expression is the result of evaluating all reducible subexpressions in the given expression. Due to the non-strict semantics of Haskell (typically called laziness), a subexpression is not reducible if it is under a binder (i.e. a lambda abstraction \(-\backslash x \rightarrow>\).). The normal form of an expression has the property that if it exists, it is unique.

In other words, it does not matter (in terms of denotational semantics) in which order you reduce subexpressions. However, the key to writing performant Haskell programs is often ensuring that the right expression is evaluated at the right time, i.e, the understanding the operational semantics.

An expression whose normal form is itself is said to be in normal form.
Some expressions, e.g. let \(\mathrm{x}=1: \mathrm{x}\) in x , have no normal form, but are still productive. The example expression still has a value, if one admits infinite values, which here is the list \([1,1, \ldots]\). Other expressions, such as let \(y=1+y\) in \(y\), have no value, or their value is undefined.

\section*{Weak head normal form}

The RNF corresponds to fully evaluating an expression - likewise, the weak head normal form (WHNF) corresponds to evaluating to the head of the expression. The head of an expression e is fully evaluated if \(e\) is an application con e1 e2 .. en and con is a constructor; or an abstraction \(\backslash x\)-> e1; or a partial application \(f\) e1 e2 .. en, where partial application means \(f\) takes more than \(n\) arguments (or equivalently, the type of e is a function type). In any case, the subexpressions e1..en can be evaluated or unevaluated for the expression to be in WHNF - they can even be undefined.

The evaluation semantics of Haskell can be described in terms of the WHNF - to evaluate an expression e, first evaluate it to WHNF, then recursively evaluate all of its subexpressions from left to right.

The primitive seq function is used to evaluate an expression to WHNF. seq \(\mathrm{x} y\) is denotationally equal to y (the value of seq \(\mathrm{x} y\) is precisely y); furthermore x is evaluated to WHNF when y is evaluated to WHNF. An expression can also be evaluated to WHNF with a bang pattern (enabled by the -xBangPatterns extension), whose syntax is as follows:
```

f !x y = ...

```

In which x will be evaluated to WHNF when f is evaluated, while y is not (necessarily) evaluated. A bang pattern can also appear in a constructor, e.g.
```

data X = Con A !B C .. N

```
in which case the constructor con is said to be strict in the \({ }_{в}\) field, which means the \({ }_{8}\) field is evaluated to WHNF when the constructor is applied to sufficient (here, two) arguments.

\section*{Lazy patterns}

Lazy, or irrefutable, patterns (denoted with the syntax \(\sim\) pat) are patterns that always match, without even looking at the matched value. This means lazy patterns will match even bottom values. However, subsequent uses of variables bound in sub-patterns of an irrefutable pattern will force the pattern matching to occur, evaluating to bottom unless the match succeeds.

The following function is lazy in its argument:
```

f1 :: Either e Int -> Int
f1 ~(Right 1) = 42

```
and so we get
```

\lambda» f1 (Right 1)
42
\lambda» f1 (Right 2)
42
\lambda» f1 (Left "foo")
42
f1 (error "oops!")
42

```
```

\lambda» f1 "oops!"
*** type mismatch ***

```

The following function is written with a lazy pattern but is in fact using the pattern's variable which forces the match, so will fail for Left arguments:
```

f2 :: Either e Int -> Int
f2 ~(Right x) = x + 1
\lambda» f2 (Right 1)
2
\lambda» f2 (Right 2)
3
\lambda» f2 (Right (error "oops!"))
*** Exception: oops!
\lambda» f2 (Left "foo")
*** Exception: lazypat.hs:5:1-21: Irrefutable pattern failed for pattern (Right x)
\lambda» f2 (error "oops!")
*** Exception: oops!

```
let bindings are lazy, behave as irrefutable patterns:
```

act1 :: IO ()
act1 = do
ss <- readLn
let [s1, s2] = ss :: [String]
putStrLn "Done"
act2 :: IO ()
act2 = do
ss <- readLn
let [s1, s2] = ss
putStrLn s1

```

Here act1 works on inputs that parse to any list of strings, whereas in act2 the putStrin s1 needs the value of s1 which forces the pattern matching for [s1, s2], so it works only for lists of exactly two strings:
```

\lambda» act1
> ["foo"]
Done
\lambda» act2
> ["foo"]
*** readIO: no parse ***

```

\section*{Strict fields}

In a data declaration, prefixing a type with a bang (!) makes the field a strict field. When the data constructor is applied, those fields will be evaluated to weak head normal form, so the data in the fields is guaranteed to always be in weak head normal form.

Strict fields can be used in both record and non-record types:
```

data User = User
{ identifier :: !Int
, firstName :: !Text
, lastName :: !Text
}
data T = MkT !Int !Int

```

Read Strictness online: https://riptutorial.com/haskell/topic/3798/strictness

\section*{Chapter 64: Syntax in Functions}

\section*{Examples}

\section*{Guards}

A function can be defined using guards, which can be thought of classifying behaviour according to input.

Take the following function definition:
```

absolute :: Int -> Int -- definition restricted to Ints for simplicity
absolute n = if ( n < 0) then (-n) else n

```

We can rearrange it using guards:
```

absolute :: Int -> Int
absolute n
| n < 0 = -n
| otherwise = n

```

In this context otherwise is a meaningful alias for rrue, so it should always be the last guard.

\section*{Pattern Matching}

Haskell supports pattern matching expressions in both function definition and through case statements.

A case statement is much like a switch in other languages, except it supports all of Haskell's types.

\section*{Let's start simple:}
```

longName :: String -> String
longName name = case name of
"Alex" -> "Alexander"
"Jenny" -> "Jennifer"
_ -> "Unknown" -- the "default" case, if you like

```

Or, we could define our function like an equation which would be pattern matching, just without using a case statement:
```

longName "Alex" = "Alexander"
longName "Jenny" = "Jennifer"
longName _ = "Unknown"

```

A more common example is with the Maybe type:
```

data Person = Person { name :: String, petName :: (Maybe String) }
hasPet :: Person -> Bool
hasPet (Person _ Nothing) = False
hasPet _ = True -- Maybe can only take `Just a` or `Nothing`, so this wildcard suffices

```

Pattern matching can also be used on lists:
```

isEmptyList :: [a] -> Bool
isEmptyList [] = True
isEmptyList _ = False
addFirstTwoItems :: [Int] -> [Int]
addFirstTwoItems [] = []
addFirstTwoItems (x:[]) = [x]
addFirstTwoItems (x:y:ys) = (x + y) : ys

```

Actually, Pattern Matching can be used on any constructor for any type class. E.g. the constructor for lists is : and for tuples ,

\section*{Using where and guards}

Given this function:
```

annualSalaryCalc :: (RealFloat a) => a -> a -> String
annualSalaryCalc hourlyRate weekHoursOfWork
| hourlyRate * (weekHoursOfWork * 52) <= 40000 = "Poor child, try to get another job"
| hourlyRate * (weekHoursOfWork * 52) <= 120000 = "Money, Money, Money!"
| hourlyRate * (weekHoursOfWork * 52) <= 200000 = "Ri\&hie Ri¢h"
| otherwise = "Hello Elon Musk!"

```

We can use where to avoid the repetition and make our code more readable. See the alternative function below, using where:
```

annualSalaryCalc' :: (RealFloat a) => a -> a -> String
annualSalaryCalc' hourlyRate weekHoursOfWork
| annualSalary <= smallSalary = "Poor child, try to get another job"
| annualSalary <= mediumSalary = "Money, Money, Money!"
| annualSalary <= highSalary = "Ri\&hie Ri\&h"
| otherwise = "Hello Elon Musk!"
where
annualSalary = hourlyRate * (weekHoursOfWork * 52)
(smallSalary, mediumSalary, highSalary) = (40000, 120000, 200000)

```

As observed, we used the where in the end of the function body eliminating the repetition of the calculation (hourlyRate * (weekHoursofWork * 52)) and we also used where to organize the salary range.

The naming of common sub-expressions can also be achieved with let expressions, but only the where syntax makes it possible for guards to refer to those named sub-expressions.

Read Syntax in Functions online: https://riptutorial.com/haskell/topic/3799/syntax-in-functions

\section*{Chapter 65: Template Haskell \& QuasiQuotes}

\section*{Remarks}

\section*{What is Template Haskell?}

Template Haskell refers to the template meta-programming facilities built into GHC Haskell. The paper describing the original implementation can be found here.

\section*{What are stages? (Or, what is the stage restriction?)}

Stages refer to when code is executed. Normally, code is exectued only at runtime, but with Template Haskell, code can be executed at compile time. "Normal" code is stage 0 and compiletime code is stage 1 .

The stage restriction refers to the fact that a stage 0 program may not be executed at stage 1 - this would be equivalent to being able to run any regular program (not just meta-program) at compile time.

By convention (and for the sake of implementation simplicity), code in the current module is always stage 0 and code imported from all other modules is stage 1 . For this reason, only expressions from other modules may be spliced.
 not true - not every value (stage 0 program) of type \(Q\) Exp is a stage 1 program,

Futhermore, since splices can be nested, identifiers can have stages greater than 1. The stage restriction can then be generalized - a stage \(n\) program may not be executed in any stage \(m>n\). For example, one can see references to such stages greater than 1 in certain error messages:
```

>:t [| \x -> \$x |]
<interactive>:1:10: error:
* Stage error: 'x' is bound at stage 2 but used at stage 1
* In the untyped splice: \$x
In the Template Haskell quotation [| \ x -> \$x |]

```

\section*{Using Template Haskell causes not-in-scope errors from unrelated identifiers?}

Normally, all the declarations in a single Haskell module can be thought of as all being mutually recursive. In other words, every top-level declaration is in the scope of every other in a single module. When Template Haskell is enabled, the scoping rules change - the module is instead broken into groups of code seperated by TH splices, and each group is mutually recursive, and each group in the scope of all further groups.

\section*{Examples}

\section*{The Q type}

The 2 :: * -> * type constructor defined in Language.Haskell.Th.Syntax is an abstract type representing computations which have access to the compile-time environment of the module in which the computation is run. The 2 type also handles variable substituion, called name capture by TH (and discussed here.) All splices have type \(\& \times\) for some x .

