
Hypertext Access file

#.htaccess

Table of Contents

About 1

Chapter 1: Getting started with Hypertext Access file 2

Remarks 2

Versions 2

Examples 2

Setting up .htaccess 2

Enabling .htaccess 3

Custom Error Pages 3

Setting Server Timezone 4

Chapter 2: Denying Access 5

Examples 5

Denying IPs 5

Hot Link Prevention 5

Denying access from IPs to files/directories 5

Chapter 3: General Security and Hack Prevention 7

Remarks 7

Examples 7

Hack Prevention 7

Prevent access to your .htaccess file 7

Prevent URL attacks 7

Disable use of scripts on your directories.. 7

Disable directory index 8

Chapter 4: Handling File Types 9

Examples 9

Enable PHP to be parsed in HTML 9

Chapter 5: Rewriting and Redirecting 10

Remarks 10

Examples 10

Popular Rewrite Flags 10

F|forbidden 10

G|gone 10

L|last 10

N|next 11

NC|nocase 11

R|redirect 11

www and non-www redirects 12

SEO Friendly URLs 12

Adding a trailing slash at the end 13

http and https redirects and HSTS configuration 13

Generic redirect to https: 13

Generic redirect to http: 13

Forcing HTTPS connection (HSTS): 13

Redirect with/without query params 14

Chapter 6: Speed Optimization 15

Examples 15

Enable Compression (Apache 2.0+) 15

Leverage Browser Caching (Apache 2.0+) 15

Enable KeepAlive (Apache 2.0+) 15

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: hypertext-access-file

It is an unofficial and free Hypertext Access file ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Hypertext
Access file.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/hypertext-access-file
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Hypertext
Access file

Remarks

An .htaccess file controls how Apache interacts with your site. When an .htaccess file is placed in
your domain’s directory (usually root directory), the file is detected and executed by Apache.

An .htaccess file is commonly used for the following:

Denying specific IPs to your site•
Password protecting your site•
Rewriting URLs•
Custom error pages•
Compressing and Caching Files•
General Security and Hack Prevention•

Versions

Various Apache releases

Version Current version Release

1.3 1.3.42 1998-06-06

2.0 2.0.65 2002-04-06

2.2 2.2.31 2005-12-01

2.4 2.4.23 2012-02-21

Examples

Setting up .htaccess

.htaccess files (or "distributed configuration files") provide a way to make configuration
changes on a per-directory basis. A file, containing one or more configuration
directives, is placed in a particular document directory, and the directives apply to that
directory, and all subdirectories thereof.

An .htaccess file controls how Apache interacts with your site. It is used to alter the requests and
modify default behavior without needing to alter the core server configuration files.

Setting up .htaccess is as simple as opening a notepad and saving it as .htaccess. Generally, this

https://riptutorial.com/ 2

file will placed on the root directory of your website files, but you can use it under multiple different
directories. This is especially useful if you're looking to password protect specific directories.

Enabling .htaccess

Sometimes even a single error in your httpd.conf or .htaccess file will result in a
temporary meltdown of the server, and users will see 500 - Internal Server Error page.
So, make sure to always make a backup of your httpd.conf and .htaccess files before
you make a change.

<Directory "/var/www">
 AllowOverride All
</Directory>

.htaccess files are normally enabled by default. This is controlled by AllowOverride directive in the
httpd.conf file. This directive can only be placed inside of a <Directory> section.

Beside All there are numerous other values that limit configuration of only certain contexts. Some
of them are:

None - Completely disable .htaccess.•
AuthConfig - Authorization directives such as those dealing with Basic Authentication.•
FileInfo - Directives that deal with setting Headers, Error Documents, Cookies, URL
Rewriting, and more.

•

Indexes - Default directory listing customizations.•
Limit - Control access to pages in a number of different ways.•
Options - Similar access to Indexes but includes even more values such as ExecCGI,
FollowSymLinks, Includes and more.

