
haxe

#haxe

Table of Contents

About 1

Chapter 1: Getting started with haxe 2

Remarks 2

References 2

Examples 2

Installation 2

Windows 2

Linux 2

Ubuntu 3

Debian 3

Fedora 3

openSuse 4

Arch Linux 4

OS X 5

References 5

Hello World 5

Requirements 5

Code 5

Execution 5

References 6

Chapter 2: Abstracts 8

Syntax 8

Remarks 8

Examples 8

Abstracts for data validation 8

References 9

Operator overloading 9

References 9

Chapter 3: Branching 10

Syntax 10

Remarks 10

Examples 10

If / else if / else 10

Reference 10

Ternary operator 10

Reference 11

Switch 11

Reference: 11

Chapter 4: Enums 12

Syntax 12

Examples 12

Overview 12

References 12

Capturing enum values 12

References 13

Matching enum constructors 13

References 13

Chapter 5: Loops 14

Syntax 14

Examples 14

For 14

References 14

While 14

References 15

Do-while 15

References 15

Flow control 15

Break 15

Continue 15

References 16

Chapter 6: Pattern matching 17

Remarks 17

Examples 17

Enum matching 17

References 17

Structure matching 17

References 18

Array matching 18

References 18

Or patterns 18

References 18

Guards 19

References 19

Extractors 19

References 19

Credits 21

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: haxe

It is an unofficial and free haxe ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official haxe.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/haxe
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with haxe

Remarks

Haxe is an open source toolkit that is capable of compiling to many different target languages and
platforms.

It consists of:

the Haxe programming language - a modern, high-level, and strictly typed programming
language

•

the Haxe standard library - a collection of general purpose, system, and target-specific APIs•
the Haxe compiler - a fast, optimising cross-compiler with metadata support, dead code
elimination (DCE), completion mode, resource embedding, runtime type information (RTTI),
static analyzer, macros, and more

•

Haxe has been used to create games, web, mobile, desktop, and command-line applications, as
well as cross-platform APIs.

As of Haxe 3.3.0-rc.1, Haxe can compile to sources / bytecode of the following languages:
ActionScript 3, C#, C++, Flash, HL, Lua, Java, JavaScript, Neko, PHP, and Python.

Haxe has a package manager, Haxelib, which is bundled with Haxe. It also has a custom build file
format, .hxml, which offers an easier way of passing arguments passed to the Haxe compiler.

References

Haxe documentation•

Examples

Installation

Haxe is available on Windows, Linux, and OS X. It is distributed in two forms:

as an installer, providing an optional Neko VM dependency and configuring haxe and haxelib
environment variables;

•

as binaries, providing only the Haxe compiler and package manager.•

Windows

Installer and binaries are available from the Haxe website.

Linux

https://riptutorial.com/ 2

http://haxe.org/documentation/introduction/language-introduction.html
http://haxe.org/documentation/introduction/stdlib-introduction.html
http://haxe.org/manual/compiler-usage.html
http://haxe.org/use-cases/
http://lib.haxe.org/
http://haxe.org/documentation/introduction/
http://haxe.org/download/
http://haxe.org/download/

Binaries (32-bit and 64-bit) are available from the Haxe website.

The Haxe Foundation also officially participates in the maintenance of Haxe and Neko packages
for popular Linux distributions. It is recommended to use those packages if available.

Ubuntu

It is recommended to use the Haxe PPA which provides latest Haxe and Neko releases for all
currently supported Ubuntu versions. The PPA can also be used for Ubuntu-based distributions.

sudo add-apt-repository ppa:haxe/releases -y
sudo apt-get update
sudo apt-get install haxe -y
mkdir ~/haxelib && haxelib setup ~/haxelib

Note that Neko is installed as a dependency of Haxe.

Debian

To install the currently available stable versions, run the following commands:

sudo apt-get install haxe -y
mkdir ~/haxelib && haxelib setup ~/haxelib

Note that Neko will be installed as a dependency of Haxe.

To install newer releases from the unstable channel, do the following:

In /etc/apt/sources.list, add

deb http://httpredir.debian.org/debian unstable main contrib non-free

1.

In /etc/apt/preferences.d/, create a new file named unstable with the following content:

Package: *
Pin: release a=unstable
Pin-Priority: 100

Package: haxe neko libneko*
Pin: release a=unstable
Pin-Priority: 999

2.

Pull package index files from the newly added source:

sudo apt-get update

3.

Install Haxe (and Neko):

sudo apt-get install haxe -y

4.

