
jpa

#jpa

Table of Contents

About 1

Chapter 1: Getting started with jpa 2

Remarks 2

Metadata 2

Object-Relational Entity Architecture 2

Versions 2

Examples 2

Installation or Setup 2

Classpath requirements 3

Eclipselink 3

Hibernate 3

DataNucleus 3

Configuration Details 4

Minimal persistence.xml example 4

Hibernate (and embedded H2 DB) 4

Eclipselink (and embedded H2 DB) 5

DataNucleus (and embedded H2 DB) 5

Hello World 5

Libraries 6

Persistence Unit 6

Implement an Entity 6

Implement a DAO 8

Test the application 9

Chapter 2: Basic mapping 11

Parameters 11

Remarks 11

Examples 11

A very simple entity 11

Omitting field from the mapping 12

Mapping time and date 12

Date and time before Java 8 12

Date and time with Java 8 13

Entity with sequence managed Id 14

Chapter 3: Joined Inheritance strategy 15

Parameters 15

Examples 15

Joined inheritance strategy 15

Chapter 4: Many to Many Mapping 19

Introduction 19

Parameters 19

Remarks 19

Examples 20

Employee to Project Many to Many mapping 20

How to handle compound key without Embeddable annotation 22

Chapter 5: Many To One Mapping 26

Parameters 26

Examples 26

Employee to Department ManyToOne relationship 26

Chapter 6: One to Many relationship 28

Parameters 28

Examples 28

One To Many relationship 28

Chapter 7: One to One mapping 30

Parameters 30

Examples 30

One To One relation between employee and desk 30

Chapter 8: Relations between entities 33

Remarks 33

Relations Between Entities Basics 33

Examples 33

Multiplicity in Entity Relationships 33

Multiplicity in Entity Relationships 33

One-to-One Mapping 33

One-to-Many Mapping 33

Many-to-One Mapping 34

Many-to-Many Mapping 34

@JoinTable Annotation Example 34

Chapter 9: Single Table Inheritance Strategy 36

Parameters 36

Remarks 36

Examples 36

Single table inheritance strategy 36

Chapter 10: Table per concrete class inheritance strategy 41

Remarks 41

Examples 41

Table per concrete class inheritance strategy 41

Credits 45

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: jpa

It is an unofficial and free jpa ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official jpa.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/jpa
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with jpa

Remarks

JPA is the Java Persistence API, a specification handling the mapping of Java objects and their
relationships to a relational database. This is called an object-relational mapper (ORM). It is an
alternative for (or supplement to) the more low-level JDBC. It is most useful when pursuing a Java-
oriented approach and when complex object graphs need to be persisted.

JPA in itself is not an implementation. You will need a persistence provider for that (see
examples). Current implementations of the latest JPA 2.1 standard are EclipseLink (also the
reference implementation for JPA 2.1, which means "proof that the spec can be implemented");
Hibernate, and DataNucleus.

Metadata

The mapping between Java objects and database tables is defined via persistence metadata.
The JPA provider will use the persistence metadata information to perform the correct database
operations. JPA typically defines the metadata via annotations in the Java class.

Object-Relational Entity Architecture

The entity architecture is composed of:

entities•
persistence units•
persistence contexts•
entity manager factories•
entity managers•

Versions

Version Expert Group Release

1.0 JSR-220 2006-11-06

2.0 JSR-317 2009-12-10

2.1 JSR-338 2013-05-22

Examples

Installation or Setup

https://riptutorial.com/ 2

http://www.riptutorial.com/jdbc/topic/1685/getting-started-with-jdbc
https://www.eclipse.org/eclipselink/
http://hibernate.org/
http://www.datanucleus.org
https://jcp.org/en/jsr/detail?id=220
https://jcp.org/en/jsr/detail?id=317
https://jcp.org/en/jsr/detail?id=338

Classpath requirements

Eclipselink

The Eclipselink and JPA API need to be included. Example Maven dependencies:

<dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.6.3</version>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.1.1</version>
 </dependency>
 <!-- ... -->
</dependencies>

Hibernate

Hibernate-core is required. Example Maven dependency:

<dependencies>
 <dependency>
 <!-- requires Java8! -->
 <!-- as of 5.2, hibernate-entitymanager is merged into hibernate-core -->
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.2.1.Final</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.javax.persistence</groupId>
 <artifactId>hibernate-jpa-2.1-api</artifactId>
 <version>1.0.0</version>
 </dependency>
 <!-- ... -->
</dependencies>

DataNucleus

datanucleus-core, datanucleus-api-jpa and datanucleus-rdbms (when using RDBMS datastores)
are required. Example Maven dependency:

<dependencies>
 <dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-core</artifactId>
 <version>5.0.0-release</version>
 </dependency>
 <dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-api-jpa</artifactId>

https://riptutorial.com/ 3

 <version>5.0.0-release</version>
 </dependency>
 <dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-rdbms</artifactId>
 <version>5.0.0-release</version>
 </dependency>
 <dependency>
 <groupId>org.datanucleus</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.1.2</version>
 </dependency>
 <!-- ... -->
</dependencies>

Configuration Details

JPA requires the use of a file persistence.xml, located under META-INF from the root of the
CLASSPATH. This file contains a definition of the available persistence units from which JPA can
operate.

JPA additionally allows use of a mapping configuration file orm.xml, also placed under META-INF.
This mapping file is used to configure how classes are mapped to the datastore, and is an
alternative/supplement to use of Java annotations in the JPA entity classes themselves.

Minimal persistence.xml example

Hibernate (and embedded H2 DB)

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_1.xsd"
 version="2.1">

<persistence-unit name="persistenceUnit">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <class>my.application.entities.MyEntity</class>

 <properties>
 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver" />
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:data/myDB.db" />
 <property name="javax.persistence.jdbc.user" value="sa" />

 <!-- DDL change options -->
 <property name="javax.persistence.schema-generation.database.action" value="drop-and-
create"/>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.flushMode" value="FLUSH_AUTO" />
 </properties>
</persistence-unit>
</persistence>

https://riptutorial.com/ 4

Eclipselink (and embedded H2 DB)

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_1.xsd"
 version="2.1">

<persistence-unit name="persistenceUnit">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <class>my.application.entities.MyEntity</class>

 <properties>
 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:data/myDB.db"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>

 <!-- Schema generation : drop and create tables -->
 <property name="javax.persistence.schema-generation.database.action" value="drop-and-
create-tables" />
 </properties>
</persistence-unit>

</persistence>

DataNucleus (and embedded H2 DB)

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_1.xsd"
 version="2.1">

<persistence-unit name="persistenceUnit">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>

 <class>my.application.entities.MyEntity</class>

 <properties>
 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:data/myDB.db"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>

 <!-- Schema generation : drop and create tables -->
 <property name="javax.persistence.schema-generation.database.action" value="drop-and-
create-tables" />
 </properties>
</persistence-unit>

</persistence>

Hello World

https://riptutorial.com/ 5

Let's see all the basic component for create a simple Hallo World.

