
junit

#junit

Table of Contents

About 1

Chapter 1: Getting started with junit 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Basic unit test example 3

@Before, @After 4

Catch expected exception 5

Testing exceptions in JUnit5 6

The tested method 6

The test method 6

Ignoring Tests 6

JUnit – Basic annotation examples 7

Here’re some basic JUnit annotations you should understand: 7

Chapter 2: Custom Test Rules 8

Remarks 8

Examples 8

Custom @TestRule by implementation 8

Custom @TestRule by extension 9

Chapter 3: Generate Junit test cases skeleton for existing code 10

Introduction 10

Examples 10

Generate Junit test cases skeleton for existing code in Eclipse 10

Chapter 4: Ignore test cases in Junit 11

Introduction 11

Examples 11

Ignore test case in Junit 11

Chapter 5: Paramaterizing Tests 12

Introduction 12

Syntax 12

Remarks 12

Examples 12

Using a Constructor 12

Chapter 6: Test Execution Order 14

Syntax 14

Examples 14

Default Order 14

Lexicographical Order 15

Chapter 7: Testing with DataProviders 16

Examples 16

Installation and usage 16

Chapter 8: Tests 18

Remarks 18

Examples 18

Unit testing using JUnit 18

Fixtures 20

Unit testing using Theories 22

Performance measurement 23

Credits 25

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: junit

It is an unofficial and free junit ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official junit.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/junit
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with junit

Remarks

JUnit is a simple framework to write repeatable tests for Java programming language. It is an
instance of the xUnit architecture for unit testing frameworks.

Main features consist of:

Assertions, that let you customize how to test values in your tests•
Test runners, that let you specify how to run the tests in your class•
Rules, that allow you to flexibly modify the behaviour of tests in your class•
Suites, that allow you to build together a suite of tests from many different classes•

Useful extension for JUnit:

AssertJ: Fluent assertions for java•
Mockito: Mocking framework for java•

Versions

Version ReleaseDate

JUnit 5 Milestone 2 2016-07-23

JUnit 5 Milestone 1 2016-07-07

JUnit 4.12 2016-04-18

JUnit 4.11 2012-11-14

JUnit 4.10 2011-09-28

JUnit 4.9 2011-08-22

JUnit 4.8 2009-12-01

JUnit 4.7 2009-07-28

JUnit 4.6 2009-04-14

Examples

Installation or Setup

Since JUnit is a Java library, all you have to do to install it is to add a few JAR files into the

https://riptutorial.com/ 2

http://www.riptutorial.com/java/topic/84/getting-started-with-java-language
http://joel-costigliola.github.io/assertj/index.html
http://www.riptutorial.com/topic/2055

classpath of your Java project and you're ready to go.

You can download these two JAR files manually: junit.jar & hamcrest-core.jar.

If you're using Maven, you can simply add in a dependency into your pom.xml:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
</dependency>

Or if you're using Gradle,add in a dependency into your build.gradle:

apply plugin: 'java'

dependencies {
 testCompile 'junit:junit:4.12'
}

After this you can create your first test class:

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class MyTest {
 @Test
 public void onePlusOneShouldBeTwo() {
 int sum = 1 + 1;
 assertEquals(2, sum);
 }
}

and run it from command line:

Windows java -cp .;junit-X.YY.jar;hamcrest-core-X.Y.jar org.junit.runner.JUnitCore MyTest•
Linux or OsX java -cp .:junit-X.YY.jar:hamcrest-core-X.Y.jar org.junit.runner.JUnitCore
MyTest

•

or with Maven: mvn test

Basic unit test example

This example is a basic setup for unittesting the StringBuilder.toString() using junit.

