
jdbc

#jdbc

Table of Contents

About 1

Chapter 1: Getting started with jdbc 2

Remarks 2

Versions 2

Examples 2

Creating a connection 2

Chapter 2: Creating a database connection 4

Syntax 4

Examples 4

Introduction (SQL) 4

Using the Connection (And Statements) 5

Creating a connection using java.sql.DriverManager 6

Creating a connection to MySQL 7

Connection to a Microsoft Access database with UCanAccess 8

Oracle JDBC connection 9

Driver: 9

Driver class initialization: 9

Connection URL 9

Example 9

Chapter 3: JDBC - Statement Injection 10

Introduction 10

Examples 10

Statement & SQL Injection evil 10

Simple login using Statement 10

Login with fake username and password 11

INSERT a new user 11

DELETE All users 11

DROP Table users 11

DROP DATABASE 11

Why all this? 12

Chapter 4: PreparedStatement 13

Remarks 13

Examples 13

Setting parameters for PreparedStatement 13

Special cases 13

Setting NULL value: 13

Setting LOBs 14

Exceptions on set* methods 14

Basic usage of a prepared statement 14

Chapter 5: ResultSet 15

Introduction 15

Examples 15

ResultSet 15

Create ResultSet with Statement 15

Create ResultSet with PrepapredStatement 15

Check if your ResultSet have information or not 15

Get information from ResultSet 16

Chapter 6: ResultSetMetaData 17

Introduction 17

Examples 17

ResultSetMetaData 17

Chapter 7: Statement batching 18

Introduction 18

Remarks 18

Examples 18

Batch insertion using PreparedStatement 18

Batch execution using Statement 19

Credits 20

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: jdbc

It is an unofficial and free jdbc ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official jdbc.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/jdbc
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with jdbc

Remarks

JDBC, or Java DataBase Connectivity, is the Java specification for connecting to (relational)
databases. JDBC provides a common API in the form of a number of interfaces and exceptions,
and expectations (or requirements) of drivers.

The JDBC specification consists of two parts:

A specification document, available from the JSR-221 page1.
The API and its documentation, included with the Java SE API (packages java.sql and
javax.sql)

2.

Most relational databases, and some non-relational databases, provide a driver that implements
the JDBC.

Versions

Version Release Date

3.0 2002-02-06

4.0 2006-12-11

4.1 2011-07-07

4.2 2014-03-18

Examples

Creating a connection

To be able to use JDBC you need to have the JDBC driver of your database on the class path of
your application.

There are multiple ways to connect to a database, but the common ways are to either use the
java.sql.DriverManager, or to configure and use a database specific implementation of
javax.sql.DataSource.

A simple example to create a connection to a database with the url jdbc:somedb://localhost/foobar
and execute an update statement to give all employees a 5% raise:

try (Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/foobar", "anna", "supersecretpassword");

https://riptutorial.com/ 2

https://jcp.org/en/jsr/detail?id=221
https://docs.oracle.com/javase/8/docs/api/java/sql/package-frame.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-frame.html
https://docs.oracle.com/javase/8/docs/api/java/sql/DriverManager.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/DataSource.html

 Statement updateStatement = connection.createStatement()) {

 updateStatement.executeUpdate("update employees set salary = salary * 1.05");
}

For further details see creating a database connection

Read Getting started with jdbc online: https://riptutorial.com/jdbc/topic/1685/getting-started-with-
jdbc

https://riptutorial.com/ 3

http://www.riptutorial.com/jdbc/topic/2640/creating-a-database-connection
https://riptutorial.com/jdbc/topic/1685/getting-started-with-jdbc
https://riptutorial.com/jdbc/topic/1685/getting-started-with-jdbc

Chapter 2: Creating a database connection

Syntax

DB_URL = "jdbc:DBMS://DB_HOST:DB_PORT/DB_NAME"•

DBMS: Data Base Driver Manager, this can be any DBMS (mysql, oracle, postgresql, sqlite,
...), exemple of mysql: "com.mysql.jdbc.Driver"

