
hibernate

#hibernate

Table of Contents

About 1

Chapter 1: Getting started with hibernate 2

Remarks 2

Versions 2

Examples 2

Using XML Configuration to set up Hibernate 2

XML-less Hibernate configuration 5

Simple hibernate example using XML 6

Chapter 2: Association Mappings between Entities 9

Examples 9

OneToMany association 9

One to many association using XML 10

Chapter 3: Caching 13

Examples 13

Enabling Hibernate Caching in WildFly 13

Chapter 4: Criterias and Projections 14

Examples 14

List using Restrictions 14

Using Projections 14

Use Filters 14

Chapter 5: Custom Naming Strategy 17

Examples 17

Creating and Using a Custom ImplicitNamingStrategy 17

Custom Physical Naming Strategy 18

Chapter 6: Enable/Disable SQL log 20

Remarks 20

Examples 20

Using a logging config file 20

Using Hibernate properties 20

Enable/Disable SQL log in debug 21

Chapter 7: Fetching in hibernate 22

Introduction 22

Examples 22

It is recommended to use FetchType.LAZY. Join fetch the columns when they are needed. 22

Chapter 8: Hibernate and JPA 24

Examples 24

Relationship between Hibernate and JPA 24

Chapter 9: Hibernate Entity Relationships using Annotations 25

Parameters 25

Examples 25

Bi-Directional Many to Many using user managed join table object 25

Bi-Directional Many to Many using Hibernate managed join table 26

Bi-directional One to Many Relationship using foreign key mapping 27

Bi-Directional One to One Relationship managed by Foo.class 27

Uni-Directional One to Many Relationship using user managed join table 28

Uni-directional One to One Relationship 29

Chapter 10: HQL 31

Introduction 31

Remarks 31

Examples 31

Selecting a whole table 31

Select specific columns 31

Include a Where clause 31

Join 31

Chapter 11: Lazy Loading vs Eager Loading 32

Examples 32

Lazy Loading vs Eager Loading 32

Scope 33

Chapter 12: Mapping associations 35

Examples 35

One to One Hibernate Mapping 35

Chapter 13: Native SQL Queries 37

Examples 37

Simple Query 37

Example to get a unique result 37

Chapter 14: Performance tuning 38

Examples 38

Don't use EAGER fetch type 38

Use composition instead of inheritance 38

Credits 40

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: hibernate

It is an unofficial and free hibernate ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official hibernate.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/hibernate
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with hibernate

Remarks

The SessionFactory bean is responsible for creating, maintaining, closing and flushing all the
database sessions that the TransactionManager asks it to create. That's why we autowire the
SessionFactory into DAO's and make run all queries through it.

One of the biggest questions that new Hibernate users ask is "When do my changes get
committed?" and the answer makes sense when you think how the TransactionManager works with
the SesisonFactory. Your database changes will be flushed and committed when you exit the
service method that was annotated with @Transactional. The reason for this is, that a transaction is
supposed to represent a single 'unit' of unbroken work. If something goes wrong with the unit, then
it is assumed that the unit failed and all changes should be rolled back. So the SessionFactory will
flush and clear the session when you exit the service method that you called originally.

That's not to say that it won't also flush and clear the session while your transaction is going on.
For example, if I call a service method to add a collection of 5 objects and return the total count of
objects in the database, the SessionFactory would realise that the query (SELECT COUNT(*)) requires
an updated state to be accurate, and so would flush the addition of the 5 objects before running
the count query. The execution could look something like this:

Versions

Version Documentation Link Release Date

4.2.0 http://hibernate.org/orm/documentation/4.2/ 2013-03-01

4.3.0 http://hibernate.org/orm/documentation/4.3/ 2013-12-01

5.0.0 http://hibernate.org/orm/documentation/5.0/ 2015-09-01

Examples

Using XML Configuration to set up Hibernate

I create a file called database-servlet.xml somewhere on the classpath.

Initially your config file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:tx="http://www.springframework.org/schema/tx"

https://riptutorial.com/ 2

http://hibernate.org/orm/documentation/4.2/
http://hibernate.org/orm/documentation/4.3/
http://hibernate.org/orm/documentation/5.0/

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
 http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.2.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-
tx-3.2.xsd">

</beans>

You'll notice I imported the tx and jdbc Spring namespaces. This is because we are going to use
them quite heavily in this config file.

First thing you want to do is enable annotation based transaction management (@Transactional).
The main reason that people use Hibernate in Spring is because Spring will manage all your
transactions for you. Add the following line to your configuration file:

<tx:annotation-driven />

We need to create a data source. The data source is basically the database that Hibernate is
going to use to persist your objects. Generally one transaction manager will have one data source.
If you want Hibernate to talk to multiple data sources then you have multiple transaction
managers.

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="" />
 <property name="url" value="" />
 <property name="username" value="" />
 <property name="password" value="" />
</bean>

The class of this bean can be anything that implements javax.sql.DataSource so you could write
your own. This example class is provided by Spring, but doesn't have its own thread pool. A
popular alternative is the Apache Commons org.apache.commons.dbcp.BasicDataSource, but there are
many others. I'll explain each of the properties below:

driverClassName: The path to your JDBC driver. This is a database specific JAR that
should be available on your classpath. Ensure that you have the most up to date version. If
you are using an Oracle database, you'll need a OracleDriver. If you have a MySQL
database, you'll need a MySQLDriver. See if you can find the driver you need here but a
quick google should give you the correct driver.

•

url: The URL to your database. Usually this will be something like
jdbc\:oracle\:thin\:\path\to\your\database or jdbc:mysql://path/to/your/database. If you
google around for the default location of the database you are using, you should be able to
find out what this should be. If you are getting a HibernateException with the message
org.hibernate.HibernateException: Connection cannot be null when 'hibernate.dialect' not
set and you are following this guide, there is a 90% chance that your URL is wrong, a 5%
chance that your database isn't started and a 5% chance that your username/password is
wrong.

•

https://riptutorial.com/ 3

http://mvnrepository.com/tags/jdbc

username: The username to use when authenticating with the database.•

password: The password to use when authenticating with the database.•

The next thing, is to set up the SessionFactory. This is the thing that Hibernate uses to create and
manage your transactions, and actually talks to the database. It has quite a few configuration
options that I will try to explain below.

