
HTTP

#http

Table of Contents

About 1

Chapter 1: Getting started with HTTP 2

Remarks 2

Versions 2

Examples 2

HTTP requests and responses 2

HTTP/1.0 3

HTTP/1.1 3

HTTP/2 4

HTTP/0.9 4

Chapter 2: Authentication 6

Parameters 6

Remarks 6

Examples 6

HTTP Basic Authentication 6

Chapter 3: Caching HTTP responses 8

Remarks 8

Glossary 8

Examples 8

Cache response for everyone for 1 year 8

Cache personalized response for 1 minute 8

Stop use of cached resources without checking with the server first 9

Request responses not to be stored at all 9

Obsolete, redundant and non-standard headers 9

Changing cached resources 9

Chapter 4: Cross Origin and Access Control 11

Remarks 11

Examples 11

Client: sending a cross-origin resource sharing (CORS) request 11

Server: responding to a CORS request 11

Permitting user credentials or session 11

Preflighting requests 12

Server: responding to preflight requests 12

Chapter 5: HTTP for APIs 14

Remarks 14

Examples 14

Create a resource 14

Edit a resource 15

Full updates 15

Side-Effects 17

Partial updates 17

Partial update with overlapping state 17

Patching partial data 19

Error Handling 20

Delete a resource 21

List resources 21

Chapter 6: HTTP requests 24

Parameters 24

Remarks 24

Examples 24

Sending a minimal HTTP request manually using Telnet 24

Basic request format 26

Request header fields 26

Message bodies 27

Chapter 7: HTTP responses 28

Parameters 28

Examples 30

Basic response format 30

Additional Headers 31

Message Bodies 32

Chapter 8: HTTP Status Codes 33

Introduction 33

Remarks 33

Examples 33

500 Internal Server Error 33

404 Not Found 33

Denying access to protected files 34

Successful request 34

Responding to a conditional request for cached content 34

Top 10 HTTP Status Code 34

2xx Success 34

3xx Redirection 35

4xx Client Error 35

5xx Server Error 35

Chapter 9: Response encodings and compression 36

Examples 36

HTTP compression 36

Multiple compression methods 36

gzip compression 36

Credits 38

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: http

It is an unofficial and free HTTP ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official HTTP.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/http
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with HTTP

Remarks

Hypertext Transfer Protocol (HTTP) uses a client-request/server-response model. HTTP is a
stateless protocol, which means it does not require the server to retain information or status about
each user for the duration of multiple requests. However, for performance reasons and to avoid
TCP' connection-latency issues, techniques like Persistent, Parallel or Pipelined connections may
be used.

Versions

Version Note(s)
Estimated
Release Date

HTTP/0.9 "As Implemented" 1991-01-01

HTTP/1.0
First version of HTTP/1.0, last version that has not made it
into an RFC

1992-01-01

HTTP/1.0
r1 First official RFC for HTTP 1996-05-01

HTTP/1.1
Improvements in connection handling, support for name-
based virtual hosts

1997-01-01

HTTP/1.1
r1

Disambiguous keyword usage cleaned up, possible issues
with message framing fixed

1999-06-01

HTTP/1.1
r2 Major overhaul 2014-06-01

HTTP/2 First spec for HTTP/2 2015-05-01

Examples

HTTP requests and responses

https://riptutorial.com/ 2

http://en.wikipedia.org/wiki/Http
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/HTTP2.html
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7540

HTTP describes how an HTTP client, such as a web browser, sends an HTTP request via a
network to an HTTP server, which then sends an HTTP response back to the client.

The HTTP request is typically either a request for an online resource, such as a web page or
image, but may also include additional information, such as data entered on a form. The HTTP
response is typically a representation of an online resource, such as a web page or image.

HTTP/1.0

HTTP/1.0 was described in RFC 1945.

HTTP/1.0 does not have some features that are today de-facto required on the Web, such as the
Host header for virtual hosts.

However, HTTP clients and servers sometimes still declare they use HTTP/1.0 if they have
incomplete implementation of the HTTP/1.1 protocol (e.g. without chunked transfer encoding or
pipelining), or compatibility is considered more important than performance (e.g. when connecting
to local proxy servers).

GET / HTTP/1.0
User-Agent: example/1

HTTP/1.0 200 OK
Content-Type: text/plain

Hello

HTTP/1.1

HTTP/1.1 has originally been specified in 1999 in RFC 2616 (protocol) and RFC 2617
(authentication), but these documents are now obsolete and should not be used as a reference:

Don’t use RFC2616. Delete it from your hard drives, bookmarks, and burn (or
responsibly recycle) any copies that are printed out.

— Mark Nottingham, chair of the HTTP WG

https://riptutorial.com/ 3

http://i.stack.imgur.com/tLYrL.png
https://tools.ietf.org/html/rfc1945
https://en.wikipedia.org/wiki/Chunked_transfer_encoding
https://www.mnot.net/blog/2014/06/07/rfc2616_is_dead

The up-to-date specification of HTTP/1.1, that matches how HTTP is implemented today, is in new
RFCs 723x:

RFC 7230: Message Syntax and Routing•
RFC 7231: Semantics and Content•
RFC 7232: Conditional Requests•
RFC 7233: Range Requests•
RFC 7234: Caching•
RFC 7235: Authentication•

HTTP/1.1 added, among other features:

chunked transfer encoding, which allows servers to reliably send responses of unknown
size,

•

persistent TCP/IP connections (which were non-standard extension in HTTP/1.0),•
range requests used for resuming downloads,•
cache control.•

HTTP/1.1 tried to introduce pipelining, which allowed HTTP clients to reduce request-response
latency by sending multiple requests at once without waiting for responses. Unfortunately, this
feature was never correctly implemented in some proxies, causing pipelined connections to drop
or reorder responses.

GET / HTTP/1.0
User-Agent: example/1
Host: example.com

HTTP/1.0 200 OK
Content-Type: text/plain
Content-Length: 6
Connection: close

Hello

HTTP/2

HTTP/2 (RFC 7540) changed on-the-wire format of HTTP from a simple text-based request and
response headers to binary data format sent in frames. HTTP/2 supports compression of the
headers (HPACK).

This reduced overhead of requests, and enabled receiving of multiple responses simultaneously
over a single TCP/IP connection.

Despite big changes in the data format, HTTP/2 still uses HTTP headers, and requests and
responses can be accurately translated between HTTP/1.1 and 2.

HTTP/0.9

The first version of HTTP that came into existence is 0.9, often referred to as "HTTP As
Implemented." A common description of 0.9 is "a subsect of the full HTTP [i.e. 1.0] protocol."

https://riptutorial.com/ 4

http://httpwg.org/specs/rfc7230.html
http://httpwg.org/specs/rfc7231.html
http://httpwg.org/specs/rfc7232.html
http://httpwg.org/specs/rfc7233.html
http://httpwg.org/specs/rfc7234.html
http://httpwg.org/specs/rfc7235.html
http://httpwg.org/specs/rfc7540.html
https://tools.ietf.org/html/rfc7541
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html

However, this greatly fails to illustrate the disparity in capabilities between 0.9 and 1.0.