The compile-time environment includes:
- in-scope identifiers and information about said identifiers,
types of functions
types and source data types of constructors
full specification of type declarations (classes, type families)
- the location in the source code (line, column, module, package) where the splice occurs
- fixities of functions (GHC 7.10)
- enabled GHC extensions (GHC 8.0)

The \(Q\) type also has the ability to generate fresh names, with the function newName :: String \(\rightarrow\) Q Name. Note that the name is not bound anywhere implicitly, so the user must bind it themselves, and so making sure the resulting use of the name is well-scoped is the responsibility of the user.

Q has instances for Functor, Monad, Applicative and this is the main interface for manipulating \(e_{e}\) values, along with the combinators provided in Language.Haskel1.тн. Lib, which define a helper function for every constructor of the TH ast of the form:
```

LitE :: Lit -> Exp
litE :: Lit -> ExpQ
AppE :: Exp -> Exp -> Exp
appE :: ExpQ -> ExpQ -> ExpQ

```

Note that Expe, Typee, Decse and Pate are synonyms for the AST types which are typically stored inside the \(Q\) type.

The TH library provides a function rune :: Quasi \(m \Rightarrow 2\) a \(\rightarrow \mathrm{m}\) a, and there is an instance Quasi 10 , so it would seem that the \(Q\) type is just a fancy 10 . However, the use of rune :: \(\&\) a \(->\) Io a produces an io action which does not have access to any compile-time environment - this is only available in the actual \(e_{2}\) type. Such io actions will fail at runtime if trying to access said environment.

\section*{An n-arity curry}

The familiar
```

curry :: ((a,b) -> c) -> a -> b -> c
curry = \f a b -> f (a,b)

```
function can be generalized to tuples of arbitrary arity, for example:
```

curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d
curry4 :: ((a, b, c, d) -> e) -> a -> b -> c -> d -> e

```

However, writing such functions for tuples of arity 2 to (e.g.) 20 by hand would be tedious (and ignoring the fact that the presence of 20 tuples in your program almost certainly signal design issues which should be fixed with records).

We can use Template Haskell to produce such curryN functions for arbitrary n :
```

{-\# LANGUAGE TemplateHaskell \#-}
import Control.Monad (replicateM)
import Language.Haskell.TH (ExpQ, newName, Exp(..), Pat(..))
import Numeric.Natural (Natural)
curryN :: Natural -> Q Exp

```

The curryN function takes a natural number, and produces the curry function of that arity, as a Haskell AST.
```

curryN n = do
f <- newName "f"
xs <- replicateM (fromIntegral n) (newName "x")

```

First we produces fresh type variables for each of the arguments of the function - one for the input function, and one for each of the arguments to said function.
```

let args = map VarP (f:xs)

```

The expression args represents the pattern \(\mathrm{f} \times 1 \mathrm{x} 2 \ldots \mathrm{xn}\). Note that a pattern is seperate syntactic entity - we could take this same pattern and place it in a lambda, or a function binding, or even the LHS of a let binding (which would be an error).
```

ntup = TupE (map VarE xs)

```

The function must build the argument tuple from the sequence of arguments, which is what we've done here. Note the distinction between pattern variables (varp) and expression variables (vare).
```

return \$ LamE args (AppE (VarE f) ntup)

```

Finally, the value which we produce is the AST \(\backslash f\) x1 \(x 2 \ldots x n \rightarrow f(x 1, x 2, \ldots, x n)\).

We could have also written this function using quotations and 'lifted' constructors:
```

...
import Language.Haskell.TH.Lib
curryN' :: Natural -> ExpQ
curryN' n = do
f <- newName "f"
xs <- replicateM (fromIntegral n) (newName "x")
lamE (map varP (f:xs))
[| \$(varE f) \$(tupE (map varE xs)) |]

```

Note that quotations must be syntactically valid, so [। \\$(map varP (f:xs)) -> .. |] is invalid, because there is no way in regular Haskell to declare a 'list' of patterns - the above is interpreted as \(\backslash\) var \(->\).. and the spliced expression is expected to have type Pate, i.e. a single pattern, not a list of patterns.

Finally, we can load this TH function in GHCi:
```

>:set -XTemplateHaskell
>:t \$(curryN 5)
$(curryN 5)
    :: ((t1, t2, t3, t4, t5) -> t) -> t1 -> t2 -> t3 -> t4 -> t5 -> t
>$(curryN 5) (\(a,b,c,d,e) -> a+b+c+d+e) 1 2 3 4 5
15

```

This example is adapted primarily from here.

\section*{Syntax of Template Haskell and Quasiquotes}

Template Haskell is enabled by the -xTemplateHaskelı GHC extension. This extension enables all the syntactic features further detailed in this section. The full details on Template Haskell are given by the user guide.

\section*{Splices}
- A splice is a new syntactic entity enabled by Template Haskell, written as \(\$(\ldots)\), where (...) is some expression.
- There must not be a space between \$ and the first character of the expression; and Template Haskell overrides the parsing of the \(\$\) operator - e.g. f\$g is normally parsed as (\$) f g whereas with Template Haskell enabled, it is parsed as a splice.
- When a splice appears at the top level, the s may be omitted. In this case, the spliced expression is the entire line.
- A splice represents code which is run at compile time to produce a Haskell AST, and that AST is compiled as Haskell code and inserted into the program
- Splices can appear in place of: expressions, patterns, types, and top-level declarations. The type of the spliced expression, in each case respectively, is \(Q \operatorname{Exp}, \&\) Pat, \& Type, \& [Decl]. Note that declaration splices may only appear at the top level, whereas the others may be inside other expressions, patterns, or types, respectively.

\section*{Expression quotations (note: not a QuasiQuotation)}
- An expression quotation is a new syntactic entity written as one of:
```

[e|..|] or [|..|] - .. is an expression and the quotation has type e Exp;
[p|..|]-.. is a pattern and the quotation has type \& Pat;
\circ [t|..|] - .. is a type and the quotation has type e Type;
\circ [d|..|]-.. is a list of declarations and the quotation has type Q [Dec].

```
- An expression quotation takes a compile time program and produces the AST represented by that program.
- The use of a value in a quotation (e.g. \(\backslash \mathrm{x} \rightarrow \mathrm{>}\left[\begin{array}{lll}\mid \mathrm{x} & 1\end{array}\right]\)) without a splice corresponds to syntactic sugar for \(\backslash x\)-> [| \$(lift x) |], where lift : : Lift t \(=>\) t -> Q Exp comes from the class
```

class Lift t where
lift :: t -> Q Exp
default lift :: Data t => t -> Q Exp

```

\section*{Typed splices and quotations}
- Typed splices are similair to previously mentioned (untyped) splices, and are written as \(\$ \$(.\).\() where (..) is an expression.\)
- If e has type \(Q_{2}\) (TExp a) then \(\$ \$ \mathrm{e}\) has type a.
- Typed quotations take the form [।।..।।] where . . is an expression of type a; the resulting quotation has type \(Q_{2}\) (TExp a).
- Typed expression can be converted to untyped ones: unType :: texp a -> Exp.

\section*{QuasiQuotes}
- QuasiQuotes generalize expression quotations - previously, the parser used by the expression quotation is one of a fixed set (e,p,t,d), but QuasiQuotes allow a custom parser to be defined and used to produce code at compile time. Quasi-quotations can appear in all the same contexts as regular quotations.
- A quasi-quotation is written as [iden|...|], where iden is an identifier of type Language.Haskell.TH.Quote.QuasiQuoter.
- A quasiquoter is simply composed of four parsers, one for each of the different contexts in which quotations can appear:
```

data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp,
quotePat :: String -> Q Pat,
quoteType :: String -> Q Type,
quoteDec :: String -> Q [Dec] }

```

\section*{Names}
- Haskell identifiers are represented by the type Language.Haskell.th. Syntax.Name. Names form the leaves of abstract syntax trees representing Haskell programs in Template Haskell.
- An identifier which is currently in scope may be turned into a name with either: 'e or 'т. In the first case, e is interpreted in the expression scope, while in the second case \(т\) is in the type scope (recalling that types and value constructors may share the name without amiguity in Haskell).

Read Template Haskell \& QuasiQuotes online: https://riptutorial.com/haskell/topic/5216/template-haskell---quasiquotes

\section*{Chapter 66: Testing with Tasty}

\section*{Examples}

\section*{SmallCheck, QuickCheck and HUnit}
```

import Test.Tasty
import Test.Tasty.SmallCheck as SC
import Test.Tasty.QuickCheck as QC
import Test.Tasty.HUnit
main :: IO ()
main = defaultMain tests
tests :: TestTree
tests = testGroup "Tests" [smallCheckTests, quickCheckTests, unitTests]
smallCheckTests :: TestTree
smallCheckTests = testGroup "SmallCheck Tests"
[ SC.testProperty "String length <= 3" \$
\s -> length (take 3 (s :: String)) <= 3
, SC.testProperty "String length <= 2" \$ -- should fail
\s -> length (take 3 (s :: String)) <= 2
]
quickCheckTests :: TestTree
quickCheckTests = testGroup "QuickCheck Tests"
[ QC.testProperty "String length <= 5" \$
\s -> length (take 5 (s :: String)) <= 5
, QC.testProperty "String length <= 4" \$ -- should fail
\s -> length (take 5 (s :: String)) <= 4
]
unitTests :: TestTree
unitTests = testGroup "Unit Tests"
[ testCase "String comparison 1" \$
assertEqual "description" "OK" "OK"
, testCase "String comparison 2" \$ -- should fail
assertEqual "description" "fail" "fail!"
]

```

\section*{Install packages:}
```

cabal install tasty-smallcheck tasty-quickcheck tasty-hunit

```

\section*{Run with cabal:}
```

cabal exec runhaskell test.hs

```

Read Testing with Tasty online: https://riptutorial.com/haskell/topic/3816/testing-with-tasty

\section*{Chapter 67: Traversable}

\section*{Introduction}

The Traversable class generalises the function formerly known as mapm :: Monad m => (a -> m b) -> [a] -> m [b] to work with Applicative effects over structures other than lists.

