
heroku

#heroku

Table of Contents

About 1

Chapter 1: Getting started with heroku 2

Remarks 2

Examples 2

Installation or Setup 2

Download 2

Homebrew 2

Debian/Ubuntu 2

Using the Heroku Toolbelt 3

Create an application 3

Deploy to Heroku 3

Open your application in a browser 3

List Heroku commands 3

General help 3

Help for a specific command 3

Creating Heroku Applications 3

Chapter 2: Buildpack 5

Examples 5

Setting Buildpacks 5

Multiple buildpacks 5

Chapter 3: Command Line 7

Introduction 7

Syntax 7

Examples 7

Download and install 7

OS X 7

Windows 7

Debian/Ubuntu 7

Standalone version 7

Verify your installation 8

Getting started 8

Chapter 4: Dependencies 9

Syntax 9

Examples 9

Bower dependancy 9

Chapter 5: Deployment 10

Syntax 10

Examples 10

Deploying with Git 10

Tracking your app in git 10

Creating a Heroku remote 10

Deploying code 10

Chapter 6: Heroku Add-ons 12

Introduction 12

Examples 12

Heroku Scheduler 12

Chapter 7: Heroku Error Codes 13

Introduction 13

Syntax 13

Examples 14

H10 - App crashed 14

H11 - Backlog too deep 14

H12 - Request timeout 14

H13 - Connection closed without response 15

H14 - No web dynos running 15

H15 - Idle connection 15

Chapter 8: Heroku Limits 16

Examples 16

List of all limitations in Heroku platform 16

Chapter 9: Heroku node.js Hello World 17

Remarks 17

Examples 17

Heroku node.js hello world 17

Chapter 10: Heroku Postgres 19

Examples 19

How to Reset Postgres Database in Heroku 19

How to copy heroku database to local database 19

Chapter 11: Logs 20

Syntax 20

Examples 20

Types of logs 20

Log format 20

View logs 21

Real-time tail 21

Log Filtering 21

Chapter 12: Pipelines 23

Syntax 23

Remarks 23

Examples 23

Pipelines via the CLI 23

Credits 25

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: heroku

It is an unofficial and free heroku ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official heroku.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/heroku
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with heroku

Remarks

Heroku is a popular Platform-as-a-Service provider (PaaS) which makes it easy for developers to
deploy web applications without an operations team. Heroku has been around since 2007, and is
now owned by Salesforce.

This section provides an overview of what Heroku is, and why a developer might want to use it.

It should also mention any large subjects within Heroku, and link out to the related topics. Since
the Documentation for Heroku is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

To create and manage Heroku apps locally you'll need the Heroku Toolbelt, here are some ways
to get it.

Download

Download the Heroku Toolbelt installer from Heroku's website.

Homebrew

Install heroku with brew:

brew install heroku

Debian/Ubuntu

Run this script:

wget -O- https://toolbelt.heroku.com/install-ubuntu.sh | sh

This script adds the Heroku repository to apt, installs the Heroku release key, installs the Heroku
Toolbelt and then installs Ruby if you need it.

As with any script you find online and pipe directly to bash we highly recommend you read the

https://riptutorial.com/ 2

https://www.salesforce.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/install-ubuntu.sh

source first.

Using the Heroku Toolbelt

Create an application

heroku create your-app-name

Deploy to Heroku

git push heroku master

Open your application in a browser

heroku open your-app-name

List Heroku commands

heroku commands

General help

heroku help

Help for a specific command

heroku help <command>

Creating Heroku Applications

You can use the heroku create command to create a Heroku application. Each application you
deploy to Heroku has its own code base, environment variables, addons, etc.

Each Heroku application has a globally unique name. If you try to create a Heroku application
whose name is already taken, you will get an error.

Here's how you can create a new Heroku application:

https://riptutorial.com/ 3

https://toolbelt.heroku.com/install-ubuntu.sh

heroku create [app_name]

If you don't specify an application name when running heroku create, Heroku will create a random
application name for you.

You can also specify the Amazon region in which your Heroku application should be created. By
default, all Heroku applications are created in the us region. If you'd like to change the region, you
can do so by creating the application like so:

heroku create [app_name] --region eu

Right now, there are only two public regions: us, and eu (Europe).