Define which implementation of JPA 2.1 we will use1.
Build the connection to database creating the persistence-unit2.
Implements the entities3.
Implements DAO (Data access object) for manipulate the entities4.
Test the application5.

Libraries

Using maven, we need this dependancies:

<dependencies>

 <!-- JPA is a spec, I'll use the implementation with HIBERNATE -->
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.2.6.Final</version>
 </dependency>

 <!-- JDBC Driver, use in memory DB -->
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.193</version>
 </dependency>

</dependencies>

Persistence Unit

In the resources folder we need to create a file called persistence.xml. The easiest way for define it
is like this:

<persistence-unit name="hello-jpa-pu" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

 <properties>
 <!-- ~ = relative to current user home directory -->
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:./test.db"/>
 <property name="javax.persistence.jdbc.user" value=""/>
 <property name="javax.persistence.jdbc.password" value=""/>
 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.show_sql" value="true"/>

 <!-- This create automatically the DDL of the database's table -->
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 </properties>
</persistence-unit>

https://riptutorial.com/ 6

Implement an Entity

I create a class Biker:

package it.hello.jpa.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.List;

@Entity
@Table(name = "BIKER")
public class Biker implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @Column(name = "bikerName")
 private String name;

 @Column(unique = true, updatable = false)
 private String battleName;

 private Boolean beard;

 @Temporal(TemporalType.DATE)
 private Date birthday;

 @Temporal(TemporalType.TIME)
 private Date registrationDate;

 @Transient // --> this annotiation make the field transient only for JPA
 private String criminalRecord;

 public Long getId() {
 return this.id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getBattleName() {
 return battleName;
 }

 public void setBattleName(String battleName) {

https://riptutorial.com/ 7

 this.battleName = battleName;
 }

 public Boolean getBeard() {
 return this.beard;
 }

 public void setBeard(Boolean beard) {
 this.beard = beard;
 }

 public Date getBirthday() {
 return birthday;
 }

 public void setBirthday(Date birthday) {
 this.birthday = birthday;
 }

 public Date getRegistrationDate() {
 return registrationDate;
 }

 public void setRegistrationDate(Date registrationDate) {
 this.registrationDate = registrationDate;
 }

 public String getCriminalRecord() {
 return criminalRecord;
 }

 public void setCriminalRecord(String criminalRecord) {
 this.criminalRecord = criminalRecord;
 }
}

Implement a DAO

package it.hello.jpa.business;

import it.hello.jpa.entities.Biker;

import javax.persistence.EntityManager;
import java.util.List;

public class MotorcycleRally {

 public Biker saveBiker(Biker biker) {
 EntityManager em = EntityManagerUtil.getEntityManager();
 em.getTransaction().begin();
 em.persist(biker);
 em.getTransaction().commit();
 return biker;
 }

}

EntityManagerUtil

https://riptutorial.com/ 8

is a singleton:

package it.hello.jpa.utils;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class EntityManagerUtil {

 // USE THE SAME NAME IN persistence.xml!
 public static final String PERSISTENCE_UNIT_NAME = "hello-jpa-pu";

 private static EntityManager entityManager;

 private EntityManagerUtil() {
 }

 public static EntityManager getEntityManager() {
 if (entityManager == null) {
 // the same in persistence.xml
 EntityManagerFactory emFactory =
Persistence.createEntityManagerFactory(PERSISTENCE_UNIT_NAME);

 return emFactory.createEntityManager();
 }
 return entityManager;
 }
}

Test the application

package it.hello.jpa.test;

public class TestJpa {

@Test
public void insertBiker() {
 MotorcycleRally crud = new MotorcycleRally();

 Biker biker = new Biker();
 biker.setName("Manuel");
 biker.setBeard(false);

 biker = crud.saveBiker(biker);

 Assert.assertEquals(biker.getId(), Long.valueOf(1L));
}

}

The output will be:

Running it.hello.jpa.test.TestJpa Hibernate: drop table BIKER if exists Hibernate: drop

https://riptutorial.com/ 9

sequence if exists hibernate_sequence Hibernate: create sequence
hibernate_sequence start with 1 increment by 1 Hibernate: create table BIKER (id
bigint not null, battleName varchar(255), beard boolean, birthday date, bikerName
varchar(255), registrationDate time, primary key (id)) Hibernate: alter table BIKER add
constraint UK_a64ce28nywyk8wqrvfkkuapli unique (battleName) Hibernate: insert into
BIKER (battleName, beard, birthday, bikerName, registrationDate, id) values (?, ?, ?, ?,
?, ?) mar 01, 2017 11:00:02 PM org.hibernate.jpa.internal.util.LogHelper
logPersistenceUnitInformation INFO: HHH000204: Processing PersistenceUnitInfo [
name: hello-jpa-pu ...] Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Read Getting started with jpa online: https://riptutorial.com/jpa/topic/2125/getting-started-with-jpa

https://riptutorial.com/ 10

https://riptutorial.com/jpa/topic/2125/getting-started-with-jpa

Chapter 2: Basic mapping

Parameters

Annotation Details

@Id Marks field/column as the key of the entity

@Basic

Marks requested field to mapped as a basic type. This is applicable to primitive
types and their wrappers, String, Date and Calendar. The annotation is actually
optional if no parameters are given, but good style would dictate to make your
intentions explicit.

@Transient
Fields marked as transient are not considered for persistence, much like the
transient keyword for serialization.

Remarks

There always needs to be a default constructor, that is, the parameterless one. In the basic
example, there was no constructor specified, so Java added one; but if you add a constructor with
arguments, be sure to add the parameterless constructor, too.