\section*{Examples}

\section*{Instantiating Functor and Foldable for a Traversable structure}
```

import Data.Traversable as Traversable
data MyType a = -- ...
instance Traversable MyType where
traverse = -- ...

```

Every Traversable structure can be made a Foldable Functor using the fmapDefault and foldMapDefault functions found in Data. Traversable.
```

instance Functor MyType where
fmap = Traversable.fmapDefault
instance Foldable MyType where
foldMap = Traversable.foldMapDefault

```
fmapDefault is defined by running traverse in the Identity applicative functor.
```

newtype Identity a = Identity { runIdentity :: a }
instance Applicative Identity where
pure = Identity
Identity f <*> Identity x = Identity (f x)
fmapDefault :: Traversable t => (a -> b) -> t a -> t b
fmapDefault f = runIdentity . traverse (Identity . f)

```
foldmapDefault is defined using the const applicative functor, which ignores its parameter while accumulating a monoidal value.
```

newtype Const c a = Const { getConst :: c }
instance Monoid m => Applicative (Const m) where
pure _ = Const mempty
Const x <*> Const y = Const (x `mappend` y)
foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
foldMapDefault f = getConst . traverse (Const . f)

```

\section*{An instance of Traversable for a binary tree}

Implementations of traverse usually look like an implementation of fmap lifted into an Applicative context.
```

data Tree a = Leaf
| Node (Tree a) a (Tree a)
instance Traversable Tree where
traverse f Leaf = pure Leaf
traverse f (Node l x r) = Node <\$> traverse f l <*> f x <*> traverse f r

```

This implementation performs an in-order traversal of the tree.
```

ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)
-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
ghci> traverse print myTree
'a'
'b'
'c'

```

The DeriveTraversable extension allows GHC to generate Traversable instances based on the structure of the type. We can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.
```

data Inorder a = ILeaf
| INode (Inorder a) a (Inorder a) -- as before
deriving (Functor, Foldable, Traversable) -- also using DeriveFunctor and
DeriveFoldable
data Preorder a = PrLeaf
| PrNode a (Preorder a) (Preorder a)
deriving (Functor, Foldable, Traversable)
data Postorder a = PoLeaf
| PoNode (Postorder a) (Postorder a) a
deriving (Functor, Foldable, Traversable)
-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)
preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)
postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x

```
```

ghci> traverse print (inorder myTree)
'a'
'b'
'c'
ghci> traverse print (preorder myTree)
'b'
'a'
'c'
ghci> traverse print (postorder myTree)
'a'
'c'
'b'

```

\section*{Traversing a structure in reverse}

A traversal can be run in the opposite direction with the help of the Backwards applicative functor, which flips an existing applicative so that composed effects take place in reversed order.
```

newtype Backwards f a = Backwards { forwards :: f a }
instance Applicative f => Applicative (Backwards f) where
pure = Backwards . pure
Backwards ff <*> Backwards fx = Backwards ((\x f -> f x) <\$> fx <*> ff)

```

Backwards can be put to use in a "reversed traverse". When the underlying applicative of a traverse call is flipped with Backwards, the resulting effect happens in reverse order.
```

newtype Reverse t a = Reverse { getReverse :: t a }
instance Traversable t => Traversable (Reverse t) where
traverse f = fmap Reverse . forwards . traverse (Backwards . f) . getReverse
ghci> traverse print (Reverse "abc")
'c'
'b'
'a'

```

The Reverse newtype is found under Data.Functor.Reverse.

\section*{Definition of Traversable}
```

class (Functor t, Foldable t) => Traversable t where
{-\# MINIMAL traverse | sequenceA \#-}
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f
sequenceA :: Applicative f => t (f a) -> f (t a)
sequenceA = traverse id
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
mapM = traverse
sequence :: Monad m => t (m a) -> m (t a)

```
```

sequence = sequenceA

```

Traversable structures \(t\) are finitary containers of elements a which can be operated on with an effectful "visitor" operation. The visitor function \(£\) :: a -> \(£\) b performs a side-effect on each element of the structure and traverse composes those side-effects using Applicative. Another way of looking at it is that sequencea says Traversable structures commute with ApplicativeS.

\section*{Transforming a Traversable structure with the aid of an accumulating parameter}

The two mapAccum functions combine the operations of folding and mapping.

These functions generalise fmap in that they allow the mapped values to depend on what has happened earlier in the fold. They generalise foldl/foldr in that they map the structure in place as well as reducing it to a value.

For example, tails can be implemented using mapAccump and its sister inits can be implemented using mapAccumL.
```

tails, inits :: [a] -> [[a]]
tails = uncurry (:) . mapAccumR (\xs x -> (x:xs, xs)) []
inits = uncurry snoc . mapAccumL (\xs x -> (x `snoc` xs, xs)) []
where snoc x xs = xs ++ [x]
ghci> tails "abc"
["abc", "bc", "c", ""]
ghci> inits "abc"
["", "a", "ab", "abc"]

```
mapAccumL is implemented by traversing in the state applicative functor.
```

{-\# LANGUAGE DeriveFunctor \#-}
newtype State s a = State { runState :: s -> (s, a) } deriving Functor
instance Applicative (State s) where
pure x = State \$ \s -> (s, x)
State ff <*> State fx = State \$ \s -> let (t, f) = ff s
(u, x) = fx t
in (u, f x)

```
```

mapAccumL f z t = runState (traverse (State . flip f) t) z

```
mapAccumk works by running mapAccumL in reverse.
```

mapAccumR f z = fmap getReverse . mapAccumL f z . Reverse

```

\section*{Traversable structures as shapes with contents}

If a type \(t\) is Traversable then values of \(t\) a can be split into two pieces: their "shape" and their "contents":
```

data Traversed t a = Traversed { shape :: t (), contents :: [a] }

```
where the "contents" are the same as what you'd "visit" using a Foldable instance.
Going one direction, from \(t\) a to Traversed \(t\) a doesn't require anything but Functor and Foldable
```

break :: (Functor t, Foldable t) => t a -> Traversed t a
break ta = Traversed (fmap (const ()) ta) (toList ta)

```
but going back uses the traverse function crucially
```

import Control.Monad.State
-- invariant: state is non-empty
pop :: State [a] a
pop = state \$ \(a:as) -> (a, as)
recombine :: Traversable t => Traversed t a -> t a
recombine (Traversed s c) = evalState (traverse (const pop) s) c

```

The Traversable laws require that break . recombine and recombine . break are both identity. Notably, this means that there are exactly the right number elements in contents to fill shape completely with no left-overs.

Traversed \(t\) is Traversable itself. The implementation of traverse works by visiting the elements using the list's instance of Traversable and then reattaching the inert shape to the result.
```

instance Traversable (Traversed t) where
traverse f (Traversed S c) = fmap (Traversed S) (traverse f c)

```

\section*{Transposing a list of lists}

Noting that zip transposes a tuple of lists into a list of tuples,
```

ghci> uncurry zip ([1,2],[3,4])
[(1,3), (2,4)]

```
and the similarity between the types of transpose and sequencea,
```

-- transpose exchanges the inner list with the outer list
-- +---+-->--+-+
-- | | | |
transpose :: [[a]] -> [[a]]
-- | | | |
-- +-+-->--+---+
-- sequenceA exchanges the inner Applicative with the outer Traversable
-- +------>------+
-- |
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)


| -- |
| :-- |

```
the idea is to use []'s Traversable and Applicative structure to deploy sequencea as a sort of \(n\)-ary zip, zipping together all the inner lists together pointwise.
[]'s default "prioritised choice" Applicative instance is not appropriate for our use - we need a "zippy" Applicative. For this we use the ziplist newtype, found in Control.Applicative.
```

newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith (\$) fs xs)

```

Now we get transpose for free, by traversing in the zipList Applicative.
```

transpose :: [[a]] -> [[a]]
transpose = getZipList . traverse ZipList
ghci> let myMatrix = [[1,2,3],[4,5,6],[7, 8, 9]]
ghci> transpose myMatrix
[[1,4,7],[2,5,8],[3,6,9]]

```

Read Traversable online: https://riptutorial.com/haskell/topic/754/traversable

\section*{Chapter 68: Tuples (Pairs, Triples, ...)}

\section*{Remarks}
- Haskell does not support tuples with one component natively.
- Units (written ()) can be understood as tuples with zero components.
- There are no predefined functions to extract components of tuples with more than two components. If you feel that you need such functions, consider using a custom data type with record labels instead of the tuple type. Then you can use the record labels as functions to extract the components.

\section*{Examples}

\section*{Construct tuple values}

Use parentheses and commas to create tuples. Use one comma to create a pair.
```

(1, 2)

```

Use more commas to create tuples with more components.
```

(1, 2, 3)
(1, 2, 3, 4)

```

Note that it is also possible to declare tuples using in their unsugared form.
```

(,) 1 2 -- equivalent to (1,2)
(,,) 1 2 3 -- equivalent to (1,2,3)

```

Tuples can contain values of different types.
```

("answer", 42, '?')

```

Tuples can contain complex values such as lists or more tuples.
```

([1, 2, 3], "hello", ('A', 65))
(1, (2, (3, 4), 5), 6)

```

\section*{Write tuple types}

Use parentheses and commas to write tuple types. Use one comma to write a pair type.
```

(Int, Int)

```

Use more commas to write tuple types with more components.
```

(Int, Int, Int)
(Int, Int, Int, Int)

```

Tuples can contain values of different types.
```

(String, Int, Char)

```

Tuples can contain complex values such as lists or more tuples.
```

([Int], String, (Char, Int))
(Int, (Int, (Int, Int), Int), Int)

```

\section*{Pattern Match on Tuples}

Pattern matching on tuples uses the tuple constructors. To match a pair for example, we'd use the (,) constructor:
```

myFunction1 (a, b) = ...

```

We use more commas to match tuples with more components:
```

myFunction2 (a, b, c) = ...
myFunction3 (a, b, c, d) = ...

```

Tuple patterns can contain complex patterns such as list patterns or more tuple patterns.
```

myFunction4 ([a, b, c], d, e) = ...
myFunction5 (a, (b, (c, d), e), f) = ...