•

DB_HOST: your database base host, the IP adress of your database exemple : 10.6.0.1, the
default is localhost or 127.0.0.1

•

DB_PORT: Database port, every DBMS has a defeaut port exemple mysql=3306,
postegesql=5432

•

DB_NAME: the name of your Database•

To connect you should to obtains a reference to the class object,•

Class.forName(DRIVER);•

And to connect to database, you need to create a connection•

java.sql.Connection con = DriverManager.getConnection(DB_URL, DB_USER_NAME,
DB_PASSWORD);

•

DB_USER_NAME : the username of your databse•

DB_PASSWORD : the password of your database•

Examples

Introduction (SQL)

Since Java 6, the recommended way to access an SQL-based database in Java is via the
JDBC(Java DataBase Connectivity) API.

This API comes in two packagages: java.sql and javax.sql.

JDBC defines database interactions in terms of Connections and Drivers.

A Driver interacts with the database, and provides a simplified interface for opening and managing
connections. Most database server varieties (PostgreSQL, MySQl, etc.) have their own Drivers,
which handle setup, teardown, and translation specific to that server. Drivers are usually not
accessed directly; rather, the interface provided by the DriverManager object is used instead.

The DriverManager object is essentially the core of JDBC. It provides a (mostly) database-agnostic
interface to create Connections. For older versions of the JDBC API, database-specific Drivers had

https://riptutorial.com/ 4

to be loaded before DeviceManager could create a connection to that database type.

A Connection is, as the name implies, a representation of an open connection to the database.
Connections are database-agnostic, and are created and provided by the DriverManager. They
provide a number of 'shortcut' methods for common query types, as well as a raw SQL interface.

Using the Connection (And Statements)

Once we've gotten the Connection, we will mostly use it to create Statement objects. Statements
represent a single SQL transaction; they are used to execute a query, and retrieve the results (if
any). Let's look at some examples:

public void useConnection() throws SQLException{

 Connection conn = getConnection();

 //We can use our Connection to create Statements
 Statement state = conn.getStatement();

 //Statements are most useful for static, "one-off" queries

 String query = "SELECT * FROM mainTable";
 boolean sucess = state.execute(query);

 //The execute method does exactly that; it executes the provided SQL statement, and
returns true if the execution provided results (i.e. was a SELECT) and false otherwise.

 ResultSet results = state.getResultSet();

 //The ResultSet object represents the results, if any, of an SQL statement.
 //In this case, the ResultSet contains the return value from our query statement.
 //A later example will examine ResultSets in more detail.

 ResultSet newResults = state.executeQuery(query)

 //The executeQuery method is a 'shortcut' method. It combines the execute and getResultSet
methods into a single step.
 //Note that the provided SQL query must be able to return results; typically, it is a
single static SELECT statement.
 //There are a number of similar 'shortcut' methods provided by the Statement interface,
including executeUpdate and executeBatch

 //Statements, while useful, are not always the best choice.

 String newQuery = "SELECT * FROM mainTable WHERE id=?";
 PreparedStatement prepStatement = conn.prepareStatement(newQuery);

 //PreparedStatements are the prefed alternative for variable statements, especially ones
that are going to be executed multiple times

 for(int id:this.ids){

 prepStatement.setInt(1,id);
 //PreparedStatements allow you to set bind variables with a wide variety of set
methods.
 //The first argument to any of the various set methods is the index of the bind
variable you want to set. Note that this starts from 1, not 0.

https://riptutorial.com/ 5

 ResultSet tempResults = prepStatement.executeQuery()
 //Just like Statements, PreparedStatements have a couple of shortcut methods.
 //Unlike Statements, PreparedStatements do not not take a query string as an argument
to any of their execute methods.
 //The statement that is executed is always the one passed to the
Connector.prepareStatement call that created the PreparedStatement
 }

}

Creating a connection using java.sql.DriverManager

To connect using java.sql.DriverManager you need a JDBC url to connect to your database. JDBC
urls are database specific, but they are all of the form

jdbc:<subprotocol>:<subname>

Where <subprotocol> identifies the driver or database (for example postgresql, mysql, firebirdsql,
etc), and <subname> is subprotocol-specific.