Examples

A very simple entity

@Entity
class Note {
 @Id
 Integer id;

 @Basic
 String note;

 @Basic
 int count;
}

Getters, setters etc. are ommitted for brevity, but they are not needed for JPA anyway.

This Java class would map to the following table (depending on your database, here given in one
possible Postgres mapping):

CREATE TABLE Note (
 id integer NOT NULL,
 note text,
 count integer NOT NULL

https://riptutorial.com/ 11

)

JPA providers may be used to generate the DDL, and will likely produce DDL different from the
one shown here, but as long as the types are compatible, this will not cause problems at runtime.
It is best not to rely on auto-generation of DDL.

Omitting field from the mapping

@Entity
class Note {
 @Id
 Integer id;

 @Basic
 String note;

 @Transient
 String parsedNote;

 String readParsedNote() {
 if (parsedNote == null) { /* initialize from note */ }
 return parsedNote;
 }
}

If your class needs fields that should not be written to the database, mark them as @Transient.
After reading from the database, the field will be null.

Mapping time and date

Time and date come in a number of different types in Java: The now historic Date and Calendar,
and the more recent LocalDate and LocalDateTime. And Timestamp, Instant, ZonedLocalDateTime and
the Joda-time types. On the database side, we have time, date and timestamp (both time and date),
possibly with or without time zone.

Date and time before Java 8

The default mapping for the pre-Java-8 types java.util.Date, java.util.Calendar and
java.sql.Timestamp is timestamp in SQL; for java.sql.Date it is date.

@Entity
class Times {
 @Id
 private Integer id;

 @Basic
 private Timestamp timestamp;

 @Basic
 private java.sql.Date sqldate;

https://riptutorial.com/ 12

 @Basic
 private java.util.Date utildate;

 @Basic
 private Calendar calendar;
}

This will map perfectly to the following table:

CREATE TABLE times (
 id integer not null,
 timestamp timestamp,
 sqldate date,
 utildate timestamp,
 calendar timestamp
)

This may not be the intention. For instance, often a Java Date or Calendar is used to represent the
date only (for date of birth). To change the default mapping, or just to make the mapping explicit,
you can use the @Temporal annotation.

@Entity
class Times {
 @Id
 private Integer id;

 @Temporal(TemporalType.TIME)
 private Date date;

 @Temporal(TemporalType.DATE)
 private Calendar calendar;
}

The equivalent SQL table is:

CREATE TABLE times (
 id integer not null,
 date time,
 calendar date
)

Note 1: The type specified with @Temporal influences DDL generation; but you can also have a
colum of type date map to Date with just the @Basic annotation.

Note 2: Calendar cannot persist time only.

Date and time with Java 8

JPA 2.1 does not define support for java.time types provided in Java 8. The majority of JPA 2.1
implementations offer support for these types however, though these are strictly speaking vendor
extensions.

https://riptutorial.com/ 13

For DataNucleus, these types just work out of the box, and offers a wide range of mapping
possibilities, coupling in with the @Temporal annotation.

For Hibernate, if using Hibernate 5.2+ they should work out of the box, just using the @Basic
annotation. If using Hibernate 5.0-5.1 you need to add the dependency org.hibernate:hibernate-
java8. The mappings provided are

LocalDate to date•
Instant, LocalDateTime and ZonedDateTime to timestamp•

A vendor-neutral alternative would also be to define a JPA 2.1 AttributeConverter for any Java 8
java.time type that is required to be persisted.

Entity with sequence managed Id

Here we have a class and we want the identity field (userUid) to have its value generated via a
SEQUENCE in the database. This SEQUENCE is assumed to be called USER_UID_SEQ, and can be
created by a DBA, or can be created by the JPA provider.

@Entity
@Table(name="USER")
public class User implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @SequenceGenerator(name="USER_UID_GENERATOR", sequenceName="USER_UID_SEQ")
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="USER_UID_GENERATOR")
 private Long userUid;

 @Basic
 private String userName;
}

Read Basic mapping online: https://riptutorial.com/jpa/topic/3691/basic-mapping

https://riptutorial.com/ 14

https://riptutorial.com/jpa/topic/3691/basic-mapping

Chapter 3: Joined Inheritance strategy

Parameters

Annotation Purpose

@Inheritance Specifies type of inheritance strategy used

@DiscriminatorColumn
Specifies a column in database which will be used to identify
different entities based on certain ID assigned to each entity

@MappedSuperClass
mapped super classes are not persistent and only used to hold
state for its subclasses. Generally abstract java classes are marked
with @MapperSuperClass

Examples

Joined inheritance strategy

A Sample class diagram based on which we will see JPA implementation.

@Entity
@Table(name = "VEHICLE")
@Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "VEHICLE_TYPE")
public abstract class Vehicle {

 @TableGenerator(name = "VEHICLE_GEN", table = "ID_GEN", pkColumnName = "GEN_NAME",
valueColumnName = "GEN_VAL", allocationSize = 1)
 @Id

https://riptutorial.com/ 15

https://i.stack.imgur.com/jPJMW.png

 @GeneratedValue(strategy = GenerationType.TABLE, generator = "VEHICLE_GEN")
 private int idVehicle;
 private String manufacturer;

 // getters and setters
}

TransportationVehicle.java

@MappedSuperclass
public abstract class TransportationVehicle extends Vehicle {

 private int loadCapacity;

 // getters and setters
}

Truck.java

@Entity
public class Truck extends TransportationVehicle {

 private int noOfContainers;

 // getters and setters

}

PassengerVehicle.java

@MappedSuperclass
public abstract class PassengerVehicle extends Vehicle {

 private int noOfpassengers;

 // getters and setters
}

Car.java

@Entity
public class Car extends PassengerVehicle {

 private int noOfDoors;

 // getters and setters
}

Bike.java

@Entity
public class Bike extends PassengerVehicle {

 private int saddleHeight;

https://riptutorial.com/ 16

 // getters and setters

}

Test Code

/* Create EntityManagerFactory */
EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("AdvancedMapping");

/* Create EntityManager */
EntityManager em = emf.createEntityManager();
EntityTransaction transaction = em.getTransaction();

transaction.begin();

Bike cbr1000rr = new Bike();
cbr1000rr.setManufacturer("honda");
cbr1000rr.setNoOfpassengers(1);
cbr1000rr.setSaddleHeight(30);
em.persist(cbr1000rr);

Car aventador = new Car();
aventador.setManufacturer("lamborghini");
aventador.setNoOfDoors(2);
aventador.setNoOfpassengers(2);
em.persist(aventador);

Truck truck = new Truck();
truck.setLoadCapacity(1000);
truck.setManufacturer("volvo");
truck.setNoOfContainers(2);
em.persist(truck);

transaction.commit();

Database diagram would be as below.

https://riptutorial.com/ 17

The advantage of joined inheritance strategy is that it does not waste database space as in single
table strategy. On the other hand, because of multiple joins involved for every insertion and
retrieval, performance becomes an issue when inheritance hierarchies become wide and deep.