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class StringBuilderTest {

 @Test

https://riptutorial.com/ 3

http://bit.ly/My9IXz
http://bit.ly/1gbl25b

 public void stringBuilderAppendShouldConcatinate() {
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.append("String");
 stringBuilder.append("Builder");
 stringBuilder.append("Test");

 assertEquals("StringBuilderTest", stringBuilder.toString());
 }

}

@Before, @After

An annotated method with @Before will be executed before every execution of @Test methods.
Analogous an @After annotated method gets executed after every @Test method. This can be used
to repeatedly set up a Test setting and clean up after every test. So the tests are independent and
preparation code is not copied inside the @Test method.

Example:

import static org.junit.Assert.assertEquals;

import java.util.ArrayList;
import java.util.List;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class DemoTest {

 private List<Integer> list;

 @Before
 public void setUp() {
 list = new ArrayList<>();
 list.add(3);
 list.add(1);
 list.add(4);
 list.add(1);
 list.add(5);
 list.add(9);
 }

 @After
 public void tearDown() {
 list.clear();
 }

 @Test
 public void shouldBeOkToAlterTestData() {
 list.remove(0); // Remove first element of list.
 assertEquals(5, list.size()); // Size is down to five
 }

 @Test
 public void shouldBeIndependentOfOtherTests() {
 assertEquals(6, list.size());

https://riptutorial.com/ 4

 }
}

Methods annotated with @Before or @After must be public void and with zero arguments.

Catch expected exception

It is possible to easily catch the exception without any try catch block.

public class ListTest {
 private final List<Object> list = new ArrayList<>();

 @Test(expected = IndexOutOfBoundsException.class)
 public void testIndexOutOfBoundsException() {
 list.get(0);
 }
}

The example above should suffice for simpler cases, when you don't want/need to check the
message carried by the thrown exception.

If you want to check information about exception you may want to use try/catch block:

@Test
public void testIndexOutOfBoundsException() {
 try {
 list.get(0);
 Assert.fail("Should throw IndexOutOfBoundException");
 } catch (IndexOutOfBoundsException ex) {
 Assert.assertEquals("Index: 0, Size: 0", ex.getMessage());
 }
}

For this example you have to be aware to always add Assert.fail() to ensure that test will be
failed when no Exception is thrown.

For more elaborated cases, JUnit has the ExpectedException @Rule, which can test this information
too and is used as follows:

public class SimpleExpectedExceptionTest {
 @Rule
 public ExpectedException expectedException = ExpectedException.none();

 @Test
 public void throwsNothing() {
 // no exception expected, none thrown: passes.
 }

 @Test
 public void throwsExceptionWithSpecificType() {
 expectedException.expect(NullPointerException.class);

 throw new NullPointerException();
 }

https://riptutorial.com/ 5

http://junit.org/junit4/javadoc/4.12/org/junit/rules/ExpectedException.html
http://junit.org/junit4/javadoc/4.12/org/junit/rules/ExpectedException.html
http://junit.org/junit4/javadoc/4.12/org/junit/rules/ExpectedException.html

 @Test
 public void throwsExceptionWithSpecificTypeAndMessage() {
 expectedException.expect(IllegalArgumentException.class);
 expectedException.expectMessage("Wanted a donut.");

 throw new IllegalArgumentException("Wanted a donut.");
 }
}

Testing exceptions in JUnit5

To achieve the same in JUnit 5, you use a completely new mechanism:

The tested method

public class Calculator {
 public double divide(double a, double b) {
 if (b == 0.0) {
 throw new IllegalArgumentException("Divider must not be 0");
 }
 return a/b;
 }
}

The test method

public class CalculatorTest {
 @Test
 void triangularMinus5() { // The test method does not have to be public in JUnit5
 Calculator calc = new Calculator();

 IllegalArgumentException thrown = assertThrows(
 IllegalArgumentException.class,
 () -> calculator.divide(42.0, 0.0));
 // If the exception has not been thrown, the above test has failed.

 // And now you may further inspect the returned exception...
 // ...e.g. like this:
 assertEquals("Divider must not be 0", thrown.getMessage());
}

Ignoring Tests

To ignore a test, simply add the @Ignore annotation to the test and optionally provide a parameter
to the annotation with the reason.