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="packagesToScan" value="au.com.project />
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.use_sql_comments">true</prop>
 <prop key="hibernate.hbm2ddl.auto">validate</prop>
 </props>
 </property>
</bean>

dataSource: Your data source bean. If you changed the Id of the dataSource, set it here.•

packagesToScan: The packages to scan to find your JPA annotated objects. These are the
objects that the session factory needs to manage, will generally be POJO's and annotated
with @Entity. For more information on how to set up object relationships in Hibernate see
here.

•

annotatedClasses (not shown): You can also provide a list of classes for Hibernate to scan if
they are not all in the same package. You should use either packagesToScan or
annotatedClasses but not both. The declaration looks like this:

•

<property name="annotatedClasses">
 <list>
 <value>foo.bar.package.model.Person</value>
 <value>foo.bar.package.model.Thing</value>
 </list>
</property>

hibernateProperties: There are a myriad of these all lovingly documented here. The main
ones you will be using are as follows:

•

hibernate.hbm2ddl.auto: One of the hottest Hibernate questions details this property. See it
for more info. I generally use validate, and set up my database using either SQL scripts (for
an in-memory), or create the database beforehand (existing database).

•

hibernate.show_sql: Boolean flag, if true Hibernate will print all the SQL it generates to
stdout. You can also configure your logger to show you the values that are being bound to
the queries by setting log4j.logger.org.hibernate.type=TRACE
log4j.logger.org.hibernate.SQL=DEBUG in your log manager (I use log4j).

•

hibernate.format_sql: Boolean flag, will cause Hibernate to pretty print your SQL to stdout.•
hibernate.dialect (Not shown, for good reason): A lot of old tutorials out there show you how
to set the Hibernate dialect that it will use to communicate to your database. Hibernate can
auto-detect which dialect to use based on the JDBC driver that you are using. Since there

•

https://riptutorial.com/ 4

http://stackoverflow.com/questions/24257449/how-do-i-use-annotations-to-define-x-relationship-in-hibernate-4-and-spring
http://stackoverflow.com/questions/24257449/how-do-i-use-annotations-to-define-x-relationship-in-hibernate-4-and-spring
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html_single/#configuration-optional
http://stackoverflow.com/questions/438146/hibernate-hbm2ddl-auto-possible-values-and-what-they-do
http://stackoverflow.com/questions/438146/hibernate-hbm2ddl-auto-possible-values-and-what-they-do

are about 3 different Oracle dialects and 5 different MySQL dialects, I'd leave this decision
up to Hibernate. For a full list of dialects Hibernate supports see here.

The last 2 beans you need to declare are:

<bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"
 id="PersistenceExceptionTranslator" />

<bean id="transactionManager"
 class="org.springframework.orm.hibernate4.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

The PersistenceExceptionTranslator translates database specific HibernateException or
SQLExceptions into Spring exceptions that can be understood by the application context.

The TransactionManager bean is what controls the transactions as well as roll-backs.

Note: You should be autowiring your SessionFactory bean into your DAO's.

XML-less Hibernate configuration

This example has been taken from here

package com.reborne.SmartHibernateConnector.utils;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class LiveHibernateConnector implements IHibernateConnector {

 private String DB_DRIVER_NAME = "";
 private String DB_URL = "jdbc:h2:~/liveDB;MV_STORE=FALSE;MVCC=FALSE";
 private String DB_USERNAME = "sa";
 private String DB_PASSWORD = "";
 private String DIALECT = "org.hibernate.dialect.H2Dialect";
 private String HBM2DLL = "create";
 private String SHOW_SQL = "true";

 private static Configuration config;
 private static SessionFactory sessionFactory;
 private Session session;

 private boolean CLOSE_AFTER_TRANSACTION = false;

 public LiveHibernateConnector() {

 config = new Configuration();

 config.setProperty("hibernate.connector.driver_class", DB_DRIVER_NAME);
 config.setProperty("hibernate.connection.url", DB_URL);
 config.setProperty("hibernate.connection.username", DB_USERNAME);
 config.setProperty("hibernate.connection.password", DB_PASSWORD);
 config.setProperty("hibernate.dialect", DIALECT);

https://riptutorial.com/ 5

http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html_single/#configuration-optional-dialects
https://github.com/reborne/SmartHibernateConnector

 config.setProperty("hibernate.hbm2dll.auto", HBM2DLL);
 config.setProperty("hibernate.show_sql", SHOW_SQL);

 /*
 * Config connection pools
 */

 config.setProperty("connection.provider_class",
"org.hibernate.connection.C3P0ConnectionProvider");
 config.setProperty("hibernate.c3p0.min_size", "5");
 config.setProperty("hibernate.c3p0.max_size", "20");
 config.setProperty("hibernate.c3p0.timeout", "300");
 config.setProperty("hibernate.c3p0.max_statements", "50");
 config.setProperty("hibernate.c3p0.idle_test_period", "3000");

 /**
 * Resource mapping
 */

// config.addAnnotatedClass(User.class);
// config.addAnnotatedClass(User.class);
// config.addAnnotatedClass(User.class);

 sessionFactory = config.buildSessionFactory();
 }

 public HibWrapper openSession() throws HibernateException {
 return new HibWrapper(getOrCreateSession(), CLOSE_AFTER_TRANSACTION);
 }

 public Session getOrCreateSession() throws HibernateException {
 if (session == null) {
 session = sessionFactory.openSession();
 }
 return session;
 }

 public void reconnect() throws HibernateException {
 this.sessionFactory = config.buildSessionFactory();
 }

}

Please note, that with latest Hibernate this approach doesn't work well (Hibernate 5.2 release still
allow this configuration)

Simple hibernate example using XML

To set up a simple hibernate project using XML for the configurations you need 3 files,
hibernate.cfg.xml, a POJO for each entity, and a EntityName.hbm.xml for each entity. Here is an
example of each using MySQL:

hibernate.cfg.xml

https://riptutorial.com/ 6

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver
 </property>

 <property name="hibernate.connection.url">
 jdbc:mysql://localhost/DBSchemaName
 </property>
 <property name="hibernate.connection.username">
 testUserName
 </property>
 <property name="hibernate.connection.password">
 testPassword
 </property>

 <!-- List of XML mapping files -->
 <mapping resource="HibernatePractice/Employee.hbm.xml"/>

</session-factory>
</hibernate-configuration>

DBSchemaName, testUserName, and testPassword would all be replaced. Make sure to use the
full resource name if it is in a package.