Neither requests nor responses in 0.9 feature headers. Requests consist of a single CRLF-
terminated line of GET, followed by a space, followed by the requested resource URL. Responses
are expected to be a single HTML document. The end of said document is marked by dropping the
connection server-side. There are no facilities to indicate success or failure of an operation. The
only interactive property is the search string which is closely tied to the <isindex> HTML tag.

Usage of HTTP/0.9 is nowadays exceptionally rare. It is occasionally seen on embedded systems
as an alternative to tftp.

Read Getting started with HTTP online: https://riptutorial.com/http/topic/984/getting-started-with-
http

https://riptutorial.com/ 5

https://www.w3.org/Addressing/Search.html
https://www.w3.org/MarkUp/html-spec/html-spec_5.html#SEC5.2.3
http://stackoverflow.com/tags/tftp/info
https://riptutorial.com/http/topic/984/getting-started-with-http
https://riptutorial.com/http/topic/984/getting-started-with-http

Chapter 2: Authentication

Parameters

Parameter Details

Response status
401 if the origin server requires authentication, 407 if an intermediate proxy
requires authentication

Response
headers

WWW-Authenticate by the origin server, Proxy-Authenticate by an
intermediate proxy

Request headers
Authorization for authorization against an origin server, Proxy-
Authorization against an intermediate proxy

Authentication
scheme

Basic for Basic Authentication, but others such as Digest and SPNEGO can
be used. See the HTTP Authentication Schemes Registry.

Realm
A name of the protected space on the server; a server can have multiple
such spaces, each with a distinct name and authentication mechanisms.

Credentials
For Basic: username and password separated by a colon, base64-
encoded; for example, username:password base64-encoded is
dXNlcm5hbWU6cGFzc3dvcmQ=

Remarks

Basic Authentication is defined in RFC2617. It can be used to authenticate against the origin
server after receiving a 401 Unauthorized as well as against a proxy server after a 407 (Proxy
Authentication Required). In the (decoded) credentials, the password starts after the first colon.
Therefore the username cannot contain a colon, but the password can.

Examples

HTTP Basic Authentication

HTTP Basic Authentication provides a straightforward mechanism for authentication. Credentials
are sent in plain text, and so is insecure by default. Successful authentication proceeds as follows.

The client requests a page for which access is restricted:

GET /secret

The server responds with status code 401 Unauthorized and requests the client to authenticate:

https://riptutorial.com/ 6

https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7235#section-3.2
https://tools.ietf.org/html/rfc7235#section-4.1
https://tools.ietf.org/html/rfc7235#section-4.3
https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7235#section-4.4
https://tools.ietf.org/html/rfc7235#section-4.4
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.ietf.org/rfc/rfc2617.txt

401 Unauthorized
WWW-Authenticate: Basic realm="Secret Page"

The client sends the Authorization header. The credentials are username:password base64 encoded:

GET /secret
Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

The server accepts the credentials and responds with the page content:

HTTP/1.1 200 OK

Read Authentication online: https://riptutorial.com/http/topic/3286/authentication

https://riptutorial.com/ 7

https://riptutorial.com/http/topic/3286/authentication

Chapter 3: Caching HTTP responses

Remarks

Responses are cached separately for each URL and each HTTP method.

HTTP caching is defined in RFC 7234.

Glossary

fresh — state of a cached response, which hasn't expired yet. Typically, a fresh response
can satisfy requests without a need to contact the server the response originated from.

•

stale — state of a cached response, which is past its expiration date. Typically, stale
responses can't be used to satisfy a request without checking with the server whether it's still
valid.

•

satisfy — cached response satisfies a request when all conditions in the request match the
cached response, e.g. they have the same HTTP method and URL, the response is fresh or
the request allows stale responses, request headers match headers listed in response's Vary
header, etc.

•

revalidation — checking whether a cached response is fresh. This is usually done with a
conditional request containing If-Modified-Since or If-None-Match and response status 304.

•

private cache — cache for a single user, e.g. in a web browser. Private caches can store
personalized responses.

•

public cache — cache shared between many users, e.g. in a proxy server. Such cache can
send the same response to multiple users.

•

Examples

Cache response for everyone for 1 year

Cache-Control: public, max-age=31536000

public means the response is the same for all users (it does not contain any personalized
information). max-age is in seconds from now. 31536000 = 60 * 60 * 24 * 365.

This is recommended for static assets that are never meant to change.

Cache personalized response for 1 minute

Cache-Control: private, max-age=60

private specifies that the response can be cached only for user who requested the resource, and
can't be reused when other users request the same resource. This is appropriate for responses
that depend on cookies.

https://riptutorial.com/ 8

http://httpwg.org/specs/rfc7234.html

Stop use of cached resources without checking with the server first

Cache-Control: no-cache

The client will behave as if the response was not cached. This is appropriate for resources that
can unpredictably change at any time, and which users must always see in the latest version.

Responses with no-cache will be slower (high latency) due to need to contact the server every time
they're used.

However, to save bandwidth, the clients may still store such responses. Responses with no-cache
won't be used to satisfy requests without contacting the server each time to check whether the
cached response can be reused.

Request responses not to be stored at all

 Cache-control: no-store

Instructs clients no to cache the response in any way, and to forget it at soon as possible.

This directive was originally designed for sensitive data (today HTTPS should be used instead),
but can be used to avoid polluting caches with responses that can't be reused.

It's appropriate only in specific cases where the response data is always different, e.g. an API
endpoint that returns a large random number. Otherwise, no-cache and revalidation can be used to
have a behavior of "uncacheable" response, while still being able to save some bandwidth.

Obsolete, redundant and non-standard headers

Expires — specifies date when the resource becomes stale. It relies on servers and clients
having accurate clocks and supporting time zones correctly. Cache-control: max-age takes
precedence over Expires, and is generally more reliable.

•

post-check and pre-check directives are non-standard Internet Explorer extensions that
enable use of stale responses. The standard alternative is stale-while-revalidate.

•

Pragma: no-cache — obsoleted in 1999. Cache-control should be used instead.•

Changing cached resources

The easiest method to bypass cache is to change the URL. This is used as a best practice when
the URL contains a version or a checksum of the resource, e.g.

http://example.com/image.png?version=1
http://example.com/image.png?version=2

These two URLs will be cached separately, so even if …?version=1 was cached forever, a new copy
could be immediately retrieved as …?version=2.

https://riptutorial.com/ 9

https://tools.ietf.org/rfc/rfc5861.txt
http://www.ietf.org/rfc/rfc2616.txt

Please don't use random URLs to bypass caches. Use Cache-control: no-cache or Cache-control:
no-store instead. If responses with random URLs are sent without the no-store directive, they will
be unnecessarily stored in caches and push out more useful responses out of the cache,
degrading performance of the entire cache.