@Ignore("Calculator add not implemented yet.")
@Test
public void testPlus() {
 assertEquals(5, calculator.add(2,3));

https://riptutorial.com/ 6

http://junit.org/junit5/docs/current/user-guide/#writing-tests-assertions

}

Compared to commenting the test or removing the @Test annotation, the test runner will still report
this test and note that it was ignored.

It is also possible to ignore a test case conditionally by using JUnit assumptions. A sample use-
case would be to run the test-case only after a certain bug is fixed by a developer. Example:

import org.junit.Assume;
import org.junit.Assert;
...

@Test
public void testForBug1234() {

 Assume.assumeTrue(isBugFixed(1234));//will not run this test until the bug 1234 is fixed

 Assert.assertEquals(5, calculator.add(2,3));
}

The default runner treats tests with failing assumptions as ignored. It is possible that other runners
may behave differently e.g. treat them as passed.

JUnit – Basic annotation examples

Here’re some basic JUnit annotations you
should understand:

@BeforeClass – Run once before any of the test methods in the class, public static void
@AfterClass – Run once after all the tests in the class has been run, public static void
@Before – Run before @Test, public void
@After – Run after @Test, public void
@Test – This is the test method to run, public void

Read Getting started with junit online: https://riptutorial.com/junit/topic/1838/getting-started-with-
junit

https://riptutorial.com/ 7

https://riptutorial.com/junit/topic/1838/getting-started-with-junit
https://riptutorial.com/junit/topic/1838/getting-started-with-junit

Chapter 2: Custom Test Rules

Remarks

There are benefits for either. Extending ExternalResource it's convenient, especially if we only
require a before() to set something up.

However, we should be aware that, since the before() method is executed outside of the
try...finally, any code that is required to do clean up in after() won't get executed if there is an
error during the execution of before().

This is how it looks inside ExternalResource:

before();
try {
 base.evaluate();
} finally {
 after();
}

Obviously, if any exception is thrown in the test itself, or by another nested rule, the after will still
get executed.

Examples

Custom @TestRule by implementation

This is especially useful if we have a class that we want to extend in the rule. See example below
for a more convenient method.

import org.junit.rules.TestRule;
import org.junit.runners.model.Statement;

public class AwesomeTestRule implements TextRule {

 @Override
 public Statement apply(Statement base, Description description) {
 return new AwesomeStatement(base);
 }

 private static class AwesomeStatement extends Statement {

 private Statement base;

 public AwesomeStatement(Statement base) {
 this.base = base;
 }

 @Override
 public void evaluate() throws Throwable {
 try {

https://riptutorial.com/ 8

 // do your magic
 base.evaluate(); // this will call Junit to run an individual test
 } finally {
 // undo the magic, if required
 }
 }
 }

}

Custom @TestRule by extension

JUnit has an abstract implementation of @TestRule that lets you write a rule in a more simpler way.
This is called ExternalResource and provides two protected methods that can be extended like this:

public class AwesomeTestRule extends ExternalResource {

 @Override
 protected void before() {
 // do your magic
 }

 @Override
 protected void after() {
 // undo your magic, if needed
 }

}

Read Custom Test Rules online: https://riptutorial.com/junit/topic/9808/custom-test-rules

https://riptutorial.com/ 9

https://riptutorial.com/junit/topic/9808/custom-test-rules

Chapter 3: Generate Junit test cases skeleton
for existing code

Introduction

Sometimes you need to generate the skeleton for the test cases based on the classes you have in
your project.

Examples

Generate Junit test cases skeleton for existing code in Eclipse

Here are the steps to generate test skeleton for existing code:

Open Eclipse, and choose the project you want to create test cases for1.
In the Package Explorer, select the java class you want to generate the Junit test for2.
Go to File -> New -> Junit Test Cases3.
Change the Source folder to point to the test using Browse (Note: It is better to separate the
source code from the testing code)

4.