Employee.java

package HibernatePractice;

public class Employee {
 private int id;
 private String firstName;
 private String middleName;
 private String lastName;

 public Employee(){

 }
 public int getId(){
 return id;
 }
 public void setId(int id){
 this.id = id;
 }
 public String getFirstName(){
 return firstName;
 }
 public void setFirstName(String firstName){
 this.firstName = firstName;
 }
 public String getMiddleName(){

https://riptutorial.com/ 7

 return middleName;
 }
 public void setMiddleName(String middleName){
 this.middleName = middleName;
 }
 public String getLastName(){
 return lastName;
 }
 public void setLastName(String lastName){
 this.lastName = lastName;
 }
}

Employee.hbm.xml

<hibernate-mapping>
 <class name="HibernatePractice.Employee" table="employee">
 <meta attribute="class-description">
 This class contains employee information.
 </meta>
 <id name="id" type="int" column="empolyee_id">
 <generator class="native"/>
 </id>
 <property name="firstName" column="first_name" type="string"/>
 <property name="middleName" column="middle_name" type="string"/>
 <property name="lastName" column="last_name" type="string"/>
 </class>
</hibernate-mapping>

Again, if the class is in a package use the full class name packageName.className.

After you have these three files you are ready to use hibernate in your project.

Read Getting started with hibernate online: https://riptutorial.com/hibernate/topic/907/getting-
started-with-hibernate

https://riptutorial.com/ 8

https://riptutorial.com/hibernate/topic/907/getting-started-with-hibernate
https://riptutorial.com/hibernate/topic/907/getting-started-with-hibernate

Chapter 2: Association Mappings between
Entities

Examples

OneToMany association

To illustrate relation OneToMany we need 2 Entities e.g. Country and City. One Country has
multiple Cities.

In the CountryEntity beloww we define set of cities for Country.

@Entity
@Table(name = "Country")
public class CountryEntity implements Serializable
{
 private static final long serialVersionUID = 1L;

 @Id
 @Column(name = "COUNTRY_ID", unique = true, nullable = false)
 @GeneratedValue(strategy = GenerationType.SEQUENCE)
 private Integer countryId;

 @Column(name = "COUNTRY_NAME", unique = true, nullable = false, length = 100)
 private String countryName;

 @OneToMany(mappedBy="country", fetch=FetchType.LAZY)
 private Set<CityEntity> cities = new HashSet<>();

 //Getters and Setters are not shown
}

Now the city entity.

@Entity
@Table(name = "City")
public class CityEntity implements Serializable
{
 private static final long serialVersionUID = 1L;

 @Id
 @Column(name = "CITY_ID", unique = true, nullable = false)
 @GeneratedValue(strategy = GenerationType.SEQUENCE)
 private Integer cityId;

 @Column(name = "CITY_NAME", unique = false, nullable = false, length = 100)
 private String cityName;

 @ManyToOne(optional=false, fetch=FetchType.EAGER)
 @JoinColumn(name="COUNTRY_ID", nullable=false)
 private CountryEntity country;

 //Getters and Setters are not shown

https://riptutorial.com/ 9

}

One to many association using XML

This is an example of how you would do a one to many mapping using XML. We will use Author
and Book as our example and assume an author may have written many books, but each book will
only have one author.

Author class:

public class Author {
 private int id;
 private String firstName;
 private String lastName;

 public Author(){

 }
 public int getId(){
 return id;
 }
 public void setId(int id){
 this.id = id;
 }
 public String getFirstName(){
 return firstName;
 }
 public void setFirstName(String firstName){
 this.firstName = firstName;
 }
 public String getLastName(){
 return lastName;
 }
 public void setLastName(String lastName){
 this.lastName = lastName;
 }
}

Book class:

public class Book {
 private int id;
 private String isbn;
 private String title;
 private Author author;
 private String publisher;

 public Book() {
 super();
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getIsbn() {

https://riptutorial.com/ 10

 return isbn;
 }
 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public Author getAuthor() {
 return author;
 }
 public void setAuthor(Author author) {
 this.author = author;
 }
 public String getPublisher() {
 return publisher;
 }
 public void setPublisher(String publisher) {
 this.publisher = publisher;
 }
}

Author.hbm.xml:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >

<hibernate-mapping>
 <class name="Author" table="author">
 <meta attribute="class-description">
 This class contains the author's information.
 </meta>
 <id name="id" type="int" column="author_id">
 <generator class="native"/>
 </id>
 <property name="firstName" column="first_name" type="string"/>
 <property name="lastName" column="last_name" type="string"/>
 </class>
</hibernate-mapping>

Book.hbm.xml:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >

<hibernate-mapping>
 <class name="Book" table="book_title">
 <meta attribute="class-description">
 This class contains the book information.
 </meta>
 <id name="id" type="int" column="book_id">
 <generator class="native"/>

https://riptutorial.com/ 11

 </id>
 <property name="isbn" column="isbn" type="string"/>
 <property name="title" column="title" type="string"/>
 <many-to-one name="author" class="Author" cascade="all">
 <column name="author"></column>
 </many-to-one>
 <property name="publisher" column="publisher" type="string"/>
 </class>
</hibernate-mapping>

What makes the one to many connection is that the Book class contains an Author and the xml
has the <many-to-one> tag. The cascade attribute allows you to set how the child entity will be
saved/updated.

Read Association Mappings between Entities online:
https://riptutorial.com/hibernate/topic/6165/association-mappings-between-entities

https://riptutorial.com/ 12

https://riptutorial.com/hibernate/topic/6165/association-mappings-between-entities

Chapter 3: Caching

Examples

Enabling Hibernate Caching in WildFly

To enable Second Level Caching for Hibernate in WildFly, add this property to your
persistence.xml file:

<property name="hibernate.cache.use_second_level_cache" value="true"/>

You may also enable Query Caching with this property:

<property name="hibernate.cache.use_query_cache" value="true"/>

WildFly does not require you to define a Cache Provider when enabling Hibernate's Second-Level
Cache, as Infinispan is used by default. If you would like to use an alternative Cache Provider,
however, you may do so with the hibernate.cache.provider_class property.

