
ionic2

#ionic2

Table of Contents

About 1

Chapter 1: Getting started with ionic2 2

Remarks 2

Examples 2

Installation or Setup 2

1. Installing Ionic 2 2

If you get an EACCES error, follow the instructions here to give node the permissions it n 2

2. Creating Your First App 2

You can play with your new app right there in the browser! 3

3. Building to a Device 3

Chapter 2: Add ionic app to ionic view 6

Introduction 6

Examples 6

Steps to add your app to ionic view 6

Chapter 3: Angularfire2 with Ionic2 8

Introduction 8

Examples 8

AngularFire initialization 8

Using AngularFire2 8

Chapter 4: Constructor and OnInit 10

Introduction 10

Examples 10

Student Service Method example for using Http in constructor 10

ngOnInit method to get the list of students on view load 10

ngOnInit example to get the list of students on page/view 10

Chapter 5: From code to the App store - Android 12

Introduction 12

Examples 12

Production ready 12

Chapter 6: Geolocation 15

Examples 15

Simple usage 15

Watching the position 15

Chapter 7: InAppBrowser 17

Introduction 17

Examples 17

A live example of this usage is this app: 17

Code example to use InAppBrowser 17

Chapter 8: Ionic2 CSS components 18

Examples 18

Grid 18

Cards 18

Chapter 9: Modals 20

Examples 20

Using Modals 20

Chapter 10: Modals 22

Examples 22

Simple Modal 22

Modal with Parameters on dismiss: 23

Modal with parameters on create: 25

Chapter 11: Push notification sent & receive 28

Remarks 28

Examples 28

Initialization 28

Registration 28

Receiving a push notification 28

Chapter 12: Setup and Debugging Ionic 2 in Visual Studio Code 30

Introduction 30

Examples 30

Installation of VSCode 30

Create and Add your Ionic Project in VSCode 30

Run and Debug your Ionic Project 31

Chapter 13: Social Login with Angularfire2/Firebase 35

Examples 35

Native Facebook Login with Angularfire2/Firebase 35

Chapter 14: Unit Testing 37

Introduction 37

Examples 37

Unit Tests with Karma/Jasmine 37

Chapter 15: Using Services 43

Remarks 43

Examples 44

Share information between different pages 44

Chapter 16: Using Tabs 46

Remarks 46

Examples 46

Change selected tab programatically from child Page 46

Change tab with selectedIndex 47

Chapter 17: Workaround for 'show-delete' in deprecation 49

Examples 49

Solution 49

Credits 52

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ionic2

It is an unofficial and free ionic2 ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official ionic2.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ionic2
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with ionic2

Remarks

Ionic 2 is a cross-platform mobile development technology. This framework is built for building
hybrid mobile applications and it can be also used for desktop application as well. It is a write
once, run everywhere technology. It uses web technologies such as JavaScript/Typescript,
Angular 2, HTML and CSS(SCSS/LESS). Ionic2 apps works good on >=android 4.4, but you want
run on android 4.1 to android 4.3 you have to use cross walk.

Examples

Installation or Setup

Since Ionic 2 is getting better and better every day, please always check the official
documentation to keep track of the latest changes and improvements.

Prerequisites: You will need NodeJS in order to build Ionic 2 projects. You can download and
install node here and learn more about npm and the packages Ionic 2 uses here.

1. Installing Ionic 2

Like Ionic 1, you can use the Ionic CLI or GUI to quickly build and test apps right in the browser. It
even has all the functionality to work with your Ionic 1 apps, so you won't need to change a thing!

To use Ionic 2 simply install ionic from npm:

$ npm install -g ionic

If you get an EACCES error, follow the instructions here to
give node the permissions it needs.

2. Creating Your First App

Once the CLI is installed, run the following command to start your first app:

$ ionic start MyIonic2Project

The tabs template is used by default, but you can choose another template by passing in a flag.
For example:

$ ionic start MyIonic2Project tutorial

https://riptutorial.com/ 2

http://blog.ionic.io/crosswalk-comes-to-ionic/
http://ionicframework.com/getting-started
http://ionicframework.com/getting-started
https://nodejs.org/en/
http://ionicframework.com/docs/resources/using-npm/
https://docs.npmjs.com/getting-started/fixing-npm-permissions
https://github.com/driftyco/ionic2-starter-tabs

$ cd MyIonic2Project
$ npm install

This will use the tutorial template.

To run your app, change into your projects directory and run ionic serve -lc:

$ ionic serve -lc

The -l activates the live reload of the page, the -c displays the console logs. If you're having issues
building your app, make sure your package.json matches the one in the ionic2-app-base

You can play with your new app right there in the browser!

3. Building to a Device

You can also build your new app on a physical device or a device emulator. You will need
Cordova to proceed.

To install Cordova, run:

$ npm install -g cordova

Check out the iOS simulator docs for building iOS applications (NOTE: you cannot build to iOS
devices or emulators on any operating system other than OSX), or the Genymotion docs to build
an Android application.

Running on iOS device:

To build an iOS app, it is necessary for you to work on an OSX computer, because you will need
the cocoa framework to be able to build for ios, if it's the case you will first need to add the
platform to cordova by running the following command:

$ ionic cordova platform add ios

You will need Xcode to compile to an iOS device.

Finally, run your app with the following command:

$ ionic cordova run ios

Running on an Android device:

The steps for Android are almost identical. First, add the platform:

$ ionic cordova platform add android

https://riptutorial.com/ 3

https://github.com/driftyco/ionic2-starter-tutorial
https://github.com/driftyco/ionic2-app-base/blob/master/package.json
http://ionicframework.com/docs/v2/resources/what-is/#cordova
http://ionicframework.com/docs/v2/resources/developer-tips/#using-ios-simulator
http://ionicframework.com/docs/v2/resources/developer-tips/#using-genymotion-android
http://ionicframework.com/docs/v2/resources/what-is/#xcode

Then install the Android SDK which allows you to compile to an Android device. Although the
Android SDK comes with an emulator, it's really slow. Genymotion is much faster. Once installed,
simply run the following command:

$ ionic cordova run android

And that's it! Congratulations on building your first Ionic 2 app!

Ionic has live reloading too. So if you want to develop your app and see changes taking place live
on the emulator / device, you can do that by running the following commands:

For iOS:

$ ionic cordova emulate ios -lcs

Be careful, on iOS 9.2.2 the livereload doesn't work. If you want to work with livereload, edit the
config.xml file by adding the following :

<allow-navigation href="*"/>

Then in the <platform name="ios"> :

<config-file parent="NSAppTransportSecurity" platform="ios" target="*-Info.plist">
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</config-file>

For Android:

$ ionic cordova run android -lcs

The l stands for live-reload, c for console logs, and s for server logs. This will allow you to see if
there are any errors / warnings during execution.

Building for Windows

If you want to build your project for windows, you need to work on a windows computer. To start,
install the windows platform to your ionic2 project by running the following command :

$ionic cordova platform add windows

Then just run the following command :

$ionic cordova run windows

To run in browser

https://riptutorial.com/ 4

http://ionicframework.com/docs/v2/resources/what-is/#android-sdk
http://ionicframework.com/docs/v2/resources/what-is/#genymotion

$ionic serve

for chrome browser inspect device.(type in address bar of chrome browser)

chrome://inspect/#devices

Read Getting started with ionic2 online: https://riptutorial.com/ionic2/topic/3632/getting-started-
with-ionic2

https://riptutorial.com/ 5

https://riptutorial.com/ionic2/topic/3632/getting-started-with-ionic2
https://riptutorial.com/ionic2/topic/3632/getting-started-with-ionic2

Chapter 2: Add ionic app to ionic view

Introduction

ionic view is a mobile app which you have to install in your mobile, so that you can view your app
without creating .apk files. By sharing your app id, others can also view your app in their mobile
using ionic view.

Site: https://view.ionic.io/

Examples

Steps to add your app to ionic view

The following steps need to be done in the app.ionic.io

Create an account or login into your ionic account1.

Click "New App" in the Dashboard and give name for your app

 I named my app as 'MyIonicApp'

2.

In the overview section of this newly created app, there will be a ID below the app name.

 MyIonicApp ID is 4c5051c1

3.