Full example with explanation can be read here

Read Joined Inheritance strategy online: https://riptutorial.com/jpa/topic/6473/joined-inheritance-
strategy

https://riptutorial.com/ 18

https://i.stack.imgur.com/Bi39t.png
https://i.stack.imgur.com/jPJMW.png
https://riptutorial.com/jpa/topic/6473/joined-inheritance-strategy
https://riptutorial.com/jpa/topic/6473/joined-inheritance-strategy

Chapter 4: Many to Many Mapping

Introduction

A ManyToMany mapping describes a relationship between to entities where both can be related to
more than one instance of each other, and is defined by the @ManyToMany annotation.

Unlike @OneToMany where a foreign key column in the table of the entity can be used, ManyToMany
requires a join table, which maps the entities to each other.

Parameters

Annotation Purpose

@TableGenerator
Defines a primary key generator that may be referenced by name when
a generator element is specified for the GeneratedValue annotation

@GeneratedValue
Provides for the specification of generation strategies for the values of
primary keys. It may be applied to a primary key property or field of an
entity or mapped superclass in conjunction with the Id annotation.

@ManyToMany
Specifies relationship between Employee and Project entities such that
many employees can work on multiple projects.

mappedBy="projects" Defines a bidirectional relationship between Employee and Project

@JoinColumn
Specifies the name of column that will refer to the Entity to be
considered as owner of the association

@JoinTable
Specifies the table in database which will hold employee to project
relationships using foreign keys

Remarks

@TableGenerator and @GeneratedValue are used for automatic ID creation using jpa table
generator.

•

@ManyToMany annotation specifies the relationship between Employee and Project
entities.

•

@JoinTable specifies the name of the table to use as join table jpa many to many mapping
between Employee and Project using name = “employee_project”. This is done because
there is no way to determine the ownership of a jpa many to many mapping as the database
tables do not contain foreign keys to reference to other table.

•

@JoinColumn specifies the name of column that will refer to the Entity to be considered as
owner of the association while @inverseJoinColumn specifies the name of inverse side of

•

https://riptutorial.com/ 19

relationship. (You can choose any side to be considered as owner. Just make sure those
sides in relationship). In our case we have chosen Employee as the owner so @JoinColumn
refers to idemployee column in join table employee_project and @InverseJoinColumn refers
to idproject which is inverse side of jpa many to many mapping.
@ManyToMany annotation in Project entity shows inverse relationship hence it uses
mappedBy=projects to refer to the field in Employee entity.

•

Full example can be referred here

Examples

Employee to Project Many to Many mapping

Employee entity.

package com.thejavageek.jpa.entities;

import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;
import javax.persistence.TableGenerator;

@Entity
public class Employee {

 @TableGenerator(name = "employee_gen", table = "id_gen", pkColumnName = "gen_name",
valueColumnName = "gen_val", allocationSize = 100)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "employee_gen")
 private int idemployee;
 private String name;

 @ManyToMany(cascade = CascadeType.PERSIST)
 @JoinTable(name = "employee_project", joinColumns = @JoinColumn(name = "idemployee"),
inverseJoinColumns = @JoinColumn(name = "idproject"))
 private List<Project> projects;

 public int getIdemployee() {
 return idemployee;
 }

 public void setIdemployee(int idemployee) {
 this.idemployee = idemployee;
 }

 public String getName() {
 return name;
 }

https://riptutorial.com/ 20

http://www.thejavageek.com/2014/01/20/jpa-many-many-mapping/

 public void setName(String name) {
 this.name = name;
 }

 public List<Project> getProjects() {
 return projects;
 }

 public void setProjects(List<Project> projects) {
 this.projects = projects;
 }

}

Project Entity:

package com.thejavageek.jpa.entities;

import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.TableGenerator;

@Entity
public class Project {

 @TableGenerator(name = "project_gen", allocationSize = 1, pkColumnName = "gen_name",
valueColumnName = "gen_val", table = "id_gen")
 @Id
 @GeneratedValue(generator = "project_gen", strategy = GenerationType.TABLE)
 private int idproject;
 private String name;

 @ManyToMany(mappedBy = "projects", cascade = CascadeType.PERSIST)
 private List<Employee> employees;

 public int getIdproject() {
 return idproject;
 }

 public void setIdproject(int idproject) {
 this.idproject = idproject;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public List<Employee> getEmployees() {
 return employees;
 }

https://riptutorial.com/ 21

 public void setEmployees(List<Employee> employees) {
 this.employees = employees;
 }

}

Test Code

/* Create EntityManagerFactory */ EntityManagerFactory emf = Persistence
.createEntityManagerFactory("JPAExamples");

 /* Create EntityManager */
 EntityManager em = emf.createEntityManager();

 EntityTransaction transaction = em.getTransaction();

 transaction.begin();

 Employee prasad = new Employee();
 prasad.setName("prasad kharkar");

 Employee harish = new Employee();
 harish.setName("Harish taware");

 Project ceg = new Project();
 ceg.setName("CEG");

 Project gtt = new Project();
 gtt.setName("GTT");

 List<Project> projects = new ArrayList<Project>();
 projects.add(ceg);
 projects.add(gtt);

 List<Employee> employees = new ArrayList<Employee>();
 employees.add(prasad);
 employees.add(harish);

 ceg.setEmployees(employees);
 gtt.setEmployees(employees);

 prasad.setProjects(projects);
 harish.setProjects(projects);

 em.persist(prasad);

 transaction.commit();

How to handle compound key without Embeddable annotation

If You have

Role:
+-----------------------------+
| roleId | name | discription |
+-----------------------------+

https://riptutorial.com/ 22

Rights:
+-----------------------------+
| rightId | name | discription|
+-----------------------------+

rightrole
+------------------+
| roleId | rightId |
+------------------+

In above scenario rightrole table has compound key and to access it in JPA user have to create
entity with Embeddable annotation.