Change the Package based on the destination package you want5.
In the Class under test, make sure you enter the class you want to generate the test cases
for.

6.

Click Next7.
Select the methods you want to test for8.
Click Finish9.

Now, you will have a Junit class generated for testing the source class you have

Read Generate Junit test cases skeleton for existing code online:
https://riptutorial.com/junit/topic/8648/generate-junit-test-cases-skeleton-for-existing-code

https://riptutorial.com/ 10

https://riptutorial.com/junit/topic/8648/generate-junit-test-cases-skeleton-for-existing-code

Chapter 4: Ignore test cases in Junit

Introduction

Sometimes you want to ignore some of the test cases you have in Junit. For instance, they are
partially done and you want to come back to them later.

Examples

Ignore test case in Junit

Go to the test method you want to ignore1.
Before the @Test annotation, enter @Ignore2.
optional: You can add description why are you ignoring this test method, something like:
@Ignore ("ignoring this test case for now")

3.

a sample method would be:

@Ignore ("not going to test this method now")
@Test
public void test() {
 assertfalse(true);
}

Read Ignore test cases in Junit online: https://riptutorial.com/junit/topic/8640/ignore-test-cases-in-
junit

https://riptutorial.com/ 11

https://riptutorial.com/junit/topic/8640/ignore-test-cases-in-junit
https://riptutorial.com/junit/topic/8640/ignore-test-cases-in-junit

Chapter 5: Paramaterizing Tests

Introduction

Sometimes you have a test you need to run multiple times, each time with different data.
Parameterizing the test allows you to do this in an easy and maintainable way.

Syntax

@RunWith(Parameterized.class) //annotation for test class

@Parameters//annotation for data

•

Remarks

One benefit to using parameters is that if one set of data fails, execution will just move to the next
set of data instead of stopping the whole test.

Examples

Using a Constructor

import static org.junit.Assert.assertThat;
import static org.hamcrest.CoreMatchers.is;
import java.util.*;
import org.junit.*;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;

@RunWith(Parameterized.class)
public class SimpleParmeterizedTest {
 @Parameters
 public static Collection<Object[]> data(){
 return Arrays.asList(new Object[][]{
 {5, false}, {6, true}, {8, true}, {11, false}
 });
 }

 private int input;
 private boolean expected;

 public SimpleParmeterizedTest(int input, boolean expected){
 this.input = input;
 this.expected = expected;
 }

 @Test
 public void testIsEven(){
 assertThat(isEven(input), is(expected));

https://riptutorial.com/ 12

 }
}

In data() you supply the data to be used in the tests. Junit will iterate through the data and run the
test with each set of data.

Read Paramaterizing Tests online: https://riptutorial.com/junit/topic/9425/paramaterizing-tests

https://riptutorial.com/ 13

https://riptutorial.com/junit/topic/9425/paramaterizing-tests

Chapter 6: Test Execution Order

Syntax

@FixMethodOrder // Runs test using default method sorter•
@FixMethodOrder(MethodSorters) // Runs test using MethodSorter associated with the
MethodSorters enum.

•

Examples

Default Order

Use the annotation -- @FixMethodOrder(MethodSorters.DEFAULT). This runs all tests within the class in
a deterministic and somewhat predictable order. The implementation hashes the method names
and compares them. In the scenario of a tie, it sorts by lexicographical order.

Code Segment Below Taken from JUnit Github -- MethodSorter.java

public int compare(Method m1, Method m2) {
 int i1 = m1.getName().hashCode();
 int i2 = m2.getName().hashCode();
 if(i1 != i2) {
 return i1 < i2 ? -1 : 1;
 }
 return NAME_ASCENDING.compare(m1,m2);
}

Example

@FixMethodOrder(MethodSorters.DEFAULT)
public class OrderedTest {
 @Test
 public void testA() {}

 @Test
 public void testB() {}

 @Test
 public void testC() {}
}

Suppose hashes for testA, testB, and testC are 3, 2, and 1 respectively. Then the execution order
is

testC1.
testB2.
testA3.