Below steps are done in Node.js command prompt

Login into your ionic account by running

$ ionic login

1.

Root your app folder.2.

To upload your app to ionic view, first you have to link your app with the ID you created in
ionic site. Run the following command to link,

$ ionic link [your-app-id]

For MyIoincApp, the command will be,

$ ionic link 4c5051c1

The above command will update the app id in the MyIonicApp's config file.

3.

Once the linking is done, upload the app by executing4.

https://riptutorial.com/ 6

https://view.ionic.io/
https://apps.ionic.io/login

$ ionic upload

Note

Once the upload is successful, open ionic view in your mobile to view the app.

Others can view your app, by submitting the app id under 'Preview an app' section in ionic view.

Read Add ionic app to ionic view online: https://riptutorial.com/ionic2/topic/10542/add-ionic-app-to-
ionic-view

https://riptutorial.com/ 7

https://riptutorial.com/ionic2/topic/10542/add-ionic-app-to-ionic-view
https://riptutorial.com/ionic2/topic/10542/add-ionic-app-to-ionic-view

Chapter 3: Angularfire2 with Ionic2

Introduction

Here ill show you how to integrate AngularFire2 and use this real time database in our Ionic App.

Examples

AngularFire initialization

First of all you need to initialize the angularfire modules in your app module like this:

 const firebaseConfig = {
 apiKey: 'XXXXXXXXXX',
 authDomain: 'XXXXXXXXXX',
 databaseURL: 'XXXXXXXXXX',
 storageBucket: 'XXXXXXXXXX',
 messagingSenderId: 'XXXXXXXXXX'
};

You can get this keys by signing on firebase and creating a new project.

imports: [
 AngularFireModule.initializeApp(firebaseConfig),
 AngularFireDatabaseModule,
 AngularFireAuthModule
],

Using AngularFire2

Once you have it on your app, just import it:

import { AngularFireDatabase } from 'angularfire2/database';
constructor (private _af: AngularFireDatabase) {}

With this Observable List you can access to a list of items under a path, for example if you have
root/items/food you can get food items like this:

this._af.list('root/items/food');

And you can simple put a new item here and will appear on your firebase database, or you can
update one item and you will see it update on your database. You can push and update like this:

this._af.list('root/items/food').push(myItemData);
this._af.list('root/items/food').update(myItem.$key, myNewItemData);

Or you can even remote items from your food list:

https://riptutorial.com/ 8

this._af.list('root/items/food').remove(myItem.$key);

Read Angularfire2 with Ionic2 online: https://riptutorial.com/ionic2/topic/10918/angularfire2-with-
ionic2

https://riptutorial.com/ 9

https://riptutorial.com/ionic2/topic/10918/angularfire2-with-ionic2
https://riptutorial.com/ionic2/topic/10918/angularfire2-with-ionic2

Chapter 4: Constructor and OnInit

Introduction

In respect of ionic2 the constructor: in simple terms we use it to create instance of our plugins,
services etc. for example: You have a page(view) where you want to show the list of all students,
and you have a json file that contains all the students (this file is your data file) what you have to
do is to create a service in this service you will create a method and hit a http.get request to get
the json data, so here you need what? http simply do this way:

Examples

Student Service Method example for using Http in constructor

import {Http} from '@angular/http';
@Injectable()
export class StudentService{
 constructor(public http: Http){}
 getAllStudents(): Observable<Students[]>{
 return this.http.get('assets/students.json')
 .map(res => res.json().data)
 }
 }

notice the constructor now again if we want to use this service method we will go to our view/page
and :

import {StudentService} from './student.service';
import { SocialSharing } from '@ionic-native/social-sharing';
export class HomePage implements OnInit {

 constructor(public _studentService: StudentService, public socialSharing: SocialSharing) {
 }

again notice the constructor here, we are creating an instance of StudentService in constructor
and one more thing, we are using socialSharing plugin so to use that we are creating instance of
that in constructor as well.

ngOnInit method to get the list of students on view load

OnInit: this is really amazing thing in ionic2 or we can say in AngularJs2. With the same above
example we can see what is ngOnInit is. So you are ready with the service method, now in your
view/page you want that student list data available as soon as your view is going to appear, this
should be the first operation happend automatically on load, because as the view load the student
list should be visible. So the class implements OnInit and you define ngOnInit. Example:

ngOnInit example to get the list of students on page/view

https://riptutorial.com/ 10

export class HomePage implements OnInit {
...
....
constructor(....){}

ngOnInit(){
 this._studentService.getAllStudents().subscribe(
 (students: Students[]) => this.students = students,
)

Read Constructor and OnInit online: https://riptutorial.com/ionic2/topic/9907/constructor-and-oninit

https://riptutorial.com/ 11

https://riptutorial.com/ionic2/topic/9907/constructor-and-oninit

Chapter 5: From code to the App store -
Android

Introduction

You will find step by step instructions on how to prepare and upload production ionic app onto
Google Play.

Examples

Production ready

Creating app project

When creating an Android app ready for the app store it's important when using ionic start that
we add --appname|-a and --id|-i flags which is used for google play to identify your app from other
apps.

If you're starting a new mobile app project you can use the cli example below.

$ ionic start --v2 -a "App Example" -i "com.example.app" -t "tabs"

1. App configuration file

if you want to set this info inside an existing app you can modify config.xml. I recommend those
who used the command above to modify config.xml as well.

Confirm/edit widget id, name, description, and author attributes.

Example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<widget id="com.example.app" version="1.0.0" xmlns="http://www.w3.org/ns/widgets"
xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>Example App</name>
 <description>Example app for stackoverflow users</description>
 <author email="admin@example.com" href="http://example.com/">Your name or team</author>
 ...
</widget>

2. icon and splash screen

Both icon and splash image supported file types are png, psd or ai and must have a file name that
corresponds to what it is icon or splash and placed under the resources dir at the root of your
project. The icon image’s minimum dimensions should be 192x192 px, and should have no
rounded corners. and the splash screen is much more complicated so click here to read more.

https://riptutorial.com/ 12

Nonetheless, minimum dimensions should be 2208x2208 px.

if you have icon file to generate use this command ionic resources --icon if you have splash file to
generate use this command ionic resources --splash

3. Building production app

Before building your production app remove any sensitive log data.

To build a release version with all default optimizations in place use the --release & --prod tag

ionic build android --release --prod

For a full list of available optimizations you may visit the @ionic/app-scripts repository

4. Create private key

Now, we need to sign the unsigned APK (android-release-unsigned.apk) and run an alignment
utility on it to optimize it and prepare it for the app store. If you already have a signing key, skip
these steps and use that one instead.

Next, locate your unsigned APK file android-release-unsigned.apk inside project dir
/platforms/android/build/outputs/apk/ and use keytools command that will be used to sign our apk
file. You can use the example below:

$ keytool -genkey -v -keystore my-release-key.keystore -alias androidKey -keyalg RSA -keysize
2048 -validity 10000

you can find my-release-key.keystore in your current directory.

Let’s generate our private key using the keytool command that comes with the JDK. If this tool isn’t
found, refer to the installation guide:

You’ll first be prompted to create a password for the keystore. Then, answer the rest of the nice
tools’s questions and when it’s all done, you should have a file called my-release-key.keystore
created in the current directory.

Note: Make sure to save this file somewhere safe, if you lose it you won’t be able to submit
updates to your app!

5. Sign APK

To sign the unsigned APK, run the jarsigner tool which is also included in the JDK:

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore my-release-key.keystore
HelloWorld-release-unsigned.apk alias_name

This signs the apk in place. Finally, we need to run the zip align tool to optimize the APK. The
zipalign tool can be found in /path/to/Android/sdk/build-tools/VERSION/zipalign.

https://riptutorial.com/ 13

https://github.com/driftyco/ionic-app-scripts

$ zipalign -v 4 HelloWorld-release-unsigned.apk HelloWorld.apk

Now we have our final release binary called HelloWorld.apk and we can release this on the
Google Play Store for all the world to enjoy!

Publish your app on Google Play Store. Now that we have our release APK ready for the
Google Play Store, we can create a Play Store listing and upload our APK. To start, you'll need to
visit the Google Play Store Developer Console and create a new developer account. It will cost
$25 one time fee.