Like this:

Entity for rightrole table is:

 @Entity
 @Table(name = "rightrole")
 public class RightRole extends BaseEntity<RightRolePK> {

 private static final long serialVersionUID = 1L;

 @EmbeddedId
 protected RightRolePK rightRolePK;

 @JoinColumn(name = "roleID", referencedColumnName = "roleID", insertable = false,
updatable = false)
 @ManyToOne(fetch = FetchType.LAZY)
 private Role role;

 @JoinColumn(name = "rightID", referencedColumnName = "rightID", insertable = false,
updatable = false)
 @ManyToOne(fetch = FetchType.LAZY)
 private Right right;

 }

 @Embeddable
 public class RightRolePK implements Serializable {
 private static final long serialVersionUID = 1L;

 @Basic(optional = false)
 @NotNull
 @Column(nullable = false)
 private long roleID;

 @Basic(optional = false)
 @NotNull
 @Column(nullable = false)
 private long rightID;

https://riptutorial.com/ 23

}

Embeddable annotation is fine for single object but it will give an issue while inserting bulk records.

Problem is whenever user want to create new role with rights then first user have to
store(persist) role object and then user have to do flush to get newly generated id for role. then
and then user can put it in rightrole entity's object.

To solve this user can write entity slightly different way.

Entity for role table is:

@Entity
@Table(name = "role")
public class Role {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @NotNull
 @Column(nullable = false)
 private Long roleID;

 @OneToMany(cascade = CascadeType.ALL, mappedBy = "role", fetch = FetchType.LAZY)
 private List<RightRole> rightRoleList;

 @ManyToMany(cascade = {CascadeType.PERSIST})
 @JoinTable(name = "rightrole",
 joinColumns = {
 @JoinColumn(name = "roleID", referencedColumnName = "ROLE_ID")},
 inverseJoinColumns = {
 @JoinColumn(name = "rightID", referencedColumnName = "RIGHT_ID")})
 private List<Right> rightList;
.......
}

The @JoinTable annotation will take care of inserting in the rightrole table even without an entity
(as long as that table have only the id columns of role and right).

User can then simply:

Role role = new Role();
List<Right> rightList = new ArrayList<>();
Right right1 = new Right();
Right right2 = new Right();
rightList.add(right1);
rightList.add(right2);
role.setRightList(rightList);

You have to write @ManyToMany(cascade = {CascadeType.PERSIST}) in
inverseJoinColumns otherwise your parent data will get deleted if child get deleted.

https://riptutorial.com/ 24

Read Many to Many Mapping online: https://riptutorial.com/jpa/topic/6532/many-to-many-mapping

https://riptutorial.com/ 25

https://riptutorial.com/jpa/topic/6532/many-to-many-mapping

Chapter 5: Many To One Mapping

Parameters

Column Column

@TableGenerator Uses table generator strategy for automatic id creation

@GeneratedValue Specifies that the value applied to fields is a generated value

@Id Annotates the field as identifier

@ManyToOne

Specifies Many to One relationship between Employee and Department.
This annotation is marked on many side. i.e. Multiple employees belong
to a single department. So Department is annotated with @ManyToOne
in Employee entity.

@JoinColumn
Specifies database table column which stores foreign key for related
entity

Examples

Employee to Department ManyToOne relationship

Employee Entity

@Entity
public class Employee {

 @TableGenerator(name = "employee_gen", table = "id_gen", pkColumnName = "gen_name",
valueColumnName = "gen_val", allocationSize = 1)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "employee_gen")
 private int idemployee;
 private String firstname;
 private String lastname;
 private String email;

 @ManyToOne
 @JoinColumn(name = "iddepartment")
 private Department department;

 // getters and setters
 // toString implementation
}

Department Entity

@Entity

https://riptutorial.com/ 26

public class Department {

 @Id
 private int iddepartment;
 private String name;

 // getters, setters and toString()
}

Test class

public class Test {

 public static void main(String[] args) {

 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("JPAExamples");
 EntityManager em = emf.createEntityManager();
 EntityTransaction txn = em.getTransaction();

 Employee employee = new Employee();
 employee.setEmail("someMail@gmail.com");
 employee.setFirstname("Prasad");
 employee.setLastname("kharkar");

 txn.begin();
 Department department = em.find(Department.class, 1);//returns the department named
vert
 System.out.println(department);
 txn.commit();

 employee.setDepartment(department);

 txn.begin();
 em.persist(employee);
 txn.commit();

 }

}

Read Many To One Mapping online: https://riptutorial.com/jpa/topic/6531/many-to-one-mapping

https://riptutorial.com/ 27

https://riptutorial.com/jpa/topic/6531/many-to-one-mapping

Chapter 6: One to Many relationship

Parameters

Annotation Purpose

@TableGenerator
Specifies generator name and table name where
generator can be found

@GeneratedValue
Specifies generation strategy and refers to name
of generator

@ManyToOne
Specifies many to one relationship between
Employee and Department

@OneToMany(mappedBy="department")
creates bi-directional relationship between
Employee and Department by simply referring to
@ManyToOne annotation in Employee entity

Examples

One To Many relationship

One to Many mapping is generally simply a bidirectional relationship of Many to One mapping. We
will take same example that we took for Many to one mapping.

Employee.java

@Entity
public class Employee {

 @TableGenerator(name = "employee_gen", table = "id_gen", pkColumnName = "gen_name",
valueColumnName = "gen_val", allocationSize = 100)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "employee_gen")
 private int idemployee;
 private String firstname;
 private String lastname;
 private String email;

 @ManyToOne
 @JoinColumn(name = "iddepartment")
 private Department department;

 // getters and setters
}

Department.java

https://riptutorial.com/ 28

@Entity
public class Department {

 @TableGenerator(table = "id_gen", pkColumnName = "gen_name", valueColumnName = "gen_val",
name = "department_gen", allocationSize = 1)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "department_gen")
 private int iddepartment;
 private String name;

 @OneToMany(mappedBy = "department")
 private List<Employee> employees;

 // getters and setters
}

This relationship is represented in database as below.

