LEARNING
Jwit

Free unaffiliated eBook created from
Stack Overflow contributors.

Table of Contents

A OUL . .. 1
Chapter 1: Getting started With JWt. ... 2
REMIAIKS . . 2
Further Reading 2
= 1] o] [2
UNSIONEd IV T . e e e e 2

HE AT . 2

P Ay 0. ... 3
SIGNEA IWT (JWS) . . e 3

HE AT . 3

P Ay 0. ... 3
JSON Web ENCryption (JWE).o e e e e e e e e e 3
How to tell if you have @ JWS OF JWE e e e e e e 4
JWS (SIGNEA)HH . . . oo 5
JWE (BNCIY P) . ..o oo 5
What 10 STOTE IN @ JVV T . et e 5
Registered Claims. 5
= 11 4]] 6
Chapter 2: Invalidating JSon Web TOKENS............ ... 7
RIS . 7
e T 11] o [T 7
Remove the token from ClIENt StOrage. o e 7
C00KIES . . . 7
Delete 'token' With JaVasCIipL. 7
TOKEN DIACKIIST. . . .o 7
Manage the BIACKIISE. ... 8
ROtAE TOKENS 8
Refresh and acCess tOKENS. 8
Other commON tECHNIGUES. e et 8

Chapter 3: Serializations 10

EX Al . .. 10

JWS Compact Seralization. e 10
ez 1111 o] [10
JWE Compact Serialization. e 10
= 111 o] [11
General JWS JSON Serialization SYNTaX.ouiiiii e e e e 11
= 10 1]] 12
Flattened JWS JSON Serialization SYNtaX.ooouiiii e e 12
= 10 1]] = 13
General JWE JSON Serialization SYNTaX.ot e e 13
B . 13
Flattened JWE JSON Serialization SYNTaX.oouiiuiiiii e et 14
ez 1 1] o] [15

(04 (=10 [| - J 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: jwit

It is an unofficial and free jwt ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official jwt.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/

http://riptutorial.com/ebook/jwt
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

C_hapter 1: Getting started with jwt

Remarks

A JSON Web Token (JWT) is a compact, URL-safe way of representing claims that can be
exchanged between parties.

All JWTs consist of a header and payload, which are JSON hashes. These objects are stringified
and Base64-encoded. The encoded header and payload are combined with a digital signature
(JWS), and all three components are concatenated with "." (period).

Further Reading

» Use Cases and Requirements for JSON Object Signing and Encryption (RFC 7165)

» JSON Web Signature specification (RFC 7515)

* JSON Web Encryption specification (RFC 7516)

* JSON Web Key (RFC 7517)

* JSON Web Algorithms (RFC 7518)

» JSON Web Token specification (RFC 7519)

o IANA List of JSON Web Token Claims (RFC 7519 IANA list)

» Examples of Protecting Content Using JSON Object Signing and Encryption (RFC 7520)
e JSON Web Key (JWK) Thumbprint (RFC 7638)

+ JSON Web Signature (JWS) Unencoded Payload Option (RFC 7797)

Examples

Unsigned JWT
An unsigned JWT has the header value a1g: none and an empty JWS (signature) component:

eyJhbGci0iJub251In0
.eyJpc3MiOiJgb2UiLAOKICJI1leHAIiOjEzZMDA4MTkzODASDQogImh0dHAG6LY91eGFtcGx1LmNvbS9pcl9yb290Ijp0cnV1£EQ

The trailing dot indicates that the signature is empty.
Header

{

"alg" . "none"

}

https://riptutorial.com/

https://tools.ietf.org/html/rfc7165
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7519
http://www.iana.org/assignments/jwt/jwt.xhtml
https://tools.ietf.org/html/rfc7520
https://tools.ietf.org/html/rfc7638
https://tools.ietf.org/html/rfc7797

Payload

{

iss": "joe",
"exp": 1300819380,
"http://example.com/is_root": true

}

Signed JWT (JWS)

A signed JWT includes a Base64 Url Safe encoded signature as the third component. The
algorithm used to generate the signature is indicated in the header.

eyJ0eXA10iJKV1QiLCJIhbGciOiJIUzI1INiJ9
.eyJzdWIi0iJKb2huIERVZSIsImEFkbWluIl jpO0cnV1LCIpYXQiOjEONZAZNTMS50TQsImV4cCI6MTQ3MDMINzYyNywianRpI joiNmUOMI

.7C£BdVP4uKsb0cogYepCvMLm8rcp jBYW1XZzA-ab5e4d4

Header

{
"typ" . n JWT n ,
"alg": "HS256"
}

This JWT was signed with the HMAC-SHA256 algorithm, hence aig: ms2ss.