Once you have a developer account, you can go ahead and click "Publish an Android App on
Google Play" and follow the on-screen instruction.

Read From code to the App store - Android online: https://riptutorial.com/ionic2/topic/9659/from-
code-to-the-app-store---android

https://riptutorial.com/ 14

https://riptutorial.com/ionic2/topic/9659/from-code-to-the-app-store---android
https://riptutorial.com/ionic2/topic/9659/from-code-to-the-app-store---android

Chapter 6: Geolocation

Examples

Simple usage

In your package.json make sure to include the dependencies:

{
 ...
 "dependencies": {
 ...
 "ionic-native": "^1.3.10",
 ...
 },
 ...
}

To use geolocation:

// custom-component.ts

import {Geolocation} from 'ionic-native';
import template from './custom-component.html';

@Component({
 selector: 'custom-component',
 template: template
})
export class CustomComponent {

 constructor() {

 // get the geolocation through a promise
 Geolocation.getCurrentPosition().then((position:Geoposition)=> {
 console.log(
 position.coords.latitude,
 position.coords.longitude);
 });
 }
}

Watching the position

For a more real time solution you can use watchPosition function in Geolocation that notifies
whenever an error or a position change occurs. Unlike the getCurrentPosition the watchPosition
returns an Observable

import {Geolocation} from 'ionic-native';
import template from './custom-component.html';

@Component({

https://riptutorial.com/ 15

selector: 'custom-component',
template: template
})
export class CustomComponent {
constructor() {

 // get the geolocation through an observable
 Geolocation.watchPosition(<GeolocationOptions>{
 maximumAge: 5000, // a maximum age of cache is 5 seconds
 timeout: 10000, // time out after 10 seconds
 enableHighAccuracy: true // high accuracy
 }).subscribe((position) => {
 console.log('Time:' + position.timestamp);
 console.log(
 'Position:' + position.coords.latitude + ',' +
 position.coords.longitude);
 console.log('Direction:' position.coords.heading);
 console.log('Speed:' position.coords.speed);

 });
}

Read Geolocation online: https://riptutorial.com/ionic2/topic/5840/geolocation

https://riptutorial.com/ 16

https://riptutorial.com/ionic2/topic/5840/geolocation

Chapter 7: InAppBrowser

Introduction

Sometimes client just require to open a web app in mobile app, for this we can use InAppBrowser
in such a way that it looks like an app instead we are opening a website/webApp in mobile, as
soon as the user will tap the app icon than instead of opening the first app view we can open
InAppBrowser directly.

Examples

A live example of this usage is this app:

In this app i am directly opening InAppBrowser when the user tap the app icon instead of loading
first page of app. So that would look like to user that they are viewing the app of the same
website/webapp.

Code example to use InAppBrowser

 platform.ready().then(() => {
 // Okay, so the platform is ready and our plugins are available.
 // Here you can do any higher level native things you might need.
 var url= "https://blog.knoldus.com/";
 var browserRef = window.cordova.InAppBrowser.open(url, "_self", "location=no",
"toolbar=no");
 browserRef.addEventListener("exit", (event) => {
 return navigator["app"].exitApp();
 }
);

Read InAppBrowser online: https://riptutorial.com/ionic2/topic/9801/inappbrowser

https://riptutorial.com/ 17

https://riptutorial.com/ionic2/topic/9801/inappbrowser

Chapter 8: Ionic2 CSS components

Examples

Grid

Ionic’s grid system is based on flexbox, a CSS feature supported by all devices that Ionic
supports. The grid is composed of three units-grid, rows and columns. Columns will expand to fill
their row, and will resize to fit additional columns.

Class Width

width-10 10%

width-20 20%

width-25 25%

width-33 33.3333%

width-50 50%

width-67 66.6666%

width-75 75%

width-80 80%

width-90 90%

Example.

 <ion-grid>
 <ion-row>
 <ion-col width-10>This column will take 10% of space</ion-col>
 </ion-row>
 </ion-grid>

Cards

Cards are a great way to display important pieces of content, and are quickly emerging as a core
design pattern for apps. They're are a great way to contain and organize information, while also
setting up predictable expectations for the user. With so much content to display at once, and
often so little screen real estate, cards have fast become the design pattern of choice for many
companies.

Example.

https://riptutorial.com/ 18

<ion-card>
 <ion-card-header>
 Header
 </ion-card-header>
 <ion-card-content>
 The British use the term "header", but the American term "head-shot" the English
simply refuse to adopt.
 </ion-card-content>
</ion-card>

Read Ionic2 CSS components online: https://riptutorial.com/ionic2/topic/8011/ionic2-css-
components

https://riptutorial.com/ 19

https://riptutorial.com/ionic2/topic/8011/ionic2-css-components
https://riptutorial.com/ionic2/topic/8011/ionic2-css-components

Chapter 9: Modals

Examples

Using Modals

Modals slide in off screen to display a temporary UI, often used for login or signup pages,
message composition, and option selection.

import { ModalController } from 'ionic-angular';
import { ModalPage } from './modal-page';

export class MyPage {
 constructor(public modalCtrl: ModalController) {
 }

 presentModal() {
 let modal = this.modalCtrl.create(ModalPage);
 modal.present();
 }
}

NOTE: A Modal is a content pane that goes over the user's current page.

Passing data through a Modal

Data can be passed to a new modal through Modal.create() as the second argument. The data
can then be accessed from the opened page by injecting NavParams. Note that the page, which
opened as a modal, has no special "modal" logic within it, but uses NavParams no differently than a
standard page.

First Page:

import { ModalController, NavParams } from 'ionic-angular';

export class HomePage {

 constructor(public modalCtrl: ModalController) {

 }

 presentProfileModal() {
 let profileModal = this.modalCtrl.create(Profile, { userId: 8675309 });
 profileModal.present();
 }

}

Second Page:

import { NavParams } from 'ionic-angular';

https://riptutorial.com/ 20

export class Profile {

 constructor(params: NavParams) {
 console.log('UserId', params.get('userId'));
 }

}

Read Modals online: https://riptutorial.com/ionic2/topic/6415/modals

https://riptutorial.com/ 21

https://riptutorial.com/ionic2/topic/6415/modals

Chapter 10: Modals

Examples

Simple Modal

Modal is a temporary UI that is displayed on top of your current page. This is often used for login,
signup, editing existing options and selecting options.

Let us look in to a simple example with modals used. To begin with we are creating an ionic blank
project. Let us create a simple modal displaying a message and exit on button click. To do that
first we are creating view for our modal.

Message.html

<ion-header>
 <ion-toolbar>
 <ion-title>
 Modal
 </ion-title>
 <ion-buttons start>
 <button (click)="dismiss()">
 Cancel
 <ion-icon name="md-close" showWhen="android,windows"></ion-icon>
 </button>
 </ion-buttons>
 </ion-toolbar>
</ion-header>
<ion-content padding>
 <h1>Modal Without Params is created successfully.</h1>
 <button full (click)="dismiss()"> Exit </button>
</ion-content>

Message.ts

import { Component } from '@angular/core';
import { ViewController } from 'ionic-angular';
@Component({
 templateUrl: 'build/pages/message/message.html',
})
export class MessagePage {
 viewCtrl;
 constructor(viewCtrl: ViewController) {
 this.viewCtrl = viewCtrl;
 }
 dismiss(){
 this.viewCtrl.dismiss();
 }
}

This modal displays a message. The modal can be closed or “dismissed” by using the View
controllers dismiss method.

https://riptutorial.com/ 22

Home.html

<ion-header>
 <ion-navbar>
 <ion-title>
 Modal Example
 </ion-title>
 </ion-navbar>
</ion-header>
<ion-content padding>
 <button full (click)="openModal()">ModalWithoutParams-Message</button>
</ion-content>

Home.ts

import { Component } from '@angular/core';
import { ModalController } from 'ionic-angular';
import {MessagePage} from '../message/message';
@Component({
 templateUrl: 'build/pages/home/home.html'
})
export class HomePage {
 modalCtrl;
 data;
 constructor(modalCtrl: ModalController) {
 this.modalCtrl = modalCtrl;
 this.data = [{name: "aaa", email: "aaa.a@som.com", mobile: "1234567890", nickname: "zzz"},
 {name: "bbb", email: "bbb.a@som.com", mobile: "1234567890", nickname: "yyy"},
 {name: "ccc", email: "ccc.a@som.com", mobile: "1234567890", nickname: "xxx"}]
 }
 openModal() {
 let myModal = this.modalCtrl.create(MessagePage);
 myModal.present();
 }
}

Now we are creating our home page importing the ModalController and our data model
MessagePage. ModalController’s create method creates modal for our data model MessagePage
that is saved to control variable myModal. Present method opens the modal on top of our current
page.