•

Only allow .htaccess files to override Authorization and Indexes
AllowOverride AuthConfig Indexes

Custom Error Pages

.htaccess can be used to set a custom error pages that matches the theme of your website instead
of seeing a white error page with black techno-babble when users end up on at a page with an
error server response code. The error page can be any browser parseable file, including (But not
limited to) .html, .php, .asp, .txt, .xml.

Examples for almost all common error response codes:

#Client Errors

ErrorDocument 400 /mycool400page.html # Bad Request
ErrorDocument 401 /mycool401page.html # Unauthorized
ErrorDocument 402 /mycool402page.html # Payment Required
ErrorDocument 403 /mycool403page.html # Forbidden
ErrorDocument 404 /mycool404page.html # Page Not Found

https://riptutorial.com/ 3

#Server Errors

ErrorDocument 500 /mycool500page.html # Internal Server Error
ErrorDocument 501 /mycool501page.html # Not Implemented
ErrorDocument 502 /mycool502page.html # Bad Gateway
ErrorDocument 503 /mycool503page.html # Service Unavailable
ErrorDocument 504 /mycool504page.html # Gateway Timeout
ErrorDocument 505 /mycool505page.html # Internal Server Error

It is always good practice to include Error Documents for the most common error responses, 400,
403, 404, and 500, as these errors are able to occur on all browsers.

the 500 error is one of the most notorious errors as it occurs if anything fails while loading the
page to send, most commonly server html preprocessing failures from things like PHP, ASP, and
other html preprocessors. It is good practice while testing to set the 500 page to display the error
that occurred, rather then an unspecific 500 error page.

To enable the 500 error page to write a specific error see one of the following based on what html
preprocessor you are using: php asp

Setting Server Timezone

There are many time zones around the world, it is important to make sure your server is set to the
right one. This is done in .htaccess by using:

SetEnv TZ America/Indianapolis

A few example of possible other time zones:

America/Los_Angeles
America/Los_Angeles - Pacific Time
Pacific/Honolulu - Hawaii

Just make sure you use SetEnv in front of your selected time zone.

Read Getting started with Hypertext Access file online: https://riptutorial.com/dot-
htaccess/topic/1023/getting-started-with-hypertext-access-file

https://riptutorial.com/ 4

http://stackoverflow.com/questions/2687730/how-can-i-make-php-display-the-error-instead-of-giving-me-500-internal-server-er
http://stackoverflow.com/questions/2640526/detailed-500-error-message-asp-iis-7-5
https://riptutorial.com/dot-htaccess/topic/1023/getting-started-with-hypertext-access-file
https://riptutorial.com/dot-htaccess/topic/1023/getting-started-with-hypertext-access-file

Chapter 2: Denying Access

Examples

Denying IPs

order allow,deny
deny from 255.0.0.0
allow from all

This denies access to the IP 255.0.0.0.

order allow,deny
deny from 123.45.6.
allow from all

This denies access to all IPs in the range 123.45.6.0 to 123.45.6.255.

Hot Link Prevention

RewriteEngine on
RewriteCond %{HTTP_REFERER} !^$
RewriteCond %{HTTP_REFERER} !^http://(www\.)?yourdomain.com/.*$ [NC]
RewriteRule \.(gif|jpg|css)$ - [F]

This blocks all the links to '.gif', '.jpg' and '.css' files which are not from the domain name
http://www.yourdomain.com.

Display alternate content:

RewriteEngine on
RewriteCond %{HTTP_REFERER} !^$
RewriteCond %{HTTP_REFERER} !^http://(www\.)?yourdomain.com/.*$ [NC]
RewriteRule \.(gif|jpg)$ http://www.yourdomain.com/angryman.jpg [R,L]

This blocks all links to '.gif' and '.jpg' files which are not from the domain name '
http://www.yourdomain.com/' and displays the file 'http://www.yourdomain.com/angryman.jpg'
instead.