```

\section*{Extract tuple components}

Use the fst and snd functions (from Prelude or Data. Tuple) to extract the first and second component of pairs.
```

fst (1, 2) -- evaluates to 1
snd (1, 2) -- evaluates to 2

```

Or use pattern matching.
```

case (1, 2) of (result, _) => result -- evaluates to 1
case (1, 2) of (_, result) => result -- evaluates to 2

```

Pattern matching also works for tuples with more than two components.
```

case (1, 2, 3) of (result, _, _) => result -- evaluates to 1
case (1, 2, 3) of (_, result, _) => result -- evaluates to 2
case (1, 2, 3) of (_, _, result) => result -- evaluates to 3

```

Haskell does not provide standard functions like fst or snd for tuples with more than two components. The tuple library on Hackage provides such functions in the Data. Tuple. Select module.

\section*{Apply a binary function to a tuple (uncurrying)}

Use the uncurry function (from Prelude or Data. Tuple) to convert a binary function to a function on tuples.
```

uncurry (+) (1, 2) -- computes 3
uncurry map (negate, [1, 2, 3]) -- computes [-1, -2, -3]
uncurry uncurry ((+), (1, 2)) -- computes 3
map (uncurry (+)) [(1, 2), (3, 4), (5, 6)] -- computes [3, 7, 11]
uncurry (curry f) -- computes the same as f

```

\section*{Apply a tuple function to two arguments (currying)}

Use the curry function (from prelude or Data.Tuple) to convert a function that takes tuples to a function that takes two arguments.
```

curry fst 1 2 -- computes 1
curry snd 1 2 -- computes 2
curry (uncurry f) -- computes the same as f
import Data.Tuple (swap)
curry swap 1 2 -- computes (2, 1)

```

\section*{Swap pair components}

Use swap (from Data.Tuple) to swap the components of a pair.
```

import Data.Tuple (swap)
swap (1, 2) -- evaluates to (2, 1)

```

Or use pattern matching.
```

case (1, 2) of (x, y) => (y, x) -- evaluates to (2, 1)

```

\section*{Strictness of matching a tuple}

The pattern (p1, p2) is strict in the outermost tuple constructor, which can lead to unexpected strictness behaviour. For example, the following expression diverges (using Data.Function.fix):
```

fix \$ $x, y) -> (1, 2)
```
since the match on \((x, y)$ is strict in the tuple constructor. However, the following expression, using an irrefutable pattern, evaluates to (1, 2) as expected:
```fix $ \ ~(x, y) -> (1, 2)```

Read Tuples (Pairs, Triples, ...) online: https://riptutorial.com/haskell/topic/5342/tuples--pairs--triples------

## Chapter 69: Type algebra

## Examples

## Natural numbers in type algebra

We can draw a connection between the Haskell types and the natural numbers. This connection can be made assigning to every type the number of inhabitants it has.

## Finite union types

For finite types, it suffices to see that we can assign a natural type to every number, based in the number of constructors. For example:

```
type Color = Red | Yellow | Green
```

would be 3. And the bool type would be 2.

```
type Bool = True | False
```


## Uniqueness up to isomorphism

We have seen that multiple types would correspond to a single number, but in this case, they would be isomorphic. This is to say that there would be a pair of morphisms $f$ and $g$, whose composition would be the identity, connecting the two types.

```
f :: a -> b
g :: b -> a
f . g == id == g . f
```

In this case, we would say that the types are isomorphic. We will consider two types equal in our algebra as long as they are isomorphic.

For example, two different representations of the number two are trivally isomorphic:

```
type Bit = I | O
type Bool = True | False
bitValue :: Bit -> Bool
bitValue I = True
bitValue O = False
booleanBit :: Bool -> Bit
booleanBit True = I
booleanBit False = O
```

Because we can see bitvalue . booleanBit == id == booleanBit . bitValue

## One and Zero

The representation of the number $\mathbf{1}$ is obviously a type with only one constructor. In Haskell, this type is canonically the type (), called Unit. Every other type with only one constructor is isomorphic to ().

And our representation of $\mathbf{0}$ will be a type without constructors. This is the Void type in Haskell, as defined in Data.void. This would be equivalent to a unhabited type, wihtout data constructors:

```
data Void
```


## Addition and multiplication

The addition and multiplication have equivalents in this type algebra. They correspond to the tagged unions and product types.

```
data Sum a b = A a | B b
data Prod a b = Prod a b
```

We can see how the number of inhabitants of every type corresponds to the operations of the algebra.

Equivalently, we can use Either and (,) as type constructors for the addition and the multiplication. They are isomorphic to our previously defined types:

```
type Sum' a b = Either a b
type Prod' a b = (a,b)
```

The expected results of addition and multiplication are followed by the type algebra up to isomorphism. For example, we can see an isomorphism between $1+2,2+1$ and 3 ; as $1+2=3$ $=2+1$.

```
data Color = Red | Green | Blue
f :: Sum () Bool -> Color
f (Left ()) = Red
f (Right True) = Green
f (Right False) = Blue
g :: Color -> Sum () Bool
g Red = Left ()
g Green = Right True
g Blue = Right False
f' :: Sum Bool () -> Color
f' (Right ()) = Red
f' (Left True) = Green
f' (Left False) = Blue
```

```
g' :: Color -> Sum Bool ()
g' Red = Right ()
g' Green = Left True
g' Blue = Left False
```


## Rules of addition and multiplication

The common rules of commutativity, associativity and distributivity are valid because there are trivial isomorphisms between the following types:

```
-- Commutativity
Sum a b <=> Sum b a
Prod a b <=> Prod b a
-- Associativity
Sum (Sum a b) c <=> Sum a (Sum b c)
Prod (Prod a b) c <=> Prod a (Prod b c)
-- Distributivity
Prod a (Sum b c) <=> Sum (Prod a b) (Prod a c)
```


## Recursive types

## Lists

Lists can be defined as:

```
data List a = Nil | Cons a (List a)
```

If we translate this into our type algebra, we get

$$
\operatorname{List}(a)=1+a * \operatorname{List}(a)
$$

But we can now substitute List(a) again in this expression multiple times, in order to get:

$$
\operatorname{List}(a)=1+a+a^{*} a+a^{*} a^{*} a+a^{*} a^{*} a^{*} a+\ldots
$$

This makes sense if we see a list as a type that can contain only one value, as in []; or every value of type $a$, as in $[x]$; or two values of type $a$, as in $[x, y]$; and so on. The theoretical definition of List that we should get from there would be:

```
-- Not working Haskell code!
data List a = Nil
 | One a
 | Two a a
 | Three a a a
```


## Trees

We can do the same thing with binary trees, for example. If we define them as:

```
data Tree a = Empty | Node a (Tree a) (Tree a)
```

We get the expression:

```
\(\operatorname{Tree}(\mathrm{a})=1+\mathrm{a}\) * \(\operatorname{Tree}(\mathrm{a})\) * \(\operatorname{Tree}(\mathrm{a})\)
```

And if we make the same substitutions again and again, we would obtain the following sequence:

$$
\operatorname{Tree}(a)=1+a+2\left(a^{*} a\right)+5\left(a^{*} a^{*} a\right)+14\left(a^{*} a^{*} a^{*} a\right)+\ldots
$$

The coefficients we get here correspond to the Catalan numbers sequence, and the $n$-th catalan number is precisely the number of possible binary trees with n nodes.

## Derivatives

The derivative of a type is the type of its type of one-hole contexts. This is the type that we would get if we make a type variable disappear in every possible point and sum the results.

As an example, we can take the triple type (a,a,a), and derive it, obtaining

```
data OneHoleContextsOfTriple = (a,a,()) | (a,(),a) | ((),a,a)
```

This is coherent with our usual definition of derivation, as:

$$
\mathrm{d} / \mathrm{da}\left(\mathrm{a}^{*} \mathrm{a}^{*} \mathrm{a}\right)=3^{*} \mathrm{a}^{*} \mathrm{a}
$$

More on this topic can be read on this article.

## Functions

Functions can be seen as exponentials in our algebra. As we can see, if we take a type a with $n$ instances and a type $b$ with $m$ instances, the type $a->b$ will have $m$ to the power of $n$ instances.

As an example, Bool $\rightarrow$ Bool is isomorphic to (Bool, Bool), as $2^{*} 2=2^{2}$.

```
iso1 :: (Bool -> Bool) -> (Bool,Bool)
iso1 f = (f True,f False)
iso2 :: (Bool,Bool) -> (Bool -> Bool)
iso2 (x,y) = (\p -> if p then x else y)
```

Read Type algebra online: https://riptutorial.com/haskell/topic/4905/type-algebra

## Chapter 70: Type Application

## Introduction

TypeApplications are an alternative to type annotations when the compiler struggles to infer types for a given expression.

This series of examples will explain the purpose of the TypeApplications extension and how to use it

Don't forget to enable the extension by placing \{-\# Language typeapplications \#-\} at the top of your source file.

## Examples

## Avoiding type annotations

We use type annotations to avoid ambiguity. Type applications can be used for the same purpose. For example

```
x :: Num a => a
x = 5
main :: IO ()
main = print x
```

This code has an ambiguity error. We know that a has a num instance, and in order to print it we know it needs a show instance. This could work if a was, for example, an Int, so to fix the error we can add a type annotation

```
main = print (x :: Int)
```

Another solution using type applications would look like this

```
main = print @Int x
```

To understand what this means we need to look at the type signature of print.

```
print :: Show a => a -> IO ()
```

The function takes one parameter of type a, but another way to look at it is that it actually takes two parameters. The first one is a type parameter, the second one is a value whose type is the first parameter.

The main difference between value parameters and the type parameters is that the latter ones are implicitly provided to functions when we call them. Who provides them? The type inference
algorithm! What TypeApp1ications let us do is give those type parameters explicitly. This is especially useful when the type inference can't determine the correct type.

So to break down the above example

```
print :: Show a => a -> IO ()
print @Int :: Int -> IO ()
print @Int x :: IO ()
```


## Type applications in other languages

If you're familiar with languages like Java, C\# or C++ and the concept of generics/templates then this comparison might be useful for you.

Say we have a generic function in C\#

```
public static T DoNothing<T>(T in) { return in; }
```

To call this function with a float we can do DoNothing (5.0f) or if we want to be explicit we can say DoNothing<float> (5.0f). That part inside of the angle brackets is the type application.

In Haskell it's the same, except that the type parameters are not only implicit at call sites but also at definition sites.

