
jasmine

#jasmine

Table of Contents

About 1

Chapter 1: Getting started with jasmine 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello World 3

Chapter 2: Attributes 5

Remarks 5

Examples 5

Suites 5

Spec 5

Expectation 5

Chapter 3: Custom Matchers 7

Examples 7

Adding Custom Matchers 7

Negative Matchers 7

Chapter 4: Spies 8

Remarks 8

Examples 8

Spying on an existing function 8

Creating a new spy 8

Spying on an angular service 9

Spying on an angular service that doesn't call back end service 9

Spying on a property 10

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: jasmine

It is an unofficial and free jasmine ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official jasmine.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/jasmine
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with jasmine

Remarks

Sometime testing our JavaScript code becomes a tough task. Jasmine is a behavior-driven
development framework for testing our JavaScript code. It does not depend on any other
JavaScript frameworks. It does not require a DOM. And it has a clean syntax which makes you
easily write the tests. You can find the Jasmine documentation here and the project in GitHub.

Versions

Version	Release Date
1.0.0	2010-09-14
1.3.0	2012-11-27
2.0.0	2013-12-16
2.1.0	2014-11-14
2.2.0	2015-02-02
2.3.0	2015-04-28
2.4.0	2015-12-02
2.5.0	2016-08-30

Examples

Installation or Setup

Installing Jasmine standalone

Download the latest Jasmine release from the Jasmine release page:

Running Jasmine locally

Run Jasmine in the browser by downloading the zip file, extracting it, the referencing the files
as follows:

1.

<link rel="shortcut icon" type="image/png" href="jasmine/lib/jasmine-
2.0.0/jasmine_favicon.png">
<link rel="stylesheet" type="text/css" href="jasmine/lib/jasmine-2.0.0/jasmine.css">

<script type="text/javascript" src="jasmine/lib/jasmine-2.0.0/jasmine.js"></script>
<script type="text/javascript" src="jasmine/lib/jasmine-2.0.0/jasmine-html.js"></script>
<script type="text/javascript" src="jasmine/lib/jasmine-2.0.0/boot.js"></script>

Installing Jasmine using npm (Node Package Manager)

Set up project directory for Jasmine1.

https://riptutorial.com/ 2

http://jasmine.github.io/
https://github.com/jasmine/jasmine
https://github.com/jasmine/jasmine/releases
https://www.npmjs.com/

Create a folder and run npm init this will create an empty package.json file and will ask some
questions about your project to fill project json file.

Add 2 directories app - for the Server and spec - for tests

Get Jasmine

From root project directory run

npm install jasmine-node --save

npm install request --save

npm install express --save

this will get you the packages

./node_packages/.bin/jasmine-node spec will run jasmine binary

After this your package.json should look similar to this

package.json file, after which that file should look like this:

2.

 {
 "name": "Jasmine",
 "version": "0.0.1",
 "description": "Jasmine",
 "main": "index.js",
 "scripts": {
 "test": "./node_modules/.bin/jasmine-node spec"
 },
 "author": "Me",
 "license": "ISC"
 }

Install with npm

npm install -g jasmine

If being used with karma, install karma-jasmine

npm install --save-dev karma-jasmine

Hello World

To create a most basic test with Jasmine go to your spec (tests) folder and add file named
testSpec.js.

In that file add following:

var request = require("request");

describe("Hello World Test", function() {

https://riptutorial.com/ 3

 // This is your test bundle

 describe("GET SO", function() {
 //This is testing that http GET works

 it("Checks if SO is online", function() {
 // This is description of your test - this is what you get when it fails

 request.get("http://stackoverflow.com/", function(error, response, body) {
 // this is your test body

 expect(response.statusCode).toBe(200);
 // this is your test assertion - it expects status code to be '200'
 });
 });
 });
});

Read Getting started with jasmine online: https://riptutorial.com/jasmine/topic/1302/getting-started-
with-jasmine

https://riptutorial.com/ 4

https://riptutorial.com/jasmine/topic/1302/getting-started-with-jasmine
https://riptutorial.com/jasmine/topic/1302/getting-started-with-jasmine

Chapter 2: Attributes

Remarks

There are some terms you must be aware of before going to write the Jasmine test cases.

Suites1.

A suit is the starting point of a Jasmine test cases, it actually calls the global jasmine function
describe. It can have two parameters, a string value which describes the suit, and a function which
implements the suit.

Spec2.

Like suites, a spec starts with a string which can be the title of the suit and a function where we
write the tests. A spec can contain one or more expectation that test the state of our code.

Expectation3.

Value of an expectation is either true or false, an expectation starts with the function expect. It
takes a value and call the actual one.

Examples

Suites

describe("Includes validations for index page", function () {

});

Spec

it("Spy call for datepicker date validation", function () {

});

Expectation

describe("Includes validations for index page", function () {
 var indexPage;

 it("Check for null values", function () {
 // We are going to pass "" (null) value to the function
 var retVal = indexPage.isNullValue("");
 expect(retVal).toBeTruthy();
 });

});

https://riptutorial.com/ 5

Read Attributes online: https://riptutorial.com/jasmine/topic/7980/attributes

https://riptutorial.com/ 6

https://riptutorial.com/jasmine/topic/7980/attributes

Chapter 3: Custom Matchers

Examples

Adding Custom Matchers

Custom matchers can be added in jasmine using the syntax:

jasmine.addMatchers([
 toMatch: function () {
 return {
 compare: function (actual, expected) {
 return {
 pass: actual===expected,
 message: "Expected actual to match expected
 }
 }
 }
}
]);

This matcher can now be called with:

expected(actual).toMatch(expected);