Suppose hashes for all tests are the same. Since all hashes are the same, execution order is

https://riptutorial.com/ 14

https://github.com/junit-team/junit4/blob/master/src/main/java/org/junit/internal/MethodSorter.java

based on lexicographical order. The execution order is

testA1.
testB2.
testC3.

Lexicographical Order

Use the annotation @FixMethodOrder with the method sorter MethodSorters.NAME_ASCENDING. This will
run all tests within the class in a deterministic and predictable order. The implementation
compares the method names and in the case of a tie, it compares the methods' toString().

Code Segment Below Taken from JUnit Github -- MethodSorter.java

public int compare(Method m1, Method m2) {
 final int comparison = m1.getName().compareTo(m2.getName());
 if(comparison != 0) {
 return comparison;
 }
 return m1.toString().compareTo(m2.toString());
}

Example

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class OrderedTest {
 @Test
 public void testA() {}

 @Test
 public void testB() {}

 @Test
 public void testC() {}
}

The execution order is

testA1.
testB2.
testC3.

Read Test Execution Order online: https://riptutorial.com/junit/topic/5905/test-execution-order

https://riptutorial.com/ 15

https://github.com/junit-team/junit4/blob/master/src/main/java/org/junit/internal/MethodSorter.java
https://riptutorial.com/junit/topic/5905/test-execution-order

Chapter 7: Testing with DataProviders

Examples

Installation and usage

Installation:

In order to use DataProviders, you need junit-dataprovider .jar :

Github

Direct download

Hamcrest-core-1.3.jar :

Github

Direct download

And add both of this .jar to your project.

Usage:

Add this import to your code:

import com.tngtech.java.junit.dataprovider.DataProvider;
import com.tngtech.java.junit.dataprovider.DataProviderRunner;
import com.tngtech.java.junit.dataprovider.UseDataProvider;

Before the declaration of your class:

@RunWith(DataProviderRunner.class)

So it looks like this:

@RunWith(DataProviderRunner.class)
public class example {
 //code
}

How to create DataProviders:

Before whichever function you want it to be a DataProvider, add this decorator:

@DataProvider

So it would look like this:

https://riptutorial.com/ 16

https://github.com/TNG/junit-dataprovider
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22junit-dataprovider%22
https://github.com/hamcrest/JavaHamcrest
http://search.maven.org/#search%7Cga%7C1%7Cg%3Aorg.hamcrest

@DataProvider
public static Object[][] testExampleProvider() {
 return new Object[][]{
 {"param1", "param2", number1}
 {"param1", "param2", number1}
 //You can put as many parameters as you want
 };
}

How to use DataProviders:

Before any function you want it to get those params that we return from the DataProvider, add this
decorator:

@UseDataProvider("testExampleProvider")

So your function to test looks like this:

@Test
@UseDataProvider("testExampleProvider")
public void testAccount(String param1, String param2, int number) {
 //System.out.println("exampleOfDataProviders");
 //assertEquals(...);
 //assertEquals(...);
}

Read Testing with DataProviders online: https://riptutorial.com/junit/topic/7469/testing-with-
dataproviders

https://riptutorial.com/ 17

https://riptutorial.com/junit/topic/7469/testing-with-dataproviders
https://riptutorial.com/junit/topic/7469/testing-with-dataproviders

Chapter 8: Tests

Remarks

Parameter Context Details

@BeforeClass Static Executed when the class is first created

@Before Instance Executed before each test in the class

@Test Instance Should be declared each method to test

@After Instance Executed after each test in the class

@AfterClass Static Executed before destruction of the class

Example Test Class Format

public class TestFeatureA {

 @BeforeClass
 public static void setupClass() {}

 @Before
 public void setupTest() {}

 @Test
 public void testA() {}

 @Test
 public void testB() {}

 @After
 public void tearDownTest() {}

 @AfterClass
 public static void tearDownClass() {}

 }
}

Examples

Unit testing using JUnit

Here we have a class Counter with methods countNumbers() and hasNumbers().