Read Getting started with heroku online: https://riptutorial.com/heroku/topic/959/getting-started-
with-heroku

https://riptutorial.com/ 4

https://riptutorial.com/heroku/topic/959/getting-started-with-heroku
https://riptutorial.com/heroku/topic/959/getting-started-with-heroku

Chapter 2: Buildpack

Examples

Setting Buildpacks

Heroku officially supports buildpacks for Ruby, Node.js, Clojure, Python, Java, Gradle, Grails,
Scala, Play, PHP and Go.

Buildpacks are automatically detected by Heroku in the above order, however, it can also be set
manually through CLI using:

At the time of app creation

 heroku create <app_name> --buildpack <buildpack_name>

1.

Manually,

 heroku buildpacks:set <buildpack_name>

2.

Buildpack name can be specified either using shorthand or URL. Like for PHP buildpack,

heroku buildpacks:set heroku/php

or

heroku buildpacks:set https://elements.heroku.com/buildpacks/heroku/heroku-buildpack-php

Multiple buildpacks

An application can also contain more than one buildpack. It can be achieved using add:

heroku buildpacks:add --index 1 <buildpack_name>

where, --index parameter specifies the execution order of buildpack.

Say,

heroku buildpacks:set heroku/php
heroku buildpacks:add --index 1 heroku/nodejs

will set the buildpack order as:

heroku/nodejs
heroku/php

https://riptutorial.com/ 5

https://devcenter.heroku.com/articles/buildpacks#officially-supported-buildpacks

Remember: A Heroku app has only one public port - 80. Hence either of the one will serve in one
port. Say, if procfile is specified with web: node server.js, node application will run in port 80,
otherwise PHP. However, the build will run in the order specified. If one needs more than one
application, set up multiple projects and make it to communicate with each other.

Read Buildpack online: https://riptutorial.com/heroku/topic/6126/buildpack

https://riptutorial.com/ 6

https://riptutorial.com/heroku/topic/6126/buildpack

Chapter 3: Command Line

Introduction

The Heroku Command Line Interface (CLI), formerly known as the Heroku Toolbelt, is a tool for
creating and managing Heroku apps from the command line / shell of various operating systems.

Syntax

$ heroku --version•
$ heroku login•
$ heroku create•

Examples

Download and install

OS X

Download and run the OS X installer.

Windows

Download and run the Windows installer 32-bit 64-bit.

Debian/Ubuntu

Run the following to add our apt repository and install the CLI:

$ sudo add-apt-repository "deb https://cli-assets.heroku.com/branches/stable/apt ./"
$ curl -L https://cli-assets.heroku.com/apt/release.key | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install heroku

Standalone version

Download the tarball and extract it so that you can access the binary from your PATH. For
example:

$ echo replace OS/ARCH with values as noted below

https://riptutorial.com/ 7

https://cli-assets.heroku.com/branches/stable/heroku-osx.pkg
https://cli-assets.heroku.com/branches/stable/heroku-windows-386.exe
https://cli-assets.heroku.com/branches/stable/heroku-windows-amd64.exe

$ wget https://cli-assets.heroku.com/branches/stable/heroku-OS-ARCH.tar.gz
$ tar -xvzf heroku-OS-ARCH /usr/local/lib/heroku
$ ln -s /usr/local/lib/heroku/bin/heroku /usr/local/bin/heroku

Verify your installation

To verify your CLI installation use the heroku --version command.

$ heroku --version
heroku-cli/5.6.0-010a227 (darwin-amd64) go1.7.4

Getting started

You will be asked to enter your Heroku credentials the first time you run a command; after the first
time, your email address and an API token will be saved to ~/.netrc for future use.

It’s generally a good idea to login and add your public key immediately after installing the Heroku
CLI so that you can use git to push or clone Heroku app repositories:

$ heroku login
Enter your Heroku credentials.
Email: adam@example.com
Password (typing will be hidden):
Authentication successful.

You’re now ready to create your first Heroku app:

$ cd ~/myapp
$ heroku create
Creating app... done, � sleepy-meadow-81798
https://sleepy-meadow-81798.herokuapp.com/ | https://git.heroku.com/sleepy-meadow-81798.git

Read Command Line online: https://riptutorial.com/heroku/topic/8324/command-line

https://riptutorial.com/ 8

https://riptutorial.com/heroku/topic/8324/command-line

Chapter 4: Dependencies

Syntax

"dependencies": { ... }•

Examples

Bower dependancy

To automatically install bower and its components, one must

Specify the bower dependency in package.json:

"dependencies": {
 "bower": "^1.7.9"
}

1.