Denying access from IPs to files/directories

Deny access to a directory from the IP 255.0.0.0
<Directory /path/to/directory>
 order allow,deny
 deny from 255.0.0.0
 allow from all
</Directory>

https://riptutorial.com/ 5

http://www.yourdomain.com/
http://www.yourdomain.com/angryman.jpg

Deny access to a file from the IP 255.0.0.0
<FilesMatch "^\.ht">
 order allow,deny
 deny from 255.0.0.0
 allow from all
</FilesMatch>

Read Denying Access online: https://riptutorial.com/dot-htaccess/topic/4741/denying-access

https://riptutorial.com/ 6

https://riptutorial.com/dot-htaccess/topic/4741/denying-access

Chapter 3: General Security and Hack
Prevention

Remarks

.htaccess redirection is a common vector for malicious hackers to exploit and infect websites. We
have seen what .htaccess files are, how they are used by malicious hackers, and how to protect
your website.

Examples

Hack Prevention

Prevent access to your .htaccess file

<Files .htaccess>
order allow,deny
deny from all
</Files>

Rename the file
AccessFileName thehtfile.ess

Prevent URL attacks

Enable rewrites
RewriteEngine On

Block <script> tags from executing in the URL
RewriteCond %{QUERY_STRING} (<|%3C).*script.*(>|%3E) [NC,OR]

Block scripts from setting a PHP Globals variable
RewriteCond %{QUERY_STRING} GLOBALS(=|[|\%[0-9A-Z]{0,2}) [OR]

Block scripts from using base64_encode
RewriteCond %{QUERY_STRING} base64_encode.*(.*) [OR]

Block scripts from using the a_REQUEST variable
RewriteCond %{QUERY_STRING} _REQUEST(=|[|\%[0-9A-Z]{0,2})

Disable use of scripts on your directories..

AddHandler cgi-script .php .pl .py .jsp .asp .htm .shtml .sh .cgi
Options -ExecCGI

https://riptutorial.com/ 7

Disable directory index

Enabled directory index means that if someone access to any folder which don't contains
index.php , index.html, index.htm or any other default file defined in DirectoryIndex in apache
configuration then all files in that folder will be listed in browser if you try to visit that page.

Often directory index is enabled by default on your apache server, in these cases good security
practice is to disable directory index with following line:

Options -Indexes

Read General Security and Hack Prevention online: https://riptutorial.com/dot-
htaccess/topic/2531/general-security-and-hack-prevention

https://riptutorial.com/ 8

https://riptutorial.com/dot-htaccess/topic/2531/general-security-and-hack-prevention
https://riptutorial.com/dot-htaccess/topic/2531/general-security-and-hack-prevention

Chapter 4: Handling File Types

Examples

Enable PHP to be parsed in HTML

If you want to include PHP code in your HTML file and you don't want to rename the file type from
.html or .htm to .php, the below allows your HTML file to parse your PHP code correctly.

AddHandler application/x-httpd-php .html .htm

Read Handling File Types online: https://riptutorial.com/dot-htaccess/topic/1690/handling-file-types

https://riptutorial.com/ 9

https://riptutorial.com/dot-htaccess/topic/1690/handling-file-types

Chapter 5: Rewriting and Redirecting

Remarks

Before URLs can be rewritten, a module called mod_rewrite.c needs to be enabled. Usually, it is
disabled in the configuration by default.

mod_rewrite can be enabled by executing the command

$ sudo a2enmod mod_rewrite
$ sudo service apache2 restart

or by commenting out the lines

#LoadModule rewrite_module modules/mod_rewrite.so
#AddModule mod_rewrite.c

in httpd.conf file.

Examples

Popular Rewrite Flags

F|forbidden

Similar to Deny, this flag forces the server to immediately return a 403 Forbidden status code to the
requesting browser or client for the request.

Example: Deny access to requests that end with exe:

RewriteRule .exe$ - [F]

G|gone

If a requested resource was available in the past, but is no longer available, you can use this flag
to force the server to immediately return a 410 Gone status code to the requesting browser or
client for the request.