public class Counter {

 /* To count the numbers in the input */

https://riptutorial.com/ 18

 public static int countNumbers(String input) {
 int count = 0;
 for (char letter : input.toCharArray()) {
 if (Character.isDigit(letter))
 count++;
 }
 return count;
 }

 /* To check whether the input has number*/
 public static boolean hasNumber(String input) {
 return input.matches(".*\\d.*");
 }
}

To unit test this class, we can use Junit framework. Add the junit.jar in your project class path.
Then create the Test case class as below:

import org.junit.Assert; // imports from the junit.jar
import org.junit.Test;

public class CounterTest {

 @Test // Test annotation makes this method as a test case
 public void countNumbersTest() {
 int expectedCount = 3;
 int actualCount = Counter.countNumbers("Hi 123");
 Assert.assertEquals(expectedCount, actualCount); //compares expected and actual value
 }

 @Test
 public void hasNumberTest() {
 boolean expectedValue = false;
 boolean actualValue = Counter.hasNumber("Hi there!");
 Assert.assertEquals(expectedValue, actualValue);
 }
}

In your IDE you can run this class as "Junit testcase" and see the output in the GUI. In command
prompt you can compile and run the test case as below:

\> javac -cp ,;junit.jar CounterTest.java
\> java -cp .;junit.jar org.junit.runner.JUnitCore CounterTest

The output from a successful test run should look similar to:

JUnit version 4.9b2
..
Time: 0.019

OK (2 tests)

In the case of a test failure it would look more like:

Time: 0.024

https://riptutorial.com/ 19

There was 1 failure:
1) CountNumbersTest(CounterTest)
java.lang.AssertionError: expected:<30> but was:<3>
... // truncated output
FAILURES!!!
Tests run: 2, Failures: 1

Fixtures

From Wikipedia:

A test fixture is something used to consistently test some item, device, or piece of
software.

It can also enhance readability of tests by extracting common initialisation / finalisation code from
the test methods themselves.

Where common initialisation can be executed once instead of before each tests, this can also
reduce the amount of time taken to run tests.

The example below is contrived to show the main options provided by JUnit. Assume a class Foo
which is expensive to initialise:

public class Foo {
 public Foo() {
 // expensive initialization
 }

 public void cleanUp() {
 // cleans up resources
 }
}

Another class Bar has a reference to Foo:

public class Bar {
 private Foo foo;

 public Bar(Foo foo) {
 this.foo = foo;
 }

 public void cleanUp() {
 // cleans up resources
 }
}

The tests below expect an initial context of a List containing a single Bar.

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

import java.util.Arrays;
import java.util.List;

https://riptutorial.com/ 20

https://en.wikipedia.org/wiki/Test_fixture

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class FixturesTest {

 private static Foo referenceFoo;

 private List<Bar> testContext;

 @BeforeClass
 public static void setupOnce() {
 // Called once before any tests have run
 referenceFoo = new Foo();
 }

 @Before
 public void setup() {
 // Called before each test is run
 testContext = Arrays.asList(new Bar(referenceFoo));
 }

 @Test
 public void testSingle() {
 assertEquals("Wrong test context size", 1, testContext.size());
 Bar baz = testContext.get(0);
 assertEquals(referenceFoo, baz.getFoo());
 }

 @Test
 public void testMultiple() {
 testContext.add(new Bar(referenceFoo));
 assertEquals("Wrong test context size", 2, testContext.size());
 for (Bar baz : testContext) {
 assertEquals(referenceFoo, baz.getFoo());
 }
 }

 @After
 public void tearDown() {
 // Called after each test is run
 for (Bar baz : testContext) {
 baz.cleanUp();
 }
 }