There are two points to remember about jpa one to many mapping:

The many to one side is the owning side of relationship. The column is defined on that side.•
The one to many mapping is the inverse side side so the mappedBy element must be used
on the inverse side.

•

Complete example can be referred here

Read One to Many relationship online: https://riptutorial.com/jpa/topic/6529/one-to-many-
relationship

https://riptutorial.com/ 29

http://i.stack.imgur.com/W13CZ.png
http://i.stack.imgur.com/W13CZ.png
https://riptutorial.com/jpa/topic/6529/one-to-many-relationship
https://riptutorial.com/jpa/topic/6529/one-to-many-relationship

Chapter 7: One to One mapping

Parameters

Annotation Purpose

@TableGenerator
Specifies generator name and table name where generator can be
found

@GeneratedValue Specifies generation strategy and refers to name of generator

@OneToOne
Specifies one to one relationship between employee and desk, here
Employee is owner of relation

mappedBy
This element is provided on reverse side of relation. This enables
bidirectional relationship

Examples

One To One relation between employee and desk

Consider a one to one bidirectional relationship between employee and desk.

Employee.java

@Entity
public class Employee {

 @TableGenerator(name = "employee_gen", table = "id_gen", pkColumnName = "gen_name",
valueColumnName = "gen_val", allocationSize = 100)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "employee_gen")
 private int idemployee;
 private String firstname;
 private String lastname;
 private String email;

 @OneToOne
 @JoinColumn(name = "iddesk")
 private Desk desk;

 // getters and setters
}

Desk.java

@Entity
public class Desk {

https://riptutorial.com/ 30

 @TableGenerator(table = "id_gen", name = "desk_gen", pkColumnName = "gen_name",
valueColumnName = "gen_value", allocationSize = 1)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "desk_gen")
 private int iddesk;
 private int number;
 private String location;
 @OneToOne(mappedBy = "desk")
 private Employee employee;

 // getters and setters
}

Test Code

/* Create EntityManagerFactory */
 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("JPAExamples");

 /* Create EntityManager */
 EntityManager em = emf.createEntityManager();

 Employee employee;

 employee = new Employee();
 employee.setFirstname("pranil");
 employee.setLastname("gilda");
 employee.setEmail("sdfsdf");

 Desk desk = em.find(Desk.class, 1); // retrieves desk from database
 employee.setDesk(desk);

 em.persist(employee);

 desk = em.find(Desk.class, 1); // retrieves desk from database
 desk.setEmployee(employee);
 System.out.println(desk.getEmployee());

Database diagram is depicted as below.

The @JoinColumn annotation goes on mapping of the entity that is mapped to the table •

https://riptutorial.com/ 31

http://i.stack.imgur.com/cBhfQ.png

containing the join colulmn.The owner of relationship. In our case, Employee table has the
join column so @JoinColumn is on Desk field of Employee entity.
The mappedBy element should be specified in the @OneToOne association in the entity
that reverse side of relationship. i.e. The entity which does not provide join column on
database aspect. In our case, Desk is the inverse entity.

•

Complete example can be found here

Read One to One mapping online: https://riptutorial.com/jpa/topic/6474/one-to-one-mapping

https://riptutorial.com/ 32

http://i.stack.imgur.com/cBhfQ.png
https://riptutorial.com/jpa/topic/6474/one-to-one-mapping

Chapter 8: Relations between entities

Remarks

Relations Between Entities Basics

A foreign key can be one or more columns that reference a unique key, usually the primary key,
in another table.

A foreign key and the primary parent key it references must have the same number and type of
fields.

Foreign keys represents relationships from a column or columns in one table to a column or
columns in another table.

Examples

Multiplicity in Entity Relationships

Multiplicity in Entity Relationships

Multiplicities are of the following types:

One-to-one: Each entity instance is related to a single instance of another entity.•
One-to-many: An entity instance can be related to multiple instances of the other entities.•
Many-to-one: multiple instances of an entity can be related to a single instance of the other
entity.

•

Many-to-many: The entity instances can be related to multiple instances of each other.•

One-to-One Mapping

One-to-one mapping defines a single-valued association to another entity that has one-to-one
multiplicity. This relationship mapping use the @OneToOne annotation on the corresponding
persistent property or field.

Example: Vehicle and ParkingPlace entities.

One-to-Many Mapping

An entity instance can be related to multiple instances of the other entities.

One-to-many relationships use the @OneToMany annotation on the corresponding persistent property
or field.

https://riptutorial.com/ 33

The mappedBy element is needed to refer to the attribute annotated by ManyToOne in the
corresponding entity:

 @OneToMany(mappedBy="attribute")

A one-to-many association needs to map the collection of entities.

Many-to-One Mapping

A many-to-one mapping is defined by annotating the attribute in the source entity (the attribute that
refers to the target entity) with the @ManyToOne annotation.

A @JoinColumn(name="FK_name") annotation discribes a foreing key of a relationship.

Many-to-Many Mapping

The entity instances can be related to multiple instances of each other.

Many-to-many relationships use the @ManyToMany annotation on the corresponding persistent
property or field.

We must use a third table to associate the two entity types (join table).

@JoinTable Annotation Example

When mapping many-to-many relationships in JPA, configuration for the table used for the joining
foreign-keys can be provided using the @JoinTable annotation:

@Entity
public class EntityA {
 @Id
 @Column(name="id")
 private long id;
 [...]
 @ManyToMany
 @JoinTable(name="table_join_A_B",
 joinColumns=@JoinColumn(name="id_A"), referencedColumnName="id"
 inverseJoinColumns=@JoinColumn(name="id_B", referencedColumnName="id"))
 private List<EntityB> entitiesB;
 [...]
}

@Entity
public class EntityB {
 @Id
 @Column(name="id")
 private long id;
 [...]
}

In this example, which consists of EntityA having a many-to-many relation to EntityB, realized by

https://riptutorial.com/ 34

the entitiesB field, we use the @JoinTable annotation to specify that the table name for the join
table is table_join_A_B, composed by the columns id_A and id_B, foreign keys respectively
referencing column id in EntityA's table and in EntityB's table; (id_A,id_B) will be a composite
primary-key for table_join_A_B table.