Read Caching HTTP responses online: https://riptutorial.com/http/topic/3296/caching-http-
responses

https://riptutorial.com/ 10

https://riptutorial.com/http/topic/3296/caching-http-responses
https://riptutorial.com/http/topic/3296/caching-http-responses

Chapter 4: Cross Origin and Access Control

Remarks

Cross-origin resource sharing is designed to allow dynamic requests between domains, often
using techniques such as AJAX. While the scripting does most of the work, the HTTP server must
support the request using the correct headers.

Examples

Client: sending a cross-origin resource sharing (CORS) request

A cross-origin request must be sent including the Origin header. This indicates from where the
request originated. For example, a cross-origin request from http://example.com to
http://example.org would look like this:

GET /cors HTTP/1.1
Host: example.org
Origin: example.com

The server will use this value to determine if the request is authorized.

Server: responding to a CORS request

The response to a CORS request must include an Access-Control-Allow-Origin header, which
dictates what origins are allowed to use the CORS resource. This header can take one of three
values:

An origin. Doing this permits requests from that origin only.•
The character *. This permits requests from any origin.•
The string null. This permits no CORS requests.•

For example, on reception of a CORS request from the origin http://example.com, if example.com is
an authorized origin, the server would send back this response:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: example.com

An any-origin response would also permit this request, i.e.:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

Permitting user credentials or session

https://riptutorial.com/ 11

https://www.w3.org/TR/cors
https://en.wikipedia.org/wiki/Ajax_(programming)

Allowing user credentials or the user's session to be sent with a CORS request allows the server
to persist user data across CORS requests. This is useful if the server needs to check if the user is
logged in before providing data (for example, only performing an action if a user is logged in - this
would require the CORS request to be sent with credentials).

This can be achieved server-side for preflighted requests, by sending the Access-Control-Allow-
Credentials header in response to the OPTIONS preflight request. Take the following case of a CORS
request to DELETE a resource:

OPTIONS /cors HTTP/1.1
Host: example.com
Origin: example.org
Access-Control-Request-Method: DELETE

HTTP/1.1 200 OK
Access-Control-Allow-Origin: example.org
Access-Control-Allow-Methods: DELETE
Access-Control-Allow-Credentials: true

The Access-Control-Allow-Credentials: true line indicates that the following DELETE CORS request
may be sent with user credentials.

Preflighting requests

A basic CORS request is allowed to use one of only two methods:

GET•
POST•

and only a few select headers. POST CORS requests can additionally choose from only three
content types.

To avoid this issue, requests that wish to use other methods, headers, or content types must first
issue a preflight request, which is an OPTIONS request that includes access-control Request
headers. For example, this is a preflight request that checks if the server will accept a PUT request
that includes a DNT header:

OPTIONS /cors HTTP/1.1
Host: example.com
Origin: example.org
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: DNT

Server: responding to preflight requests

When a server receives a preflight request, it must check if it supports the requested method and
headers, and send back a response that indicates its ability to support the request, as well as any
other permitted data (such as credentials).

These are indicated in access-control Allow headers. The server may also send back an access-

https://riptutorial.com/ 12

control Max-Age header, indicating how long the preflight response can be cached for.

This is what a request-response cycle for a preflight request might look like:

OPTIONS /cors HHTP/1.1
Host: example.com
Origin: example.org
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: DNT

HTTP/1.1 200 OK
Access-Control-Allow-Origin: example.org
Access-Control-Allow-Methods: PUT
Access-Control-Allow-Headers: DNT

Read Cross Origin and Access Control online: https://riptutorial.com/http/topic/3424/cross-origin-
and-access-control

https://riptutorial.com/ 13

https://riptutorial.com/http/topic/3424/cross-origin-and-access-control
https://riptutorial.com/http/topic/3424/cross-origin-and-access-control

Chapter 5: HTTP for APIs

Remarks

HTTP APIs use a wide spectrum of HTTP verbs and typically return JSON or XML responses.

Examples

Create a resource

Not everyone agrees on what the most semantically correct method for resource creation is. Thus,
your API could accept POST or PUT requests, or either.

The server should respond with 201 Created if the resource was successfully created. Pick the
most appropriate error code if it was not.

For example, if you provide an API to create employee records, the request/response might look
like this:

POST /employees HTTP/1.1
Host: example.com
Content-Type: application/json

{
 "name": "Charlie Smith",
 "age": 38,
 "job_title": "Software Developer",
 "salary": 54895.00
}

HTTP/1.1 201 Created
Location: /employees/1/charlie-smith
Content-Type: application/json

{
 "employee": {
 "name": "Charlie Smith",
 "age": 38,
 "job_title": "Software Developer",
 "salary": 54895.00
 "links": [
 {
 "uri": "/employees/1/charlie-smith",
 "rel": "self",
 "method": "GET"
 },
 {
 "uri": "/employees/1/charlie-smith",
 "rel": "delete",
 "method": "DELETE"
 },
 {

https://riptutorial.com/ 14

 "uri": "/employees/1/charlie-smith",
 "rel": "edit",
 "method": "PATCH"
 }
]
 },
 "links": [
 {
 "uri": "/employees",
 "rel": "create",
 "method": "POST"
 }
]
}

Including the links JSON fields in the response enables the client to access resource related to
the new resource and to the application as a whole, without having to know their URIs or methods
beforehand.

Edit a resource

Editing or updating a resource is a common purpose for APIs. Edits can be achieved by sending
either POST, PUT or PATCH requests to the respective resource. Although POST is allowed to append
data to a resource's existing representation it is recommended to use either PUT or PATCH as they
convey a more explicit semantic.

Your server should respond with 200 OK if the update was performed, or 202 Accepted if it has yet to
be applied. Pick the most appropriate error code if it cannot be completed.

Full updates

PUT has the semantics of replacing the current representation with the payload included in the
request. If the payload is not of the same representation type as the current representation of the
resource to update, the server can decide which approach to take. RFC7231 defines that the
server can either

Reconfigure the target resource to reflect the new media type•
Transform the PUT representation to a format consistent with that of the resouce before
saving it as the new resource state

•

Reject the request with a 415 Unsupported Media Type response indicating that the target
resource is limited to a specific (set) of media types.

•

A base resource containing a JSON HAL representation like ...

{
 "name": "Charlie Smith",
 "age": 39,
 "job_title": "Software Developer",
 "_links": {
 "self": { "href": "/users/1234" },
 "employee": { "href": "http://www.acmee.com" },

https://riptutorial.com/ 15

https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
http://stateless.co/hal_specification.html

 "curies": [{ "name": "ea", "href": "http://www.acmee.com/docs/rels/{rel}", templated":
true}],
 "ea:admin": [
 "href": "/admin/2",
 "title": "Admin"
]
 }
}

... may receive an update request like this

PUT /users/1234 HTTP/1.1
Host: http://www.acmee.com
Content-Type: "application/json; charset=utf-8"
Content-Length: 85
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

{
 "name": "Charlie Gold-Smith",
 "age": 40,
 "job_title": "Senior Software Developer"
}

The server may now replace the state of the resource with the given request body and also
change the content-type from application/hal+json to application/json or convert the JSON
payload to a JSON HAL representation and then replace the content of the resource with the
transformed one or reject the update request due to an inaplicable media type with a 415
Unsupported Media Type response.