Modal with Parameters on dismiss:

We now know how to create a modal. But what if we want to pass some data from modal to our
home page. To do so, let us look into an example with modal as Register page passing
parameters to parent page.

Register.html

<ion-header>
 <ion-toolbar>
 <ion-title>
 Login
 </ion-title>
 <ion-buttons start>

https://riptutorial.com/ 23

 <button (click)="dismiss()">
 Cancel
 <ion-icon name="md-close" showWhen="android,windows"></ion-icon>
 </button>
 </ion-buttons>
 </ion-toolbar>
</ion-header>
<ion-content padding>
 <ion-list>
 <ion-item>
 <ion-label>Name</ion-label>
 <ion-input type="text" [(ngModel)]="name"></ion-input>
 </ion-item>
 <ion-item>
 <ion-label>Email</ion-label>
 <ion-input type="text" [(ngModel)]="email"></ion-input>
 </ion-item>
 <ion-item>
 <ion-label>Mobile</ion-label>
 <ion-input type="number" [(ngModel)]="mobile"></ion-input>
 </ion-item>
 <ion-item>
 <ion-label>Nickname</ion-label>
 <ion-input type="text" [(ngModel)]="nickname"></ion-input>
 </ion-item>
 </ion-list>
 <button full (click)="add()">Add</button>
</ion-content>

Register.ts

import { Component } from '@angular/core';
import { ViewController } from 'ionic-angular';
@Component({
 templateUrl: 'build/pages/register/register.html',
})
export class ResisterPage {
 viewCtrl;
 name;
 email;
 mobile;
 nickname;
 constructor(viewCtrl: ViewController) {
 this.viewCtrl = viewCtrl;
 this.name = "";
 this.email = "";
 this.mobile = "";
 this.nickname = "";
 }
 dismiss(){
 this.viewCtrl.dismiss();
 }
 add(){
 let data = {"name": this.name, "email": this.email, "mobile": this.mobile, "nickname":
this.nickname};
 this.viewCtrl.dismiss(data);
 }
}

https://riptutorial.com/ 24

Register modal gets data object with values entered by user and the parameters are passed to our
current page on dismiss with viewControllers dismiss method. Now the parameters are sent.

So how we are going to retrieve the parameters in home page? To do so, we are creating a button
on home page and call Register modal on click. To display the user, we are displaying a list.

Home.html

<ion-list>
 <ion-item *ngFor="let datum of data">
 <h1>{{datum.name}}</h1>
 </ion-item>
</ion-list>
<button full secondary (click)="openModalParams()">ModalWithParams-Register</button>

Home.ts

import {ResisterPage} from '../register/register';

 openModalParams(){
 let modalWithParams = this.modalCtrl.create(ResisterPage);
 modalWithParams.present();

 modalWithParams.onDidDismiss((result) =>{
 if(result){
 this.data.unshift(result);
 }
 });
 }

ViewController onDidDismiss method gets executed whenever a modal is closed. If data is
passed as parameter from modal, then we can retrieve it using onDidDismiss method. Here the
data entered by user is appended to the existing data. If no data is passed as parameter, then the
returned value will be null.

Modal with parameters on create:

Passing parameters to a modal is similar to how we pass values to a NavController. To do so, we
are altering our list in home.html to open a modal when clicking a list item and passing the
required parameters as a second argument to the create method.

Home.html

 <ion-list>
 <ion-item *ngFor="let datum of data" (click)="openModalwithNavParams(datum)">
 <h1>{{datum.name}}</h1>
 </ion-item>
 </ion-list>

Home.ts

import {EditProfilePage} from '../edit-profile/edit-profile';

https://riptutorial.com/ 25

 openModalwithNavParams(data){
 let modalWithNavParams = this.modalCtrl.create(EditProfilePage,{Data: data});
 modalWithNavParams.present();
 }

Similar to other views, we use NavParams to retrieve the data sent from the previous view.

Edit-Profile.html

<ion-header>
 <ion-toolbar>
 <ion-title>
 Login
 </ion-title>
 <ion-buttons start>
 <button (click)="dismiss()">
 Cancel
 <ion-icon name="md-close" showWhen="android,windows"></ion-icon>
 </button>
 </ion-buttons>
 </ion-toolbar>
</ion-header>
<ion-content padding>
 <h2>Welcome {{name}}</h2>
 <ion-list>
 <ion-item>
 <ion-label>Email</ion-label>
 <ion-input type="text" value={{email}}></ion-input>
 </ion-item>
 <ion-item>
 <ion-label>Mobile</ion-label>
 <ion-input type="number" value={{mobile}}></ion-input>
 </ion-item>
 <ion-item>
 <ion-label>Nickname</ion-label>
 <ion-input type="text" value={{nickname}}></ion-input>
 </ion-item>
 </ion-list>
 <button full (click)="dismiss()">Close</button>
</ion-content>

Edit-Profile.ts

import { Component } from '@angular/core';
import { ViewController, NavParams } from 'ionic-angular';
@Component({
 templateUrl: 'build/pages/edit-profile/edit-profile.html',
})
export class EditProfilePage {
 viewCtrl;
 navParams;
 data;
 name;
 email;
 mobile;
 nickname;
 constructor(viewCtrl: ViewController, navParams: NavParams) {

https://riptutorial.com/ 26

 this.viewCtrl = viewCtrl;
 this.navParams = navParams;
 this.data = this.navParams.get('Data');
 this.name = this.data.name;
 this.email = this.data.email;
 this.mobile = this.data.mobile;
 this.nickname = this.data.nickname;

 }
 dismiss(){
 this.viewCtrl.dismiss();
 }
}

Read Modals online: https://riptutorial.com/ionic2/topic/6612/modals

https://riptutorial.com/ 27

https://riptutorial.com/ionic2/topic/6612/modals

Chapter 11: Push notification sent & receive

Remarks

The SenderID that is present in the initialization example is a gcm sender id that is given to you by
google. It should also be present when you install the plugin

ionic plugin add phonegap-plugin-push --variable SENDER_ID="XXXXXXX"

If you wish to add additional data to your push notifications look in to this link explaining how to
add more typings https://github.com/phonegap/phonegap-plugin-
push/blob/master/docs/TYPESCRIPT.md

Examples

Initialization

The push notification plugin requires an init an initialization which tells the plugin to start running
using the sender id provided.

 let push = Push.init({
 android: {
 senderID: "------------",
 },
 ios: {
 alert: "true",
 badge: true,
 sound: "false",
 },
 windows: {},
 });

Registration

The registration step registers the app with the device's system and returns a registration id

 import { Push, RegistrationEventResponse} from "ionic-native";

 //the push element is created in the initialization example
 push.on("registration", async (response: RegistrationEventResponse) => {
 //The registration returns an id of the registration on your device
 RegisterWithWebApi(response.registrationId);

 });

Receiving a push notification

To receive push notifications we are supposed to tell the plugin to listen to incoming push

https://riptutorial.com/ 28

https://github.com/phonegap/phonegap-plugin-push/blob/master/docs/TYPESCRIPT.md
https://github.com/phonegap/phonegap-plugin-push/blob/master/docs/TYPESCRIPT.md

notifications. This step is done after initialization & registration

import { Push, NotificationEventResponse} from "ionic-native";

 //the push element is created in the initialization example
 push.on("notification", (response: NotificationEventResponse) => {
 let chatMessage: ChatMessage = <ChatMessage>{
 title: response.title,
 message: response.message,
 receiver: response.additionalData.replyTo,
 image: response.image
 };
 DoStuff(chatMessage));
 });

Read Push notification sent & receive online: https://riptutorial.com/ionic2/topic/5874/push-
notification-sent---receive

https://riptutorial.com/ 29

https://riptutorial.com/ionic2/topic/5874/push-notification-sent---receive
https://riptutorial.com/ionic2/topic/5874/push-notification-sent---receive

Chapter 12: Setup and Debugging Ionic 2 in
Visual Studio Code

Introduction

Visual Studio is a open Source IDE which provides intellisense and editing facility for code .This
IDE supports many languages like(Ionic ,C, C# ,AngularJs, TypeScript ,Android and so on) .
These languages are able to execute there code by adding its Extensions in VSCode. By using
VSCode we able to run and debug the code of different different languages.