Negative Matchers

Custom matchers will have their pass value negated when using 'not'. Custom matchers can have
a negative compare attribute to explicitly handle cases where their negation is desired:

toMatch: function () {
 return {
 compare: function (actual, expected) {
 return {
 pass: actual===expected,
 message: "Expected actual to match expected"
 }
 },
 negativeCompare: function(actual, expected){
 return {
 pass: actual!==expected,
 message: "Expected actual not to match expected"
 }
 }
 }
 }

Read Custom Matchers online: https://riptutorial.com/jasmine/topic/6945/custom-matchers

https://riptutorial.com/ 7

https://riptutorial.com/jasmine/topic/6945/custom-matchers

Chapter 4: Spies

Remarks

A spy is defined as a test specific function which intercepts calls to an underlying function in the
application code and dispatches its own implementation when the underlying function is called to
test the interface rather than the implementation.

Examples

Spying on an existing function

Jasmine can spy on an existing function using the spyOn function.

let calculator = {
 multiply: function(a, b) {
 return a * b;
 },

 square: function(a) {
 return this.multiply(a, a);
 }
}

describe('calculator', function() {
 it('squares numbers by multiplying them by themselves', function() {
 let num = 2;
 spyOn(calculator, 'multiply');
 calculator.square(NUM);
 expect(calculator.multiply).toHaveBeenCalledWith(NUM, NUM);
 })
});

After the function has been spied on it is replaced with a spy, that can be queried for information
about how and when it has been called.

Creating a new spy

We can use jasmine.createSpy() to create a standalone spy. This is often useful if we need to pass
a function as a callback to another function and want to test how it is used.

// source code
function each(arr, fn) {
 arr.forEach(fn);
}

// test code
describe('each', function() {
 let mockFn = jasmine.createSpy();

https://riptutorial.com/ 8

 it('calls a function for each item in the array ', function() {
 let arr = [1,2,3,4,5]
 each(arr, mockFn);
 expect(mockFn.calls.count()).toBe(arr.length);
 })
});

Spying on an angular service

In this example we have a service, let's call it search service that has a method called search()
which will initiate a get request to a back end API.

function SearchService($http) {
 const service = {};

 service.search = function() {
 return $http({method: 'GET', url: `/api/search`})
 }

 return service;
}
angular.module('app').factory('searchService', SearchService);

Testing

describe('search service', function() {
 var $httpBackend;
 var searchService;
 beforeEach(angular.mock.module('app'));

 beforeEach(inject(function(_$httpBackend_, _searchService_) {
 $httpBackend = _$httpBackend_;
 searchService = _searchService_;
 }));

 it('should perform http call to the search api', function(){
 searchService.search();
 $httpBackend.expectGET('/api/search');
 });

})

Spying on an angular service that doesn't call back end service

function calculatorService() {
 const service = {};
 service.add = function(a,b) {
 return a + b
 }

 return service;
}

angular.module('app').factory('calculatorService', calculatorService);

https://riptutorial.com/ 9

Testing

describe('calculator service', function() {
 var calculatorService;
 beforeEach(angular.mock.module('app'));

 beforeEach(inject(function(_calculatorService_) {
 calculatorService = _calculatorService_;
 }));

 it('should should add two numbers', function(){
 var actual = calculatorService.add(1,2);
 expect(actual).toBe(3);
 });
})

Spying on a property

const foop = {
 get value() {},
 set value(v) {}
};

it('can spy on getter', () => {
 spyOnProperty(foop, 'value', 'get').and.returnValue(1);
 expect(foop.value).toBe(1);
});

it('and on setters', () => {
 const spiez = spyOnProperty(foop, 'value', 'set');
 foop.value = true;
 expect(spiez).toHaveBeenCalled();
});

Read Spies online: https://riptutorial.com/jasmine/topic/1979/spies

https://riptutorial.com/ 10

https://riptutorial.com/jasmine/topic/1979/spies

Credits

S.
No

Chapters Contributors

1
Getting started with
jasmine

Akxe, cezar, Community, dev ツ, Matas Vaitkevicius, Paul
Sweatte, Sibeesh Venu, tkwargs

2 Attributes Sibeesh Venu

3 Custom Matchers SilentLupin

4 Spies
Ahmed Ahmed, Ben McCormick, gmuraleekrishna, hansmaad,
Laoujin, Paul Sweatte

https://riptutorial.com/ 11

https://riptutorial.com/contributor/3001856/akxe
https://riptutorial.com/contributor/3848833/cezar
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3929393/dev--
https://riptutorial.com/contributor/3929393/dev--
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1113772/paul-sweatte
https://riptutorial.com/contributor/1113772/paul-sweatte
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/1706504/tkwargs
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/2348288/silentlupin
https://riptutorial.com/contributor/388788/ahmed-ahmed
https://riptutorial.com/contributor/1424361/ben-mccormick
https://riptutorial.com/contributor/3804420/gmuraleekrishna
https://riptutorial.com/contributor/498298/hansmaad
https://riptutorial.com/contributor/540352/laoujin
https://riptutorial.com/contributor/1113772/paul-sweatte

	About
	Chapter 1: Getting started with jasmine
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World

	Chapter 2: Attributes
	Remarks
	Examples
	Suites
	Spec
	Expectation

	Chapter 3: Custom Matchers
	Examples
	Adding Custom Matchers
	Negative Matchers

	Chapter 4: Spies
	Remarks
	Examples
	Spying on an existing function
	Creating a new spy
	Spying on an angular service
	Spying on an angular service that doesn't call back end service
	Spying on a property

	Credits