There is a difference between replacing the content directly or first transforming the representation
to the defined representation model and then replacing the existing content with the transformed
one. A subsequent GET request will return the following response on a direct replacement:

GET /users/1234 HTTP/1.1
Host: http://www.acmee.com
Accept-Encoding: gzip, deflate
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
ETag: "e0023aa4e"

{
 "name": "Charlie Gold-Smith",
 "age": 40,
 "job_title": "Senior Software Developer"
}

while the transformation and then replace approach will return the following representation:

GET /users/1234 HTTP/1.1
Host: http://www.acmee.com
Accept-Encoding: gzip, deflate
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
ETag: e0023aa4e

https://riptutorial.com/ 16

{
 "name": "Charlie Gold-Smith",
 "age": 40,
 "job_title": "Senior Software Developer",
 "_links": {
 "self": { "href": "/users/1234" },
 "employee": { "href": "http://www.acmee.com" },
 "curies": [{ "name": "ea", "href": "http://www.acmee.com/docs/rels/{rel}", templated":
true}],
 "ea:admin": [
 "href": "/admin/2",
 "title": "Admin"
]
 }
}

Side-Effects

Note that PUT is allowed to have side-effects although it is defined as idempotent operation! This is
documented in RFC7231 as

A PUT request applied to the target resource can have side effects on other
resources. For example, an article might have a URI for identifying "the current
version" (a resource) that is separate from the URIs identifying each particular version
(different resources that at one point shared the same state as the current version
resource). A successful PUT request on "the current version" URI might therefore
create a new version resource in addition to changing the state of the target resource,
and might also cause links to be added between the related resources.

Producing additional log entries is not considered as side effect usually as this is certainly no state
of a resource in general.

Partial updates

RFC7231 mentions this regarding partial updates:

Partial content updates are possible by targeting a separately identified resource with
state that overlaps a portion of the larger resource, or by using a different method that
has been specifically defined for partial updates (for example, the PATCH method
defined in RFC5789).

Partial updates can therefore be performed in two flavors:

Have a resource embed multiple smaller sub-resources and update only a respective sub-
resource instead of the full resource via PUT

•

Using PATCH and instruct the server what to update•

Partial update with overlapping state

https://riptutorial.com/ 17

https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc5789
http://williamdurand.fr/2014/02/14/please-do-not-patch-like-an-idiot/

If a user representation needs to be partially updated due to a move of a user to an other location,
instead of updating the user directly, the related resource should be updated directly which reflects
to a partial update of the user representation.

Before the move a user had the following representation

GET /users/1234 HTTP/1.1
Host: http://www.acmee.com
Accept: application/hal+json; charset=utf-8
Accept-Encoding: gzip, deflate
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
ETag: "e0023aa4e"

{
 "name": "Charlie Gold-Smith",
 "age": 40,
 "job_title": "Senior Software Developer",
 "_links": {
 "self": { "href": "/users/1234" },
 "employee": { "href": "http://www.acmee.com" },
 "curies": [{ "name": "ea", "href": "http://www.acmee.com/docs/rels/{rel}", templated":
true}],
 "ea:admin": [
 "href": "/admin/2",
 "title": "Admin"
]
 },
 "_embedded": {
 "ea:address": {
 "street": "Terrace Drive, Central Park",
 "zip": "NY 10024"
 "city": "New York",
 "country": "United States of America",
 "_links": {
 "self": { "href": "/address/abc" },
 "google_maps": { "href": "http://maps.google.com/?ll=40.7739166,-73.970176" }
 }
 }
 }
}

As the user is moving to a new location she updates her location information like this:

PUT /address/abc HTTP/1.1
Host: http://www.acmee.com
Content-Type: "application/json; charset=utf-8"
Content-Length: 109
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

{
 "street": "Standford Ave",
 "zip": "CA 94306",
 "city": "Pablo Alto",
 "country": "United States of America"
}

With the transformation-before-replace semantic for the mismatched media-type between the

https://riptutorial.com/ 18

existing address resource and the one in the request, as described above, the address resource is
now updated which has the effect that on a subsequent GET request on the user resource the new
address for the user is returned.

GET /users/1234 HTTP/1.1
Host: http://www.acmee.com
Accept: application/hal+json; charset=utf-8
Accept-Encoding: gzip, deflate
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
ETag: "e0023aa4e"

{
 "name": "Charlie Gold-Smith",
 "age": 40,
 "job_title": "Senior Software Developer",
 "_links": {
 "self": { "href": "/users/1234" },
 "employee": { "href": "http://www.acmee.com" },
 "curies": [{ "name": "ea", "href": "http://www.acmee.com/docs/rels/{rel}", templated":
true}],
 "ea:admin": [
 "href": "/admin/2",
 "title": "Admin"
]
 },
 "_embedded": {
 "ea:address": {
 "street": "Standford Ave",
 "zip": "CA 94306",
 "city": "Pablo Alto",
 "country": "United States of America"
 "_links": {
 "self": { "href": "/address/abc" },
 "google_maps": { "href": "http://maps.google.com/?ll=37.4241311,-122.1524475"
}
 }
 }
 }
}

Patching partial data

PATCH is defined in RFC5789 and is not directly part of the HTTP spec per se. A common misbelief
is, that sending only the fields that should be partially updated is enough within a PATCH request.
The specification therefore states

The PATCH method requests that a set of changes described in the request entity be
applied to the resource identified by the Request-URI. The set of changes is
represented in a format called a "patch document" identified by a media type.

This means that a client should calculate the necessary steps needed to transform the resource
from state A to state B and send these instructions to the server.

A popular JSON based media-type for patching is JSON Patch.

https://riptutorial.com/ 19

https://tools.ietf.org/html/rfc5789
http://williamdurand.fr/2014/02/14/please-do-not-patch-like-an-idiot/
https://tools.ietf.org/html/rfc6902

If the age and the job-title of our sample user changes and an additional field representing the
income of the user should be added a partial update using PATCH using JSON Patch may look like
this:

PATCH /users/1234 HTTP/1.1
Host: http://www.acmee.com
Content-Type: application/json-patch+json; charset=utf-8
Content-Length: 188
Accept: application/json
If-Match: "e0023aa4e"

[
 { "op": "replace", "path": "/age", "value": 40 },
 { "op": "replace", "path": "/job_title", "value": "Senior Software Developer" },
 { "op": "add", "path": "/salery", "value": 63985.00 }
]

PATCH may update multiple resources at once and requires to apply the changes atomically which
means either all changes have to be applied or none at all which puts transactional burden on the
API implementor.