You need to check the documentation of your database and JDBC driver for the specific url
subprotocol and format for your driver.

A simple example to create a connection to a database with the url jdbc:somedb://localhost/foobar:

try (Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/foobar", "anna", "supersecretpassword")) {
 // do something with connection
}

We use a try-with-resources here so the connection is automatically closed when we are done
with it, even if exceptions occur.

4.0

On Java 6 (JDBC 4.0) and earlier, try-with-resources is not available. In those versions you need
to use a finally-block to explicitly close a connection:

Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/foobar", "anna", "supersecretpassword");
try {
 // do something with connection
} finally {
 // explicitly close connection
 connection.close();
}

4.0

JDBC 4.0 (Java 6) introduced the concept of automatic driver loading. If you use Java 5 or earlier,
or an older JDBC driver that does not implement JDBC 4 support, you will need to explicitly load

https://riptutorial.com/ 6

https://docs.oracle.com/javase/8/docs/api/java/sql/DriverManager.html
http://www.riptutorial.com/java/example/1581/the-try-with-resources-statement

the driver(s):

Class.forName("org.example.somedb.jdbc.Driver");

This line needs to occur (at least) once in your program, before any connection is made.

Even in Java 6 and higher with a JDBC 4.0 it may be necessary to explicitly load a driver: for
example in web applications when the driver is not loaded in the container, but as part of the web
application.

Alternatively you can also provide a Properties object to connect:

Properties props = new Properties();
props.setProperty("user", "anna");
props.setProperty("password", "supersecretpassword");
// other, database specific, properties
try (Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/foobar", props)) {
 // do something with connection
}

Or even without properties, for example if the database doesn't need username and password:

try (Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/foobar")) {
 // do something with connection
}

Creating a connection to MySQL

To connect to MySQL you need to use the MySQL Connector/J driver. You can download it from
http://dev.mysql.com/downloads/connector/j/ or you can use Maven:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.39</version>
</dependency>

The basic JDBC URL for MySQL is:

jdbc:mysql://<hostname>[:<port>]/<database>[?<propertyName>=<propertyValue>[&<propertyName>=<propertyValue>]...]

Where:

Key Description Example

<hostname> Host name of the MySQL server localhost

<port> Port of the MySQL server (optional, default: 3306) 3306

https://riptutorial.com/ 7

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-configuration-properties.html

Key Description Example

<database> Name of the database foobar

<propertyName> Name of a connection property useCompression

<propertyValue> Value of a connection property true

The supported URL is more complex than shown above, but this suffices for most 'normal' needs.

To connect use:

try (Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost/foobardb", "peter", "nicepassword")) {
 // do something with connection
}

4.0

For older Java/JDBC versions:

4.0

// Load the MySQL Connector/J driver
Class.forName("com.mysql.jdbc.Driver");

Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost/foobardb", "peter", "nicepassword");
try {
 // do something with connection
} finally {
 // explicitly close connection
 connection.close();
}

Connection to a Microsoft Access database with UCanAccess

UCanAccess is a pure Java JDBC driver that allows us to read from and write to Access databases
without using ODBC. It uses two other packages, Jackcess and HSQLDB, to perform these tasks.

Once it has been set up*, we can work with data in .accdb and .mdb files using code like this:

import java.sql.*;

Connection conn=DriverManager.getConnection("jdbc:ucanaccess://C:/__tmp/test/zzz.accdb");
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery("SELECT [LastName] FROM [Clients]");
while (rs.next()) {
 System.out.println(rs.getString(1));
}

*For more details see the following question:

https://riptutorial.com/ 8

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-configuration-properties.html

Manipulating an Access database from Java without ODBC

Oracle JDBC connection

Driver:

12c R1•
11g R2•

(Note: the driver is not included in Maven Central!)