Read Caching online: https://riptutorial.com/hibernate/topic/3462/caching

https://riptutorial.com/ 13

http://www.tutorialspoint.com/hibernate/hibernate_caching.htm
http://www.tutorialspoint.com/hibernate/hibernate_caching.htm
https://riptutorial.com/hibernate/topic/3462/caching

Chapter 4: Criterias and Projections

Examples

List using Restrictions

Assuming we have a TravelReview table with City names as column "title"

 Criteria criteria =
 session.createCriteria(TravelReview.class);
 List review =
 criteria.add(Restrictions.eq("title", "Mumbai")).list();
 System.out.println("Using equals: " + review);

We can add restrictions to the criteria by chaining them as follows:

List reviews = session.createCriteria(TravelReview.class)
 .add(Restrictions.eq("author", "John Jones"))
 .add(Restrictions.between("date",fromDate,toDate))
 .add(Restrictions.ne("title","New York")).list();

Using Projections

Should we wish to retrieve only a few columns, we can use the Projections class to do so. For
example, the following code retrieves the title column

 // Selecting all title columns
 List review = session.createCriteria(TravelReview.class)
 .setProjection(Projections.property("title"))
 .list();
 // Getting row count
 review = session.createCriteria(TravelReview.class)
 .setProjection(Projections.rowCount())
 .list();
 // Fetching number of titles
 review = session.createCriteria(TravelReview.class)
 .setProjection(Projections.count("title"))
 .list();

Use Filters

@Filter is used as a WHERE camp, here some examples

Student Entity

@Entity
@Table(name = "Student")
public class Student
{
 /*...*/

https://riptutorial.com/ 14

 @OneToMany
 @Filter(name = "active", condition = "EXISTS(SELECT * FROM Study s WHERE state = true and
s.id = study_id)")
 Set<StudentStudy> studies;

 /* getters and setters methods */
}

Study Entity

@Entity
@Table(name = "Study")
@FilterDef(name = "active")
@Filter(name = "active", condition="state = true")
public class Study
{
 /*...*/

 @OneToMany
 Set<StudentStudy> students;

 @Field
 boolean state;

 /* getters and setters methods */
}

StudentStudy Entity

@Entity
@Table(name = "StudentStudy")
@Filter(name = "active", condition = "EXISTS(SELECT * FROM Study s WHERE state = true and s.id
= study_id)")
public class StudentStudy
{
 /*...*/

 @ManytoOne
 Student student;

 @ManytoOne
 Study study;

 /* getters and setters methods */
}

This way, everytime the "active" filter is enabled,

-Every query we do on the student entity will return ALL Students with ONLY their state = true
studies

-Every query we do on the Study entity will return ALL state = true studies

-Every query we do on the StudentStudy entiy will return ONLY the ones with a state = true Study
relationship

https://riptutorial.com/ 15

Pls note that study_id is the name of the field on the sql StudentStudy table

Read Criterias and Projections online: https://riptutorial.com/hibernate/topic/3939/criterias-and-
projections

https://riptutorial.com/ 16

https://riptutorial.com/hibernate/topic/3939/criterias-and-projections
https://riptutorial.com/hibernate/topic/3939/criterias-and-projections

Chapter 5: Custom Naming Strategy

Examples

Creating and Using a Custom ImplicitNamingStrategy

Creating a custom ImplicitNamingStrategy allows you to tweak how Hibernate will assign names to
non-explicitly named Entity attributes, including Foreign Keys, Unique Keys, Identifier Columns,
Basic Columns, and more.

For example, by default, Hibernate will generate Foreign Keys which are hashed and look similar
to:

FKe6hidh4u0qh8y1ijy59s2ee6m

While this is often not an issue, you may wish that the name was more descriptive, such as:

FK_asset_tenant

This can easily be done with a custom ImplicitNamingStrategy.

This example extends the ImplicitNamingStrategyJpaCompliantImpl, however you may choose to
implement ImplicitNamingStrategy if you wish.

import org.hibernate.boot.model.naming.Identifier;
import org.hibernate.boot.model.naming.ImplicitForeignKeyNameSource;
import org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl;

public class CustomNamingStrategy extends ImplicitNamingStrategyJpaCompliantImpl {

 @Override
 public Identifier determineForeignKeyName(ImplicitForeignKeyNameSource source) {
 return toIdentifier("FK_" + source.getTableName().getCanonicalName() + "_" +
source.getReferencedTableName().getCanonicalName(), source.getBuildingContext());
 }

}

To tell Hibernate which ImplicitNamingStrategy to use, define the
hibernate.implicit_naming_strategy property in your persistence.xml or hibernate.cfg.xml file as
below:

<property name="hibernate.implicit_naming_strategy"
 value="com.example.foo.bar.CustomNamingStrategy"/>

Or you can specify the property in hibernate.properties file as below:

hibernate.implicit_naming_strategy=com.example.foo.bar.CustomNamingStrategy

https://riptutorial.com/ 17

https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategy.html
https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategyJpaCompliantImpl.html
https://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/boot/model/naming/ImplicitNamingStrategy.html

In this example, all Foreign Keys which do not have an explicitly defined name will now get their
name from the CustomNamingStrategy.

Custom Physical Naming Strategy

When mapping our entities to database table names we rely on a @Table annotation. But if we have
a naming convention for our database table names, we can implement a custom physical naming
strategy in order to tell hibernate to calculate table names based on the names of the entities,
without explicitly stating those names with @Table annotation. Same goes for attributes and
columns mapping.

For example, our entity name is:

ApplicationEventLog

And our table name is:

application_event_log

Our Physical naming strategy needs to convert from entity names that are camel case to our db
table names which are snake case. We can achieve this by extending hibernate's
PhysicalNamingStrategyStandardImpl:

import org.hibernate.boot.model.naming.Identifier;
import org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl;
import org.hibernate.engine.jdbc.env.spi.JdbcEnvironment;

public class PhysicalNamingStrategyImpl extends PhysicalNamingStrategyStandardImpl {

 private static final long serialVersionUID = 1L;
 public static final PhysicalNamingStrategyImpl INSTANCE = new
PhysicalNamingStrategyImpl();

 @Override
 public Identifier toPhysicalTableName(Identifier name, JdbcEnvironment context) {
 return new Identifier(addUnderscores(name.getText()), name.isQuoted());
 }

 @Override
 public Identifier toPhysicalColumnName(Identifier name, JdbcEnvironment context) {
 return new Identifier(addUnderscores(name.getText()), name.isQuoted());
 }

 protected static String addUnderscores(String name) {
 final StringBuilder buf = new StringBuilder(name);
 for (int i = 1; i < buf.length() - 1; i++) {
 if (Character.isLowerCase(buf.charAt(i - 1)) &&
 Character.isUpperCase(buf.charAt(i)) &&
 Character.isLowerCase(buf.charAt(i + 1))) {
 buf.insert(i++, '_');
 }
 }
 return buf.toString().toLowerCase(Locale.ROOT);
 }

https://riptutorial.com/ 18

}

We are overriding default behavior of methods toPhysicalTableName and toPhysicalColumnName to
apply our db naming convention.