Examples

Installation of VSCode

Firstly you need to download and install the VSCode. This VSCode latest version is available for
download in its Official website . After download the VSCode you should install and open it.

 Introduction of Extensions in VSCode

VSCode is a open editor so it provide editor for all languages but to execute a code you need to
add the Extension for that particular language. For running and editing your ionic code you should
add ionic2-vscode Extension in yourVSCode. In the left side of VSCode Editor there are 5 icons
in which the lowest one icon is use for Extension. The Extensions you may get by using shortcut
key (ctrl+shift+X).

Add Extension for Ionic2 in VsCode

By pressing ctrl+shift+X you shown the part of extension where on top three dots are shown ...
these dots are known as more icon.On click of it a dialog is open and shows the numbers of
options to choose .you may choose the option as per your need but for getting all extension you
should select Shown Recommended Extension .iN the list of all eXtension you may install your
Extension (ionic2-vscode),npm

Create and Add your Ionic Project in VSCode

VsCode is unable to create the ionic project because it is a code editor.So you can create your
ionic project by CLI or cmd. create your project by below command

$ ionic start appName blank

Above command use to create blank template ionic application. Ionic2 provide three type of
templates blank, tabs and sidemenu. So. you may replace blank template by any other two
templates as per your need.

https://riptutorial.com/ 30

https://code.visualstudio.com/docs/setup/setup-overview

Now, your Ionic project has been created. So, you are able to add your project in VSCode to edit.
To add your project follow below points.

Go to File menu in VScode.1.
Click the Open Folder inside File menu.2.
Find and open your project folder.3.

You may directly open the folder by using shortcut key ctrl+O or ctrl+k

`

Run and Debug your Ionic Project

> Run and Debug in Chrome

To run the ionic project use below command in terminal or cmd or CLI

 $ ionic serve

For debugging the ionic project ,Firstly you should add extension (Debugger for chrome) and
then configure launch.json file like this.

 {
 "version": "0.2.0",
 "configurations": [

 {
 "name": "Launch in Chrome",
 "type": "chrome",
 "request": "launch",
 "url": "http://localhost:8100",
 "sourceMaps": true,
 "webRoot": "${workspaceRoot}/src"
 }
]
}

>Run and Debug in Android

For Run ionic project in Android you should add android platform by below command in terminal
or cmd or CLI:

$ ionic cordova platform add android

Build Android by this command

$ ionic cordova build android

Run command for android platform

$ ionic cordova run android

https://riptutorial.com/ 31

Now, Your application run on real Android device.

For debug into Android device you need to add Cordova or Android Extension in VSCode. and
configure launch.json file like this.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Run Android on device",
 "type": "cordova",
 "request": "launch",
 "platform": "android",
 "target": "device",
 "port": 9222,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}",
 "ionicLiveReload": false
 },
 {
 "name": "Run iOS on device",
 "type": "cordova",
 "request": "launch",
 "platform": "ios",
 "target": "device",
 "port": 9220,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}",
 "ionicLiveReload": false
 },
 {
 "name": "Attach to running android on device",
 "type": "cordova",
 "request": "attach",
 "platform": "android",
 "target": "device",
 "port": 9222,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 },
 {
 "name": "Attach to running iOS on device",
 "type": "cordova",
 "request": "attach",
 "platform": "ios",
 "target": "device",
 "port": 9220,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 },
 {
 "name": "Run Android on emulator",
 "type": "cordova",
 "request": "launch",
 "platform": "android",
 "target": "emulator",
 "port": 9222,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}",
 "ionicLiveReload": false

https://riptutorial.com/ 32

 },
 {
 "name": "Run iOS on simulator",
 "type": "cordova",
 "request": "launch",
 "platform": "ios",
 "target": "emulator",
 "port": 9220,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}",
 "ionicLiveReload": false
 },
 {
 "name": "Attach to running android on emulator",
 "type": "cordova",
 "request": "attach",
 "platform": "android",
 "target": "emulator",
 "port": 9222,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 },
 {
 "name": "Attach to running iOS on simulator",
 "type": "cordova",
 "request": "attach",
 "platform": "ios",
 "target": "emulator",
 "port": 9220,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 },
 {
 "name": "Serve to the browser (ionic serve)",
 "type": "cordova",
 "request": "launch",
 "platform": "serve",
 "cwd": "${workspaceRoot}",
 "devServerAddress": "localhost",
 "sourceMaps": true,
 "ionicLiveReload": true
 },
 {
 "name": "Simulate Android in browser",
 "type": "cordova",
 "request": "launch",
 "platform": "android",
 "target": "chrome",
 "simulatePort": 8000,
 "livereload": true,
 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 },
 {
 "name": "Simulate iOS in browser",
 "type": "cordova",
 "request": "launch",
 "platform": "ios",
 "target": "chrome",
 "simulatePort": 8000,
 "livereload": true,

https://riptutorial.com/ 33

 "sourceMaps": true,
 "cwd": "${workspaceRoot}"
 }
]
}

After configuration you follow the following steps or short keys for debugging:

Go to debug menu.1.

Click start debugging.

or

2.

Short keys

Debugging - F5•

StepOver - F10•

Step Into and Step Out - F11•

Stop Debugging - Shift+F5•

Restart Debugging -ctrl+shift_F5•

Read Setup and Debugging Ionic 2 in Visual Studio Code online:
https://riptutorial.com/ionic2/topic/10559/setup-and-debugging--ionic-2-in-visual-studio-code

https://riptutorial.com/ 34

https://riptutorial.com/ionic2/topic/10559/setup-and-debugging--ionic-2-in-visual-studio-code

Chapter 13: Social Login with
Angularfire2/Firebase

Examples

Native Facebook Login with Angularfire2/Firebase

app.ts

import {Component} from '@angular/core';
import {Platform, ionicBootstrap} from 'ionic-angular';
import {StatusBar} from 'ionic-native';
import {LoginPage} from './pages/login/login';
import {FIREBASE_PROVIDERS, defaultFirebase, AuthMethods, AuthProviders, firebaseAuthConfig}
from 'angularfire2';

@Component({
 template: '<ion-nav [root]="rootPage"></ion-nav>'
})

export class MyApp {

 private rootPage: any;

 constructor(private platform: Platform) {
 this.rootPage = LoginPage;

 platform.ready().then(() => {
 // Okay, so the platform is ready and our plugins are available.
 // Here you can do any higher level native things you might need.
 StatusBar.styleDefault();
 });
 }
}

ionicBootstrap(MyApp, [
 FIREBASE_PROVIDERS,
 defaultFirebase({
 apiKey: myAppKey,
 authDomain: 'myapp.firebaseapp.com',
 databaseURL: 'https://myapp.firebaseio.com',
 storageBucket: 'myapp.appspot.com',
 }),
 firebaseAuthConfig({})
]);

login.html

<ion-header>
 <ion-navbar>
 <ion-title>Home</ion-title>
 </ion-navbar>
</ion-header>

https://riptutorial.com/ 35

<ion-content padding class="login">
 <button (click)="facebookLogin()">Login With Facebook</button>
</ion-content>

login.ts

import {Component} from '@angular/core';
import {Platform} from 'ionic-angular';
import {AngularFire, AuthMethods, AuthProviders} from 'angularfire2';
import {Facebook} from 'ionic-native';

declare let firebase: any; // There is currently an error with the Firebase files, this will
fix it.