Example: Tell a visitor that an old product no longer exists:

RewriteRule ^old-product.html$ - [G]

https://riptutorial.com/ 10

L|last

In most contexts, other than .htaccess, this flag instructs mod_rewrite to stop processing the current
condition/rule set, much the same way last and break (Perl and C, respectively) do.

However, in the .htaccess or <Directory> context, a request that has been rewritten using a
RewriteRule with this flag will be passed back to the URL parsing engine for further processing. As
such, it is possible, for the rewritten URI to be handled by the same context, and perhaps altered
further.

A general recommendation is to use the END flag to not only stop processing the current
condition/rule set, but also to prevent any further rewriting in these contexts.

Note: The F and G flags, discussed above, both use L implicitly, so you do not need to specify them
separately.

N|next

This flag will re-run the rewriting process from the beginning, starting again with the first
condition/rule set. This time, the URL to match is no longer the original URI, but rather the
rewritten URI returned by the last rule set. Use this flag to restart the rewriting process.

A word of warning: Use this flag with caution, as it may result in an infinite-loop!

NC|nocase

This instructs mod_rewrite to match the Pattern of a RewriteRule without being case-sensitive. To
clarify, MyIndex.html and myindex.html would be regarded by the module as the same thing. Further,
this flag allows you to use a-z instead of A-Za-z in a regular expression.

R|redirect

This flag is used to send an HTTP redirect response to the requesting browser/client.

By default, if no code is given, a redirect response with the 302 Found (similar to a temporary
redirect) status code will be returned. If you wish to use a more permanent redirect, then you
should use the 302 (301 Moved Permanently) status code.

Generally, only status codes in the range 300-399 should be used with this flag. If status codes
outside of this range are used (which is perfectly acceptable), then the substitution string is
discarded and rewriting is stopped as if the L flag were used. In some cases, this is a handy way to
force 404 Not Found responses, even if the request points to an existing resource.

Example: Issue a 302 Found redirect response:

https://riptutorial.com/ 11

https://httpd.apache.org/docs/current/mod/mod_rewrite.html

RewriteRule ^bus$ /train [R,L]

Example: Issue a 301 Moved Permanently redirect response:

RewriteRule ^speed-train$ /hyperloop [R=301,L]

Example: Force a 404 Not Found:

RewriteRule ^blip$ - [R=404,L]

www and non-www redirects

Redirect any naked domain to www.[your_domain].tld:

Start Apache Rewriting engine
RewriteEngine On
Make sure you're not already using www subdomain
and that the host string is not empty
RewriteCond %{HTTP_HOST} !^$
RewriteCond %{HTTP_HOST} !^www\.
We check for http/https connection protocol
RewriteCond %{HTTPS}s ^on(s)|
In case the previous conditions matches, redirect to www
RewriteRule ^(.*)$ http%1://www.%{HTTP_HOST}/$1 [R=301,L]

Redirect www.[your_domain].tld to [your_domain].tld

Start Apache Rewriting engine
RewriteEngine On
We check if we're on the www subdomain
RewriteCond %{HTTP_HOST} ^www\.([^\.]+\.[^\.]+)$
In case the previous condition matches, redirect to non-www
RewriteRule ^(.*)$ http://%1/$1 [R=301,L]

Redirect any level of nested subdomains to your main domain:

Start Apache Rewriting engine
RewriteEngine On
We check if there's a subdomain
RewriteCond %{HTTP_HOST} \.([^.]+\.[^.]+)$
redirect to the main domain name
RewriteRule ^ http://%1%{REQUEST_URI} [R=301,L]

SEO Friendly URLs

Search engines won't index your products if you have a URL like the following:

http://www.yourdomain.com/product.php?id=123

https://riptutorial.com/ 12

SEO friendly URL would look like http://www.yourdomain.com/123/product-name/. The following code
helps achieve this without having to change product.php code.

RewriteEngine On
RewriteRule ^product/([0-9]+)/product-name-slug/?$ product.php?id=$1

Adding a trailing slash at the end

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !(.*)/$
RewriteRule ^(.*)$ /$1/ [L,R=301]

The first RewriteCond helps exclude the files. The second RewriteCond checks if there is already a
trailing slash. If the case is so RewriteRule is not applied.