Use scripts to execute a postinstall command

"scripts": {
 "postinstall": "./node_modules/bower/bin/bower install"
}

2.

Create a .bowerrc file to set the directory for bower_components to install. Otherwise
bower_components are installed in root directory.

{
 "directory" : "app/bower_components"
}

3.

Now, Heroku automatically executes bower install command after npm install

Read Dependencies online: https://riptutorial.com/heroku/topic/6665/dependencies

https://riptutorial.com/ 9

https://riptutorial.com/heroku/topic/6665/dependencies

Chapter 5: Deployment

Syntax

git push heroku master•

Examples

Deploying with Git

Tracking your app in git

Before you can push an app to Heroku, you’ll need to initialize a local Git repository and commit
your files to it. For example, if you have an app in a directory, myapp, then create a new repository
for it:

$ cd myapp
$ git init
Initialized empty Git repository in .git/
$ git add .
$ git commit -m "my first commit"
Created initial commit 5df2d09: my first commit
 44 files changed, 8393 insertions(+), 0 deletions(-)
 create mode 100644 README
 create mode 100644 Procfile
 create mode 100644 app/controllers/source_file
...

This is a local repository, now residing inside the .git directory. Nothing has been sent anywhere
yet; you’ll need to create a remote and do a push to deploy your code to Heroku.

Creating a Heroku remote

$ heroku create
Creating falling-wind-1624... done, stack is cedar-14
http://falling-wind-1624.herokuapp.com/ | https://git.heroku.com/falling-wind-1624.git
Git remote heroku added

Git repository with an existing application. The heroku git:remote command will add this remote for
you based on your applications git url.

$ heroku git:remote -a falling-wind-1624
Git remote heroku added.

https://riptutorial.com/ 10

Deploying code

you'll need to specify a remote branch to push to. You can do your first push:

$ git push heroku master
Initializing repository, done.
updating 'refs/heads/master'
...

To push a branch other than master, use this syntax:

$ git push heroku yourbranch:master

Read Deployment online: https://riptutorial.com/heroku/topic/8325/deployment

https://riptutorial.com/ 11

https://riptutorial.com/heroku/topic/8325/deployment

Chapter 6: Heroku Add-ons

Introduction

Details and how to use instructions about various Add-ons that are available with Heroku.

Examples

Heroku Scheduler

Installing Heroku Scheduler

heroku addons:create scheduler:standard

Read Heroku Add-ons online: https://riptutorial.com/heroku/topic/8906/heroku-add-ons

https://riptutorial.com/ 12

https://riptutorial.com/heroku/topic/8906/heroku-add-ons

Chapter 7: Heroku Error Codes

Introduction

Whenever your app experiences an error, Heroku will return a standard error page with the HTTP
status code 503. To help you debug the underlying error, however, the platform will also add
custom error information to your logs. Each type of error gets its own error code, with all HTTP
errors starting with the letter H and all runtime errors starting with R. Logging errors start with L.

Syntax

H10 - App crashed•
H11 - Backlog too deep•
H12 - Request timeout•
H13 - Connection closed without response•
H14 - No web dynos running•
H15 - Idle connection•
H16 - Redirect to herokuapp.com•
H17 - Poorly formatted HTTP response•
H18 - Server Request Interrupted•
H19 - Backend connection timeout•
H20 - App boot timeout•
H21 - Backend connection refused•
H22 - Connection limit reached•
H23 - Endpoint misconfigured•
H24 - Forced close•
H25 - HTTP Restriction•
H26 - Request Error•
H27 - Client Request Interrupted•
H28 - Client Connection Idle•
H80 - Maintenance mode•
H81 - Blank app•
H82 - Free dyno quota exhausted•
H99 - Platform error•
R10 - Boot timeout•
R12 - Exit timeout•
R13 - Attach error•
R14 - Memory quota exceeded•
R15 - Memory quota vastly exceeded•
R16 – Detached•
R17 - Checksum error•
R99 - Platform error•
L10 - Drain buffer overflow•
L11 - Tail buffer overflow•

https://riptutorial.com/ 13

L12 - Local buffer overflow•
L13 - Local delivery error•
L14 - Certificate validation error•

Examples

H10 - App crashed

A crashed web dyno or a boot timeout on the web dyno will present this error.

