
hbase

#hbase



Table of Contents

About 1

Chapter 1: Getting started with hbase 2

Remarks 2

Examples 2

Installing HBase in Standalone 2

Installing HBase in cluster 3

Chapter 2: Using the Java API 4

Syntax 4

Parameters 4

Remarks 5

Examples 5

Connecting to HBase 5

Creating and deleting tables 5

Querying HBase, Get, Put, Delete and Scans 6

Using the Scan filters 8

Credits 10



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: hbase

It is an unofficial and free hbase ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official hbase.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/hbase
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with hbase

Remarks

This section provides an overview of what hbase is, and why a developer might want to use it.

It should also mention any large subjects within hbase, and link out to the related topics. Since the 
Documentation for hbase is new, you may need to create initial versions of those related topics.

Examples

Installing HBase in Standalone

HBase Standalone is a mode which allow you to get rid of HDFS and to test HBase before 
deploying in a cluster, It is not production oriented.

Installing HBase in standalone is extremely simple. First you have to download the HBase archive 
named hbase-X.X.X-bin.tar.gz available on one of the apache mirrors.

Once you have done this, execute this shell command

tar xzvf hbase-X.X.X-bin.tar.gz

It will export the archive in your directory, you can put it wherever you want.

Now, go to the HBase directory you have exported and edit the file conf/hbase-env.sh

cd hbase-X.X.X 
vi -o conf/hbase-env.xml

In this file, uncomment the line and change the path of JAVA_HOME

JAVA_HOME=/usr    #The directory must contain bin/java

Almost there ! now edit the file conf/hbase-sitexml and put the folowing lines

<configuration> 
  <property> 
    <name>hbase.rootdir</name> 
    <value>file:///home/user/hbase</value> 
  </property> 
  <property> 
    <name>hbase.zookeeper.property.dataDir</name> 
    <value>/home/user/zookeeper</value> 
  </property> 
</configuration>

You can put those directories wherever you want to, just be sure to remember it if you want to 

https://riptutorial.com/ 2

http://www.apache.org/dyn/closer.cgi/hbase/


check logs etc.

Your HBase is now ready to run ! Just execute the command

bin/start-hbase.sh

and if you want to stop HBase

bin/stop-hbase.sh

Now your HBase is launched on your localhost and you can access it (using the Java API or the 
HBase shell). To run HBase shell, use

bin/hbase shell

Have fun using HBase !

Installing HBase in cluster

TODO

Read Getting started with hbase online: https://riptutorial.com/hbase/topic/4369/getting-started-
with-hbase

https://riptutorial.com/ 3

https://riptutorial.com/hbase/topic/4369/getting-started-with-hbase
https://riptutorial.com/hbase/topic/4369/getting-started-with-hbase


Chapter 2: Using the Java API

Syntax

HBaseConfiguration.create(); //Create a configuration file•

Configuration.set(String key, String value); //Add a key to the configuration•

ConnectionFactory.createConnection(HBaseConfiguration configuration); //Connects to 
HBase

•

Connection.getAdmin(); //Instanciate a new Admin•

new HTableDescriptor(Table.valueOf(String tableName));; //Create a table descriptor•

HTableDescriptor.addFamily(new HColumnDescriptor(String familyName)); //Add a family to 
the table descriptor

•

Admin.createTable(HTableDescriptor descriptor); //Create a table as described in the 
descriptor

•

Admin.deleteTable(TableName.valueOf(String tableName)); //Delete a table•

Connection.getTable(TableName.valueOf(String tableName)); //Get a Table Object•

new Get(Bytes.toBytes(String row_key)); //Create a new Get•

table.get(Get get) //Returns a Result•

new Put(String row_key); //Create a new Put•

table.put(Put put); //Insert the row(s)•

new Scan(); //Create new Scan•

table.getScanner(Scan scan); //Return a ResultScanner•

new Delete(Bytes.toBytes(String row_key)); //Create a new Delete•

table.delete(Delete delete); //Delete a row from the table•

Parameters

Parameter Possible Values

CompareOp.EQUAL , CompareOp.GREATER , 
CompareOp.GREATER_OR_EQUAL , CompareOp.LESS , 
CompareOp.LESS_OR_EQUAL , CompareOp.NOT_EQUAL , 

CompareOp

https://riptutorial.com/ 4



Parameter Possible Values

CompareOp.NO_OP (no operation)

Remarks

This topic show various examples of how to use the Java API for HBase. In this topic you will learn 
to create and delete a table, insert, query and delete rows from a table but also use the Scans 
filters.