Payload

"sub": "John Doe",

"admin": true,

"iat": 1470353994,

"exp": 1470357627,

"Jti": "6e404ba8-£885-4d5f-bfa2-e3£f5a08380a4"

This IWT can be verified with the UTF-8 secret notsosecret.
JSON Web Encryption (JWE)

JSON Web Encryption (JWE) represents encrypted content using JavaScript Object Notation
(JSON) based data structures. It defines a way to encrypt your claims data so that only intended
receiver can read the information present in a token.

In the JWE JSON Serialization, a JWE is represented as a JSON object containing some or all of
these eight members:

https://riptutorial.com/ 3

"protected", with the value BASEG64URL (UTF8 (JWE Protected Header))
"unprotected", with the value JWE Shared Unprotected Header
"header", with the value JWE Per-Recipient Unprotected Header
"encrypted_key", with the value BASE64URL (JWE Encrypted Key)
"iv", with the value BASEG64URL (JWE Initialization Vector)
"ciphertext", with the value BASE64URL (JWE Ciphertext)

"tag", with the value BASE64URL (JWE Authentication Tag)

"aad", with the value BASE64URL (JWE AAD)

The six base64url-encoded result strings and the two unprotected JSON object values are
represented as members within a JSON object.

Example JWE
The following example JWE Header declares that:

» the Content Encryption Key is encrypted to the recipient using the RSA-PKCS1 1.5
algorithm to produce the JWE Encrypted Key

« the Plaintext is encrypted using the AES-256-GCM algorithm to produce the JWE Ciphertext

* the specified 64-bit Initialization Vector with the base64url encoding _ 79 _Pv6-fg was used

 the thumbprint of the X.509 certificate that corresponds to the key used to encrypt the JWE
has the base64url encoding 7noOPg-hJ1_hCnvWh6leYI2w9QO0.

"alg":"RSAL_5",

"enc":"A256GCM",
"iv":"__79_Pve-fg",
"x5t":"7noOPg-hJl_hCnviWh6IeYI2w9Q0"

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this Encoded
JWE Header value (with line breaks for display purposes only):

eyJhbGci0iJSUOExXzUiLAOKICJI1lbmMiO1iJIJBMJjU2RONNIiwNCiAiaXYi0iJfXzch
X1B2NilmZyIsDQogIngldCI6Ijdub09QcSloSjFfaENudldoNkl1WUkydzlRMCJ

Read JSON Web Encryption specification (RFC 7516) for more information

How to tell if you have a JWS or JWE?

From Section 9 of JSON Web Encryption specification (RFC 7516):

The JOSE Header for a JWS can be distinguished from the JOSE Header for a JWE
by examining the "alg" (algorithm) Header Parameter value. If the value represents a
digital signature or MAC algorithm, or is the value "none", it is for a JWS; if it
represents a Key Encryption, Key Wrapping, Direct Key Agreement, Key Agreement
with Key Wrapping, or Direct Encryption algorithm, it is for a JWE. (Extracting the "alg"
value to examine is straightforward when using the JWS Compact Serialization or the
JWE Compact Serialization and may be more difficult when using the JWS JSON
Serialization or the JWE JSON Serialization.)

https://riptutorial.com/ 4

https://tools.ietf.org/html/rfc7516

And

The JOSE Header for a JWS can also be distinguished from the JOSE Header for a
JWE by determining whether an "enc" (encryption algorithm) member exists. If the
"enc" member exists, it is a JWE; otherwise, it is a JWS.