Driver class initialization:

 Class.forName("oracle.jdbc.driver.OracleDriver");

Connection URL

Older format, with SID

"jdbc:oracle:thin:@<hostname>:<port>:<SID>"

Newer format, with Service Name

"jdbc:oracle:thin:@//<hostname>:<port>/<servicename>"

Tnsnames like entry

"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=<hostname>)(PORT=<port>))"
 +"(CONNECT_DATA=(SERVICE_NAME=<servicename>)))"

RAC cluster connection string for failover

"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(LOAD_BALANCE=OFF)(FAILOVER=ON)"
 +"(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname1>)(PORT=<port1>))"
 +"(ADDRESS=(PROTOCOL=TCP)(HOST=<hostname2>)(PORT=<port2>)))"
 +"(CONNECT_DATA=SERVICE_NAME=<servicename>)(SERVER=DEDICATED)))"

Example

connection = DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:orcl", "HR",
"HRPASS");

Read Creating a database connection online: https://riptutorial.com/jdbc/topic/2640/creating-a-
database-connection

https://riptutorial.com/ 9

http://stackoverflow.com/q/21955256/2144390
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
http://www.oracle.com/technetwork/apps-tech/jdbc-112010-090769.html
https://riptutorial.com/jdbc/topic/2640/creating-a-database-connection
https://riptutorial.com/jdbc/topic/2640/creating-a-database-connection

Chapter 3: JDBC - Statement Injection

Introduction

SQL injection is a code injection technique, used to attack data-driven applications, in which
nefarious SQL statements are inserted into an entry field for execution (e.g. to dump the database
contents to the attacker).

In this section we will talk about that and its relation with JDBC Statement.

Examples

Statement & SQL Injection evil

Note in this example we will use PostgreSQL DBMS, but you can use any DBMS

We will use a database bd_test witch contain a Schema: sch_test and two tables users and test :

CREATE TABLE sch_test.users
(
 id serial NOT NULL,
 username character varying,
 password character varying,
 CONSTRAINT utilisateur_pkey PRIMARY KEY (id)
)

CREATE TABLE sch_test.test
(
 id serial NOT NULL,
 "column" character varying
)

Simple login using Statement

static String DRIVER = "org.postgresql.Driver";
static String DB_USERNAME = "postgres";
static String DB_PASSWOR = "admin";
static String DB_URL = "jdbc:postgresql://localhost:5432/bd_test";

public static void sqlInjection() {
 try {
 Class.forName(DRIVER);
 Connection connection = DriverManager.getConnection(DB_URL, DB_USERNAME, DB_PASSWOR);
 Statement statement = connection.createStatement();
 String username = "admin";
 String password = "admin";
 String query = "SELECT * FROM sch_test.users where username = '"
 + username + "' and password = '" + password + "'";

 ResultSet result = statement.executeQuery(query);

https://riptutorial.com/ 10

 if (result.next()) {
 System.out.println("id = " + result.getInt("id") + " | username = "
 + result.getString("username") + " | password = " +
result.getString("password"));
 }else{
 System.out.println("Login not correct");
 }

 } catch (ClassNotFoundException | SQLException e) {
 e.printStackTrace();
 }
}

Until now every thing is normal and secure.

Login with fake username and password

The hacker or the tester can simply login or list all your users using this :

String username = " ' or ''='";
String password = " ' or ''='";

INSERT a new user

You can insert data in your table using :

String username = "'; INSERT INTO sch_test.utilisateur(id, username, password)
 VALUES (2, 'hack1', 'hack2');--";
String password = "any";

DELETE All users

consider the hacker know the schema of your database so he can delete all your user

String username = "'; DELETE FROM sch_test.utilisateur WHERE id>0;--";
String password = "any";

DROP Table users

The hacker can also delete your table

String username = "'; drop table sch_test.table2;--";
String password = "any";

https://riptutorial.com/ 11

DROP DATABASE

The worst is to drop the database

String username = "'; DROP DATABASE bd_test;--";
String password = "any";

and there are many others.

Why all this?