2010-10-06T21:51:04-07:00 heroku[web.1]: State changed from down to starting
2010-10-06T21:51:07-07:00 app[web.1]: Starting process with command: `bundle exec rails server
-p 22020`
2010-10-06T21:51:09-07:00 app[web.1]: >> Using rails adapter
2010-10-06T21:51:09-07:00 app[web.1]: Missing the Rails 2.3.5 gem. Please `gem install -
v=2.3.5 rails`, update your RAILS_GEM_VERSION setting in config/environment.rb for the Rails
version you do have installed, or comment out RAILS_GEM_VERSION to use the latest version
installed.
2010-10-06T21:51:10-07:00 heroku[web.1]: Process exited
2010-10-06T21:51:12-07:00 heroku[router]: at=error code=H10 desc="App crashed" method=GET
path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno= connect= service= status=503 bytes=

H11 - Backlog too deep

When HTTP requests arrive faster than your application can process them, they can form a large
backlog on a number of routers. When the backlog on a particular router passes a threshold, the
router determines that your application isn’t keeping up with its incoming request volume. You’ll
see an H11 error for each incoming request as long as the backlog is over this size. The exact
value of this threshold may change depending on various factors, such as the number of dynos in
your app, response time for individual requests, and your app’s normal request volume.

2010-10-06T21:51:07-07:00 heroku[router]: at=error code=H11 desc="Backlog too deep" method=GET
path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno= connect= service= status=503 bytes=

The solution is to increase your app’s throughput by adding more dynos, tuning your database (for
example, adding an index), or making the code itself faster. As always, increasing performance is
highly application-specific and requires profiling.

H12 - Request timeout

An HTTP request took longer than 30 seconds to complete. In the example below, a Rails app
takes 37 seconds to render the page; the HTTP router returns a 503 prior to Rails completing its
request cycle, but the Rails process continues and the completion message shows after the router
message.

2010-10-06T21:51:07-07:00 app[web.2]: Processing PostController#list (for 75.36.147.245 at
2010-10-06 21:51:07) [GET]
2010-10-06T21:51:08-07:00 app[web.2]: Rendering template within layouts/application
2010-10-06T21:51:19-07:00 app[web.2]: Rendering post/list

https://riptutorial.com/ 14

2010-10-06T21:51:37-07:00 heroku[router]: at=error code=H12 desc="Request timeout" method=GET
path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno=web.1 connect=6ms service=30001ms
status=503 bytes=0
2010-10-06T21:51:42-07:00 app[web.2]: Completed in 37000ms (View: 27, DB: 21) | 200 OK
[http://myapp.heroku.com/]

This 30-second limit is measured by the router, and includes all time spent in the dyno, including
the kernel’s incoming connection queue and the app itself.

H13 - Connection closed without response

This error is thrown when a process in your web dyno accepts a connection, but then closes the
socket without writing anything to it.

2010-10-06T21:51:37-07:00 heroku[router]: at=error code=H13 desc="Connection closed without
response" method=GET path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno=web.1
connect=3030ms service=9767ms status=503 bytes=0

One example where this might happen is when a Unicorn web server is configured with a timeout
shorter than 30s and a request has not been processed by a worker before the timeout happens.
In this case, Unicorn closes the connection before any data is written, resulting in an H13.

H14 - No web dynos running

This is most likely the result of scaling your web dynos down to 0 dynos. To fix it, scale your web
dynos to 1 or more dynos:

$ heroku ps:scale web=1

Use the heroku ps command to determine the state of your web dynos.

2010-10-06T21:51:37-07:00 heroku[router]: at=error code=H14 desc="No web processes running"
method=GET path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno= connect= service=
status=503 bytes=

H15 - Idle connection

The dyno did not send a full response and was terminated due to 55 seconds of inactivity. For
example, the response indicated a Content-Length of 50 bytes which were not sent in time.

2010-10-06T21:51:37-07:00 heroku[router]: at=error code=H15 desc="Idle connection" method=GET
path="/" host=myapp.herokuapp.com fwd=17.17.17.17 dyno=web.1 connect=1ms service=55449ms
status=503 bytes=18

Read Heroku Error Codes online: https://riptutorial.com/heroku/topic/8321/heroku-error-codes

https://riptutorial.com/ 15

https://riptutorial.com/heroku/topic/8321/heroku-error-codes

Chapter 8: Heroku Limits

Examples

List of all limitations in Heroku platform

1. Logs: By default, Heroku allows only 1500 lines of consolidated logs. When more than 1500
lines of logs are required, one has to use addons provided Heroku.