You will notice than many methods of this API take Bytes as parameters for example the 
columnFamily name, this is due to HBase implementation. For optimization purpose, instead of 
storing the values as String, Integer or whatever, it stores a list of Bytes, that is why you need to 
parse all those values as Bytes. To do this, the easiest method is to use Bytes.toBytes(something).

Please feel free to notice if you see any mistake or misunderstanding.

Examples

Connecting to HBase

If you want to connect to an HBase server, first you need to make sure that the IP of the server is 
in your /etc/hosts file for example add the line

255.255.255.255    hbase

Then you can use the Java API to connect to zookeeper, you only have to specify the client port 
and the zookeeper address

Configuration config =  HBaseConfiguration.create(); 
config.set("hbase.zookeeper.quorum", "hbase"); 
config.set("hbase.zookeeper.property.clientPort","2181");

After you configured the connection, you can test it, using

HBaseAdmin.checkHBaseAvailable(config);

If you have a problem with your HBase configuration, an exception will be thrown.

Finally to connect to the server, just use

Connection connection = ConnectionFactory.createConnection(config);

Creating and deleting tables

In HBase, data are stored in tables with columns. Columns are regrouped in column families, 
which can be for example "personal" or "professional", each of these containing specific 

https://riptutorial.com/ 5



informations.

To create a table, you need to use the Admin Object, create it using :

Admin admin = connection.getAdmin();

Once you have this admin, you can start creating tables. First of all make sure this table doesn't 
exist already with the line

admin.tableExists(TableName.valueOf("myTable);

This method will return true if the table exists. When you have checked this, you can create your 
table using the lines

HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf("myTable")); 
descriptor.addFamily(new HColumnDescriptor("myFamily")); 
admin.createTable(descriptor);

You need to set at least of family for the table, and HBase reference book recommends not getting 
over 3 column families else you will lose performances.

Congratulations ! Your table has been created !

If you need to delete your table, you can use

this.admin.disableTable(TableName.valueOf(tableName)); 
this.admin.deleteTable(TableName.valueOf(tableName));

Be sure to always disable the table first !

You now know how to manage tables in HBase.

Querying HBase, Get, Put, Delete and Scans

In HBase, you can use 4 types of operations

Get : retrieves a row•
Put : inserts one or more row(s)•
Delete : delete a row•
Scan : retrieves several rows•

If you simply want to retrieve a row, given its row_key you can use the Get object:

Get get = new Get(Bytes.toBytes("my_row_key")); 
Table table = this.connection.getTable(TableName.valueOf("myTable")); 
Result r = table.get(get); 
byte[] value = r.getValue(Bytes.toBytes(columnFamily), Bytes.toBytes("myColumn")); 
String valueStr = Bytes.toString(value); 
System.out.println("Get result :" + valueStr);

https://riptutorial.com/ 6



Here we only get the value from the column we want, if you want to retrieve all the column, use the 
rawCell attribute from the Get object:

Get get = new Get(Bytes.toBytes(rowKey)); 
Table table = this.connection.getTable(TableName.valueOf(tableName)); 
Result r = table.get(get); 
System.out.println("GET result :"); 
    for (Cell c : r.rawCells()) { 
        System.out.println("Family : " + new String(CellUtil.cloneFamily(c))); 
        System.out.println("Column Qualifier : " + new String(CellUtil.cloneQualifier(c))); 
        System.out.println("Value : " + new String(CellUtil.cloneValue(c))); 
        System.out.println("----------"); 
    }

Well, we can now retrieve data from our table, row by row, but how do we put some ? You use the 
Put object:

Put put = new Put("my_row_key"); 
put.addColumn(Bytes.toBytes("myFamily"), Bytes.toBytes("myColumn"), 
Bytes.toBytes("awesomeValue"); 
//Add as many columns as you want 
 
Table table = connection.getTable(TableName.valueOf("myTable"); 
table.put(put);

NB : Table.put can also take in parameter a list of puts, which is, when you want to add a lot of 
rows, way more efficient than put by put.

Alright now, I can put some rows and retrieve some from my HBase, but what if I want to get 
several rows and if I don't know my row_keys ?

Captain here ! You can use the Scan Object:

A scan basically look all the rows and retrieve them, you can add several parameters it, such as 
filters and start/end row but we will see that in another example.