Fedora

https://riptutorial.com/ 3

http://haxe.org/download/
https://haxe.org/download/linux
https://launchpad.net/~haxe/+archive/ubuntu/releases

The Haxe Foundation maintains the Haxe and Neko RPM packages in the Fedora repository. The
packages are up-to-date most of the time. However, when a new version of Haxe is released, it
will take a few days, up to 2 weeks, to push an updated package to the stable releases of Fedora.
The update activities can be tracked in the Bodhi Fedora Update System.

To install the currently available versions of Haxe and Neko, run the following commands:

sudo dnf install haxe -y
mkdir ~/haxelib && haxelib setup ~/haxelib

Note that Neko is installed as a dependency of Haxe.

openSuse

The Haxe Foundation maintains the Haxe and Neko RPM packages in the openSUSE:Factory
repository. The packages are up-to-date most of the time. However, when a new version of Haxe
is released, it will take a few days, up to 2 weeks, to be accepted by openSUSE:Factory.

To install currently available versions of Haxe and Neko, run the following commands:

sudo zypper install haxe
mkdir ~/haxelib && haxelib setup ~/haxelib

Note that Neko is installed as a dependency of Haxe.

To get the lastest Haxe version that may not available to openSUSE:Factory or an openSUSE
release, use the devel:languages:haxe project in the openSUSE Build Service. Visit the Haxe
package page, click "Download package" at the top-right corner and follow the instructions. Again,
Neko will also be installed as a dependency of Haxe.

Arch Linux

There are Haxe and Neko packages in the Arch Linux community repository. The Haxe
Foundation will continue to help keep the packages up-to-date. However, when a new version of
Haxe is released, it will take time to update the package, depended on the availability of the
package maintainer.

For currently available versions of Haxe and Neko, check the following pages:

Haxe in Arch Linux•
Neko in Arch Linux•

To install the currently available versions of Haxe and Neko, run the following commands:

sudo pacman -S haxe
mkdir ~/haxelib && haxelib setup ~/haxelib

Note that Neko is installed as a dependency of Haxe.

https://riptutorial.com/ 4

https://bodhi.fedoraproject.org/updates/?packages=haxe
https://build.opensuse.org/project/show/devel:languages:haxe
https://build.opensuse.org/package/show/devel:languages:haxe/haxe
https://build.opensuse.org/package/show/devel:languages:haxe/haxe
https://www.archlinux.org/packages/?q=haxe
https://www.archlinux.org/packages/?q=neko

OS X

Installer and binaries are available from the Haxe website.

It is also possible to install the current stable Haxe version through the Brew package manager.

brew install haxe

References

"Downloads", Haxe website•
"Linux Software Packages", Haxe website•

Hello World

Requirements

A version of the Haxe toolkit must be installed1.
Haxe must be present in your system path2.
Command line must be accessible3.

Code

Navigate to a desired project directory and create a Test.hx source file with the following content:

class Test {
 static function main() {
 trace("Hello world");
 }
}

Haxe source files are called modules. A module should define a type (abstract, class, enum,
interface, or typedef) with the same identifier as the module name - in this case the Test class.
Once that requirement is met, a module can define an arbitrary number of different types.

Haxe programs require an entry point, as denoted by the static main function. The class
implementing the entry point is the startup class or main class. Again, in this case the main class
is the Test class.

The trace() function is a general purpose logging function exposed to the global namespace for
the sake of convenience. It outputs to the target language's standard output handle (e.g. browser
console for JavaScript, command line for C++). See the API documentation for more information.

Execution

Navigate to the project folder from your command line. Test to see if Haxe is configured in your

https://riptutorial.com/ 5

http://haxe.org/download/
http://brew.sh/
http://haxe.org/download/
https://haxe.org/download/linux
http://api.haxe.org/haxe/Log.html

environment by calling:

haxe --help

The Haxe interpreter can be used to test code that does not rely on any specific target language
API. Use the interpreter by calling:

haxe -main Test --interp

Remember, the Test module contains the Test startup class, which is why -main Test is passed to
the compiler.

Haxe sources can compile (transpile) to sources / bytecodes of several different languages. The
following table displays the target language, compiler flag, argument type, and compilation result.
Use it by calling:

haxe -main Test [flag] [argument].