Read Relations between entities online: https://riptutorial.com/jpa/topic/6305/relations-between-
entities

https://riptutorial.com/ 35

https://riptutorial.com/jpa/topic/6305/relations-between-entities
https://riptutorial.com/jpa/topic/6305/relations-between-entities

Chapter 9: Single Table Inheritance Strategy

Parameters

Annotation Purpose

@Inheritance Specifies type of inheritance strategy used

@DiscriminatorColumn
Specifies a column in database which will be used to identify
different entities based on certain ID assigned to each entity

@MappedSuperClass
mapped super classes are not persistent and only used to hold
state for its subclasses. Generally abstract java classes are marked
with @MapperSuperClass

@DiscriminatorValue
A value specified in column defined by @DiscriminatorColumn. This
value helps identify the type of entity

Remarks

The advantage of single table strategy is it does not require complex joins for retrieval and
insertion of entities, but on the other hand it wastes database space as many columns need to be
nullable and there isn’t any data for them.

Complete example and article can be found here

Examples

Single table inheritance strategy

A simple example of Vehicle hierarchy can be taken for single table inheritance strategy.

https://riptutorial.com/ 36

http://www.thejavageek.com/2014/05/14/jpa-single-table-inheritance-example/

Abstract Vehicle class:

package com.thejavageek.jpa.entities;

import javax.persistence.DiscriminatorColumn;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;
import javax.persistence.Table;
import javax.persistence.TableGenerator;

@Entity
@Table(name = "VEHICLE")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "VEHICLE_TYPE")
public abstract class Vehicle {

 @TableGenerator(name = "VEHICLE_GEN", table = "ID_GEN", pkColumnName = "GEN_NAME",
valueColumnName = "GEN_VAL", allocationSize = 1)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "VEHICLE_GEN")
 private int idVehicle;
 private String manufacturer;

 public int getIdVehicle() {
 return idVehicle;
 }

 public void setIdVehicle(int idVehicle) {
 this.idVehicle = idVehicle;
 }

 public String getManufacturer() {
 return manufacturer;
 }

https://riptutorial.com/ 37

http://i.stack.imgur.com/e8DKZ.png

 public void setManufacturer(String manufacturer) {
 this.manufacturer = manufacturer;
 }

}

TransportableVehicle.java package com.thejavageek.jpa.entities;

import javax.persistence.MappedSuperclass;

@MappedSuperclass
public abstract class TransportationVehicle extends Vehicle {

 private int loadCapacity;

 public int getLoadCapacity() {
 return loadCapacity;
 }

 public void setLoadCapacity(int loadCapacity) {
 this.loadCapacity = loadCapacity;
 }

}

PassengerVehicle.java

package com.thejavageek.jpa.entities;

import javax.persistence.MappedSuperclass;

@MappedSuperclass
public abstract class PassengerVehicle extends Vehicle {

 private int noOfpassengers;

 public int getNoOfpassengers() {
 return noOfpassengers;
 }

 public void setNoOfpassengers(int noOfpassengers) {
 this.noOfpassengers = noOfpassengers;
 }

}

Truck.java

package com.thejavageek.jpa.entities;

import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;

@Entity
@DiscriminatorValue(value = "Truck")
public class Truck extends TransportationVehicle{

https://riptutorial.com/ 38

 private int noOfContainers;

 public int getNoOfContainers() {
 return noOfContainers;
 }

 public void setNoOfContainers(int noOfContainers) {
 this.noOfContainers = noOfContainers;
 }

}

Bike.java

package com.thejavageek.jpa.entities;

import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;

@Entity
@DiscriminatorValue(value = "Bike")
public class Bike extends PassengerVehicle {

 private int saddleHeight;

 public int getSaddleHeight() {
 return saddleHeight;
 }

 public void setSaddleHeight(int saddleHeight) {
 this.saddleHeight = saddleHeight;
 }

}

Car.java

package com.thejavageek.jpa.entities;

import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;

@Entity
@DiscriminatorValue(value = "Car")
public class Car extends PassengerVehicle {

 private int noOfDoors;

 public int getNoOfDoors() {
 return noOfDoors;
 }

 public void setNoOfDoors(int noOfDoors) {
 this.noOfDoors = noOfDoors;
 }

}

https://riptutorial.com/ 39

Test Code:

/* Create EntityManagerFactory */
EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("AdvancedMapping");

/* Create EntityManager */
EntityManager em = emf.createEntityManager();
EntityTransaction transaction = em.getTransaction();
transaction.begin();

Bike cbr1000rr = new Bike();
cbr1000rr.setManufacturer("honda");
cbr1000rr.setNoOfpassengers(1);
cbr1000rr.setSaddleHeight(30);
em.persist(cbr1000rr);

Car avantador = new Car();
avantador.setManufacturer("lamborghini");
avantador.setNoOfDoors(2);
avantador.setNoOfpassengers(2);
em.persist(avantador);

Truck truck = new Truck();
truck.setLoadCapacity(100);
truck.setManufacturer("mercedes");
truck.setNoOfContainers(2);
em.persist(truck);

transaction.commit();

Read Single Table Inheritance Strategy online: https://riptutorial.com/jpa/topic/6277/single-table-
inheritance-strategy

https://riptutorial.com/ 40

https://riptutorial.com/jpa/topic/6277/single-table-inheritance-strategy
https://riptutorial.com/jpa/topic/6277/single-table-inheritance-strategy

Chapter 10: Table per concrete class
inheritance strategy

Remarks

Vehicle, TransportationVehicle and PassengerVehicle are abstract classes and they will not
have separate table in database.

•

Truck, Car and Bike are concrete classes so they will be mapped to corresponding tables.
These tables should include all the fields for classes annotated with @MappedSuperClass
because they don’t have corresponding tables in database.

•

So, Truck table will have columns to store fields inherited from TransportationVehicle and
Vehicle.

•

Similarly, Car and Bike will have columns to store fields inherited from PassengerVehicle
and Vehicle.

•

Full example can be found here

Examples

Table per concrete class inheritance strategy

We will take vehicle hierarchy example as depicted below.