2. Router: HTTP request have 30s timeout for initial response and 55s timeout thereafter.
Maximum of 1MB buffer allowed for response.

3. Dynos: Dyno memory limits based on the type chosen. For free dynos, sleep hours are
imposed where it sleeps after 30 minutes of inactivity. In addition, verified accounts come with a
monthly pool of 1000 Free dyno hours, and unverified accounts receive 550. An application can
have upto 100 dynos and a process type can't be scaled to more than 10 dynos. Free dyno type
can have a maximum of two concurrent running dynos.

4. Config Vars: Config key and value pair is limited to 32kb for an app.

5. Build: Users are limited to 75 requests to Heroku Git repos per hour, per app, per user.
Uncompressed size during checkout can't reach more than 1GB. Slug size is limited to 300 MB
and length of compilation can't exceed 15 minutes.

6. Data Clips: Every query can run to a maximum of 10 minutes and can return a maximum of
100,000 rows.

7. Heroku Postgres: Downtime varies with different tiers from less than 4 hours to 15 minutes per
month.

8. API Limits: Maximum calls to Heroku API is restricted to 2400/hour.

9. Membership Limits: For an enterprise account, maximum of 500 members and for others, 25
members are allowed.

10. Application count: A maximum of 100 apps can be created by a verified user. Unverified
users are restricted to 5 applications.

Read Heroku Limits online: https://riptutorial.com/heroku/topic/6190/heroku-limits

https://riptutorial.com/ 16

https://elements.heroku.com/addons/#logging
https://devcenter.heroku.com/articles/dyno-types#available-dyno-types
https://devcenter.heroku.com/articles/free-dyno-hours#dyno-sleeping
https://devcenter.heroku.com/articles/config-vars
https://devcenter.heroku.com/articles/heroku-postgres-plans#plan-tiers
https://riptutorial.com/heroku/topic/6190/heroku-limits

Chapter 9: Heroku node.js Hello World

Remarks

login

heroku login

create app

heroku create or heroku create your_name

clone the example

git clone https://github.com/zoutepopcorn/herokuworld
cd herokuworld

visit app in your browser

https://your_name.herokuapp.com/

Optional test it local:

heroku local web

check: lolhost:5000

So whats different to a normal node.js app? package.json

"scripts": {
 "start": "node index.js"
},
"engines": {
 "node": "7.6.0"
}

index.js

process.env.PORT

Local port: 5000. Heroku will map it to port 80 on your app url.

Examples

Heroku node.js hello world

index.js

https://riptutorial.com/ 17

var http = require("http");

http.createServer(function(request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.write("Heroku world!");
 response.end();
}).listen(process.env.PORT);

package.json

{
 "name": "node-example",
 "version": "1.0.0",
 "description": "Hello world Heroku",
 "scripts": {
 "start": "node index.js"
 },

 "keywords": [
 "example",
 "heroku"
],
 "author": "Johan",
 "license": "MIT",
 "engines": {
 "node": "7.6.0"
 }
}

Read Heroku node.js Hello World online: https://riptutorial.com/heroku/topic/9897/heroku-node-js-
hello-world

https://riptutorial.com/ 18

https://riptutorial.com/heroku/topic/9897/heroku-node-js-hello-world
https://riptutorial.com/heroku/topic/9897/heroku-node-js-hello-world

Chapter 10: Heroku Postgres

Examples

How to Reset Postgres Database in Heroku

Steps to reset database in Heroku:

1. Drop the database, when SHARED_DATABASE_URL is used:

heroku pg:reset DATABASE

2. Recreate the database with nothing in it:

heroku run rake db:migrate

3. Populate the database with your seed data:

heroku run rake db:seed

Steps 2 and 3 can be combined into one command by executing this:

heroku run rake db:setup

How to copy heroku database to local database

Steps to copy heroku database to local database:

1. Run copy process in terminal:

heroku pg:pull DATABASE_URL change_to_your_data_base_name --app change_to_your_app_name

2. Change db owner using this query:

GRANT ALL PRIVILEGES ON DATABASE change_to_your_data_base_name to change_to_your_user; ALTER
DATABASE change_to_your_data_base_name OWNER TO change_to_your_user;