Language Flag Argument Result

ActionScript 3 -as3 Directory Source

C# -cs Directory Source + optional bytecode (.exe)

C++ -cpp Directory Source + optional binary (native)

Flash -swf File Bytecode (.swf)

HL -hl File Source

Lua -lua File Source

Java -java Directory Source + optional bytecode (.jar)

JavaScript -js File Source

Neko -neko File Bytecode (.n)

PHP -php Directory Source

Python -python File Source

HashLink -hl File Bytecode (.hl)

Note that the path arguments here are relative to the path haxe was called from. The optional
bytecode/binary outputs can be opt-outed by adding the -D no-compilation flags, in order to avoid
an additional compilation step involving calling the target language's compiler.

References

https://riptutorial.com/ 6

API documentation for haxe.Log•
"Hello world" entry in the Haxe Code Cookbook•

Read Getting started with haxe online: https://riptutorial.com/haxe/topic/2593/getting-started-with-
haxe

https://riptutorial.com/ 7

http://api.haxe.org/haxe/Log.html
http://api.haxe.org/haxe/Log.html
http://code.haxe.org/category/beginner/hello-world.html
https://riptutorial.com/haxe/topic/2593/getting-started-with-haxe
https://riptutorial.com/haxe/topic/2593/getting-started-with-haxe

Chapter 2: Abstracts

Syntax

abstract identifier(underyling type) { ... }•
abstract identifier(underlying type) from typeA from typeB ... to typeA to typeB { ... }•

Remarks

An abstract type is a compile-time type which resolves to the underlying type at run-time. This
means that thee abstract type does not exist in the source code generated by the Haxe compiler.
In its stead are placed the underlying type, or types defined for implicit casting.

Abstracts are denoted by the abstract keyword, followed by an identifier, and underlying type in
parentheses.

Abstracts may only define method fields and non-physical property fields. Non-inlined
method fields are declared as static functions in a private implementation class, accepting as an
additional first argument the underlying type of the abstract.

Note that operator overloading is only possible for abstract types.

Examples

Abstracts for data validation

The following abstract defines an EmailAddress type based on the String type which will use a
regular expression to validate the passed argument as an e-mail address. If the address isn't valid,
an exception will be thrown.

abstract EmailAddress(String) {
 static var ereg = ~/^[\w-\.]{2,}@[\w-\.]{2,}\.[a-z]{2,6}$/i;

 inline public function new(address:String) {
 if (!ereg.match(address)) throw "EmailAddress "$address" is invalid";
 this = address.toLowerCase();
 }
}

Use the abstract as follows.

var emailGood = new EmailAddress("john@doe.com");
var emailBad = new EmailAddress("john.doe.com");

Try the example on try.haxe.org.

https://riptutorial.com/ 8

http://try.haxe.org/#0c448

References

"EmailAddress", Haxe Code Cookbook•

Operator overloading

Operator overloading is only possible with abstract types.

The following abstract defines a Vec2i type based on the Array<Int> type. This is a two-component
vector with integer values. Operator overloading is made possible my the @:op compiler metadata
. Only the available numeric operators can be overloaded - custom operators are not allowed to be
specified.

abstract Vec2i(Array<Int>) {
 public inline function getX() : Int {
 return this[0];
 }

 public inline function getY() : Int {
 return this[1];
 }

 public inline function new(x : Int, y : Int) {
 this = [x, y];
 }

 @:op(A + B)
 public inline function add(B : Vec2i) : Vec2i {
 return new Vec2i(
 getX() + B.getX(),
 getY() + B.getY()
);
 }
}

Use the abstract as follows.

var v1 = new Vec2i(1, 2);
var v2 = new Vec2i(3, 4);
v1 + v2;
v1.add(v2);

Try the example on try.haxe.org.

References

"EmailAddress", Haxe Code Cookbook•

Read Abstracts online: https://riptutorial.com/haxe/topic/4162/abstracts

https://riptutorial.com/ 9

http://code.haxe.org/category/abstract-types/emailaddress.html
https://haxe.org/manual/types-abstract-operator-overloading.html
https://haxe.org/manual/cr-metadata.html
https://haxe.org/manual/types-numeric-operators.html
http://try.haxe.org/#21e50
http://code.haxe.org/category/abstract-types/emailaddress.html
https://riptutorial.com/haxe/topic/4162/abstracts

Chapter 3: Branching

Syntax

if (condition) { ... }•
if (condition) { ... } else { ... }•
if (condition) { ... } else if (condition) { ... } else { ... }•
// Braces are optional for single line statements
if (condition) ... else if (condition) ... else ...