@Component({
 templateUrl: 'build/pages/login/login.html'
})
export class LoginPage {

 constructor(private platform: Platform, public af: AngularFire) {

 }

 facebookLogin() {
 Facebook.login(['public_profile', 'email', 'user_friends'])
 .then(success => {
 console.log('Facebook success: ' + JSON.stringify(success));
 let creds =
firebase.auth.FacebookAuthProvider.credential(success.authResponse.accessToken);
 this.af.auth.login(creds, {
 provider: AuthProviders.Facebook,
 method: AuthMethods.OAuthToken,
 remember: 'default',
 scope: ['email']
 }).then(success => {
 console.log('Firebase success: ' + JSON.stringify(success));
 }).catch(error => {
 console.log('Firebase failure: ' + JSON.stringify(error));
 });
 }).catch(error => {
 console.log('Facebook failure: ' + JSON.stringify(error));
 });
 }
}

Read Social Login with Angularfire2/Firebase online:
https://riptutorial.com/ionic2/topic/5518/social-login-with-angularfire2-firebase

https://riptutorial.com/ 36

https://riptutorial.com/ionic2/topic/5518/social-login-with-angularfire2-firebase

Chapter 14: Unit Testing

Introduction

Unit Testing in general gives additional safety to a product to prevent issues when
modifying/adding features. A safety net that says "EVERYTHING STILL WORKS". Unit Tests do
not replace in any way the actual user tests that a proper QA can do.

In this document we will base the examples on this repository: https://github.com/driftyco/ionic-
unit-testing-example

Examples

Unit Tests with Karma/Jasmine

Unit testing in ionic is the same as in any angular app.

We'll be using a few frameworks to do this.

Karma - a framework for running tests

Jasmine - a framework for writing tests

PhantomJS - an application that runs javascript without a browser

First of all lets install everything, so make sure your package.json includes these lines in the dev
dependencies. I feel its important to note that that dev dependencies don't affect your app at all
and are just there to help the developer.

"@ionic/app-scripts": "1.1.4",
"@ionic/cli-build-ionic-angular": "0.0.3",
"@ionic/cli-plugin-cordova": "0.0.9",
"@types/jasmine": "^2.5.41",
"@types/node": "^7.0.8",
"angular2-template-loader": "^0.6.2",
"html-loader": "^0.4.5",
"jasmine": "^2.5.3",
"karma": "^1.5.0",
"karma-chrome-launcher": "^2.0.0",
"karma-jasmine": "^1.1.0",
"karma-jasmine-html-reporter": "^0.2.2",
"karma-sourcemap-loader": "^0.3.7",
"karma-webpack": "^2.0.3",
"null-loader": "^0.1.1",
"ts-loader": "^2.0.3",
"typescript": "2.0.9"

To go over packages a bit

https://riptutorial.com/ 37

https://github.com/driftyco/ionic-unit-testing-example
https://github.com/driftyco/ionic-unit-testing-example

"angular2-template-loader": "^0.6.2", - will load and compile the angular2 html files.

"ts-loader": "^2.0.3", - will compile the actual typescript files

"null-loader": "^0.1.1", - will not load the assets that will be missing, such as fonts and
images. We are testing, not image lurking.

We should also add this script to our package.json scripts:

"test": "karma start ./test-config/karma.conf.js"

Also take note in tsconfig that you are excluding the spec.ts files from compilation:

 "exclude": [
 "node_modules",
 "src/**/*.spec.ts"
],

Ok, now lets take the actual testing configuration. Create a test-config folder in your project folder.
(Just as it was mentioned in the package.json script) Inside the folder create 3 files:

webpack.test.js - which will tell the webpack what files to load for the testing process

var webpack = require('webpack');
var path = require('path');

module.exports = {
 devtool: 'inline-source-map',

 resolve: {
 extensions: ['.ts', '.js']
 },

 module: {
 rules: [
 {
 test: /\.ts$/,
 loaders: [
 {
 loader: 'ts-loader'
 } , 'angular2-template-loader'
]
 },
 {
 test: /\.html$/,
 loader: 'html-loader'
 },
 {
 test: /\.(png|jpe?g|gif|svg|woff|woff2|ttf|eot|ico)$/,
 loader: 'null-loader'
 }
]
 },

 plugins: [
 new webpack.ContextReplacementPlugin(
 // The (\\|\/) piece accounts for path separators in *nix and Windows

https://riptutorial.com/ 38

 /angular(\\|\/)core(\\|\/)(esm(\\|\/)src|src)(\\|\/)linker/,
 root('./src'), // location of your src
 {} // a map of your routes
)
]
};

function root(localPath) {
 return path.resolve(__dirname, localPath);
}

karma-test-shim.js - which will load the angular related libraries, such as zone and test libraries as
well as configure the module for testing.

Error.stackTraceLimit = Infinity;

require('core-js/es6');
require('core-js/es7/reflect');

require('zone.js/dist/zone');
require('zone.js/dist/long-stack-trace-zone');
require('zone.js/dist/proxy');
require('zone.js/dist/sync-test');
require('zone.js/dist/jasmine-patch');
require('zone.js/dist/async-test');
require('zone.js/dist/fake-async-test');

var appContext = require.context('../src', true, /\.spec\.ts/);

appContext.keys().forEach(appContext);

var testing = require('@angular/core/testing');
var browser = require('@angular/platform-browser-dynamic/testing');

testing.TestBed.initTestEnvironment(browser.BrowserDynamicTestingModule,
browser.platformBrowserDynamicTesting());

karma.conf.js - defines the configuration of how to test with karma. Here you can switch from
Chrome to PhantomJS to make this process invisible and faster among other things.

var webpackConfig = require('./webpack.test.js');

module.exports = function (config) {
 var _config = {
 basePath: '',

 frameworks: ['jasmine'],

 files: [
 {pattern: './karma-test-shim.js', watched: true}
],

 preprocessors: {
 './karma-test-shim.js': ['webpack', 'sourcemap']
 },

 webpack: webpackConfig,

https://riptutorial.com/ 39

 webpackMiddleware: {
 stats: 'errors-only'
 },

 webpackServer: {
 noInfo: true
 },

 browserConsoleLogOptions: {
 level: 'log',
 format: '%b %T: %m',
 terminal: true
 },

 reporters: ['kjhtml', 'dots'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: true,
 browsers: ['Chrome'],
 singleRun: false
 };

 config.set(_config);
};

Now that we configured everything lets write some actual test. For this example we will write an
app.component spec file. If you would like to see tests for a page and not the main component you
can look here: https://github.com/driftyco/ionic-unit-testing-
example/blob/master/src/pages/page1/page1.spec.ts

What we need to do first is to test out our constructor. This will create and run the constructor of
our app.component

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [MyApp],
 imports: [
 IonicModule.forRoot(MyApp)
],
 providers: [
 StatusBar,
 SplashScreen
]
 })
 }));

The declaration will include our main ionic app. The Imports will the imports needed for this test.
Not everything.

The providers will include the things that are injected in to the constructor but are not part of the
import. For instance the app.component injects the Platform service but since its a part of the
IonicModule there is no need to mention it in the providers.

For the next tests we will need to get an instance of our component:

https://riptutorial.com/ 40

https://github.com/driftyco/ionic-unit-testing-example/blob/master/src/pages/page1/page1.spec.ts
https://github.com/driftyco/ionic-unit-testing-example/blob/master/src/pages/page1/page1.spec.ts

 beforeEach(() => {
 fixture = TestBed.createComponent(MyApp);
 component = fixture.componentInstance;
 });

Next a few tests to see that everything is in order:

 it ('should be created', () => {
 expect(component instanceof MyApp).toBe(true);
 });

 it ('should have two pages', () => {
 expect(component.pages.length).toBe(2);
 });

So in the end we will have something like this:

import { async, TestBed } from '@angular/core/testing';
import { IonicModule } from 'ionic-angular';

import { StatusBar } from '@ionic-native/status-bar';
import { SplashScreen } from '@ionic-native/splash-screen';

import { MyApp } from './app.component';

describe('MyApp Component', () => {
 let fixture;
 let component;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [MyApp],
 imports: [
 IonicModule.forRoot(MyApp)
],
 providers: [
 StatusBar,
 SplashScreen
]
 })
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(MyApp);
 component = fixture.componentInstance;
 });

 it ('should be created', () => {
 expect(component instanceof MyApp).toBe(true);
 });

 it ('should have two pages', () => {
 expect(component.pages.length).toBe(2);
 });

});

Run the tests by

https://riptutorial.com/ 41

npm run test

And that's about it for the basic testing. There are a few ways to shortcut the test writing like
writing your own TestBed and having inheritance in tests which might help you out in the long run.