If you have any URL that shouldn't be rewritten, you can add one more RewriteCond.

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !(.*)/$
RewriteCond %{REQUEST_URI} !url/to/not/rewrite
RewriteRule ^(.*)$ /$1/ [L,R=301]

http and https redirects and HSTS configuration

Generic redirect to https:

Enable Rewrite engine
RewriteEngine on

Check if URL does not contain https
RewriteCond %{HTTPS} off [NC]
If condition is true, redirect to https
RewriteRule (.*) https://%{SERVER_NAME}/$1 [R=301,L]

Generic redirect to http:

Enable Rewrite engine
RewriteEngine on

Check if URL does contain https
RewriteCond %{HTTPS} on [NC]
If condition is true, redirect to http
RewriteRule (.*) http://%{SERVER_NAME}/$1 [R=301,L]

Forcing HTTPS connection (HSTS):

<IfModule mod_headers.c>
 Header always set Strict-Transport-Security "max-age=31536000; includeSubDomains"

https://riptutorial.com/ 13

</IfModule>

where, the includeSubDomains option can be removed, if HSTS should be applied only to the base
domain, or the domain with the above configuration.

Redirect with/without query params

Redirect without query params:

RewriteRule ^route$ /new_route_without_query [L,R=301,QSD]

Redirect with query params:

RewriteCond %{QUERY_STRING} ^$
RewriteRule ^/?route$ %{REQUEST_URI}?query=param1&query2=param2 [NC,L,R=301]

Read Rewriting and Redirecting online: https://riptutorial.com/dot-htaccess/topic/1550/rewriting-
and-redirecting

https://riptutorial.com/ 14

https://riptutorial.com/dot-htaccess/topic/1550/rewriting-and-redirecting
https://riptutorial.com/dot-htaccess/topic/1550/rewriting-and-redirecting

Chapter 6: Speed Optimization

Examples

Enable Compression (Apache 2.0+)

Enabling gzip compression can reduce the size of the transferred response by up to
90%, which can significantly reduce the amount of time to download the resource,
reduce data usage for the client, and improve the time to first render of your pages. —
PageSpeed Insights

Compression can be enabled with this:

AddOutputFilterByType DEFLATE "text/html"/
 "text/plain"/
 "text/xml"/
 "text/css"/
 "text/javascript"/
 "application/javascript"

Apache Docs

Leverage Browser Caching (Apache 2.0+)

Fetching resources over the network is both slow and expensive: the download may
require multiple roundtrips between the client and server, which delays processing and
may block rendering of page content, and also incurs data costs for the visitor. All
server responses should specify a caching policy to help the client determine if and
when it can reuse a previously fetched response. — PageSpeed Insights

You can leverage browser caching like this:

Enable browser caching
ExpiresActive On

Set the default caching duration
ExpiresDefault "access plus 1 week"

Change the caching duration by file type
ExpiresByType text/html "access plus 2 weeks"

Apache Docs

Enable KeepAlive (Apache 2.0+)

The Keep-Alive extension to HTTP/1.0 and the persistent connection feature of
HTTP/1.1 provide long-lived HTTP sessions which allow multiple requests to be sent
over the same TCP connection. In some cases this has been shown to result in an

https://riptutorial.com/ 15

https://developers.google.com/speed/docs/insights/EnableCompression
http://httpd.apache.org/docs/current/mod/mod_deflate.html
https://developers.google.com/speed/docs/insights/LeverageBrowserCaching
http://httpd.apache.org/docs/current/mod/mod_expires.html

almost 50% speedup in latency times for HTML documents with many images. To
enable Keep-Alive connections, set KeepAlive On. — Apache Docs

Enable KeepAlive
KeepAlive On

OPTIONAL — limit the amount of requests per connection with 'MaxKeepAliveRequests'
Example: MaxKeepAliveRequests 500