•

switch (expression) { case pattern: ... default: ... }•
condition ? expression if true : expression if false;•

Remarks

All branching expressions make it possible to return evaluated expressions. This means branching
results can be assigned to variables. In this case, all expressions that can be evaluated by a
successful condition test must pass type unification. If no else expression is given, the type is
inferred to be Void.

Examples

If / else if / else

if (a > b) {
 trace("You win!");
} else if (a == b) {
 trace("It's a draw!");
} else {
 trace("You lose!");
}

// Assigning the evaluated expression to a variable
var message = if (a > b) {
 "You win!";
} else if (a == b) {
 "It's a draw!";
} else {
 "You lose!";
}
trace(message);

Reference

"If", Haxe manual•

Ternary operator

https://riptutorial.com/ 10

https://haxe.org/manual/expression-if.html

n % 2 == 0 ? trace("n is even!") : trace("n is odd!");

// Assigning the evaluated expression to a variable
var message = n % 2 == 0 ? "n is even!" : "n is odd!";
trace(message);

Reference

"If", Haxe manual•

Switch

switch (n % 2) {
 case 0: trace("n is even!");
 case 1: trace("n is odd!");
 default: trace("I don't know!");
}

// Assigning the evaluated expression to a variable
var message = switch (n % 2) {
 case 0: "n is even!";
 case 1: "n is odd!";
 default: "I don't know!";
}
trace(message);

Note that case body expressions never fall through, so using the break expression in this
context isn't supported by Haxe.

Reference:

"Switch", Haxe manual•

Read Branching online: https://riptutorial.com/haxe/topic/6265/branching

https://riptutorial.com/ 11

https://haxe.org/manual/expression-if.html
https://haxe.org/manual/expression-switch.html
https://riptutorial.com/haxe/topic/6265/branching

Chapter 4: Enums

Syntax

enum identifier { constructors }•

Examples

Overview

Haxe's enumeration types are algebraic data types (ADT). Their primary use is for describing
data structures. Enums are denoted by the enum keyword and contain one or more enum
constructors.

enum Color {
 Red;
 Green;
 Blue;
 RGB(r : Int, g : Int, b : Int);
}

The above enum can be instantiated as follows:

var c1 = Color.Red;
var c2 = Color.RGB(255, 0, 0);

Try the example on try.haxe.org.

References

"Enum instance", Haxe manual•

Capturing enum values

Values passed as enum constructor arguments can be captured into variables by use of pattern
matching.

Assume the following enum:

enum Color {
 RGB(r : Int, g : Int, b : Int);
 HSV(h : Int, s : Float, v : Float);
}

The red channel value can be captured as follows:

https://riptutorial.com/ 12

https://en.wikipedia.org/wiki/Algebraic_data_type
http://%20http://haxe.org/manual/types-enum-instance.html
http://try.haxe.org/#85820
http://%20http://haxe.org/manual/types-enum-instance.html
https://haxe.org/manual/lf-pattern-matching.html
https://haxe.org/manual/lf-pattern-matching.html

var color = Color.RGB(255, 127, 0);
var red = switch (color) {
 // Match the Color.RGB constructor and capture value into `r`
 case Color.RGB(r, _, _):
 // Return the captured red value
 r;
 // Catch-all for matching remaining constructors
 case _:
 // Return -1
 -1;
}

Try the example on try.haxe.org.

References

"Pattern matching", Haxe manual•
"Variable capture", Haxe manual•

Matching enum constructors

Enum constructors can be matched using pattern matching.

Assume the following enum:

enum Color {
 Red;
 Green;
 Blue;
 RGB(r : Int, g : Int, b : Int);
}

Colours with only a green channel value can be matched as follows:

var color = Color.RGB(0, 127, 0);
var isGreenOnly = switch (color) {
 // Match Green or RGB with red and blue values at 0
 case Color.RGB(0, _, 0) | Color.Green: true;
 case _: false;
}

Try the example on try.haxe.org.

References

"Pattern matching", Haxe manual•
"Enum matching", Haxe manual•
"Or patterns", Haxe manual•

Read Enums online: https://riptutorial.com/haxe/topic/4667/enums

https://riptutorial.com/ 13

http://try.haxe.org/#5E213
https://haxe.org/manual/lf-pattern-matching.html
https://haxe.org/manual/lf-pattern-matching-variable-capture.html
https://haxe.org/manual/lf-pattern-matching.html
http://try.haxe.org/#ce180
https://haxe.org/manual/lf-pattern-matching.html
https://haxe.org/manual/lf-pattern-matching-enums.html
https://haxe.org/manual/lf-pattern-matching-or.html
https://riptutorial.com/haxe/topic/4667/enums

Chapter 5: Loops

Syntax

for (variable identifier in iterating collection) { expression }•
while (condition) { expression }•
do { expression } while (condition);•
break;•
continue;•

Examples

For

For-loops iterate over an iterating collection. An iterating collection is any class which structurally
unifies with Iterator<T> or Iterable<T> types from the Haxe standard library.