Read Unit Testing online: https://riptutorial.com/ionic2/topic/9561/unit-testing

https://riptutorial.com/ 42

https://riptutorial.com/ionic2/topic/9561/unit-testing

Chapter 15: Using Services

Remarks

One very important thing about using shared services, is that they must be included in the
providers array of the top-most component where they must be shared.

Why is that? Well, Let's suppose that we include the MyService reference in the providers array
from each Component. Something like:

@Component({
 templateUrl:"page1.html",
 providers: [MyService]
})

And

@Component({
 templateUrl:"page2.html",
 providers: [MyService]
})

That way a new instance of the service will be created for each component so the instance
where one page will save the data, will be different from the instance used to get the data. So that
won't work.

In order to make the entire app use the same instance (making the service work as a singleton
service) we can add its reference in the App Component like this:

@Component({
 template: '<ion-nav [root]="rootPage"></ion-nav>',
 providers: [MyService]
})

You could also add the MyService reference in the ionicBootstrap(MyApp, [MyService]); but
according Angular2 style guides

Do provide services to the Angular 2 injector at the top-most component where they
will be shared.

Why? The Angular 2 injector is hierarchical.

Why? When providing the service to a top level component, that instance is shared and
available to all child components of that top level component.

Why? This is ideal when a service is sharing methods or state.

Why? This is not ideal when two different components need different instances of a

https://riptutorial.com/ 43

https://angular.io/styleguide#!%2307-03

service. In this scenario it would be better to provide the service at the component level
that needs the new and separate instance.

And

It will work. It's just not a best practice. The bootstrap provider option is intended
for configuring and overriding Angular's own preregistered services, such as its
routing support.

... the App Component would be the best choice.

Examples

Share information between different pages

One of the easiest examples of using shared services is when we want to store some data from a
given page of our application, and then get that data again but from another page.

One option could be to send that data as a parameter (for instance, if one page calls the other
one) but if we want to use that data from a completely different part of the application, that seems
to be not the best way to do it. That's when shared services comes to play.

In this example, we're going to use a simple service called MyService which only has two simple
methods: saveMessage() to store a string and getMessage() to get it again. This code is part of this
working plunker where you can see it in action.

import {Injectable} from '@angular/core';

@Injectable()
export class MyService {

 private message: string;

 constructor(){ }

 public saveMessage(theMessage: string): void {
 this.message = theMessage;
 }

 public getMessage(): string {
 return this.message;
 }
}

Then, when we want to store a new message, we can just use the
saveMessage(theMessageWeWantToSave); method from the MyService instance (called just service).

import { Component } from "@angular/core";
import { MyService } from 'service.ts';

@Component({
 templateUrl:"page1.html"

https://riptutorial.com/ 44

http://plnkr.co/edit/EOFTax?p=preview
http://plnkr.co/edit/EOFTax?p=preview

})
export class Page1 {

 message: string;

 // ...

 public saveSecretMessage(): void {
 this.service.saveMessage(this.message);
 }
}

In the same way, when we want to get that data we can use the getMessage() method from the
service instance like this:

import { Component } from "@angular/core";
import { MyService } from 'service.ts';

@Component({
 templateUrl:"page2.html"
})
export class Page2 {

 enteredMessage: string;

 constructor(private service: MyService) {
 this.enteredMessage = this.service.getMessage();
 }

 // ...
}

Please remember to check the Remarks section to see where should the reference for the
MyService service be included and why.

Read Using Services online: https://riptutorial.com/ionic2/topic/4407/using-services

https://riptutorial.com/ 45

https://riptutorial.com/ionic2/topic/4407/using-services

Chapter 16: Using Tabs

Remarks

Always remember to check out Ionic 2 Tab docs to be aware of the latest changes and updates.

Examples

Change selected tab programatically from child Page

You can take a look at the full code in this working Plunker.

In this example I use a shared service to handle the communication between the pages inside the
tab (child pages) and the tab container (the component that holds the tabs). Even though you
probably could do it with Events I like the shared service approach because is easier to
understand and also to mantain when the application starts growing.

TabService

import {Injectable} from '@angular/core';
import {Platform} from 'ionic-angular/index';
import {Observable} from 'rxjs/Observable';

@Injectable()
export class TabService {

 private tabChangeObserver: any;
 public tabChange: any;

 constructor(private platform: Platform){
 this.tabChangeObserver = null;
 this.tabChange = Observable.create(observer => {
 this.tabChangeObserver = observer;
 });
 }

 public changeTabInContainerPage(index: number) {
 this.tabChangeObserver.next(index);
 }
}

So basically the TabService only creates an Observable to allow the tabs container to subscribe to it,
and also declares the changeTabInContainerPage() method that will be called from the child pages.

Then, in each child page (the ones inside the tabs) we only add a button and bind the click event
to a method that calls the service:

Page1.html

<ion-content class="has-header">

https://riptutorial.com/ 46

http://ionicframework.com/docs/v2/api/components/tabs/Tabs/
http://plnkr.co/edit/4ZmJyO?p=preview
http://ionicframework.com/docs/v2/api/util/Events/

 <h1>Page 1</h1>
 <button secondary (click)="changeTab()">Select next tab</button>
</ion-content>

Page1.ts

import { Component } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import { TabService } from 'tabService.ts';

@Component({
 templateUrl:"page1.html"
})
export class Page1 {

 constructor(private tabService: TabService) { }

 public changeTab() {
 this.tabService.changeTabInContainerPage(1);
 }
}

And finally, in the TabsPage, we only subscribe to the service, and then we change the selected tab
with this.tabRef.select(index);

import { Component, ViewChild } from "@angular/core";
import { Page1 } from './page1.ts';
import { Page2 } from './page2.ts';
import { TabService } from 'tabService.ts';

@Component({
 templateUrl: 'tabs.html'
})
export class TabsPage {
 @ViewChild('myTabs') tabRef: Tabs;

 tab1Root: any = Page1;
 tab2Root: any = Page2;

 constructor(private tabService: TabService){
 this.tabService.tabChange.subscribe((index) => {
 this.tabRef.select(index);
 });
 }
}

Please notice that we're getting a reference to the Tabs instance by adding #myTabs in the ion-tabs
element, and we get it from the component with @ViewChild('myTabs') tabRef: Tabs;

<ion-tabs #myTabs>
 <ion-tab [root]="tab1Root" tabTitle="Tab 1"></ion-tab>
 <ion-tab [root]="tab2Root" tabTitle="Tab 2"></ion-tab>
</ion-tabs>

Change tab with selectedIndex

https://riptutorial.com/ 47

Instead of getting a reference to the DOM you can simply change the index of the tab using the
selectedIndex attribute on the ion-tabs

HTML:

 <ion-tabs [selectedIndex]="tabIndex" class="tabs-icon-text" primary >
 <ion-tab tabIcon="list-box" [root]="tabOne"></ion-tab>
 <ion-tab tabIcon="contacts" [root]="tabTwo"></ion-tab>
 <ion-tab tabIcon="chatboxes" [tabBadge]="messagesReceived" [root]="tabFive"></ion-tab>
 </ion-tabs>

TS:

 import { Events} from "ionic-angular";

 export class tabs {
 public tabIndex: number;
 constructor(e: Events) {
 tabs.mySelectedIndex = navParams.data.tabIndex || 0;
 e.subscribe("tab:change", (newIndex) => this.tabIndex = newIndex);
 }
}

If you want to change it from some other controller service you can send an event:

e.publish("tab:change",2);

Read Using Tabs online: https://riptutorial.com/ionic2/topic/5569/using-tabs

https://riptutorial.com/ 48

https://riptutorial.com/ionic2/topic/5569/using-tabs

Chapter 17: Workaround for 'show-delete' in
deprecation

Examples

Solution

I am developing a mobile app using ionic 2 with Angular 2.

I have an ion-list filled ion-items. I want those ion-item to have the ability to be deleted if needed as
presented here on the ionic website.