 @AfterClass
 public void tearDownOnce() {
 // Called once after all tests have run
 referenceFoo.cleanUp();
 }
}

In the example the @BeforeClass annotated method setupOnce() is used to create the Foo object,
which is expensive to initialise. It is important that it not be modified by any of the tests, otherwise
the outcome of the test run could be dependent on the order of execution of the individual tests.
The idea is that each test is independent and tests one small feature.

https://riptutorial.com/ 21

The @Before annotated method setup() sets up the test context. The context may be modified
during test execution, which is why it must be initialised before each test. The equivalent effect
could be achieved by including the code contained in this method at the start of each test method.

The @After annotated method tearDown() cleans up resources within the test context. It is called
after each test invocation, and as such is often used to free resources allocated in a @Before
annotated method.

The @AfterClass annotated method tearDownOnce() cleans up resources once all tests have run.
Such methods are typically used to free resources allocated during initialisation or in a
@BeforeClass annotated method. That said, it's probably best to avoid external resources in unit
tests so that the tests don't depend on anything outside the test class.

Unit testing using Theories

From JavaDoc

The Theories runner allows to test a certain functionality against a subset of an infinite
set of data points.

Running theories

import org.junit.experimental.theories.Theories;
import org.junit.experimental.theories.Theory;
import org.junit.runner.RunWith;

@RunWith(Theories.class)
public class FixturesTest {

 @Theory
 public void theory(){
 //...some asserts
 }
}

Methods annotated with @Theory will be read as theories by Theories runner.

@DataPoint annotation

@RunWith(Theories.class)
public class FixturesTest {

 @DataPoint
 public static String dataPoint1 = "str1";
 @DataPoint
 public static String dataPoint2 = "str2";
 @DataPoint
 public static int intDataPoint = 2;

 @Theory
 public void theoryMethod(String dataPoint, int intData){
 //...some asserts
 }
}

https://riptutorial.com/ 22

http://junit.org/junit4/javadoc/4.12/org/junit/experimental/theories/Theories.html

Each field annotated with @DataPoint will be used as a method parameter of a given type in the
theories. In example above theoryMethod will run two times with following parameters: ["str1", 2] ,
["str2", 2]

@DataPoints annotation @RunWith(Theories.class) public class FixturesTest {

 @DataPoints
 public static String[] dataPoints = new String[]{"str1", "str2"};
 @DataPoints
 public static int[] dataPoints = new int[]{1, 2};

 @Theory
 public void theoryMethod(String dataPoint,){
 //...some asserts
 }
}

Each element of the array annotated with @DataPoints annotation will be used as a method
parameter of a given type in the theories. In example above theoryMethod will run four times with
following parameters: ["str1", 1], ["str2", 1], ["str1", 2], ["str2", 2]

Performance measurement

If you need to check if your testing method takes too long to execute, you can do that by
mentioning your expected execution time using timeout property of @Test annotation. If the test
execution takes longer than that number of milliseconds it causes a test method to fail.

public class StringConcatenationTest {

 private static final int TIMES = 10_000;

 // timeout in milliseconds
 @Test(timeout = 20)
 public void testString(){

 String res = "";

 for (int i = 0; i < TIMES; i++) {
 res += i;
 }

 System.out.println(res.length());
 }

 @Test(timeout = 20)
 public void testStringBuilder(){

 StringBuilder res = new StringBuilder();

 for (int i = 0; i < TIMES; i++) {
 res.append(i);
 }

 System.out.println(res.length());
 }

https://riptutorial.com/ 23

 @Test(timeout = 20)
 public void testStringBuffer(){

 StringBuffer res = new StringBufferr();

 for (int i = 0; i < TIMES; i++) {
 res.append(i);
 }

 System.out.println(res.length());
 }

}

In most cases without JVM warm-up testString will fail. But testStringBuffer and testStringBuilder
should pass this test successfully.