In order to use our custom implementation we need to define hibernate.physical_naming_strategy
property and give it the name of our PhysicalNamingStrategyImpl class.

hibernate.physical_naming_strategy=com.example.foo.bar.PhysicalNamingStrategyImpl

This way we can alleviate our code from @Table and @Column annotations, so our entity class:

@Entity
public class ApplicationEventLog {
 private Date startTimestamp;
 private String logUser;
 private Integer eventSuccess;

 @Column(name="finish_dtl")
 private String finishDetails;
}

will be correctly be mapped to db table:

CREATE TABLE application_event_log (
 ...
 start_timestamp timestamp,
 log_user varchar(255),
 event_success int(11),
 finish_dtl varchar(2000),
 ...
)

As seen in the example above, we can still explicitly state the name of the db object if it is not, for
some reason, in accordance with our general naming convention: @Column(name="finish_dtl")

Read Custom Naming Strategy online: https://riptutorial.com/hibernate/topic/3051/custom-naming-
strategy

https://riptutorial.com/ 19

https://riptutorial.com/hibernate/topic/3051/custom-naming-strategy
https://riptutorial.com/hibernate/topic/3051/custom-naming-strategy

Chapter 6: Enable/Disable SQL log

Remarks

Logging these queries is slow, even slower than Hibernate usually is. It also uses up a massive
amount of log space. Do not use logging in scenarios where performance is required. Use this
only when testing the queries that Hibernate actually generates.

Examples

Using a logging config file

In the logging configuration file of your choice set the logging of the following packages to the
levels shown.:

log the sql statement
org.hibernate.SQL=DEBUG
log the parameters
org.hibernate.type=TRACE

There will probably be some logger specific prefixes that are required.

Log4j config:

log4j.logger.org.hibernate.SQL=DEBUG
log4j.logger.org.hibernate.type=TRACE

Spring Boot application.properties:

logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type=TRACE

Logback logback.xml:

<logger name="org.hibernate.SQL" level="DEBUG"/>
<logger name="org.hibernate.type" level="TRACE"/>

Using Hibernate properties

This will show you the generated SQL, but will not show you the values contained within the
queries.

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">
 <property name="hibernateProperties">
 <props>
 <!-- show the sql without the parameters -->

https://riptutorial.com/ 20

 <prop key="hibernate.show_sql">true</prop>
 <!-- format the sql nice -->
 <prop key="hibernate.format_sql">true</prop>
 <!-- show the hql as comment -->
 <prop key="use_sql_comments">true</prop>
 </props>
 </property>
</bean>

Enable/Disable SQL log in debug

Some applications that use Hibernate generate a huge amount of SQL when the application is
started. Sometimes it's better to enable/disable the SQL log in specific points when debugging.

To enable, just run this code in your IDE when you are debugging the aplication:

org.apache.log4j.Logger.getLogger("org.hibernate.SQL")
 .setLevel(org.apache.log4j.Level.DEBUG)

To disable:

org.apache.log4j.Logger.getLogger("org.hibernate.SQL")
 .setLevel(org.apache.log4j.Level.OFF)

Read Enable/Disable SQL log online: https://riptutorial.com/hibernate/topic/3548/enable-disable-
sql-log

https://riptutorial.com/ 21

https://riptutorial.com/hibernate/topic/3548/enable-disable-sql-log
https://riptutorial.com/hibernate/topic/3548/enable-disable-sql-log

Chapter 7: Fetching in hibernate

Introduction

Fetching is really important in JPA (Java Persistence API). In JPA, HQL(Hibernate Query
Language) and JPQL(Java Persistence Query Language) are used to fetch the entities based on
their relationships. Although it is way better than using so many joining queries and sub-queries to
get what we want by using native SQL, the strategy how we fetch the associated entities in JPA
are still essentially effecting the performance of our application.

Examples

It is recommended to use FetchType.LAZY. Join fetch the columns when they
are needed.

Below is an Employer entity class which is mapped to the table employer. As you can see I used
fetch = FetchType.LAZY instead of fetch = FetchType.EAGER. The reason I am using LAZY is
because Employer may have a lot of properties later on and every time I may not need to know all
the fields of an Employer, so loading all of them will leading a bad performance then an employer
is loaded.

@Entity
@Table(name = "employer")
 public class Employer
 {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @Column(name = "name")
 private String Name;

 @OneToMany(mappedBy = "employer", fetch = FetchType.LAZY,
 cascade = { CascadeType.ALL }, orphanRemoval = true)
 private List<Employee> employees;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

https://riptutorial.com/ 22

 public List<Employee> getEmployees() {
 return employees;
 }

 public void setEmployees(List<Employee> employees) {
 this.employees = employees;
 }
 }

However, for LAZY fetched associations, uninitialized proxies are sometimes leads to
LazyInitializationException. In this case, we can simply use JOIN FETCH in the HQL/JPQL to
avoid LazyInitializationException.

SELECT Employer employer FROM Employer
 LEFT JOIN FETCH employer.name
 LEFT JOIN FETCH employer.employee employee
 LEFT JOIN FETCH employee.name
 LEFT JOIN FETCH employer.address

Read Fetching in hibernate online: https://riptutorial.com/hibernate/topic/9475/fetching-in-hibernate

https://riptutorial.com/ 23

https://riptutorial.com/hibernate/topic/9475/fetching-in-hibernate

Chapter 8: Hibernate and JPA

Examples

Relationship between Hibernate and JPA

Hibernate is an implementation of the JPA standard. As such, everything said there is also true for
Hibernate.

Hibernate has some extensions to JPA. Also, the way to set up a JPA provider is provider-specific.
This documentation section should only contain what is specific to Hibernate.

Read Hibernate and JPA online: https://riptutorial.com/hibernate/topic/6313/hibernate-and-jpa

https://riptutorial.com/ 24

http://www.riptutorial.com/jpa/example/6979/installation-or-setup
https://riptutorial.com/hibernate/topic/6313/hibernate-and-jpa

Chapter 9: Hibernate Entity Relationships
using Annotations

Parameters

Annotation Details

@OneToOne Specifies a one to one relationship with a corresponding object.

@OneToMany Specifies a single object that maps to many objects.

@ManyToOne Specifies a collection of objects that map to a single object.

@Entity Specifies an object that maps to a database table.

@Table Specifies which database table this object maps too.

@JoinColumn Specifies which column a foregin key is stored in.

@JoinTable Specifies an intermediate table that stores foreign keys.