A successful update may return something like this

HTTP/1.1 200 OK
Location: /users/1234
Content-Type: application/json
ETag: "df00eb258"

{
 "name": "Charlie Smith",
 "age": 40,
 "job_title": "Senior Software Developer",
 "salary": 63985.00
}

though is not restricted to 200 OK response codes only.

To prevent in-between updates (changes done in-between the previous fetch of the representation
state and the update) ETag, If-Match or If-Unmodified-Since header should be used.

Error Handling

The spec on PATCH recommends the following error handling:

Type Error Code

Malformed patch document 400 Bad Request

Unsupported patch document 415 Unsupported Media
Type

Unprocessable request, i.e. if the resoure would become invalid by
applying the patch

422 Unprocessable
Entity

https://riptutorial.com/ 20

Type Error Code

Resource not found 404 Not Found

Conflicting state, i.e. a rename (move) of a field which does not exist 409 Conflict

Conflicting modification, i.e. if the client uses a If-Match or If-
Unmodified-Since header which validation failed. If no precondition
was available, the latter error code should be returned

412 Precondition
Failed or 409 Conflict

Concurrent modification, i.e. if the request needs to be applied before
acception further PATCH requests

409 Conflict

Delete a resource

Another common use of HTTP APIs is to delete an existing resource. This should usually be done
using DELETE requests.

If the deletion was successful, the server should return 200 OK; an appropriate error code if it was
not.

If our employee Charlie Smith has left the company and we now want to delete his records, that
might look like this:

DELETE /employees/1/charlie-smith HTTP/1.1
Host: example.com

HTTP/1.1 200 OK
Content-Type: application/json

{
 'links': [
 {
 'uri': '/employees',
 'rel': 'create',
 'method': 'POST'
 }
]
}

List resources

The last common use of HTTP APIs is to obtain a list of existing resources on the server. Lists like
this should be obtained using GET requests, since they only retrieve data.

The server should return 200 OK if it can supply the list, or an appropriate error code if not.

Listing our employees, then, might look like this:

GET /employees HTTP/1.1
Host: example.com

https://riptutorial.com/ 21

HTTP/1.1 200 OK
Content-Type: application/json

{
 'employees': [
 {
 'name': 'Charlie Smith',
 'age': 39,
 'job_title': 'Software Developer',
 'salary': 63985.00
 'links': [
 {
 'uri': '/employees/1/charlie-smith',
 'rel': 'self',
 'method': 'GET'
 },
 {
 'uri': '/employees/1/charlie-smith',
 'rel': 'delete',
 'method': 'DELETE'
 },
 {
 'uri': '/employees/1/charlie-smith',
 'rel': 'edit',
 'method': 'PATCH'
 }
]
 },
 {
 'name': 'Donna Prima',
 'age': 30,
 'job_title': 'QA Tester',
 'salary': 77095.00
 'links': [
 {
 'uri': '/employees/2/donna-prima',
 'rel': 'self',
 'method': 'GET'
 },
 {
 'uri': '/employees/2/donna-prima',
 'rel': 'delete',
 'method': 'DELETE'
 },
 {
 'uri': '/employees/2/donna-prima',
 'rel': 'edit',
 'method': 'PATCH'
 }
]
 }
],
 'links': [
 {
 'uri': '/employees/new',
 'rel': 'create',
 'method': 'PUT'
 }
]
}

https://riptutorial.com/ 22

Read HTTP for APIs online: https://riptutorial.com/http/topic/3423/http-for-apis

https://riptutorial.com/ 23

https://riptutorial.com/http/topic/3423/http-for-apis

Chapter 6: HTTP requests

Parameters

HTTP
Method

Purpose

OPTIONS
Retrieve information about the communication options (available methods and
headers) available on the specified request URI.

GET
Retrieve the data identified by the request URI, or the data produced by the
script available at the request URI.

HEAD
Identical to GET except that no message body will be returned by the server: only
headers.

POST
Submit a block of data (specified in the message body) to the server for addition
to the resouce specified in the request URI. Most commonly used for form
processing.

PUT
Store the enclosed information (in the message body) as a new or updated
resource under the given request URI.

DELETE Delete, or queue for deletion, the resource identified by the request URI.

TRACE
Essentially an echo command: a functioning, compliant HTTP server must send
the entire request back as the body of a 200 (OK) response.

Remarks

The CONNECT method is reserved by the method definitions specification for use with proxies that
are able to switch between proxying and tunneling modes (such as for SSL tunneling).

Examples

Sending a minimal HTTP request manually using Telnet

This example demonstrates that HTTP is a text-based Internet communications protocol, and
shows a basic HTTP request and the corresponding HTTP response.

You can use Telnet to manually send a minimal HTTP request from the command line, as follows.

Start a Telnet session to the web server www.example.org on port 80:

telnet www.example.org 80

1.

https://riptutorial.com/ 24

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.9
https://en.wikipedia.org/wiki/Telnet

Telnet reports that you have connected to the server:

Connected to www.example.org.
Escape character is '^]'.

Enter a request line to send a GET request URL path /, using HTTP 1.1

GET / HTTP/1.1

2.

Enter an HTTP header field line to identify the host name part of the required URL, which is
required in HTTP 1.1

Host: www.example.org

3.

Enter a blank line to complete the request.

The web server sends the HTTP response, which appears in the Telnet session.

4.

The complete session, is as follows. The first line of the response is the HTTP status line, which
includes the status code 200 and the status text OK, which indicate that the request was
processed successfully. This is followed by a number of HTTP header fields, a blank line, and the
HTML response.

$ telnet www.example.org 80
Trying 2606:2800:220:1:248:1893:25c8:1946...
Connected to www.example.org.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.example.org

HTTP/1.1 200 OK
Accept-Ranges: bytes
Cache-Control: max-age=604800
Content-Type: text/html
Date: Thu, 21 Jul 2016 15:56:05 GMT
Etag: "359670651"
Expires: Thu, 28 Jul 2016 15:56:05 GMT
Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
Server: ECS (lga/1318)
Vary: Accept-Encoding
X-Cache: HIT
x-ec-custom-error: 1
Content-Length: 1270

<!doctype html>
<html>
<head>
 <title>Example Domain</title>
 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
</head>
<body>
<div>
 <h1>Example Domain</h1>

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

 <p>This domain is established to be used for illustrative examples in documents. You may
use this
 domain in examples without prior coordination or asking for permission.</p>
 <p>More information...</p>
</div>
</body>
</html>

(style element and blank lines removed from the HTML reponse, for brevity.)