All this because Statement is not secure enough it execute the query like is it, for that it is
recommend to use PreparedStatement instead, it is more secure that Statement.

You can find here more details PreparedStatement

Read JDBC - Statement Injection online: https://riptutorial.com/jdbc/topic/9238/jdbc---statement-
injection

https://riptutorial.com/ 12

http://www.riptutorial.com/jdbc/topic/2939/preparedstatement
https://riptutorial.com/jdbc/topic/9238/jdbc---statement-injection
https://riptutorial.com/jdbc/topic/9238/jdbc---statement-injection

Chapter 4: PreparedStatement

Remarks

A PreparedStatement declares the statement before it is executed, and allows for placeholders for
parameters. This allows the statement to be prepared (and optimized) once on the server, and
then reused with different sets of parameters.

The added benefit of the parameter placeholders, is that it provides protection against SQL
injection. This is achieved either by sending the parameter values separately, or because the
driver escapes values correctly as needed.

Examples

Setting parameters for PreparedStatement

Placeholders in the query string need to be set by using the set* methods:

String sql = "SELECT * FROM EMP WHERE JOB = ? AND SAL > ?";

//Create statement to make your operations
PreparedStatement statement = connection.prepareStatement(sql);

statement.setString(1, "MANAGER"); // String value
statement.setInt(2, 2850); // int value

Special cases

Setting NULL value:

Setting a null value can not be accomplished using for example the setInt and setLong methods,
as these use primitive types (int and long) instead of objects (Integer and Long), and would cause
a NullPointerException to be thrown:

void setFloat(int parameterIndex, float x)
void setInt(int parameterIndex, int x)
void setLong(int parameterIndex, long x)

These cases can be handled by using setNull.

setNull(int parameterIndex, int sqlType)

It is typed, so the second parameter has to be provided, see java.sql.Types

//setting a NULL for an integer value
statement.setNull(2, java.sql.Types.INTEGER);

https://riptutorial.com/ 13

https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Setting LOBs

LOBs require special objects to be used.

Clob longContent = connection.createClob();
Writer longContentWriter = longContent.setCharacterStream(1); // position: beginning
longContentWriter.write("This will be the content of the CLOB");

pstmt = connection.prepareStatement("INSERT INTO CLOB_TABLE(CLOB_VALUE) VALUES (?)");
pstmt.setClob(1, longContent);

Exceptions on set* methods

SQLException - if parameterIndex does not correspond to a parameter marker in the SQL
statement; if a database access error occurs or this method is called on a closed
PreparedStatement

SQLFeatureNotSupportedException - if sqlType is a ARRAY, BLOB, CLOB, DATALINK, JAVA_OBJECT,
NCHAR, NCLOB, NVARCHAR, LONGNVARCHAR, REF, ROWID, SQLXML or STRUCT data type and the JDBC
driver does not support this data type

Basic usage of a prepared statement

This example shows how to create a prepared statement with an insert statement with
parameters, set values to those parameters and then executing the statement.

Connection connection = ... // connection created earlier
try (PreparedStatement insert = connection.prepareStatement(
 "insert into orders(id, customerid, totalvalue, comment) values (?, ?, ?, ?)")) {
 //NOTE: Position indexes start at 1, not 0
 insert.setInt(1, 1);
 insert.setInt(2, 7934747);
 insert.setBigDecimal(3, new BigDecimal("100.95"));
 insert.setString(4, "quick delivery requested");

 insert.executeUpdate();
}

The question marks (?) in the insert statement are the parameter placeholders. They are positional
parameters that are later referenced (using a 1-based index) using the setXXX methods to set
values to those parameters.

The use of try-with-resources ensures that the statement is closed and any resources in use for
that statement are released.