```
doNothing :: a -> a
doNothing x = x
```

This can also be made explicit using either ScopedTypeVariables, Rank2Types or RanknTypes extensions like this.

```
doNothing :: forall a. a -> a
doNothing x = x
```

Then at the call site we can again either write doNothing 5.0 or doNothing @Float 5.0

## Order of parameters

The problem with type arguments being implicit becomes obvious once we have more than one. Which order do they come in?

```
const :: a -> b -> a
```

Does writing const @Int mean a is equal to Int, or is it b? In case we explicitly state the type parameters using a forall like const :: forall a b. a -> b -> a then the order is as written: a, then b.

If we don't, then the order of variables is from left to right. The first variable to be mentioned is the first type parameter, the second is the second type parameter and so on.

What if we want to specify the second type variable, but not the first? We can use a wildcard for the first variable like this

```
const @_@Int
```

The type of this expression is

```
const @_ @Int :: a -> Int -> a
```


## Interaction with ambiguous types

Say you're introducing a class of types that have a size in bytes.

```
class SizeOf a where
 sizeOf :: a -> Int
```

The problem is that the size should be constant for every value of that type. We don't actually want the sizeof function to depend on a, but only on it's type.

Without type applications, the best solution we had was the Proxy type defined like this

```
data Proxy a = Proxy
```

The purpose of this type is to carry type information, but no value information. Then our class could look like this

```
class SizeOf a where
 sizeOf :: Proxy a -> Int
```

Now you might be wondering, why not drop the first argument altogether? The type of our function would then just be sizeof :: int or, to be more precise because it is a method of a class, sizeof :: SizeOf a => Int Or to be even more explicit sizeOf :: forall a. SizeOf a => Int.

The problem is type inference. If I write sizeof somewhere, the inference algorithm only knows that I expect an Int. It has no idea what type I want to substitute for a. Because of this, the definition gets rejected by the compiler unless you have the \{-\# LANGUAGE AllowAmbiguousTypes \#-\} extension enabled. In that case the definition compiles, it just can't be used anywhere without an ambiguity error.

Luckily, the introduction of type applications saves the day! Now we can write sizeof eInt, explicitly saying that a is Int. Type applications allow us to provide a type parameter, even if it doesn't appear in the actual parameters of the function!

Read Type Application online: https://riptutorial.com/haskell/topic/10767/type-application

## Chapter 71: Type Classes

## Introduction

Typeclasses in Haskell are a means of defining the behaviour associated with a type separately from that type's definition. Whereas, say, in Java, you'd define the behaviour as part of the type's definition -- i.e. in an interface, abstract class or concrete class -- Haskell keeps these two things separate.

There are a number of typeclasses already defined in Haskell's base package. The relationship between these is illustrated in the Remarks section below.

## Remarks

The following diagram taken from the Typeclassopedia article shows the relationship between the various typeclasses in Haskell.


## Examples

## Maybe and the Functor Class

In Haskell, data types can have arguments just like functions. Take the maybe type for example.
Maybe is a very useful type which allows us to represent the idea of failure, or the possiblity thereof. In other words, if there is a possibility that a computation will fail, we use the Maybe type there. Maybe acts kind of like a wrapper for other types, giving them additional functionality.

Its actual declaration is fairly simple.

```
Maybe a = Just a | Nothing
```

What this tells is that a maybe comes in two forms, a Just, which represents success, and a Nothing, which represents failure. Just takes one argument which determines the type of the maybe, and Nothing takes none. For example, the value Just "foo" will have type maybe string, which is a string type wrapped with the additional maybe functionality. The value nothing has type maybe a where a can be any type.

This idea of wrapping types to give them additional functionality is a very useful one, and is applicable to more than just maybe. Other examples include the Either, io and list types, each providing different functionality. However, there are some actions and abilities which are common to all of these wrapper types. The most notable of these is the ability to modify the encapsulated value.

It is common to think of these kinds of types as boxes which can have values placed in them. Different boxes hold different values and do different things, but none are useful without being able to access the contents within.

To encapsulate this idea, Haskell comes with a standard typeclass, named Functor. It is defined as follows.

```
class Functor f where
 fmap :: (a -> b) -> f a -> f b
```

As can be seen, the class has a single function, fmap, of two arguments. The first argument is a function from one type, a, to another, b. The second argument is a functor (wrapper type) containing a value of type $a$. It returns a functor (wrapper type) containing a value of type $b$.

In simple terms, fmap takes a function and applies to the value inside of a functor. It is the only function necessary for a type to be a member of the Functor class, but it is extremely useful. Functions operating on functors that have more specific applications can be found in the Applicative and Monad typeclasses.

## Type class inheritance: Ord type class

Haskell supports a notion of class extension. For example, the class ord inherits all of the operations in Eq, but in addition has a compare function that returns an ordering between values. ord may also contain the common order comparison operators, as well as a min method and $\mathrm{a}_{\max }$ method.

The $=>$ notation has the same meaning as it does in a function signature and requires type a to implement Eq, in order to implement ord.

```
data Ordering = EQ | LT | GT
class Eq a => Ord a where
 compare :: Ord a => a -> a -> Ordering
 (<) :: Ord a => a -> a -> Bool
 (<=) :: Ord a => a -> a -> Bool
 (>) :: Ord a => a -> a -> Bool
 (>=) :: Ord a => a -> a -> Bool
 min :: Ord a => a -> a -> a
```

```
:: Ord a => a -> a -> a
```

All of the methods following compare can be derived from it in a number of ways:

```
x < y = compare x y == LT
x<= y = x < y || x == y -- Note the use of (==) inherited from Eq
x > y = not (x <= y)
x >= y = not (x<y)
min x y = case compare x y of
 EQ -> x
 LT -> x
 GT -> y
max x y = case compare x y of
 EQ -> x
 LT -> y
 GT -> x
```

Type classes that themselves extend ord must implement at least either the compare method or the (<<) method themselves, which builds up the directed inheritance lattice.

## Eq

All basic datatypes (like Int, String, Eq a => [a]) from Prelude except for functions and io have instances of Eq. If a type instantiates Eq it means that we know how to compare two values for value or structural equality.

```
> 3 == 2
False
> 3 == 3
True
```


## Required methods

- (==) :: Eq a => a -> a $\rightarrow$ Boolean or (/=) :: Eq a => a -> a $\rightarrow$ Boolean (if only one is implemented, the other defaults to the negation of the defined one)


## Defines

- (==) :: Eq a => a -> a -> Boolean
- (/=) : : Eq a => a -> a -> Boolean


## Direct superclasses

None

## Notable subclasses

- ord


## Ord

Types instantiating ord include, e.g., Int, string, and [a] (for types a where there's an ord a instance). If a type instantiates ord it means that we know a "natural" ordering of values of that type. Note, there are often many possible choices of the "natural" ordering of a type and ord forces us to favor one.
ord provides the standard (<=), (<), (>), (>=) operators but interestingly defines them all using a custom algebraic data type

```
data Ordering = LT | EQ | GT
compare :: Ord a => a -> a -> Ordering
```


## Required methods

- compare : : Ord a => a -> a -> Ordering Or (<=) :: Ord a => a -> a -> Boolean (the standard's default compare method uses (<=) in its implementation)


## Defines

- compare : : Ord $a=>$ a $->$ a $->$ Ordering
- $(<=):$ Ord $a=>$ a $->$ a $->$ Boolean
- $(<):$ Ord $a=>$ a $->a->$ Boolean
- $(>=):$ Ord $a=>$ a $->$ a $->$ Boolean
- $(>)::$ Ord $a=>a->a \quad->$ Boolean
- min : Ord $a=>a->a->a$
- max : Ord $a=>a->a->a$


## Direct superclasses

- Eq


## Monoid

Types instantiating monoid include lists, numbers, and functions with monoid return values, among others. To instantiate monoid a type must support an associative binary operation (mappend or (<>)) which combines its values, and have a special "zero" value (mempty) such that combining a value with it does not change that value:

```
mempty <> x == x
x <> mempty == x
x <> (y <> z) == (x <> y) <> z
```

Intuitively, monoid types are "list-like" in that they support appending values together. Alternatively, Monoid types can be thought of as sequences of values for which we care about the order but not the grouping. For instance, a binary tree is a monoid, but using the monoid operations we cannot witness its branching structure, only a traversal of its values (see Foldable and Traversable).

## Required methods

- mempty :: Monoid m => m
- mappend :: Monoid m => m -> m -> m


## Direct superclasses

None

## Num

The most general class for number types, more precisely for rings, i.e. numbers that can be added and subtracted and multiplied in the usual sense, but not necessarily divided.

This class contains both integral types (Int, Integer, Word32 etc.) and fractional types (Double, Rational, also complex numbers etc.). In case of finite types, the semantics are generally understood as modular arithmetic, i.e. with over- and underflow ${ }^{\dagger}$.

Note that the rules for the numerical classes are much less strictly obeyed than the monad or monoid laws, or those for equality comparison. In particular, floating-point numbers generally obey laws only in a approximate sense.

## The methods

- fromInteger :: Num a => Integer -> a. Convert an integer to the general number type (wrapping around the range, if necessary). Haskell number literals can be understood as a monomorphic Integer literal with the general conversion around it, so you can use the literal 5 in both an int context and a complex Double setting.
- (+) :: Num a => a -> a -> a. Standard addition, generally understood as associative and commutative, i.e.,

```
a}+(b+c)\equiv(a+b)+
a+b\equivb}+\textrm{a
```

- (-) :: Num a => a -> a -> a. Subtraction, which is the inverse of addition:

```
(a - b) + b \equiv (a + b) - b \equiva
```

- (*) :: Num a => a -> a -> a. Multiplication, an associative operation that's distributive over addition:

```
a * (b * c) \equiv (a * b) * c
a * (b + c) \equiva * b + a * c
```

for the most common instances, multiplication is also commutative, but this is definitely not a requirement.

- negate :: Num a => a -> a. The full name of the unary negation operator. -1 is syntactic sugar for negate 1 .