However, a lot have changed in ionic 2 since the first version and the above style of one button
opening all the ion-item at one is not possible anymore since the show-delete and show-reorder
are no longer supported. The only option available is to have ion-item-sliding as ion-item, which
gives us the ability to slide each item one at a time in order to reveal the delete button.

That is not what I wanted. I wanted one button that opens all ion-item at the same time.

After spending some time on that, I came up with a working solution and managed to achieve the
desired outcome using ionic 2, and I am going to share it with you.

Here is my solution:

In the .html file:

<ion-header>
 <ion-navbar>
 <ion-buttons start (click)="manageSlide()">
 <button>
 <ion-icon name="ios-remove"></ion-icon>
 </button>
 </ion-buttons>
 <ion-title>PageName</ion-title>
 </ion-navbar>
</ion-header>

and for the list:

<ion-list #list1>
 <ion-item-sliding #slidingItem *ngFor="let contact of contacts | sortOrder">
 <button #item ion-item>
 <p>{{ item.details }}</p>
 <ion-icon id="listIcon" name="arrow-forward" item-right></ion-icon>
 </button>
 <ion-item-options side="left">
 <button danger (click)="doConfirm(contact, slidingItem)">
 <ion-icon name="ios-remove-circle-outline"></ion-icon>
 Remove
 </button>

https://riptutorial.com/ 49

http://ionicframework.com/docs/api/directive/ionList/

 </ion-item-options>
 </ion-item-sliding>
</ion-list>

In the .ts file, first do your imports:

import { ViewChild } from '@angular/core';
import { Item } from 'ionic-angular';
import { ItemSliding, List } from 'ionic-angular';

then refer to the html element by declaring a ViewChild:

@ViewChild(List) list: List;

Finally, add your classes to handle the work:

public manageSlide() {

 //loop through the list by the number retreived of the number of ion-item-sliding in the
list
 for (let i = 0; i < this.list.getElementRef().nativeElement.children.length; i++) {

 // retreive the current ion-item-sliding
 let itemSlide = this.list.getElementRef().nativeElement.children[i].$ionComponent;

 // retreive the button to slide within the ion-item-sliding
 let item = itemSlide.item;

 // retreive the icon
 let ic = item._elementRef.nativeElement.children[0].children[1];

 if (this.deleteOpened) {
 this.closeSlide(itemSlide);
 } else {
 this.openSlide(itemSlide, item, ic);
 }
 }

 if (this.deleteOpened) {
 this.deleteOpened = false;
 } else {
 this.deleteOpened = true;
 }
}

Then the opening class:

private openSlide(itemSlide: ItemSliding, item: Item, inIcon) {
 itemSlide.setCssClass("active-sliding", true);
 itemSlide.setCssClass("active-slide", true);
 itemSlide.setCssClass("active-options-left", true);
 item.setCssStyle("transform", "translate3d(72px, 0px, 0px)")
}

And the closing class:

https://riptutorial.com/ 50

private closeSlide(itemSlide: ItemSliding) {
 itemSlide.close();
 itemSlide.setCssClass("active-sliding", false);
 itemSlide.setCssClass("active-slide", false);
 itemSlide.setCssClass("active-options-left", false);

}

I hope it will help some you out there.

Enjoy and good coding...

Read Workaround for 'show-delete' in deprecation online:
https://riptutorial.com/ionic2/topic/6620/workaround-for--show-delete--in--ion-list--deprecation

https://riptutorial.com/ 51

https://riptutorial.com/ionic2/topic/6620/workaround-for--show-delete--in--ion-list--deprecation

Credits

S.
No

Chapters Contributors

1
Getting started with
ionic2

Akilan Arasu, Cameron637, carstenbaumhoegger, Community,
FreeBird72, Guillaume Le Mière, Ian Pinto, Ketan Akbari,
misha130, Raymond Ativie, sebaferreras, tymspy, Will.Harris

2
Add ionic app to ionic
view

Saravanan Sachi

3
Angularfire2 with
Ionic2

Fernando Del Olmo

4
Constructor and
OnInit

niks

5
From code to the
App store - Android

Luis Estevez, misha130

6 Geolocation Matyas, misha130

7 InAppBrowser niks

8
Ionic2 CSS
components

Ketan Akbari

9 Modals Raymond Ativie

10
Push notification sent
& receive

misha130

11
Setup and
Debugging Ionic 2 in
Visual Studio Code

misha130, PRIYA PARASHAR

12
Social Login with
Angularfire2/Firebase

Cameron637, Gianfranco P.

13 Unit Testing misha130

14 Using Services sebaferreras

15 Using Tabs misha130, sebaferreras

Workaround for
'show-delete' in

16 Amr ElAdawy, Roman Lee

https://riptutorial.com/ 52

https://riptutorial.com/contributor/2601481/akilan-arasu
https://riptutorial.com/contributor/6252597/cameron637
https://riptutorial.com/contributor/3561817/carstenbaumhoegger
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6543295/freebird72
https://riptutorial.com/contributor/2196157/guillaume-le-miere
https://riptutorial.com/contributor/3954102/ian-pinto
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/1793688/raymond-ativie
https://riptutorial.com/contributor/3915438/sebaferreras
https://riptutorial.com/contributor/3029163/tymspy
https://riptutorial.com/contributor/4482057/will-harris
https://riptutorial.com/contributor/3725478/saravanan-sachi
https://riptutorial.com/contributor/6691908/fernando-del-olmo
https://riptutorial.com/contributor/2912632/niks
https://riptutorial.com/contributor/7344817/luis-estevez
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/209427/matyas
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/2912632/niks
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/1793688/raymond-ativie
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/6039052/priya-parashar
https://riptutorial.com/contributor/6252597/cameron637
https://riptutorial.com/contributor/728287/gianfranco-p-
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/3915438/sebaferreras
https://riptutorial.com/contributor/2490286/misha130
https://riptutorial.com/contributor/3915438/sebaferreras
https://riptutorial.com/contributor/5079380/amr-eladawy
https://riptutorial.com/contributor/5835112/roman-lee

deprecation

https://riptutorial.com/ 53

	About
	Chapter 1: Getting started with ionic2
	Remarks
	Examples
	Installation or Setup

	1. Installing Ionic 2
	If you get an EACCES error, follow the instructions here to give node the permissions it needs.
	2. Creating Your First App
	You can play with your new app right there in the browser!
	3. Building to a Device

	Chapter 2: Add ionic app to ionic view
	Introduction
	Examples
	Steps to add your app to ionic view

	Chapter 3: Angularfire2 with Ionic2
	Introduction
	Examples
	AngularFire initialization
	Using AngularFire2

	Chapter 4: Constructor and OnInit
	Introduction
	Examples
	Student Service Method example for using Http in constructor
	ngOnInit method to get the list of students on view load
	ngOnInit example to get the list of students on page/view

	Chapter 5: From code to the App store - Android
	Introduction
	Examples
	Production ready

	Chapter 6: Geolocation
	Examples
	Simple usage
	Watching the position

	Chapter 7: InAppBrowser
	Introduction
	Examples
	A live example of this usage is this app:
	Code example to use InAppBrowser

	Chapter 8: Ionic2 CSS components
	Examples
	Grid
	Cards

	Chapter 9: Modals
	Examples
	Using Modals

	Chapter 10: Modals
	Examples
	Simple Modal
	Modal with Parameters on dismiss:
	Modal with parameters on create:

	Chapter 11: Push notification sent & receive
	Remarks
	Examples
	Initialization
	Registration
	Receiving a push notification

	Chapter 12: Setup and Debugging Ionic 2 in Visual Studio Code
	Introduction
	Examples
	Installation of VSCode
	Create and Add your Ionic Project in VSCode
	Run and Debug your Ionic Project

	Chapter 13: Social Login with Angularfire2/Firebase
	Examples
	Native Facebook Login with Angularfire2/Firebase

	Chapter 14: Unit Testing
	Introduction
	Examples
	Unit Tests with Karma/Jasmine

	Chapter 15: Using Services
	Remarks
	Examples
	Share information between different pages

	Chapter 16: Using Tabs
	Remarks
	Examples
	Change selected tab programatically from child Page
	Change tab with selectedIndex

	Chapter 17: Workaround for 'show-delete' in deprecation
	Examples
	Solution

	Credits