Basic request format

In HTTP 1.1, a minimal HTTP request consists of a request line and a Host header:

GET /search HTTP/1.1 \r\n
Host: google.com \r\n
\r\n

The first line has this format:

Method Request-URI HTTP-Version CRLF

Method should be a valid HTTP method; one of [1][2]:

OPTIONS•
GET•
HEAD•
POST•
PUT•
DELETE•
PATCH•
TRACE•
CONNECT•

Request-URI indicates either the URI or the path to the resource that the client is requesting. It can
be either:

a fully-qualified URI, including scheme, host, (optional) port and path; or•
a path, in which case the host must be specified in the Host header•

HTTP-Version indicates the version of the HTTP protocol the client is using. For HTTP 1.1 requests
this must always be HTTP/1.1.

The request line ends with a carriage return—line feed pair, usually represented by \r\n.

Request header fields

Header fields (usually just called ‘headers’) may be added to an HTTP request to provide
additional information with the request. A header has semantics similar to parameters passed to a
method in any programming language that supports such things.

https://riptutorial.com/ 26

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
https://tools.ietf.org/html/rfc5789

A request with Host, User-Agent and Referer headers might look like this:

GET /search HTTP/1.1 \r\n
Host: google.com \r\n
User-Agent: Chrome/54.0.2803.1 \r\n
Referer: http://google.com/ \r\n
\r\n

A full list of supported HTTP 1.1 request headers can be found in the specification. The most
common are:

Host - the host name part of the request URL (required in HTTP/1.1)•
User-Agent - a string that represents the user agent requesting;•
Referer - the URI that the client was referred here from; and•
If-Modified-Since - gives a date that the server can use to determine if a resource has
changed and indicate that the client can used a cached copy if it has not.

•

A header should be formed as Name: Value CRLF. Name is the header name, such as User-Agent.
Value is the data assigned to it, and the line should end with a CRLF. Header names are case-
insensitive and may only use letters, digits and the characters !#$%&'*+-.^_`|~ (RFC7230 section
3.2.6 Field value components).

The Referer header field name is a typo for ‘referrer’, introduced accidentally in RFC1945.

Message bodies

Some HTTP requests may contain a message body. This is additional data that the server will use
to process the request. Message bodies are most often used in POST or PATCH and PUT
requests, to provide new data that the server should apply to a resource.

Requests that include a message body should always include its length in bytes with Content-
Length header.

A message body is included after all headers and a double CRLF. An example PUT request with a
body might look like this:

PUT /files/129742 HTTP/1.1\r\n
Host: example.com\r\n
User-Agent: Chrome/54.0.2803.1\r\n
Content-Length: 202\r\n
\r\n
This is a message body. All content in this message body should be stored under the
/files/129742 path, as specified by the PUT specification. The message body does
not have to be terminated with CRLF.

HEAD and TRACE requests must not include a message body.

Read HTTP requests online: https://riptutorial.com/http/topic/2909/http-requests

https://riptutorial.com/ 27

http://httpwg.org/specs/rfc7231.html#request.header.fields
http://httpwg.org/specs/rfc7230.html#field.components
https://tools.ietf.org/html/rfc1945
https://riptutorial.com/http/topic/2909/http-requests

Chapter 7: HTTP responses

Parameters

Status
Code

Reason-Phrase — Description

100 Continue — the client should send the following part of a multi-part request.

101
Switching Protocols — the server is changing the version or type of protocol
used in this communication.

200 OK — the server has received and completed the client's request.

201
Created — the server has accepted the request and created a new resource,
which is available under the URI in the Location header.

202
Accepted — the server has received and accepted the client's request, but it has
not yet started or completed processing.

203
Non-Authoritative Information — the server is returning data that may be a sub-
or superset of the information available on the original server. Mainly used by
proxies.

204 No Content — used in place of 200 (OK) when there is no body to the response.

205
Reset Content — identical to 204 (No Content), but the client should reload the
active document view.

206
Partial Content — used in place of 200 (OK) when the client requested a Range
header.

300
Multiple Choices — the requested resource is available at multiple URIs, and the
client should redirect the request to a URI specified in the list in the message
body.

301
Moved Permanently — the requested resource is no longer available at this URI,
and the client should redirect this and all future requests to the URI specified in
the Location header.

302
Found — the resource temporarily resides under a different URI. This request
should be redirected on user confirmation to the URI in the Location header, but
future requests should not be altered.

303
See Other — very similar to 302 (Found), but does not require user input to
redirect to the provided URI. The provided URI should be retrieved with a GET
request.

https://riptutorial.com/ 28

Status
Code

Reason-Phrase — Description

304
Not Modified — the client sent an If-Modified-Since or similar header, and the
resource has not been modified since that point; the client should display a
cached copy of the resource.

305
Use Proxy — the requested resource must be requested again through the proxy
specified in the Location header field.

307
Temporary Redirect — identical to 302 (Found), but HTTP 1.0 clients do not
support 307 responses.

400
Bad Request — the client sent a malformed request containing syntax errors,
and should modify the request to correct this before repeating it.

401
Unauthorized — the requested resource is not available without authentication.
The client may repeat the request using an Authorization header to provide
authentication details.

402
Payment Required — reserved, unspecified status code for use by applications
that require user subscriptions to view content.

403
Forbidden — the server understands the request, but refuses to fulfil it due to
existing access controls. The request should not be repeated.

404
Not Found — there is no resource available on this server that matches the
requested URI. May be used in place of 403 to avoid exposing access control
details.

405
Method Not Allowed — the resource does not support the request method
(HTTP verb); the Allow header lists acceptable request methods.

406
Not Acceptable — the resource has characteristics that violate the accept
headers sent in the request.

407
Proxy Authentication Required — similar to 401 (Unauthorized), but indicates
that the client must first authenticate with the intermediate proxy.

408
Request Timeout — the server expected another request from the client, but
none were provided within an acceptable timeframe.

409
Conflict — the request could not be completed because it conflicted with the
current state of the resource.

410
Gone — similar to 404 (Not Found), but indicates a permanent removal. No
forwarding address is available.

411
Length Required — the client did not specify a valid Content-Length header, and
must do so before the server will accept this request.

https://riptutorial.com/ 29

Status
Code

Reason-Phrase — Description

412
Precondition Failed — the resource is not available with all the conditions
specified by the conditional headers sent by the client.

413
Request Entity Too Large — the server is presently unable to process a
message body of the length that the client sent.

414
Request-URI Too Long — the server is refusing the request because the
Request-URI is longer than the server is willing to interpret.

415
Unsupported Media Type — the server does not support the MIME or media
type specified by the client, and cannot service this request.

416
Requested Range Not Satisfiable — the client requested a range of bytes, but
the server cannot provide content to that specification.

417
Expectation Failed — the client specified constraints in the Expect header that
the server cannot meet.

500
Internal Server Error — the server met an unexpected condition or error which
prevents it from completing this request.

501
Not Implemented — the server does not support the functionality required to
complete the request. Usually used to indicate a request method that is not
supported on any resource.

502
Bad Gateway — the server is a proxy, and received an invalid response from the
upstream server while processing this request.

503
Service Unavailable — the server is under high load or undergoing maintenance,
and does not have the capacity to serve this request at present.