Examples

Bi-Directional Many to Many using user managed join table object

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToMany(mappedBy = "bar")
 private List<FooBar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
 private UUID barId;

 @OneToMany(mappedBy = "foo")
 private List<FooBar> foos;
}

@Entity
@Table(name="FOO_BAR")
public class FooBar {
 private UUID fooBarId;

 @ManyToOne

https://riptutorial.com/ 25

 @JoinColumn(name = "fooId")
 private Foo foo;

 @ManyToOne
 @JoinColumn(name = "barId")
 private Bar bar;

 //You can store other objects/fields on this table here.
}

Specifies a two-way relationship between many Foo objects to many Bar objects using an
intermediate join table that the user manages.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR. The relationships between Foo and Bar objects are stored in a table called FOO_BAR.
There is a FooBar object as part of the application.

Commonly used when you want to store extra information on the join object such as the date the
relationship was created.

Bi-Directional Many to Many using Hibernate managed join table

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToMany
 @JoinTable(name="FOO_BAR",
 joinColumns = @JoinColumn(name="fooId"),
 inverseJoinColumns = @JoinColumn(name="barId"))
 private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
 private UUID barId;

 @OneToMany
 @JoinTable(name="FOO_BAR",
 joinColumns = @JoinColumn(name="barId"),
 inverseJoinColumns = @JoinColumn(name="fooId"))
 private List<Foo> foos;
}

https://riptutorial.com/ 26

http://i.stack.imgur.com/zR6jB.png

Specifies a relationship between many Foo objects to many Bar objects using an intermediate join
table that Hibernate manages.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR. The relationships between Foo and Bar objects are stored in a table called FOO_BAR.
However this implies that there is no FooBar object as part of the application.

Bi-directional One to Many Relationship using foreign key mapping

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToMany(mappedBy = "bar")
 private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
 private UUID barId;

 @ManyToOne
 @JoinColumn(name = "fooId")
 private Foo foo;
}

Specifies a two-way relationship between one Foo object to many Bar objects using a foreign key.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR. The foreign key is stored on the BAR table in a column called fooId.

Bi-Directional One to One Relationship managed by Foo.class

https://riptutorial.com/ 27

http://i.stack.imgur.com/1qk3Z.png
http://i.stack.imgur.com/Jh9TL.png

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "barId")
 private Bar bar;
}

@Entity
@Table(name="BAR")
public class Bar {
 private UUID barId;

 @OneToOne(mappedBy = "bar")
 private Foo foo;
}

Specifies a two-way relationship between one Foo object to one Bar object using a foreign key.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR. The foreign key is stored on the FOO table in a column called barId.

Note that the mappedBy value is the field name on the object, not the column name.

Uni-Directional One to Many Relationship using user managed join table

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToMany
 @JoinTable(name="FOO_BAR",
 joinColumns = @JoinColumn(name="fooId"),
 inverseJoinColumns = @JoinColumn(name="barId", unique=true))
 private List<Bar> bars;
}

@Entity
@Table(name="BAR")
public class Bar {
 private UUID barId;

 //No Mapping specified here.
}

https://riptutorial.com/ 28

http://i.stack.imgur.com/ZmICg.png

@Entity
@Table(name="FOO_BAR")
public class FooBar {
 private UUID fooBarId;

 @ManyToOne
 @JoinColumn(name = "fooId")
 private Foo foo;

 @ManyToOne
 @JoinColumn(name = "barId", unique = true)
 private Bar bar;

 //You can store other objects/fields on this table here.
}

Specifies a one-way relationship between one Foo object to many Bar objects using an
intermediate join table that the user manages.

This is similar to a ManyToMany relationship, but if you add a unique constraint to the target foreign
key you can enforce that it is OneToMany.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR. The relationships between Foo and Bar objects are stored in a table called FOO_BAR.
There is a FooBar object as part of the application.

Notice that there is no mapping of Bar objects back to Foo objects. Bar objects can be manipulated
freely without affecting Foo objects.

Very commonly used with Spring Security when setting up a User object who has a list of Role's
that they can perform. You can add and remove roles to a user without having to worry about
cascades deleting Role's.

Uni-directional One to One Relationship

@Entity
@Table(name="FOO")
public class Foo {
 private UUID fooId;

 @OneToOne
 private Bar bar;
}

@Entity

https://riptutorial.com/ 29

https://i.stack.imgur.com/ffpGs.png

@Table(name="BAR")
public class Bar {
 private UUID barId;
 //No corresponding mapping to Foo.class
}

Specifies a one-way relationship between one Foo object to one Bar object.

The Foo objects are stored as rows in a table called FOO. The Bar objects are stored as rows in a
table called BAR.

Notice that there is no mapping of Bar objects back to Foo objects. Bar objects can be manipulated
freely without affecting Foo objects.

Read Hibernate Entity Relationships using Annotations online:
https://riptutorial.com/hibernate/topic/5742/hibernate-entity-relationships-using-annotations

https://riptutorial.com/ 30

http://i.stack.imgur.com/5nJYw.png
https://riptutorial.com/hibernate/topic/5742/hibernate-entity-relationships-using-annotations

Chapter 10: HQL

Introduction

HQL is Hibernate Query Language, it based on SQL and behind the scenes it is changed into SQL
but the syntax is different. You use entity/class names not table names and field names not
column names. It also allows many shorthands.

Remarks

The main thing to remember when using hql is the use the class name and field names instead of
the table and column names we are used to in SQL.

Examples

Selecting a whole table

hql = "From EntityName";

Select specific columns

hql = "Select id, name From Employee";

Include a Where clause

hql = "From Employee where id = 22";

Join

hql = "From Author a, Book b Where a.id = book.author";

Read HQL online: https://riptutorial.com/hibernate/topic/9388/hql

https://riptutorial.com/ 31

https://riptutorial.com/hibernate/topic/9388/hql

Chapter 11: Lazy Loading vs Eager Loading

Examples

Lazy Loading vs Eager Loading

Fetching or loading data can be primarily classified into two types: eager and lazy.

In order to use Hibernate make sure you add the latest version of it to the dependencies section of
your pom.xml file:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.2.1.Final</version>
</dependency>

1. Eager Loading And Lazy Loading

The first thing that we should discuss here is what lazy loading and eager loading are:

Eager Loading is a design pattern in which data initialization occurs on the spot. It means that
collections are fetched fully at the time their parent is fetched (fetch immediately)

Lazy Loading is a design pattern which is used to defer initialization of an object until the point at
which it is needed. This can effectively contribute to application's performance.