Read Tests online: https://riptutorial.com/junit/topic/5414/tests

https://riptutorial.com/ 24

http://stackoverflow.com/q/36198278/5091346
https://riptutorial.com/junit/topic/5414/tests

Credits

S.
No

Chapters Contributors

1
Getting started with
junit

acdcjunior, Andrii Abramov, Ashish Bhavsar, cheffe, Community
, Daniel Käfer, Honza Zidek, Lachezar Balev, NamshubWriter,
nishizawa23, Roland Weisleder, Rufi, Simulant, Squidward,
svgameren, t0mppa, Tim Tong, Tomasz Bawor

2 Custom Test Rules pablisco

3
Generate Junit test
cases skeleton for
existing code

Hamzawey

4
Ignore test cases in
Junit

Hamzawey

5 Paramaterizing Tests Hai Vu, selotape, user7491506

6 Test Execution Order Tim Tong

7
Testing with
DataProviders

Manuel

8 Tests Andrii Abramov, gar, Ram, Robert, Sergii Bishyr, Squidward

https://riptutorial.com/ 25

https://riptutorial.com/contributor/1850609/acdcjunior
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/6672247/ashish-bhavsar
https://riptutorial.com/contributor/2160152/cheffe
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1079174/daniel-kafer
https://riptutorial.com/contributor/2886891/honza-zidek
https://riptutorial.com/contributor/520359/lachezar-balev
https://riptutorial.com/contributor/95725/namshubwriter
https://riptutorial.com/contributor/7280124/nishizawa23
https://riptutorial.com/contributor/4365460/roland-weisleder
https://riptutorial.com/contributor/1783045/rufi
https://riptutorial.com/contributor/1515052/simulant
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/2144466/svgameren
https://riptutorial.com/contributor/136363/t0mppa
https://riptutorial.com/contributor/5818270/tim-tong
https://riptutorial.com/contributor/5904368/tomasz-bawor
https://riptutorial.com/contributor/458365/pablisco
https://riptutorial.com/contributor/3277573/hamzawey
https://riptutorial.com/contributor/3277573/hamzawey
https://riptutorial.com/contributor/459745/hai-vu
https://riptutorial.com/contributor/3052112/selotape
https://riptutorial.com/contributor/7491506/user7491506
https://riptutorial.com/contributor/5818270/tim-tong
https://riptutorial.com/contributor/6192780/manuel
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/485695/gar
https://riptutorial.com/contributor/2270563/ram
https://riptutorial.com/contributor/1431720/robert
https://riptutorial.com/contributor/5604676/sergii-bishyr
https://riptutorial.com/contributor/293099/squidward

	About
	Chapter 1: Getting started with junit
	Remarks
	Versions
	Examples
	Installation or Setup
	Basic unit test example
	@Before, @After
	Catch expected exception

	Testing exceptions in JUnit5
	The tested method
	The test method
	Ignoring Tests
	JUnit – Basic annotation examples

	Here’re some basic JUnit annotations you should understand:
	Chapter 2: Custom Test Rules
	Remarks
	Examples
	Custom @TestRule by implementation
	Custom @TestRule by extension

	Chapter 3: Generate Junit test cases skeleton for existing code
	Introduction
	Examples
	Generate Junit test cases skeleton for existing code in Eclipse

	Chapter 4: Ignore test cases in Junit
	Introduction
	Examples
	Ignore test case in Junit

	Chapter 5: Paramaterizing Tests
	Introduction
	Syntax
	Remarks
	Examples
	Using a Constructor

	Chapter 6: Test Execution Order
	Syntax
	Examples
	Default Order
	Lexicographical Order

	Chapter 7: Testing with DataProviders
	Examples
	Installation and usage

	Chapter 8: Tests
	Remarks
	Examples
	Unit testing using JUnit
	Fixtures
	Unit testing using Theories
	Performance measurement

	Credits