Read PreparedStatement online: https://riptutorial.com/jdbc/topic/2939/preparedstatement

https://riptutorial.com/ 14

https://riptutorial.com/jdbc/topic/2939/preparedstatement

Chapter 5: ResultSet

Introduction

A ResultSet object maintains a cursor pointing to its current row of data. Initially the cursor is
positioned before the first row. The next method moves the cursor to the next row, and because it
returns false when there are no more rows in the ResultSet object, it can be used in a while loop to
iterate through the result se

Examples

ResultSet

To create a ResultSet you should to create a Statement or PrepapredStatement :

Create ResultSet with Statement

try {
 Class.forName(driver);
 Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/databasename", "username", "password");
 Statement statement = connection.createStatement();
 ResultSet result = statement.executeQuery("SELECT * FROM my_table");

} catch (ClassNotFoundException | SQLException e) {
}

Create ResultSet with PrepapredStatement

try {
 Class.forName(driver);
 Connection connection = DriverManager.getConnection(
 "jdbc:somedb://localhost/databasename", "username", "password");
 PreparedStatement preparedStatement = connection.prepareStatement("SELECT * FROM
my_table");
 ResultSet result = preparedStatement.executeQuery();

} catch (ClassNotFoundException | SQLException e) {
}

Check if your ResultSet have information or
not

https://riptutorial.com/ 15

if (result.next()) {
 //yes result not empty
}

Get information from ResultSet

There are several type of information you can get from your ResultSet like String, int, boolean,
float, Blob, ... to get information you had to use a loop or a simple if :

if (result.next()) {
 //get int from your result set
 result.getInt("id");
 //get string from your result set
 result.getString("username");
 //get boolean from your result set
 result.getBoolean("validation");
 //get double from your result set
 result.getDouble("price");
}

Read ResultSet online: https://riptutorial.com/jdbc/topic/9172/resultset

https://riptutorial.com/ 16

https://riptutorial.com/jdbc/topic/9172/resultset

Chapter 6: ResultSetMetaData

Introduction

As we all know Metadata mean data about data.

To fetch metadata of a table like total number of column, column name, column type etc. ,
ResultSetMetaData interface is useful because it provides methods to get metadata from the
ResultSet object.

Examples

ResultSetMetaData

import java.sql.*;

class Rsmd {

 public static void main(String args[]) {
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection con = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:xe", "system", "oracle");

 PreparedStatement ps = con.prepareStatement("select * from emp");
 ResultSet rs = ps.executeQuery();
 ResultSetMetaData rsmd = rs.getMetaData();

 System.out.println("Total columns: " + rsmd.getColumnCount());
 System.out.println("Column Name of 1st column: " + rsmd.getColumnName(1));
 System.out.println("Column Type Name of 1st column: " +
rsmd.getColumnTypeName(1));

 con.close();
 } catch (Exception e) {
 System.out.println(e);
 }
 }
}

Read ResultSetMetaData online: https://riptutorial.com/jdbc/topic/10126/resultsetmetadata

https://riptutorial.com/ 17

https://riptutorial.com/jdbc/topic/10126/resultsetmetadata

Chapter 7: Statement batching

Introduction

Statement batching is either executing multiple statements as one unit (with a normal
java.sql.Statement), or a single statement with multiple sets of parameter values (with a
java.sql.PreparedStatement).

Remarks

Statement batching allows a program to collect related statement, or in the case of prepared
statements related parameter value sets, and send them to the database server as a single
execute.

The benefits of statement batching can include improved performance. If and how these
performance benefits are achieved depends on the driver and database support, but they include:

Sending all statements (or all values sets) in one command•
Rewriting the statement(s) so they can be executed like one big statement•

Examples

Batch insertion using PreparedStatement

Batch execution using java.sql.PreparedStatement allows you to execute a single DML statement
with multiple sets of values for its parameters.

This example demonstrates how to prepare an insert statement and use it to insert multiple rows
in a batch.