2. Using The Different Types Of Loading

Lazy loading can be enabled using the following XML parameter:

lazy="true"

Let's delve into the example. First we have a User class:

public class User implements Serializable {

 private Long userId;
 private String userName;
 private String firstName;
 private String lastName;
 private Set<OrderDetail> orderDetail = new HashSet<>();

 //setters and getters
 //equals and hashcode
 }

Look at the Set of orderDetail that we have. Now let's have a look at the OrderDetail class:

https://riptutorial.com/ 32

public class OrderDetail implements Serializable {

 private Long orderId;
 private Date orderDate;
 private String orderDesc;
 private User user;

 //setters and getters
 //equals and hashcode
}

The important part that is involved in setting the lazy loading in the UserLazy.hbm.xml:

<set name="orderDetail" table="USER_ORDER" inverse="true" lazy="true" fetch="select">
 <key>
 <column name="USER_ID" not-null="true" />
 </key>
 <one-to-many class="com.baeldung.hibernate.fetching.model.OrderDetail" />
</set>

This is how the lazy loading is enabled. To disable lazy loading we can simply use: lazy = "false"
and this in turn will enable eager loading. The following is the example of setting up eager loading
in another file User.hbm.xml:

<set name="orderDetail" table="USER_ORDER" inverse="true" lazy="false" fetch="select">
 <key>
 <column name="USER_ID" not-null="true" />
 </key>
 <one-to-many class="com.baeldung.hibernate.fetching.model.OrderDetail" />
</set>

Scope

For those who haven't played with these two designs, the scope of lazy and eager is within a
specific Session of SessionFactory. Eager loads everything instantly, means there is no need to
call anything for fetching it. But lazy fetch usually demands some action to retrieve mapped
collection/object. This sometimes is problematic getting lazy fetch outside the session. For
instance, you have a view which shows the detail of the some mapped POJO.

@Entity
public class User {
 private int userId;
 private String username;
 @OneToMany
 private Set<Page> likedPage;

 // getters and setters here
}

@Entity
public class Page{
 private int pageId;
 private String pageURL;

https://riptutorial.com/ 33

 // getters and setters here
}

public class LazzyTest{
 public static void main(String...s){
 SessionFactory sessionFactory = new SessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();

 User user = session.get(User.class, 1);
 transaction.commit();
 session.close();

 // here comes the lazy fetch issue
 user.getLikedPage();
 }
}

When you will try to get lazy fetched outside the session you will get the lazyinitializeException.
This is because by default fetch strategy for all oneToMany or any other relation is lazy(call to DB
on demand) and when you have closed the session, you have no power to communicate with
database. so our code tries to fetch collection of likedPage and it throws exception because there
is no associated session for rendering DB.

Solution for this is to use:

Open Session in View - In which you keep the session open even on the rendered view.1.
Hibernate.initialize(user.getLikedPage()) before closing session - This tells hibernate to
initialize the collection elements

2.

Read Lazy Loading vs Eager Loading online: https://riptutorial.com/hibernate/topic/7249/lazy-
loading-vs-eager-loading

https://riptutorial.com/ 34

https://docs.jboss.org/hibernate/orm/3.5/javadocs/org/hibernate/LazyInitializationException.html
https://dzone.com/articles/open-session-view-design
https://riptutorial.com/hibernate/topic/7249/lazy-loading-vs-eager-loading
https://riptutorial.com/hibernate/topic/7249/lazy-loading-vs-eager-loading

Chapter 12: Mapping associations

Examples

One to One Hibernate Mapping

Every Country has one Capital. Every Capital has one Country.

Country.java

package com.entity;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table(name = "countries")
public class Country {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private int id;

 @Column(name = "name")
 private String name;

 @Column(name = "national_language")
 private String nationalLanguage;

 @OneToOne(mappedBy = "country")
 private Capital capital;

 //Constructor

 //getters and setters

 }

Capital.java

package com.entity;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity

https://riptutorial.com/ 35

@Table(name = "capitals")
public class Capital {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private int id;

 private String name;

 private long population;

 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn(name = "country_id")
 private Country country;

 //Constructor

 //getters and setters

}

HibernateDemo.java

package com.entity;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateDemo {

public static void main(String ar[]) {
 SessionFactory sessionFactory = new Configuration().configure().buildSessionFactory();
 Session session = sessionFactory.openSession();
 Country india = new Country();
 Capital delhi = new Capital();
 delhi.setName("Delhi");
 delhi.setPopulation(357828394);
 india.setName("India");
 india.setNationalLanguage("Hindi");
 delhi.setCountry(india);
 session.save(delhi);
 session.close();
 }

}

Read Mapping associations online: https://riptutorial.com/hibernate/topic/6478/mapping-
associations

https://riptutorial.com/ 36

https://riptutorial.com/hibernate/topic/6478/mapping-associations
https://riptutorial.com/hibernate/topic/6478/mapping-associations

Chapter 13: Native SQL Queries

Examples

Simple Query

Assuming you have a handle on the Hibernate Session object, in this case named session:

List<Object[]> result = session.createNativeQuery("SELECT * FROM some_table").list();
for (Object[] row : result) {
 for (Object col : row) {
 System.out.print(col);
 }
}

This will retrieve all rows in some_table and place them into the result variable and print every
value.

Example to get a unique result

Object pollAnswered = getCurrentSession().createSQLQuery(
 "select * from TJ_ANSWERED_ASW where pol_id = "+pollId+" and prf_log =
'"+logid+"'").uniqueResult();

with this query, you get a unique result when you know the result of the query is always going to
be unique.

And if the query returns more than one value, you will get an exception

org.hibernate.NonUniqueResultException

You also check the details in this link here with more discription

So, please be sure that you know the query will return unique result

Read Native SQL Queries online: https://riptutorial.com/hibernate/topic/6978/native-sql-queries

https://riptutorial.com/ 37

https://stackoverflow.com/a/40233705/4374472
https://riptutorial.com/hibernate/topic/6978/native-sql-queries

Chapter 14: Performance tuning

Examples

Don't use EAGER fetch type

Hibernate can use two types of fetch when you are mapping the relationship between two entities:
EAGER and LAZY.

In general, the EAGER fetch type is not a good idea, because it tells JPA to always fetch the data,
even when this data is not necessary.

Per example, if you have a Person entity and the relationship with Address like this:

@Entity
public class Person {

 @OneToMany(mappedBy="address", fetch=FetchType.EAGER)
 private List<Address> addresses;

}

Any time that you query a Person, the list of Address of this Person will be returned too.