504
Gateway Timeout — the server is a proxy, and did not receive a response from
the upstream server in a timely manner.

505
HTTP Version Not Supported — the server does not support the version of the
HTTP protocol that the client made its request with.

Examples

Basic response format

When an HTTP server receives a well-formed HTTP request, it must process the information that
request contains and return a response to the client. A simple HTTP 1.1 response, may look like
any of the following, usually followed by a number of header fields, and possibly a response body:

https://riptutorial.com/ 30

http://www.riptutorial.com/http/topic/2909/http-requests

HTTP/1.1 200 OK \r\n

HTTP/1.1 404 Not Found \r\n

HTTP/1.1 503 Service Unavailable \r\n

A simple HTTP 1.1 response has this format:

HTTP-Version Status-Code Reason-Phrase CRLF

As in a request, HTTP-Version indicates the version of the HTTP protocol in use; for HTTP 1.1 this
must always be the string HTTP/1.1.

Status-Code is a three-digit code that indicates the status of the client's request. The first digit of
this code is the status class, which places the status code into one of 5 categories of response [1]:

1xx Informational - the server has received the request and processing is continuing•
2xx Success - the server has accepted and processed the request•
3xx Redirection - further action is necessary on the client's part to complete the request•
4xx Client Errors - the client sent a request that was malformed or cannot be fulfilled•
5xx Server Errors - the request was valid, but the server cannot fulfil it at present•

Reason-Phrase is a short description of the status code. For example, code 200 has a reason phrase
of OK; code 404 has a phrase of Not Found. A full list of reason phrases is available in Parameters,
below, or in the HTTP specification.

The line ends with a carriage return—line feed pair, usually represented by \r\n.

Additional Headers

Like an HTTP request, an HTTP response may include additional headers to modify or augment
the response it provides.

A full list of available headers is defined in §6.2 of the specification. The most commonly-used
headers are:

Server, which functions like a User-Agent request header for the server;•
Location, which is used on 201 and 3xx status responses to indicate a URI to redirect to; and•
ETag, which is a unique identifier for this version of the returned resource to enable clients to
cache the response.

•

Response headers come after the status line, and as with request headers are formed as such:

Name: Value CRLF

Name provides the header name, such as ETag or Location, and Value provides the value that the
server is setting for that header. The line ends with a CRLF.

https://riptutorial.com/ 31

https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7231#section-6
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.2
http://www.riptutorial.com/http/example/9848/request-header-fields
http://www.riptutorial.com/http/example/9848/request-header-fields
http://www.riptutorial.com/http/example/9848/request-header-fields

A response with headers might look like this:

HTTP/1.1 201 Created \r\n
Server: WEBrick/1.3.1 \r\n
Location: http://example.com/files/129742 \r\n

Message Bodies

As with request bodies, HTTP responses may contain a message body. This provides additional
data that the client will process. Notably, 200 OK responses to a well-formed GET request should
always provide a message body containing the requested data. (If there is none, 204 No Content
is a more appropriate response).

A message body is included after all headers and a double CRLF. As for requests, its length in
bytes should be given with Content-Length header. A successful response to a GET request,
therefore, might look like this:

HTTP/1.1 200 OK\r\n
Server: WEBrick/1.3.1\r\n
Content-Length: 39\r\n
ETag: 4f7e2ed02b836f60716a7a3227e2b5bda7ee12c53be282a5459d7851c2b4fdfd\r\n
\r\n
Nobody expects the Spanish Inquisition.

Read HTTP responses online: https://riptutorial.com/http/topic/3077/http-responses

https://riptutorial.com/ 32

http://www.riptutorial.com/http/example/9849/message-bodies
https://riptutorial.com/http/topic/3077/http-responses

Chapter 8: HTTP Status Codes

Introduction

In HTTP, status codes are a machine-readable mechanism indicating the result of a previously
issued request. From RFC 7231, sec. 6: "The status-code element is a three-digit integer code
giving the result of the attempt to understand and satisfy the request."

The formal grammar allows codes to be anything between 000 and 999. However, only the range
from 100 to 599 has assigned meaning.

Remarks

HTTP/1.1 defines a number of numeric HTTP status codes that appear in the status line - the first
line of an HTTP response - to summarise what the client should do with the response.

The first digit of a status codes defines the response’s class:

1xx Informational•
2xx Client request successful•
3xx Request redirected - further action necessary, such as a new request•
4xx Client error - do not repeat the same request•
5xx Server error - maybe try again•

In practice, it is not always easy to choose the most appropriate status code.

Examples

500 Internal Server Error

A HTTP 500 Internal Server Error is a general message meaning that the server encountered
something unexpected. Applications (or the overarching web server) should use a 500 when
there's an error processing the request - i.e. an exception is thrown, or a condition of the resource
prevents the process completing.

Example status line:

HTTP/1.1 500 Internal Server Error

404 Not Found

HTTP 404 Not Found means that the server couldn't find the path using the URI that the client
requested.

HTTP/1.1 404 Not Found

https://riptutorial.com/ 33

https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7230#section-3.1.2
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://tools.ietf.org/html/rfc7231#section-6.2
https://tools.ietf.org/html/rfc7231#section-6.3
https://tools.ietf.org/html/rfc7231#section-6.4
https://tools.ietf.org/html/rfc7231#section-6.5
https://tools.ietf.org/html/rfc7231#section-6.6

Most often, the requested file was deleted, but sometimes it can be a document root
misconfiguration or a lack of permissions (though missing permissions more frequently triggers
HTTP 403 Forbidden).

For example, Microsoft's IIS writes 404.0 (0 is the sub-status) to its log files when the requested
file was deleted. But when the incoming request is blocked by request filtering rules, it writes
404.5-404.19 to log files according to which rule blocks the request. A more detailed error code
reference can be found at Microsoft Support.

Denying access to protected files

Use 403 Forbidden when a client has requested a resource that is inaccessible due to existing
access controls. For example, if your app has an /admin route that should only be accessible to
users with administrative rights, you can use 403 when a normal user requests the page.

GET /admin HTTP/1.1
Host: example.com

HTTP/1.1 403 Forbidden

Successful request

Send an HTTP response with status code 200 to indicate a successful request. The HTTP
response status line is then:

HTTP/1.1 200 OK

The status text OK is only informative. The response body (message payload) should contain a
representation of the requested resource. If there is no representation 201 No Content should be
used.

Responding to a conditional request for cached content

Send a 304 Not Modified response status from the server send in response to a client request
that contains headers If-Modified-Since and If-None-Match, if the request resource hasn’t changed.

For example if a client request for a web page includes the header If-Modified-Since: Fri, 22 Jul
2016 14:34:40 GMT and the page wasn’t modified since then, respond with the status line HTTP/1.1
304 Not Modified.