If you want to scan all the column values from your table, given a column use the following lines:

Table table = this.connection.getTable(TableName.valueOf("myTable")); 
Scan scan = new Scan(); 
scan.addColumn(Bytes.toBytes("myFamily"), Bytes.toBytes("myColumn")); 
ResultScanner rs = table.getScanner(scan); 
    try { 
        for (Result r = rs.next(); r != null; r = rs.next()) { 
            byte[] value = r.getValue(Bytes.toBytes("myFamily"), Bytes.toBytes("myCOlumn")); 
            String valueStr = Bytes.toString(value); 
            System.out.println("row key "+new String(r.getRow())); 
            System.out.println("Scan result :" + valueStr); 
        } 
    } finally { 
        rs.close(); // always close the ResultScanner! 
   }

I really want to insist on the fact that you must always close the ResultScanner (same thing 

https://riptutorial.com/ 7

http://www.riptutorial.com/hbase/example/15541/using-the-scan-filters


than any ResultSet from a database by the way)

Nearly done ! Now let's learn how to delete a row. You have a Delete object for this:

Table table = this.connection.getTable(TableName.valueOf("myTable")); 
Delete d = new Delete(Bytes.toBytes("my_weird_key")); 
table.delete(d); 
System.out.prinln("Row " + row_key + " from table " + tableName + " deleted");

One last thing: before executing any of the operations, always check that the table exists, or you 
will get an exception.

That's all for now, you can manage you data in HBase with this example.

Using the Scan filters

Basically, the Scan object retrieves all the rows from the table, but what if you want to retrieve only 
the rows where the value of a given column is equal to something ? Let me introduce you the 
Filters, they work like the WHERE in SQL.

Before starting using the filters, if you know how your row_keys are stored, you can set a starting 
row and an ending one for your Scan, which will optimize your query.

In HBase, row_keys are stored in the lexicographic order, but you can still use salting to change 
the way it is stored, I will not explain salting in this topic, it would take too long and that's not the 
point.

Let's get back to our row bounds, you have two methods to use to set the starting and ending row

Scan scan = new Scan(); 
scan.setStartRow(Bytes.toBytes("row_10")); 
scan.setStopRow(Bytes.toBytes("row_42"));

This will change your scanner behavior to fetch all the rows between "row_10" and "row_42".

NB : As in most of the "sub" methods (for example substring), the startRow is inclusive and the 
stopRow is exclusive.

Now that we can bound our Scan, we should now add some filters to our scans, there are lots of 
those, but we will see here the most important ones.

If you want to retrieve all the rows having a row_key starting by a given pattern•

Use the RowPrefixFilter :

Scan scan = new Scan(); 
scan.setRowPrefixFilter(Bytes.toBytes("hello"));

With this code, your scan will only retrieve the rows having a row_key starting by "hello".

https://riptutorial.com/ 8



If you want to retrieve all the rows where the value of a given column is equal to something•

Use the SingleColumnValueFilter :

Scan scan = new Scan(); 
SingleColumnValueFilter filter = new 
SingleColumnValueFilter(Bytes.toBytes("myFamily"),Bytes.toBytes("myColumn"), CompareOp.EQUAL, 
Bytes.toBytes("42")); 
scan.setFilter(filter);

With this code, you will get all the rows where the value of the column myColumn is equal to 42. 
You have different values for CompareOp which are explained in the Parameters section.

-Good, but what if I want to use regular expressions

Use the RegexStringComparator filter :

Scan scan = new Scan(); 
RegexStringComparator comparator = new RegexStringComparator(".hello."); 
SingleColumnValueFilter filter = new 
SingleColumnValueFilter(Bytes.toBytes("myFamily"),Bytes.toBytes("myColumn"), CompareOp.EQUAL, 
comparator); 
scan.setFilter(filter);

And you will get all the rows where the column myColumn contains hello.

Please also notice that the method Scan.setFilter() can also take a list of Filter as parameters

Read Using the Java API online: https://riptutorial.com/hbase/topic/4448/using-the-java-api

https://riptutorial.com/ 9

https://riptutorial.com/hbase/topic/4448/using-the-java-api


Credits

S. 
No

Chapters Contributors

1
Getting started with 
hbase

Alexi Coard, BusyAnt, Community

2 Using the Java API Alexi Coard, BusyAnt, KIM, Prutswonder

https://riptutorial.com/ 10

https://riptutorial.com/contributor/5578655/alexi-coard
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5578655/alexi-coard
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/206698/kim
https://riptutorial.com/contributor/292230/prutswonder

	About
	Chapter 1: Getting started with hbase
	Remarks
	Examples
	Installing HBase in Standalone
	Installing HBase in cluster


	Chapter 2: Using the Java API
	Syntax
	Parameters
	Remarks
	Examples
	Connecting to HBase
	Creating and deleting tables
	Querying HBase, Get, Put, Delete and Scans
	Using the Scan filters


	Credits