```
-a \equiv negate a \equiv0 - a
```

- abs :: Num a => a -> a. The absolute-value function always gives a non-negative result of the same magnitude

```
abs (-a) \equiv abs a
abs (abs a) \equivabs a
```

abs $a \equiv 0$ should only happen if $a \equiv 0$.
For real types it's clear what non-negative means: you always have abs a >= 0 . Complex etc. types don't have a well-defined ordering, however the result of abs should always lie in the real subset ${ }^{\ddagger}$ (i.e. give a number that could also be written as a single number literal without negation).

- signum :: Num a $=>$ a -> a. The sign function, according to the name, yields only -1 or 1 , depending on the sign of the argument. Actually, that's only true for nonzero real numbers; in general signum is better understood as the normalising function:

```
abs (signum a) \equiv 1 -- unless a\equiv0
signum a * abs a \equiv a -- This is required to be true for all Num instances
```

Note that section 6.4.4 of the Haskell 2010 Report explicitly requires this last equality to hold for any valid Num instance.

Some libraries, notably linear and hmatrix, have a much laxer understanding of what the num class is for: they treat it just as a way to overload the arithmetic operators. While this is pretty straightforward for + and -, it already becomes troublesome with * and more so with the other methods. For instance, should * mean matrix multiplication or element-wise multiplication? It is arguably a bad idea to define such non-number instances; please consider dedicated classes such as vectorspace.
$\dagger$ In particular, the "negatives" of unsigned types are wrapped around to large positive, e.g. (-4 :: Word32) == 4294967292.
$\ddagger$ This is widely not fulfilled: vector types do not have a real subset. The controversial num-instances for such types generally define abs and signum element-wise, which mathematically speaking doesn't really make sense.

Read Type Classes online: https://riptutorial.com/haskell/topic/1879/type-classes

## Chapter 72: Type Families

## Examples

## Type Synonym Families

Type synonym families are just type-level functions: they associate parameter types with result types. These come in three different varieties.

## Closed type-synonym families

These work much like ordinary value-level Haskell functions: you specify some clauses, mapping certain types to others:

```
{-# LANGUAGE TypeFamilies #-}
type family Vanquisher a where
 Vanquisher Rock = Paper
 Vanquisher Paper = Scissors
 Vanquisher Scissors = Rock
data Rock=Rock; data Paper=Paper; data Scissors=Scissors
```


## Open type-synonym families

These work more like typeclass instances: anybody can add more clauses in other modules.

```
type family DoubledSize w
type instance DoubledSize Word16 = Word32
type instance DoubledSize Word32 = Word64
-- Other instances might appear in other modules, but two instances cannot overlap
-- in a way that would produce different results.
```


## Class-associated type synonyms

An open type family can also be combined with an actual class. This is usually done when, like with associated data families, some class method needs additional helper objects, and these helper objects can be different for different instances but may possibly also shared. A good example is vectorspace class:

```
class VectorSpace v where
 type Scalar v :: *
 (*^) :: Scalar v -> v -> v
```

```
instance VectorSpace Double where
 type Scalar Double = Double
 \mu *^ n = \mu * n
instance VectorSpace (Double,Double) where
 type Scalar (Double,Double) = Double
 \mu *^ (n,m) = (}\mp@subsup{\mu}{}{*}\textrm{n},\mp@subsup{\mu}{}{*}m
instance VectorSpace (Complex Double) where
 type Scalar (Complex Double) = Complex Double
 \mu*^n n = \mu*n
```

Note how in the first two instances, the implementation of scalar is the same. This would not be possible with an associated data family: data families are injective, type-synonym families aren't.

While non-injectivity opens up some possibilities like the above, it also makes type inference more difficult. For instance, the following will not typecheck:

```
class Foo a where
 type Bar a :: *
 bar :: a -> Bar a
instance Foo Int where
 type Bar Int = String
 bar = show
instance Foo Double where
 type Bar Double = Bool
 bar = (>0)
main = putStrLn (bar 1)
```

In this case, the compiler can't know what instance to use, because the argument to bar is itself just a polymorphic num literal. And the type function bar can't be resolved in "inverse direction", precisely because it's not injective ${ }^{\dagger}$ and hence not invertible (there could be more than one type with Bar a = String).
${ }^{\dagger}$ With only these two instances, it is actually injective, but the compiler can't know somebody won't add more instances later on and thereby break the behaviour.

## Datatype Families

Data families can be used to build datatypes that have different implementations based on their type arguments.

## Standalone data families

```
{-# LANGUAGE TypeFamilies #-}
data family List a
data instance List Char = Nil | Cons Char (List Char)
data instance List () = UnitList Int
```

In the above declaration, nil :: List Char, and UnitList :: Int -> List ()

## Associated data families

Data families can also be associated with typeclasses. This is often useful for types with "helper objects", which are required for generic typeclass methods but need to contain different information depending on the concrete instance. For instance, indexing locations in a list just requires a single number, whereas in a tree you need a number to indicate the path at each node:

```
class Container f where
 data Location f
 get :: Location f -> f a -> Maybe a
instance Container [] where
 data Location [] = ListLoc Int
 get (ListLoc i) xs
 | i < length xs = Just $ xs!!i
 | otherwise = Nothing
instance Container Tree where
 data Location Tree = ThisNode | NodePath Int (Location Tree)
 get ThisNode (Node x _) = Just x
 get (NodePath i path) (Node _ sfo) = get path =<< get i sfo
```


## Injectivity

Type Families are not necessarily injective. Therefore, we cannot infer the parameter from an application. For example, in servant, given a type server a we cannot infer the type a. To solve this problem, we can use proxy. For example, in servant, the serve function has type ... Proxy a -> server a -> .... We can infer a from proxy a because proxy is defined by data which is injective.

Read Type Families online: https://riptutorial.com/haskell/topic/2955/type-families

## Chapter 73: Typed holes

## Remarks

One of the strengths of Haskell is the ability to leverage the type system to model parts of your problem domain in the type system. In doing so, one often encounters very complex types. When writing programs with these types (i.e. with values having these types) it occasionally becomes nearly unmangeable to 'juggle' all of the types. As of GHC 7.8, there is a new syntactic feature called typed holes. Typed holes do not change the semantics of the core language; they are intended purely as an aid for writing programs.

For an in-depth explanation of typed holes, as well as a discussion of the design of typed holes, see the Haskell wiki.

Section of the GHC user guide on typed holes.

## Examples

## Syntax of typed holes

A typed hole is a single underscore (_) or a valid Haskell identifier which is not in scope, in an expression context. Before the existance of typed holes, both of these things would trigger an error, so the new syntax does not interfere with any old syntax.

## Controlling behaviour of typed holes

The default behaviour of typed holes is to produce a compile-time error when encountering a typed hole. However, there are several flags to fine-tune their behaviour. These flags are summarized as follows (GHC trac):

By default GHC has typed holes enabled and produces a compile error when it encounters a typed hole.

When-fdefer-type-errors or -fdefer-typed-holes is enabled, hole errors are converted to warnings and result in runtime errors when evaluated.

> The warning flag -fwarn-typed-holes is on by default. Without -fdefer-type-errors or -fdefer-typed-holes this flag is a no-op, since typed holes are an error under these conditions. If either of the defer flags are enabled (converting typed hole errors into warnings) the-fno-warn-typed-holes flag disables the warnings. This means compilation silently succeeds and evaluating a hole will produce a runtime error.

## Semantics of typed holes

The value of a type hole can simply said to be undefined, although a typed hole triggers a compiletime error, so it is not strictly necessary to assign it a value. However, a typed hole (when they are enabled) produces a compile time error (or warning with deferred type errors) which states the name of the typed hole, its inferred most general type, and the types of any local bindings. For example:

```
Prelude> \x -> _var + length (drop 1 x)
<interactive>:19:7: Warning:
 Found hole `_var' with type: Int
 Relevant bindings include
 x :: [a] (bound at <interactive>:19:2)
 it :: [a] -> Int (bound at <interactive>:19:1)
 In the first argument of '(+)', namely `_var'
 In the expression: _var + length (drop 1 x)
 In the expression: \ x -> _var + length (drop 1 x)
```

Note that in the case of typed holes in expressions entered into the GHCi repl (as above), the type of the expression entered also reported, as it (here of type [a] -> Int).

## Using typed holes to define a class instance

Typed holes can make it easier to define functions, through an interactive process.
Say you want to define a class instance Foo Bar (for your custom Bar type, in order to use it with some polymorphic library function that requires a $\mathrm{Foo}^{\text {instance). You would now traditionally look }}$ up the documentation of $F \circ$, figure out which methods you need to define, scrutinise their types etc. - but with typed holes, you can actually skip that!

First just define a dummy instance:

```
instance Foo Bar where
```

The compiler will now complain

```
Bar.hs:13:10: Warning:
No explicit implementation for
 'foom' and 'quun'
In the instance declaration for 'Foo Bar'
```

Ok, so we need to define foom for Bar. But what is that even supposed to be? Again we're too lazy to look in the documentation, and just ask the compiler:

```
instance Foo Bar where
 foom = _
```

Here we've used a typed hole as a simple "documentation query". The compiler outputs

```
Bar.hs:14:10:
 Found hole '_' with type: Bar -> Gronk Bar
```

```
Relevant bindings include
 foom :: Bar -> Gronk Bar (bound at Foo.hs:4:28)
In the expression: -
In an equation for 'foom': foom = _
In the instance declaration for 'Foo Bar'
```

Note how the compiler has already filled the class type variable with the concrete type bar that we want to instantiate it for. This can make the signature a lot easier to understand than the polymorphic one found in the class documentation, especially if you're dealing with a more complicated method of e.g. a multi-parameter type class.

But what the hell is Gronk? At this point, it is probably a good idea to ask Hayoo. However we may still get away without that: as a blind guess, we assume that this is not only a type constructor but also the single value constructor, i.e. it can be used as a function that will somehow produce a Gronk a value. So we try