Top 10 HTTP Status Code

2xx Success

200 OK - Standard response for successful HTTP requests.•
201 Created - The request has been fulfilled, resulting in the creation of a new resource.•

https://riptutorial.com/ 34

https://support.microsoft.com/en-us/kb/943891

204 No Content - The server successfully processed the request and is not returning any
content.

•

3xx Redirection

304 Not Modified - Indicates that the resource has not been modified since the version
specified by the request headers If-Modified-Since or If-None-Match.

•

4xx Client Error

400 Bad Request - The server cannot or will not process the request due to an apparent
client error (e.g., malformed request syntax, too large size, invalid request message framing,
or deceptive request routing).

•

401 Unauthorized - Similar to 403 Forbidden, but specifically for use when authentication is
required and has failed or has not yet been provided. The response must include a WWW-
Authenticate header field containing a challenge applicable to the requested resource.

•

403 Forbidden - The request was a valid request, but the server is refusing to respond to it.
The user might be logged in but does not have the necessary permissions for the resource.

•

404 Not Found - The requested resource could not be found but may be available in the
future. Subsequent requests by the client are permissible.

•

409 Conflict - Indicates that the request could not be processed because of conflict in the
request, such as an edit conflict between multiple simultaneous updates.

•

5xx Server Error

500 Internal Server Error - A generic error message, given when an unexpected condition
was encountered and no more specific message is suitable.

•

Read HTTP Status Codes online: https://riptutorial.com/http/topic/2577/http-status-codes

https://riptutorial.com/ 35

https://riptutorial.com/http/topic/2577/http-status-codes

Chapter 9: Response encodings and
compression

Examples

HTTP compression

The HTTP message body can be compressed (since HTTP/1.1). Either by the server compresses
the request and adds a Content-Encoding header, or by a proxy does and adds a Transfer-Encoding
header.

A client may send an Accept-Encoding request header to indicate which encodings it accepts.

The most commonly used encodings are:

gzip - deflate algorithm (LZ77) with CRC32 checksum implemented in "gzip" file's
compression program (RFC1952)

•

deflate - "zlib" data format (RFC1950), deflate algorithm (hybrid LZ77 and Huffman) with
Adler32 checksum

•

Multiple compression methods

It is possible to compress an HTTP response message body more than once. The encoding
names should then be separated by a comma in the order in which they were applied. For
example, if a message has been compressed via deflate and then gzip, the header should look
like:

Content-Encoding: deflate, gzip

Multiple Content-Encoding headers are also valid, though not recommended:

Content-Encoding: deflate
Content-Encoding: gzip

gzip compression

The client first sends a request with an Accept-Encoding header that indicates it supports gzip:

GET / HTTP/1.1\r\n
Host: www.google.com\r\n
Accept-Encoding: gzip, deflate\r\n
\r\n

The server may then send a response with a compressed response body and a Content-Encoding
header that specifies that gzip encoding was used::

https://riptutorial.com/ 36

https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1950

HTTP/1.1 200 OK\r\n
Content-Encoding: gzip\r\n
Content-Length: XX\r\n
\r\n
... compressed content ...

Read Response encodings and compression online:
https://riptutorial.com/http/topic/5046/response-encodings-and-compression

https://riptutorial.com/ 37

https://riptutorial.com/http/topic/5046/response-encodings-and-compression

Credits

S.
No

Chapters Contributors

1
Getting started with
HTTP

Community, DaSourcerer, Kornel, Peter Hilton

2 Authentication DaSourcerer, Peter Hilton, Stefan Kögl

3
Caching HTTP
responses

DaSourcerer, Kornel

4
Cross Origin and
Access Control

ArtOfCode

5 HTTP for APIs ArtOfCode, mnoronha, Peter Hilton, Roman Vottner

6 HTTP requests artem, ArtOfCode, Jeff Bencteux, Peter Hilton

7 HTTP responses ArtOfCode, Jeff Bencteux, Peter Hilton

8 HTTP Status Codes
ArtOfCode, DaSourcerer, Deltik, Kornel, Lex Li, mnoronha,
Peter Hilton, Rptk99, Sender, Xevaquor

9
Response encodings
and compression

Jeff Bencteux, Peter Hilton

https://riptutorial.com/ 38

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3012385/dasourcerer
https://riptutorial.com/contributor/27009/kornel
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/3012385/dasourcerer
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/693140/stefan-kogl
https://riptutorial.com/contributor/3012385/dasourcerer
https://riptutorial.com/contributor/27009/kornel
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/1377895/roman-vottner
https://riptutorial.com/contributor/43848/artem
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/3452702/jeff-bencteux
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/3452702/jeff-bencteux
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/3012385/dasourcerer
https://riptutorial.com/contributor/1038828/deltik
https://riptutorial.com/contributor/27009/kornel
https://riptutorial.com/contributor/11182/lex-li
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2670/peter-hilton
https://riptutorial.com/contributor/6398098/rptk99
https://riptutorial.com/contributor/1074944/sender
https://riptutorial.com/contributor/1124467/xevaquor
https://riptutorial.com/contributor/3452702/jeff-bencteux
https://riptutorial.com/contributor/2670/peter-hilton

	About
	Chapter 1: Getting started with HTTP
	Remarks
	Versions
	Examples
	HTTP requests and responses
	HTTP/1.0
	HTTP/1.1
	HTTP/2
	HTTP/0.9

	Chapter 2: Authentication
	Parameters
	Remarks
	Examples
	HTTP Basic Authentication

	Chapter 3: Caching HTTP responses
	Remarks
	Glossary
	Examples
	Cache response for everyone for 1 year
	Cache personalized response for 1 minute
	Stop use of cached resources without checking with the server first
	Request responses not to be stored at all
	Obsolete, redundant and non-standard headers
	Changing cached resources

	Chapter 4: Cross Origin and Access Control
	Remarks
	Examples
	Client: sending a cross-origin resource sharing (CORS) request
	Server: responding to a CORS request
	Permitting user credentials or session
	Preflighting requests
	Server: responding to preflight requests

	Chapter 5: HTTP for APIs
	Remarks
	Examples
	Create a resource
	Edit a resource

	Full updates
	Side-Effects

	Partial updates
	Partial update with overlapping state
	Patching partial data
	Error Handling
	Delete a resource
	List resources

	Chapter 6: HTTP requests
	Parameters
	Remarks
	Examples
	Sending a minimal HTTP request manually using Telnet
	Basic request format
	Request header fields
	Message bodies

	Chapter 7: HTTP responses
	Parameters
	Examples
	Basic response format
	Additional Headers
	Message Bodies

	Chapter 8: HTTP Status Codes
	Introduction
	Remarks
	Examples
	500 Internal Server Error
	404 Not Found
	Denying access to protected files
	Successful request
	Responding to a conditional request for cached content
	Top 10 HTTP Status Code

	2xx Success
	3xx Redirection
	4xx Client Error
	5xx Server Error
	Chapter 9: Response encodings and compression
	Examples
	HTTP compression
	Multiple compression methods
	gzip compression

	Credits