3. Generate and run query for all tables in you database:

SELECT 'ALTER TABLE '|| schemaname || '.' || tablename ||' OWNER TO change_to_your_user;' FROM
pg_tables WHERE NOT schemaname IN ('pg_catalog', 'information_schema') ORDER BY schemaname,
tablename;

Read Heroku Postgres online: https://riptutorial.com/heroku/topic/6239/heroku-postgres

https://riptutorial.com/ 19

https://riptutorial.com/heroku/topic/6239/heroku-postgres

Chapter 11: Logs

Syntax

$ heroku logs•
$ heroku logs -n 200•
$ heroku logs --tail•
$ heroku logs --dyno router•
$ heroku logs --source app•
$ heroku logs --source app --dyno worker•
$ heroku logs --source app --tail•

Examples

Types of logs

Heroku aggregates three categories of logs for your app:

App logs - Output from your application. This will include logs generated from within your
application, application server and libraries. (Filter: --source app)

•

System logs - Messages about actions taken by the Heroku platform infrastructure on
behalf of your app, such as: restarting a crashed process, sleeping or waking a web dyno, or
serving an error page due to a problem in your app. (Filter: --source heroku)

•

API logs - Messages about administrative actions taken by you and other developers
working on your app, such as: deploying new code, scaling the process formation, or
toggling maintenance mode. (Filter: --source heroku --dyno api)

•

Log format

Each log line is formatted as follows:

timestamp source[dyno]: message

Timestamp - The date and time recorded at the time the log line was produced by the dyno
or component. The timestamp is in the format specified by RFC5424, and includes
microsecond precision.

•

Source - All of your app’s dynos (web dynos, background workers, cron) have the source,
app. All of Heroku’s system components (HTTP router, dyno manager) have the source,
heroku.

•

Dyno - The name of the dyno or component that wrote the log line. For example, worker #3
appears as worker.3, and the Heroku HTTP router appears as router.

•

https://riptutorial.com/ 20

Message - The content of the log line. Lines generated by dynos that exceed 10000 bytes
are split into 10000 byte chunks without extra trailing newlines. Each chunk is submitted as a
separate log line.

•

View logs

To fetch your logs, use the heroku logs command.

$ heroku logs

The logs command retrieves 100 log lines by default. You can specify the number of log lines to
retrieve (up to a maximum of 1,500 lines) by using the --num (or -n) option.

$ heroku logs -n 200

Real-time tail

Similar to tail -f, real-time tail displays recent logs and leaves the session open for real-time logs
to stream in. By viewing a live stream of logs from your app, you can gain insight into the behavior
of your live application and debug current problems. You can tail your logs using --tail (or -t).

$ heroku logs --tail

When you are done, press Ctrl+C to return to the prompt.

Log Filtering

If you only want to fetch logs with a certain source, a certain dyno, or both, you can use the --
source (or -s) and --dyno (or -d) filtering arguments:

$ heroku logs --dyno router
2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/stylesheets/dev-
center/library.css" host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.5 connect=1ms
service=18ms status=200 bytes=13
2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/articles/bundler"
host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.6 connect=1ms service=18ms status=200
bytes=20375

$ heroku logs --source app
2012-02-07T09:45:47.123456+00:00 app[web.1]: Rendered shared/_search.html.erb (1.0ms)
2012-02-07T09:45:47.123456+00:00 app[web.1]: Completed 200 OK in 83ms (Views: 48.7ms |
ActiveRecord: 32.2ms)
2012-02-07T09:45:47.123456+00:00 app[worker.1]: [Worker(host:465cf64e-61c8-46d3-b480-
362bfd4ecff9 pid:1)] 1 jobs processed at 23.0330 j/s, 0 failed ...
2012-02-07T09:46:01.123456+00:00 app[web.6]: Started GET "/articles/buildpacks" for 4.1.81.209
at 2012-02-07 09:46:01 +0000

$ heroku logs --source app --dyno worker
2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-
362bfd4ecff9 pid:1)] Article#record_view_without_delay completed after 0.0221

https://riptutorial.com/ 21

2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-
362bfd4ecff9 pid:1)] 5 jobs processed at 31.6842 j/s, 0 failed ...

You can also combine the filtering switches with --tail to get a real-time stream of filtered output.