Vehicle.java

package com.thejavageek.jpa.entities;

import javax.persistence.Entity;

https://riptutorial.com/ 41

http://www.thejavageek.com/2014/05/17/jpa-table-per-concrete-class-example/
http://i.stack.imgur.com/Kx9zd.png

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;
import javax.persistence.TableGenerator;

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Vehicle {

 @TableGenerator(name = "VEHICLE_GEN", table = "ID_GEN", pkColumnName = "GEN_NAME",
valueColumnName = "GEN_VAL", allocationSize = 1)
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE, generator = "VEHICLE_GEN")
 private int idVehicle;
 private String manufacturer;

 public int getIdVehicle() {
 return idVehicle;
 }

 public void setIdVehicle(int idVehicle) {
 this.idVehicle = idVehicle;
 }

 public String getManufacturer() {
 return manufacturer;
 }

 public void setManufacturer(String manufacturer) {
 this.manufacturer = manufacturer;
 }

}

TransportationVehilcle.java

package com.thejavageek.jpa.entities;

import javax.persistence.MappedSuperclass;

@MappedSuperclass
public abstract class TransportationVehicle extends Vehicle {

 private int loadCapacity;

 public int getLoadCapacity() {
 return loadCapacity;
 }

 public void setLoadCapacity(int loadCapacity) {
 this.loadCapacity = loadCapacity;
 }

}

Truck.java

https://riptutorial.com/ 42

package com.thejavageek.jpa.entities;

import javax.persistence.Entity;

@Entity
public class Truck extends TransportationVehicle {

 private int noOfContainers;

 public int getNoOfContainers() {
 return noOfContainers;
 }

 public void setNoOfContainers(int noOfContainers) {
 this.noOfContainers = noOfContainers;
 }

}

PassengerVehicle.java

package com.thejavageek.jpa.entities;

import javax.persistence.MappedSuperclass;

@MappedSuperclass
public abstract class PassengerVehicle extends Vehicle {

 private int noOfpassengers;

 public int getNoOfpassengers() {
 return noOfpassengers;
 }

 public void setNoOfpassengers(int noOfpassengers) {
 this.noOfpassengers = noOfpassengers;
 }

}

Car.java

package com.thejavageek.jpa.entities;

import javax.persistence.Entity;

@Entity
public class Car extends PassengerVehicle {

 private int noOfDoors;

 public int getNoOfDoors() {
 return noOfDoors;
 }

 public void setNoOfDoors(int noOfDoors) {
 this.noOfDoors = noOfDoors;
 }

https://riptutorial.com/ 43

}

Bike.java

package com.thejavageek.jpa.entities;

import javax.persistence.Entity;

@Entity
public class Bike extends PassengerVehicle {

 private int saddleHeight;

 public int getSaddleHeight() {
 return saddleHeight;
 }

 public void setSaddleHeight(int saddleHeight) {
 this.saddleHeight = saddleHeight;
 }

}

Database representation will be as below

Read Table per concrete class inheritance strategy online:
https://riptutorial.com/jpa/topic/6255/table-per-concrete-class-inheritance-strategy

https://riptutorial.com/ 44

http://i.stack.imgur.com/MHMBh.png
https://riptutorial.com/jpa/topic/6255/table-per-concrete-class-inheritance-strategy

Credits

S.
No

Chapters Contributors

1
Getting started with
jpa

Billy Frost, Community, DimaSan, , Manuel Spigolon, Michael
Piefel, Neil Stockton, ppeterka

2 Basic mapping Jeffrey Brett Coleman, Michael Piefel, Neil Stockton, Pete

3
Joined Inheritance
strategy

bw_üezi, Prasad Kharkar

4
Many to Many
Mapping

Prasad Kharkar, Ronak Patel, Vetle

5
Many To One
Mapping

Prasad Kharkar

6
One to Many
relationship

Prasad Kharkar

7 One to One mapping Prasad Kharkar

8
Relations between
entities

DimaSan,

9
Single Table
Inheritance Strategy

Prasad Kharkar

10
Table per concrete
class inheritance
strategy

Prasad Kharkar

https://riptutorial.com/ 45

https://riptutorial.com/contributor/3973283/billy-frost
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/3309466/manuel-spigolon
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/380338/neil-stockton
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/5893681/jeffrey-brett-coleman
https://riptutorial.com/contributor/2621917/michael-piefel
https://riptutorial.com/contributor/380338/neil-stockton
https://riptutorial.com/contributor/4574945/pete
https://riptutorial.com/contributor/397667/bw-uezi
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/7946109/ronak-patel
https://riptutorial.com/contributor/2935/vetle
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/4390212/dimasan
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/1727645/prasad-kharkar
https://riptutorial.com/contributor/1727645/prasad-kharkar

	About
	Chapter 1: Getting started with jpa
	Remarks
	Metadata
	Object-Relational Entity Architecture
	Versions
	Examples
	Installation or Setup

	Classpath requirements
	Eclipselink
	Hibernate
	DataNucleus

	Configuration Details
	Minimal persistence.xml example

	Hibernate (and embedded H2 DB)
	Eclipselink (and embedded H2 DB)
	DataNucleus (and embedded H2 DB)
	Hello World

	Libraries
	Persistence Unit
	Implement an Entity
	Implement a DAO
	Test the application
	Chapter 2: Basic mapping
	Parameters
	Remarks
	Examples
	A very simple entity
	Omitting field from the mapping
	Mapping time and date

	Date and time before Java 8
	Date and time with Java 8
	Entity with sequence managed Id

	Chapter 3: Joined Inheritance strategy
	Parameters
	Examples
	Joined inheritance strategy

	Chapter 4: Many to Many Mapping
	Introduction
	Parameters
	Remarks
	Examples
	Employee to Project Many to Many mapping
	How to handle compound key without Embeddable annotation

	Chapter 5: Many To One Mapping
	Parameters
	Examples
	Employee to Department ManyToOne relationship

	Chapter 6: One to Many relationship
	Parameters
	Examples
	One To Many relationship

	Chapter 7: One to One mapping
	Parameters
	Examples
	One To One relation between employee and desk

	Chapter 8: Relations between entities
	Remarks
	Relations Between Entities Basics
	Examples
	Multiplicity in Entity Relationships

	Multiplicity in Entity Relationships
	One-to-One Mapping
	One-to-Many Mapping
	Many-to-One Mapping
	Many-to-Many Mapping
	@JoinTable Annotation Example

	Chapter 9: Single Table Inheritance Strategy
	Parameters
	Remarks
	Examples
	Single table inheritance strategy

	Chapter 10: Table per concrete class inheritance strategy
	Remarks
	Examples
	Table per concrete class inheritance strategy

	Credits