OPTIONAL — limit the amount of time the server will wait before it closes
the connection with 'KeepAliveTimeout'
Example: KeepAliveTimeout 500

Apache Docs

Read Speed Optimization online: https://riptutorial.com/dot-htaccess/topic/3893/speed-
optimization

https://riptutorial.com/ 16

https://httpd.apache.org/docs/2.4/mod/core.html#keepalive
https://httpd.apache.org/docs/2.4/mod/core.html#keepalive
https://riptutorial.com/dot-htaccess/topic/3893/speed-optimization
https://riptutorial.com/dot-htaccess/topic/3893/speed-optimization

Credits

S.
No

Chapters Contributors

1
Getting started with
Hypertext Access file

Community, Dilip Raj Baral, hjpotter92, James Oswald, Lag,
Mike Rockétt, tbodt

2 Denying Access Dilip Raj Baral, John R Perry, tbodt

3
General Security and
Hack Prevention

ban17, Dilip Raj Baral, John R Perry, Lag, Meysam, Mike
Rockétt, OpenWebWar

4 Handling File Types
Dilip Raj Baral, John R Perry, Jon Lin, Marvin, mauris, Mike
Rockétt, Nicholas Qiao

5
Rewriting and
Redirecting

Bogdan Alexandru Militaru, Dilip Raj Baral, Florian Lemaitre,
hjpotter92, James, John R Perry, Mike Rockétt, shaN, Sven
Reuter

6 Speed Optimization John R Perry

https://riptutorial.com/ 17

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/1190388/hjpotter92
https://riptutorial.com/contributor/6342516/james-oswald
https://riptutorial.com/contributor/6275517/lag
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/4373927/john-r-perry
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/737648/ban17
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/4373927/john-r-perry
https://riptutorial.com/contributor/6275517/lag
https://riptutorial.com/contributor/69537/meysam
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/3449042/openwebwar
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/4373927/john-r-perry
https://riptutorial.com/contributor/851273/jon-lin
https://riptutorial.com/contributor/4616087/marvin
https://riptutorial.com/contributor/126039/mauris
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/6465928/nicholas-qiao
https://riptutorial.com/contributor/4471897/bogdan-alexandru-militaru
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/5659190/florian-lemaitre
https://riptutorial.com/contributor/1190388/hjpotter92
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/4373927/john-r-perry
https://riptutorial.com/contributor/1626250/mike-rockett
https://riptutorial.com/contributor/4221558/shan
https://riptutorial.com/contributor/3739043/sven-reuter
https://riptutorial.com/contributor/3739043/sven-reuter
https://riptutorial.com/contributor/4373927/john-r-perry

	About
	Chapter 1: Getting started with Hypertext Access file
	Remarks
	Versions
	Examples
	Setting up .htaccess

	Enabling .htaccess
	Custom Error Pages
	Setting Server Timezone

	Chapter 2: Denying Access
	Examples
	Denying IPs
	Hot Link Prevention
	Denying access from IPs to files/directories

	Chapter 3: General Security and Hack Prevention
	Remarks
	Examples
	Hack Prevention

	Prevent access to your .htaccess file
	Prevent URL attacks
	Disable use of scripts on your directories..
	Disable directory index

	Chapter 4: Handling File Types
	Examples
	Enable PHP to be parsed in HTML

	Chapter 5: Rewriting and Redirecting
	Remarks
	Examples
	Popular Rewrite Flags

	F|forbidden
	G|gone
	L|last
	N|next
	NC|nocase
	R|redirect
	www and non-www redirects
	SEO Friendly URLs
	Adding a trailing slash at the end
	http and https redirects and HSTS configuration
	Generic redirect to https:
	Generic redirect to http:
	Forcing HTTPS connection (HSTS):
	Redirect with/without query params

	Chapter 6: Speed Optimization
	Examples
	Enable Compression (Apache 2.0+)
	Leverage Browser Caching (Apache 2.0+)
	Enable KeepAlive (Apache 2.0+)

	Credits