```
instance Foo Bar where
 foom bar = _ Gronk
```

If we're lucky, Gronk is actually a value, and the compiler will now say

```
Found hole '_'
 with type: (Int -> [(Int, b0)] -> Gronk b0) -> Gronk Bar
Where: 'b0' is an ambiguous type variable
```

Ok, that's ugly - at first just note that Gronk has two arguments, so we can refine our attempt:

```
instance Foo Bar where
 foom bar = Gronk _ _
```

And this now is pretty clear:

```
Found hole '_' with type: [(Int, Bar)]
Relevant bindings include
 bar :: Bar (bound at Bar.hs:14:29)
 foom :: Bar -> Gronk Bar (bound at Foo.hs:15:24)
In the second argument of 'Gronk', namely '_'
In the expression: Gronk _ _
In an equation for 'foom': foom bar = Gronk _ _
```

You can now further progress by e.g. deconstructing the bar value (the components will then show up, with types, in the Relevant bindings section). Often, it is at some point completely obvious what the correct definition will be, because you you see all avaliable arguments and the types fit together like a jigsaw puzzle. Or alternatively, you may see that the definition is impossible and why.

All of this works best in an editor with interactive compilation, e.g. Emacs with haskell-mode. You can then use typed holes much like mouse-over value queries in an IDE for an interpreted dynamic imperative language, but without all the limitations.

Read Typed holes online: https://riptutorial.com/haskell/topic/4913/typed-holes

## Chapter 74: Using GHCi

## Remarks

GHCI is the interactive REPL that comes bundled with GHC.

## Examples

## Starting GHCi

Type ghci at a shell prompt to start GHCI.

```
$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Prelude>
```


## Changing the GHCi default prompt

By default, GHCl's prompt shows all the modules you have loaded into your interactive session. If you have many modules loaded this can get long:

```
Prelude Data.List Control.Monad> -- etc
```

The : set prompt command changes the prompt for this interactive session.

```
Prelude Data.List Control.Monad> :set prompt "foo> "
foo>
```

To change the prompt permanently, add :set prompt "foo> " to the GHCi config file.

## The GHCi configuration file

GHCi uses a configuration file in ~/.ghci. A configuration file consists of a sequence of commands which GHCi will execute on startup.

```
$ echo ":set prompt \"foo> \"" > ~/.ghci
$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Loaded GHCi configuration from ~/.ghci
foo>
```


## Loading a file

The :1 or :load command type-checks and loads a file.

```
$ echo "f = putStrLn \"example\"" > example.hs
$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
ghci> :l example.hs
[1 of 1] Compiling Main (example.hs, interpreted)
Ok, modules loaded: Main.
ghci> f
example
```


## Quitting GHCi

You can quit GHCi simply with :q or :quit

```
ghci> :q
Leaving GHCi.
ghci> :quit
Leaving GHCi.
```

Alternatively, the shortcut ctri+d (cmd+d for OSX) has the same effect as :q.

## Reloading a already loaded file

If you have loaded a file into GHCi (e.g. using :1 filename.hs) and you have changed the file in an editor outside of GHCi you must reload the file with :r or :reload in order to make use of the changes, hence you don't need to type again the filename.

```
ghci> :r
OK, modules loaded: Main.
ghci> :reload
OK, modules loaded: Main.
```


## Breakpoints with GHCi

GHCi supports imperative-style breakpoints out of the box with interpreted code (code that's been :loaded).

With the following program:

```
-- mySum.hs
doSum n = do
 putStrLn ("Counting to " ++ (show n))
 let v = sum [1..n]
 putStrLn ("sum to " ++ (show n) ++ " = " ++ (show v))
```

loaded into GHCi:

```
Prelude> :load mySum.hs
[1 of 1] Compiling Main (mySum.hs, interpreted)
Ok, modules loaded: Main.
*Main>
```

We can now set breakpoints using line numbers:

```
*Main> :break 2
Breakpoint 0 activated at mySum.hs:2:3-39
```

and GHCi will stop at the relevant line when we run the function:

```
*Main> doSum 12
Stopped at mySum.hs:2:3-39
_result :: IO () = _
n :: Integer = 12
[mySum.hs:2:3-39] *Main>
```

It might be confusing where we are in the program, so we can use :list to clarify:

```
[mySum.hs:2:3-39] *Main> :list
1 doSum n = do
2 putStrLn ("Counting to " ++ (show n)) -- GHCi will emphasise this line, as that's where
we've stopped
3 let v = sum [1..n]
```

We can print variables, and continue execution too:

```
[mySum.hs:2:3-39] *Main> n
12
:continue
Counting to 12
sum to 12=78
*Main>
```


## Multi-line statements

The : \{ instruction begins multi-line mode and : \} ends it. In multi-line mode GHCi will interpret newlines as semicolons, not as the end of an instruction.

```
ghci> :{
ghci| myFoldr f z [] = z
ghci| myFoldr f z (y:ys) = f y (myFoldr f z ys)
ghci| :}
ghci> :t myFoldr
myFoldr :: (a -> b -> b) -> b -> [a] -> b
```

Read Using GHCi online: https://riptutorial.com/haskell/topic/3407/using-ghci

## Chapter 75: Vectors

## Remarks

It [Data.Vector] has an emphasis on very high performance through loop fusion, whilst retaining a rich interface. The main data types are boxed and unboxed arrays, and arrays may be immutable (pure), or mutable. Arrays may hold Storable elements, suitable for passing to and from C, and you can convert between the array types. Arrays are indexed by non-negative Int values.

The Haskell Wiki has these recommendations:
In general:

- End users should use Data.Vector.Unboxed for most cases
- If you need to store more complex structures, use Data.Vector
- If you need to pass to C, use Data.Vector.Storable

For library writers;

- Use the generic interface, to ensure your library is maximally flexible: Data.Vector.Generic


## Examples

## The Data.Vector Module

The Data.Vector module provided by the vector is a high performance library for working with arrays.

Once you've imported Data.vector, it's easy to start using a vector:

```
Prelude> import Data.Vector
Prelude Data.Vector> let a = fromList [2,3,4]
Prelude Data.Vector> a
fromList [2,3,4] :: Data.Vector.Vector
Prelude Data.Vector> :t a
a :: Vector Integer
```

You can even have a multi-dimensional array:

```
Prelude Data.Vector> let x = fromList [fromList [1 .. x] | x <- [1..10]]
Prelude Data.Vector> :t x
x :: Vector (Vector Integer)
```


## Filtering a Vector

## Filter odd elements:

```
Prelude Data.Vector> Data.Vector.filter odd y
fromList [1,3,5,7,9,11] :: Data.Vector.Vector
```


## Mapping (`map`) and Reducing ('fold`) a Vector

Vectors can be map'd and fold'd, filter 'd andzip 'd:

```
Prelude Data.Vector> Data.Vector.map (^2) y
fromList [0,1,4,9,16,25,36,49,64,81,100,121] :: Data.Vector.Vector
```

Reduce to a single value:

```
Prelude Data.Vector> Data.Vector.foldl (+) 0 y
6 6
```


## Working on Multiple Vectors

## Zip two arrays into an array of pairs:

```
Prelude Data.Vector> Data.Vector.zip y y
fromList [(0,0), (1, 1), (2, 2), (3, 3), (4,4), (5,5), (6,6), (7, 7), (8, 8), (9,9),(10,10),(11,11)] ::
Data.Vector.Vector
```

Read Vectors online: https://riptutorial.com/haskell/topic/4738/vectors

## Chapter 76: Web Development

## Examples

## Servant

Servant is a library for declaring APIs at the type-level and then:

- write servers (this part of servant can be considered a web framework),
- obtain client functions (in haskell),
- generate client functions for other programming languages,
- generate documentation for your web applications
- and more...

Servant has a concise yet powerful API. A simple API can be written in very few lines of code:

```
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
import Data.Text
import Data.Aeson.Types
import GHC.Generics
import Servant.API
data SortBy = Age | Name
data User = User {
 name :: String,
 age :: Int
} deriving (Eq, Show, Generic)
instance ToJSON User -- automatically convert User to JSON
```

Now we can declare our API:

```
type UserAPI = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]
```

which states that we wish to expose /users to Get requests with a query param sortby of type sortBy and return JSON of type user in the response.

Now we can define our handler:

```
-- This is where we'd return our user data, or e.g. do a database lookup
server :: Server UserAPI
server = return [User "Alex" 31]
userAPI :: Proxy UserAPI
userAPI = Proxy
app1 :: Application
app1 = serve userAPI server
```

And the main method which listens on port 8081 and serves our user API:

```
main :: IO ()
main = run 8081 app1
```

Note, Stack has a template for generating basic APIs in Servant, which is useful for getting up and running very quick.

## Yesod

Yesod project can be created with stack new using following templates:

- yesod-minimal. Simplest Yesod scaffold possible.
- yesod-mongo. Uses MongoDB as DB engine.
- yesod-mysqi. Uses MySQL as DB engine.
- yesod-postgres. Uses PostgreSQL as DB engine.
- yesod-postgres-fay. Uses PostgreSQL as DB engine. Uses Fay language for front-end.
- yesod-simple. Recommended template to use, if you don't need database.
- yesod-sqlite. Uses SQlite as DB engine.
yesod-bin package provides yesod executable, which can be used to run development server. Note that you also can run your application directly, so yesod tool is optional.

Application.hs contains code that dispatches requests between handlers. It also sets up database and logging settings, if you used them.

Foundation.hs defines App type, that can be seen as an environment for all handlers. Being in Handlert monad, you can get this value using getyesod function.

Import. hs is a module that just re-exports commonly used stuff.
Model.hs contains Template Haskell that generates code and data types used for DB interaction. Present only if you are using DB.
config/models is where you define your DB schema. Used by model.hs.
config/routes defines URI's of the Web application. For each HTTP method of the route, you'd need to create a handler named $\{$ method $\}$ \{RouteR $\}$.
static/ directory contains site's static resources. These get compiled into binary by Settings/StaticFiles.hs module.
templates/ directory contains Shakespeare templates that are used when serving requests.
Finally, Handler/ directory contains modules that define handlers for routes.
Each handler is a Handlert monad action based on IO. You can inspect request parameters, its body and other information, make queries to the DB with runDB, perform arbitrary IO and return various types of content to the user. To serve HTML, defaultLayout function is used that allows neat composition of shakespearian templates.

Read Web Development online: https://riptutorial.com/haskell/topic/4721/web-development

## Chapter 77: XML

## Introduction

Encoding and decoding of XML documents.

## Examples

## Encoding a record using the `xml` library