$ heroku logs --source app --tail

Read Logs online: https://riptutorial.com/heroku/topic/8327/logs

https://riptutorial.com/ 22

https://riptutorial.com/heroku/topic/8327/logs

Chapter 12: Pipelines

Syntax

heroku pipelines:<install|create|promote>...•

Remarks

A pipeline is a group of Heroku apps that share the same codebase. Apps in a pipeline are
grouped into “review”, “development”, “staging”, and “production” stages representing different
deployment steps in a continuous delivery workflow.

Examples

Pipelines via the CLI

Installing pipeline

Once Heroku Toolbelt is installed it requires Pipelines plugin too.

heroku plugins:install heroku-pipelines

Creating pipelines

You must start with an app to add to the pipeline, although it doesn’t have to be for a particular
stage. If you don’t specify --stage STAGE, the CLI will guess at the appropriate stage, but also let
you override the default. The name of the pipeline will be guessed from the app name as well, but
can be overridden either by adding the NAME on the command line, or entering a different name
when prompted.

heroku pipelines:create -a example

Promoting

The target app(s) will be automatically determined by the downstream stage

heroku pipelines:promote -r staging

It is also possible to promote to a specific app (or set of apps)

heroku pipelines:promote -r staging --to my-production-app1,my-production-app2

https://riptutorial.com/ 23

https://github.com/heroku/heroku-pipelines

Help Command

A complete list of Pipelines commands with usage details is available in the console

heroku help pipelines

Read Pipelines online: https://riptutorial.com/heroku/topic/2389/pipelines

https://riptutorial.com/ 24

https://riptutorial.com/heroku/topic/2389/pipelines

Credits

S.
No

Chapters Contributors

1
Getting started with
heroku

Community, rdegges, thejonanshow

2 Buildpack Thamilan

3 Command Line Sender

4 Dependencies Thamilan

5 Deployment Sender

6 Heroku Add-ons jophab

7 Heroku Error Codes Sender

8 Heroku Limits autoboxer, Thamilan

9
Heroku node.js Hello
World

Johan Hoeksma

10 Heroku Postgres Denis Savchuk, Hardik Kanjariya ツ, Thamilan

11 Logs Sender

12 Pipelines Thamilan

https://riptutorial.com/ 25

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/194175/rdegges
https://riptutorial.com/contributor/1349037/thejonanshow
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/6281993/jophab
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/3709716/autoboxer
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1876718/johan-hoeksma
https://riptutorial.com/contributor/5433905/denis-savchuk
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/5447994/thamilan

	About
	Chapter 1: Getting started with heroku
	Remarks
	Examples
	Installation or Setup

	Download
	Homebrew
	Debian/Ubuntu
	Using the Heroku Toolbelt

	Create an application
	Deploy to Heroku
	Open your application in a browser
	List Heroku commands
	General help
	Help for a specific command
	Creating Heroku Applications

	Chapter 2: Buildpack
	Examples
	Setting Buildpacks
	Multiple buildpacks

	Chapter 3: Command Line
	Introduction
	Syntax
	Examples
	Download and install

	OS X
	Windows
	Debian/Ubuntu
	Standalone version
	Verify your installation
	Getting started

	Chapter 4: Dependencies
	Syntax
	Examples
	Bower dependancy

	Chapter 5: Deployment
	Syntax
	Examples
	Deploying with Git

	Tracking your app in git
	Creating a Heroku remote
	Deploying code
	Chapter 6: Heroku Add-ons
	Introduction
	Examples
	Heroku Scheduler

	Chapter 7: Heroku Error Codes
	Introduction
	Syntax
	Examples
	H10 - App crashed
	H11 - Backlog too deep
	H12 - Request timeout
	H13 - Connection closed without response
	H14 - No web dynos running
	H15 - Idle connection

	Chapter 8: Heroku Limits
	Examples
	List of all limitations in Heroku platform

	Chapter 9: Heroku node.js Hello World
	Remarks
	Examples
	Heroku node.js hello world

	Chapter 10: Heroku Postgres
	Examples
	How to Reset Postgres Database in Heroku
	How to copy heroku database to local database

	Chapter 11: Logs
	Syntax
	Examples
	Types of logs
	Log format
	View logs

	Real-time tail
	Log Filtering

	Chapter 12: Pipelines
	Syntax
	Remarks
	Examples
	Pipelines via the CLI

	Credits