A for-loop which logs numbers in range 0 to 10 (exclusive) can be written as follows:

for (i in 0...10) {
 trace(i);
}

The variable identifier i holds the individual value of elements in the iterating collection. This
behaviour is similar to for-each in other languages.

A for-loop which logs elements in an array can therefore be written as follows:

for (char in ['a', 'b', 'c', 'd']) {
 trace(char);
}

Try the example on try.haxe.org.

References

"For", Haxe manual•
"Iterators", Haxe manual•

While

While-loops execute a body expression as long as the loop condition evaluates to true.

A while-loop which logs numbers in range 9 to 0 (inclusive) can be written as follows:

https://riptutorial.com/ 14

https://haxe.org/manual/expression-for.html
http://try.haxe.org/#ba0c2
https://haxe.org/manual/expression-for.html
http://haxe.org/manual/lf-iterators.html
https://haxe.org/manual/expression-while.html

var i = 10;
while (i-- > 0) {
 trace(i);
}

Try the example on try.haxe.org.

References

"While", Haxe manual•

Do-while

Do-while-loops execute a body expression at least once, and then keep executing it as long as the
loop condition evaluates to true.

A do-while-loop which logs numbers in range 10 to 0 (inclusive) can be written as follows:

var i = 10;
do {
 trace(i);
} while (i-- > 0);

Try the example on try.haxe.org.

References

"Do-while", Haxe manual•

Flow control

The flow or execution of a loop can be controlled by use of break and continue expressions.

Break

break exits the current loop. In case the loop is nested inside another loop, the parent loop is
unaffected.

for (i in 0...10) {
 for (j in 0...10) {
 if (j == 5) break;
 trace(i, j);
 }
}

Try the example on try.haxe.org.

Continue

https://riptutorial.com/ 15

http://try.haxe.org/#d58eA
https://haxe.org/manual/expression-while.html
https://haxe.org/manual/expression-do-while.html
http://try.haxe.org/#0B66A
https://haxe.org/manual/expression-do-while.html
http://try.haxe.org/#eBD2C

continue skips the current iteration of the loop at the point of the expression. In case the loop is
nested inside another loop, the parent loop is unaffected.

for (i in 0...10) {
 for (j in 0...10) {
 if (j == 5) continue;
 trace(i, j);
 }
}

Try the example on try.haxe.org.

References

"Break", Haxe manual•
"Continue", Haxe manual•

Read Loops online: https://riptutorial.com/haxe/topic/4409/loops

https://riptutorial.com/ 16

http://try.haxe.org/#19450
https://haxe.org/manual/expression-break.html
https://haxe.org/manual/expression-continue.html
https://riptutorial.com/haxe/topic/4409/loops

Chapter 6: Pattern matching

Remarks

Pattern matching is the process of branching depending on provided patterns. All pattern matching
is done within a switch expression, and individual case expressions represent the patterns.

The fundamental rules of pattern matching are:

patterns will always be matched from top to bottom;•
the topmost pattern that matches the input value has its expression executed;•
a _ pattern matches anything, so case _: is equal to default:.•

When all possible cases are handled, the catch-all _ pattern or default case is not required.

Examples

Enum matching

Assume the following enum:

enum Operation {
 Multiply(left : Int, right : Int);
}

Enum matching can be performed as follows:

var result = switch(Multiply(1, 3)) {
 case Multiply(_, 0):
 0;
 case Multiply(0, _):
 0;
 case Multiply(l, r):
 l * r;
}

References

"Enum matching", Haxe manual•

Structure matching

Assume the following structure:

var dog = {
 name : "Woofer",
 age : 7

https://riptutorial.com/ 17

https://haxe.org/manual/lf-pattern-matching-enums.html

};

Enum matching can be performed as follows:

var message = switch(dog) {
 case { name : "Woofer" }:
 "I know you, Woofer!";
 case _:
 "I don't know you, sorry!";
}

References

"Structure matching", Haxe manual•

Array matching

var result = switch([1, 6]) {
 case [2, _]:
 "0";
 case [_, 6]:
 "1";
 case []:
 "2";
 case [_, _, _]:
 "3";
 case _:
 "4";
}