```
{-# LANGUAGE RecordWildCards #-}
import Text.XML.Light
data Package = Package
 { pOrderNo :: String
 , pOrderPos :: String
 , pBarcode :: String
 , pNumber :: String
 }
-- | Create XML from a Package
instance Node Package where
 node qn Package {..} =
 node qn
 [unode "package_number" pNumber
 , unode "package_barcode" pBarcode
 , unode "order_number" pOrderNo
 , unode "order_position" pOrderPos
]
```

Read XML online: https://riptutorial.com/haskell/topic/9264/xml

## Chapter 78: zipWithM

## Introduction

zipWithm is to zipWith as mapm is to map: it lets you combine two lists using a monadic function.
From the module $\qquad$

## Syntax

- zipWithM :: Applicative $m=>(a->b->m c)->[a]->[b]->m[c]$


## Examples

## Calculatings sales prices

Suppose you want to see if a certain set of sales prices makes sense for a store.
The items originally cost \$5, so you don't want to accept the sale if the sales price is less for any of them, but you do want to know what the new price is otherwise.

Calculating one price is easy: you calculate the sales price, and return nothing if you don't get a profit:

```
calculateOne :: Double -> Double -> Maybe Double
calculateOne price percent = let newPrice = price*(percent/100)
 in if newPrice < 5 then Nothing else Just newPrice
```

To calculate it for the entire sale, zipwithm makes it really simple:

```
calculateAllPrices :: [Double] -> [Double] -> Maybe [Double]
calculateAllPrices prices percents = zipWithM calculateOne prices percents
```

This will return ${ }_{\text {Nothing }}$ if any of the sales prices are below $\$ 5$.
Read zipWithM online: https://riptutorial.com/haskell/topic/9685/zipwithm

## Credits

S.   No	Chapters	Contributors
1	Getting started with Haskell Language	4444, Adam Wagner, alejosocorro, Amitay Stern, arseniiv, baxbaxwalanuksiwe, Benjamin Hodgson, Benjamin Kovach, Burkhard, Carsten, colinro, Community, Daniel Jour, Echo Nolan, erisco, gdziadkiewicz, HBu, J Atkin, Jan Hrcek, Jules, Kwarrtz, leftaroundabout, M. Barbieri, mb21, mnoronha, Mr Tsjolder, ocharles, pouya, R B, Ryan Hilbert, Sebastian Graf, Shoe, Stephen Leppik, Steve Trout, Tim E. Lord, Turion, user239558, Will Ness, zbw, $\lambda l \varepsilon x$
2	Applicative Functor	Benjamin Hodgson, Kritzefitz, mnoronha, Will Ness, 入lex
3	Arbitrary-rank polymorphism with RankNTypes	ocharles
4	Arithmetic	ocramz
5	Arrows	artcorpse, leftaroundabout
6	Attoparsec	$\lambda \mid \varepsilon x$
7	Bifunctor	Benjamin Hodgson, liminalisht
8	Cabal	tlo
9	Category Theory	arrowd, Benjamin Hodgson, Benjamin Kovach, J. Abrahamson, Mario Román, mmlab, user2407038
10	Common functors as the base of cofree comonads	leftaroundabout
11	Common GHC   Language   Extensions	Antal Spector-Zabusky, Bartek Banachewicz, Benjamin Hodgson, Benjamin Kovach, Cactus, charlag, Doomjunky, Janos Potecki, John F. Miller, K48, Kwarrtz, leftaroundabout, Mads Buch, Matthew Pickering, mkovacs, mniip, phadej, Yosh, $\lambda \mid \varepsilon x$
12	Common monads as free monads	leftaroundabout
13	Concurrency	Janos Potecki, $\lambda 1$ ¢x


14	Containers -   Data.Map	Cactus, Itbot, Will Ness, 入lex
15	Creating Custom Data Types	Janos Potecki, Kapol
16	Data.Aeson - JSON in Haskell	Chris Stryczynski, Janos Potecki, Matthew Pickering, rob, xuh
17	Data.Text	Benjamin Hodgson, dkasak, Janos Potecki, jkeuhlen, mnoronha , unhammer
18	Databases	$\lambda \mid \varepsilon x$
19	Date and Time	mnoronha, Will Ness, $\lambda 1 \varepsilon x$
20	Fixity declarations	Alec, Will Ness
21	Foldable	Benjamin Hodgson, Cactus, Dair, David Grayson, J. Abrahamson, Jan Hrcek, mnoronha
22	Foreign Function Interface	arrowd, bleakgadfly, crockeea
23	Free Monads	Benjamin Hodgson, Cactus, J. Abrahamson, pyon, sid-kap
24	Function call syntax	Zoey Hewll
25	Function composition	arseniiv, Will Ness
26	Functor	Benjamin Hodgson, Delapouite, Janos Potecki, liminalisht, mathk, mnoronha, Will Ness, $\lambda l \varepsilon x$
27	Generalized   Algebraic Data Types	mniip
28	GHCJS	Mikkel
29	Google Protocol Buffers	Janos Potecki, $\lambda 1 \varepsilon x$
30	Graphics with Gloss	Wysaard, Zoey Hewll
31	Gtk3	bleakgadfly
32	Higher-order functions	Community, Doruk, Matthew Pickering, mnoronha, Will Ness, $\lambda l$ عx
33	Infix operators	leftaroundabout, mnoronha


34	10	3442, Benjamin Hodgson, David Grayson, J. Abrahamson, Jan Hrcek, John F. Miller, leftaroundabout, mnoronha, Sarah, user2407038, Will Ness, $\lambda 1 \varepsilon x$
35	Lens	Bartek Banachewicz, bennofs, chamini2, dfordivam, dsign, Hjulle, J. Abrahamson, John F. Miller, Kwarrtz, Matthew Pickering, $\lambda \mid \varepsilon x$
36	List Comprehensions	Cactus, Kwarrtz, mnoronha, Will Ness
37	Lists	Benjamin Hodgson, erisco, Firas Moalla, Janos Potecki, Kwarrtz , Lynn, Matthew Pickering, Matthew Walton, Mirzhan Irkegulov, mnoronha, Tim E. Lord, user2407038, Will Ness, Yosh, $\lambda l \varepsilon x$
38	Logging	$\lambda \mid \varepsilon x$
39	Modules	Benjamin Hodgson, Kapol, Will Ness, $\lambda$ lex
40	Monad Transformers	Damian Nadales
41	Monads	Alec, Benjamin Hodgson, Cactus, fgb, Kapol, Kwarrtz, Lynn, Mario Román, Matthew Pickering, Will Ness, $\lambda l \varepsilon x$
42	Monoid	Benjamin Hodgson, Kwarrtz, mnoronha, Will Ness
43	Optimization	$\lambda \mid \varepsilon x$
44	Overloaded Literals	Adam Wagner, Carsten, Kapol, leftaroundabout, pdexter
45	Parallelism	$\lambda \mid \varepsilon x$
46	Parsing HTML with taggy-lens and lens	Kostiantyn Rybnikov, $\lambda 1 \varepsilon x$
47	Partial Application	arseniiv, Benjamin Hodgson, CiscoIPPhone, Dair, Matthew Pickering, Will Ness
48	Phantom types	Benjamin Hodgson, Christof Schramm
49	Pipes	4444, Benjamin Hodgson, Stephane Rolland, $\lambda$ Iعx
50	Profunctor	zbw
51	Proxies	Benjamin Hodgson
52	QuickCheck	Benjamin Hodgson, gdziadkiewicz, Matthew Pickering, Steve Trout
53	Reactive-banana	arrowd, Dair, Undreren


54	Reader / ReaderT	Chris Stryczynski
55	Record Syntax	Cactus, Janos Potecki, John F. Miller, Mario, Matthew Pickering , Will Ness, $\lambda l \varepsilon x$
56	Recursion Schemes	arseniiv, Benjamin Hodgson
57	Rewrite rules (GHC)	Cactus
58	Role	xuh
59	Sorting Algorithms	Brian Min, pouya, Romildo, Shoe, Vektorweg, Will Ness
60	Stack	4444, curbyourdogma, Dair, Janos Potecki
61	State Monad	Apoorv Ingle, Kritzefitz, Luis Casillas
62	Streaming IO	$\lambda 1 \varepsilon x$
63	Strictness	Benjamin Hodgson, Benjamin Kovach, Cactus, user2407038, Will Ness
64	Syntax in Functions	Delapouite, James, Janos Potecki, Will Ness, $\lambda$ lex
65	Template Haskell \& QuasiQuotes	user2407038
66	Testing with Tasty	tlo
67	Traversable	Benjamin Hodgson, ErikR, J. Abrahamson
68	Tuples (Pairs, Triples, ...)	Cactus, mnoronha, Toxaris, 入lex
69	Type algebra	Mario Román
70	Type Application	Luka Horvat, $\lambda 1 \varepsilon x$
71	Type Classes	arjanen, Benjamin Hodgson, Billy Brown, Cactus, Dair, gdziadkiewicz, J. Abrahamson, Kwarrtz, leftaroundabout, mnoronha, RamenChef, Will Ness, zeronone, $\lambda l \varepsilon x$
72	Type Families	leftaroundabout, mniip, xuh
73	Typed holes	Cactus, leftaroundabout, user2407038, Will Ness
74	Using GHCi	Benjamin Hodgson, James, Janos Potecki, mnoronha, RamenChef, wizzup, $\lambda l \varepsilon x$
75	Vectors	Benjamin Hodgson, $\lambda 1 \varepsilon x$


76	Web Development	arrowd, $\lambda \mid \varepsilon x$
77	XML	Mikkel
78	zipWithM	zbw


[^0]:    instance Monad Maybe where