So, instead of mapping your entity with:

@ManyToMany(mappedBy="address", fetch=FetchType.EAGER)

Use:

@ManyToMany(mappedBy="address", fetch=FetchType.LAZY)

Another thing to pay attention is the relationships @OneToOne and @ManyToOne. Both of them are
EAGER by default. So, if you are concerned about the performance of your application, you need
to set the fetch for this type of relationship:

@ManyToOne(fetch=FetchType.LAZY)

And:

@OneToOne(fetch=FetchType.LAZY)

Use composition instead of inheritance

Hibernate has some strategies of inheritance. The JOINED inheritance type do a JOIN between the
child entity and parent entity.

https://riptutorial.com/ 38

The problem with this approach is that Hibernate always bring the data of all involved tables in the
inheritance.

Per example, if you have the entities Bicycle and MountainBike using the JOINED inheritance type:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Bicycle {

}

And:

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class MountainBike extends Bicycle {

}

Any JPQL query that hit MountainBike will brings the Bicycle data, creating a SQL query like:

select mb.*, b.* from MountainBike mb JOIN Bicycle b ON b.id = mb.id WHERE ...

If you have another parent for Bicycle (like Transport, per example), this above query will brings
the data from this parent too, doing an extra JOIN.

As you can see, this is a kind of EAGER mapping too. You don't have the choice to bring only the
data of the MountainBike table using this inheritance strategy.

The best for performance is use composition instead of inheritance.

To accomplish this, you can mapping the MountainBike entity to have a field bicycle:

@Entity
public class MountainBike {

 @OneToOne(fetchType = FetchType.LAZY)
 private Bicycle bicycle;

}

And Bicycle:

@Entity
public class Bicycle {

}

Every query now will bring only the MountainBike data by default.

Read Performance tuning online: https://riptutorial.com/hibernate/topic/2326/performance-tuning

https://riptutorial.com/ 39

https://riptutorial.com/hibernate/topic/2326/performance-tuning

Credits

S.
No

Chapters Contributors

1
Getting started with
hibernate

Community, JamesENL, Michael Piefel, Naresh Kumar, Reborn,
user7491506

2
Association
Mappings between
Entities

StanislavL, user7491506

3 Caching Mitch Talmadge

4
Criterias and
Projections

Saifer, Sameer Srivastava

5
Custom Naming
Strategy

Mitch Talmadge, Naresh Kumar, veljkost

6
Enable/Disable SQL
log

Daniel Käfer, Dherik, JamesENL, Michael Piefel

7 Fetching in hibernate rObOtAndChalie

8 Hibernate and JPA Michael Piefel

9
Hibernate Entity
Relationships using
Annotations

Aleksei Loginov, JamesENL

10 HQL Daniel Käfer, user7491506

11
Lazy Loading vs
Eager Loading

BELLIL, Pramod, Pritam Banerjee, vicky

12
Mapping
associations

Dherik, omkar sirra

13 Native SQL Queries Daniel Käfer, Nathaniel Ford, Sandeep Kamath

14 Performance tuning Dherik, Michael Piefel

https://riptutorial.com/ 40

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2357233/jamesenl
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/5917671/naresh-kumar
https://riptutorial.com/contributor/3605712/reborn
https://riptutorial.com/contributor/7491506/user7491506
https://riptutorial.com/contributor/301607/stanislavl
https://riptutorial.com/contributor/7491506/user7491506
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/4940033/saifer
https://riptutorial.com/contributor/3705518/sameer-srivastava
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/5917671/naresh-kumar
https://riptutorial.com/contributor/3535298/veljkost
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/2387977/dherik
https://riptutorial.com/contributor/2357233/jamesenl
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/4581645/robotandchalie
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/4624001/aleksei-loginov
https://riptutorial.com/contributor/2357233/jamesenl
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/7491506/user7491506
https://riptutorial.com/contributor/3623163/bellil
https://riptutorial.com/contributor/3503187/pramod
https://riptutorial.com/contributor/1475228/pritam-banerjee
https://riptutorial.com/contributor/2000187/vicky
https://riptutorial.com/contributor/2387977/dherik
https://riptutorial.com/contributor/5371862/omkar-sirra
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/4374472/sandeep-kamath
https://riptutorial.com/contributor/2387977/dherik
https://riptutorial.com/contributor/2621917/michael-piefel

	About
	Chapter 1: Getting started with hibernate
	Remarks
	Versions
	Examples
	Using XML Configuration to set up Hibernate
	XML-less Hibernate configuration
	Simple hibernate example using XML

	Chapter 2: Association Mappings between Entities
	Examples
	OneToMany association
	One to many association using XML

	Chapter 3: Caching
	Examples
	Enabling Hibernate Caching in WildFly

	Chapter 4: Criterias and Projections
	Examples
	List using Restrictions
	Using Projections
	Use Filters

	Chapter 5: Custom Naming Strategy
	Examples
	Creating and Using a Custom ImplicitNamingStrategy
	Custom Physical Naming Strategy

	Chapter 6: Enable/Disable SQL log
	Remarks
	Examples
	Using a logging config file
	Using Hibernate properties
	Enable/Disable SQL log in debug

	Chapter 7: Fetching in hibernate
	Introduction
	Examples
	It is recommended to use FetchType.LAZY. Join fetch the columns when they are needed.

	Chapter 8: Hibernate and JPA
	Examples
	Relationship between Hibernate and JPA

	Chapter 9: Hibernate Entity Relationships using Annotations
	Parameters
	Examples
	Bi-Directional Many to Many using user managed join table object
	Bi-Directional Many to Many using Hibernate managed join table
	Bi-directional One to Many Relationship using foreign key mapping
	Bi-Directional One to One Relationship managed by Foo.class
	Uni-Directional One to Many Relationship using user managed join table
	Uni-directional One to One Relationship

	Chapter 10: HQL
	Introduction
	Remarks
	Examples
	Selecting a whole table
	Select specific columns
	Include a Where clause
	Join

	Chapter 11: Lazy Loading vs Eager Loading
	Examples
	Lazy Loading vs Eager Loading
	Scope

	Chapter 12: Mapping associations
	Examples
	One to One Hibernate Mapping

	Chapter 13: Native SQL Queries
	Examples
	Simple Query
	Example to get a unique result

	Chapter 14: Performance tuning
	Examples
	Don't use EAGER fetch type
	Use composition instead of inheritance

	Credits