Connection connection = ...; // obtained earlier
connection.setAutoCommit(false); // disabling autoCommit is recommend for batching
int orderId = ...; // The primary key of inserting and order
List<OrderItem> orderItems = ...; // Order item data

try (PreparedStatement insert = connection.prepareStatement(
 "INSERT INTO orderlines(orderid, itemid, quantity) VALUES (?, ?, ?)")) {
 // Add the order item data to the batch
 for (OrderItem orderItem : orderItems) {
 insert.setInt(1, orderId);
 insert.setInt(2, orderItem.getItemId());
 insert.setInt(3, orderItem.getQuantity());
 insert.addBatch();
 }

 insert.executeBatch();//executing the batch
}

connection.commit();//commit statements to apply changes

https://riptutorial.com/ 18

https://docs.oracle.com/javase/8/docs/api/java/sql/PreparedStatement.html

Batch execution using Statement

Batch execution using java.sql.Statement allows you to execute multiple DML statements (update,
insert, delete) at once. This is achieved by creating a single statement object, adding the
statements to execute, and then execute the batch as one.

Connection connection = ...; // obtained earlier
connection.setAutoCommit(false); // disabling autocommit is recommended for batch execution

try (Statement statement = connection.createStatement()) {
 statement.addBatch("INSERT INTO users (id, username) VALUES (2, 'anna')");
 statement.addBatch("INSERT INTO userrole(userid, rolename) VALUES (2, 'admin')");

 statement.executeBatch();//executing the batch
}

connection.commit();//commit statements to apply changes

Note:

statement.executeBatch(); will return int[] to hold returned values, you can execute your batch like
this :

int[] stmExc = statement.executeBatch();//executing the batch

Read Statement batching online: https://riptutorial.com/jdbc/topic/2992/statement-batching

https://riptutorial.com/ 19

https://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html
https://riptutorial.com/jdbc/topic/2992/statement-batching

Credits

S.
No

Chapters Contributors

1
Getting started with
jdbc

Community, Mark Rotteveel, YCF_L

2
Creating a database
connection

F. Stephen Q, Gherbi Hicham, Gord Thompson, Mark Rotteveel
, ppeterka, YCF_L

3
JDBC - Statement
Injection

YCF_L

4 PreparedStatement Gord Thompson, Gus, Mark Rotteveel, ppeterka, YCF_L

5 ResultSet KIRAN KUMAR MATAM, YCF_L

6 ResultSetMetaData KIRAN KUMAR MATAM, YCF_L

7 Statement batching KIRAN KUMAR MATAM, Mark Rotteveel, ppeterka, YCF_L

https://riptutorial.com/ 20

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/5019769/f--stephen-q
https://riptutorial.com/contributor/4465028/gherbi-hicham
https://riptutorial.com/contributor/2144390/gord-thompson
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/2144390/gord-thompson
https://riptutorial.com/contributor/535515/gus
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/5558072/ycf-l

	About
	Chapter 1: Getting started with jdbc
	Remarks
	Versions
	Examples
	Creating a connection

	Chapter 2: Creating a database connection
	Syntax
	Examples
	Introduction (SQL)
	Using the Connection (And Statements)
	Creating a connection using java.sql.DriverManager
	Creating a connection to MySQL
	Connection to a Microsoft Access database with UCanAccess
	Oracle JDBC connection

	Driver:
	Driver class initialization:
	Connection URL
	Example

	Chapter 3: JDBC - Statement Injection
	Introduction
	Examples
	Statement & SQL Injection evil

	Simple login using Statement
	Login with fake username and password
	INSERT a new user
	DELETE All users
	DROP Table users
	DROP DATABASE
	Why all this?
	Chapter 4: PreparedStatement
	Remarks
	Examples
	Setting parameters for PreparedStatement

	Special cases
	Setting NULL value:
	Setting LOBs

	Exceptions on set* methods
	Basic usage of a prepared statement

	Chapter 5: ResultSet
	Introduction
	Examples
	ResultSet

	Create ResultSet with Statement
	Create ResultSet with PrepapredStatement
	Check if your ResultSet have information or not
	Get information from ResultSet
	Chapter 6: ResultSetMetaData
	Introduction
	Examples
	ResultSetMetaData

	Chapter 7: Statement batching
	Introduction
	Remarks
	Examples
	Batch insertion using PreparedStatement
	Batch execution using Statement

	Credits