References

"Array matching", Haxe manual•

Or patterns

The | operator can be used anywhere within patterns to describe multiple accepted patterns. If
there is a captured variable in an or-pattern, it must appear in both its sub-patterns.

var match = switch(7) {
 case 4 | 1: "0";
 case 6 | 7: "1";
 case _: "2";
}

References

"Or patterns", Haxe manual•

https://riptutorial.com/ 18

https://haxe.org/manual/lf-pattern-matching-structure.html
https://haxe.org/manual/lf-pattern-matching-array.html
https://haxe.org/manual/lf-pattern-matching-or.html

Guards

It is also possible to further restrict patterns with guards. These are defined by the case ...
if(condition): syntax.

var myArray = [7, 6];
var s = switch(myArray) {
 case [a, b] if (b > a):
 b + ">" +a;
 case [a, b]:
 b + "<=" +a;
 case _: "found something else";
}

References

"Guards", Haxe manual•

Extractors

Extractors are identified by the extractorExpression => match expression. Extractors consist of two
parts, which are separated by the => operator.

The left side can be any expression, where all occurrences of underscore _ are replaced with
the currently matched value.

1.

The right side is a pattern which is matched against the result of the evaluation of the left
side.

2.

Since the right side is a pattern, it can contain another extractor. The following example "chains"
two extractors:

static public function main() {
 switch(3) {
 case add(_, 1) => mul(_, 3) => a:
 trace(a); // mul(add(3 + 1), 3)
 }
}

static function add(i1:Int, i2:Int) {
 return i1 + i2;
}

static function mul(i1:Int, i2:Int) {
 return i1 * i2;
}

It is currently not possible to use extractors within or-patterns. However, it is possible to have or-
patterns on the right side of an extractor.

References

https://riptutorial.com/ 19

https://haxe.org/manual/lf-pattern-matching-guards.html

"Extractors", Haxe manual•

Read Pattern matching online: https://riptutorial.com/haxe/topic/6436/pattern-matching

https://riptutorial.com/ 20

https://haxe.org/manual/lf-pattern-matching-extractors.html
https://riptutorial.com/haxe/topic/6436/pattern-matching

Credits

S.
No

Chapters Contributors

1
Getting started with
haxe

5Mixer, ali_o_kan, Andy Li, Community, Domagoj, KevinResoL,
YsenGrimm

2 Abstracts Domagoj

3 Branching Domagoj, Kev, Mark Knol

4 Enums Domagoj

5 Loops Domagoj

6 Pattern matching Domagoj

https://riptutorial.com/ 21

https://riptutorial.com/contributor/2028090/5mixer
https://riptutorial.com/contributor/2894092/ali-o-kan
https://riptutorial.com/contributor/267998/andy-li
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6633388/domagoj
https://riptutorial.com/contributor/3212365/kevinresol
https://riptutorial.com/contributor/2005366/ysengrimm
https://riptutorial.com/contributor/6633388/domagoj
https://riptutorial.com/contributor/6633388/domagoj
https://riptutorial.com/contributor/16777/kev
https://riptutorial.com/contributor/508029/mark-knol
https://riptutorial.com/contributor/6633388/domagoj
https://riptutorial.com/contributor/6633388/domagoj
https://riptutorial.com/contributor/6633388/domagoj

	About
	Chapter 1: Getting started with haxe
	Remarks
	References
	Examples
	Installation

	Windows
	Linux
	Ubuntu
	Debian
	Fedora
	openSuse
	Arch Linux

	OS X
	References
	Hello World

	Requirements
	Code
	Execution
	References

	Chapter 2: Abstracts
	Syntax
	Remarks
	Examples
	Abstracts for data validation

	References
	Operator overloading

	References

	Chapter 3: Branching
	Syntax
	Remarks
	Examples
	If / else if / else

	Reference
	Ternary operator

	Reference
	Switch

	Reference:

	Chapter 4: Enums
	Syntax
	Examples
	Overview

	References
	Capturing enum values

	References
	Matching enum constructors

	References

	Chapter 5: Loops
	Syntax
	Examples
	For

	References
	While

	References
	Do-while

	References
	Flow control

	Break
	Continue
	References

	Chapter 6: Pattern matching
	Remarks
	Examples
	Enum matching

	References
	Structure matching

	References
	Array matching

	References
	Or patterns

	References
	Guards

	References
	Extractors

	References

	Credits