JWS (signed)##

{

"alg": "HS256"

}

JWE (encrypted)

"alg":"RSAl1_5",

"enc":"A256GCM",

"iv":"__79_Pve-fg",
"x5t":"7noOPg-hJl_hCnviWh6IeYI2w9Q0O"

What to storein a JWT

The JWT RFEC stablish three classes of claims:

Registered claims like sub, iss, exp OF nbf

Public claims with public names or names registered by IANA which contain values that
should be Unique like email, address Ol phone_number. See full list

Private claims to use in your own context and values can collision

None of these claims are mandatory

A JWT is self-contained and should avoid use the server session providing the necessary data to
perform the authentication (no need of server storage and database access). Therefore, roie Or
permissions INfO can be included in private claims of JWT.

Registered Claims

The following Claim Names are registered in the IANA "JSON Web Token Claims" registry
established by Section 10.1.

iss (issuer): identifies the principal that issued the JWT.

sub (Subject): identifies the principal that is the subject of the JWT. Must be unique

aud (audience): identifies the recipients that the JWT is intended for (array of strings/uri)

exp (expiration time): identifies the expiration time (UTC Unix) after which you must no longer
accept this token. It should be after the issued-at time.

https://riptutorial.com/

https://tools.ietf.org/html/rfc7519#page-8
https://tools.ietf.org/html/rfc7519#section-10.1
http://www.iana.org/assignments/jwt/jwt.xhtml
https://tools.ietf.org/html/rfc7519#section-10.1

» npr(not before): identifies the UTC Unix time before which the JWT must not be accepted
* iat (issued at): identifies the UTC Unix time at which the JWT was issued
* jti (JWT ID): provides a unique identifier for the JWT.

Example
{
"iss": "stackoverflow",
"sub": "joe",
"aud": ["all"],

"iat": 1300819370,
"exp": 1300819380,

"jti": "3F2504E0-4F89-11D3-9A0C-0305E82C3301"
"context": {
"user": {
"key": "joe",
"displayName": "Joe Smith"

by

"roles": ["admin","finaluser"]

Read Getting started with jwt online: https://riptutorial.com/jwt/topic/5213/getting-started-with-jwt

https://riptutorial.com/

https://riptutorial.com/jwt/topic/5213/getting-started-with-jwt

C_hapter 2. Invalidating Json Web Tokens

Remarks

There are several reason to invalidate a JWT token before its expiration time: account
deleted/blocked/suspended, password or permissions changed, user logged out by admin.

JWT is self-contained, signed and stored outside of the server context, so revoking a token is not
a simple action.

Examples

Remove the token from client storage

Remove the token from the client storage to avoid usage

Tokens are issued by the server and you can not force browsers to delete a cookie/localStorage or
control how external clients are managing your tokens. Obviously if attackers have stolen the
token before logout they still could use the token, therefore are needed additional measures in
server side (see below for token blacklist strategy)

Cookies

You cannot force browsers to delete a cookie. The client can configure the browser in such a way
that the cookie persists, even if it's expired. But the server can set the value to empty and include
expires field to invalidate the cookie value.

Set-Cookie: token=deleted; path=/; expires=Thu, 01 Jan 1970 00:00:00 GMT

Delete 'token' with javascript

document .cookie = 'token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:01 GMT;"';
localStorage.removeltem('token')
sessionStorage.removeltem('token')

Token blacklist

Mark invalid tokens, store until their expiration time and check it in every request.

Blacklist breaks JWT statelessness because it requires maintaining the state. One of the benefits
of JWT is no need server storage, so if you need to revoke tokens without waiting for the
expiration, think also about the downside

https://riptutorial.com/ 7

Manage the blacklist

The blacklist can be easily managed in your own service/database. The storage size probably
would not be large because it is only needed to store tokens that were between logout and expiry
time.

Include the full token or just the unique ID 5ci. Set the iat (issued at) to remove old tokens.

To revoke all tokens after updating critical data on user (password, permissions, etc) set a new
entry with sub and iat When currentTime - maxExpiryTime < last iss. The entry can be discarded
When currentTime - maxExpiryTime > lastModified (NO MOre non-expired tokens sent).

Rotate tokens

Set expiration time short and rotate tokens. Issue a new access token every few request. Use
refresh tokens to allow your application to obtain new access tokens without needing to re-
authenticate

Refresh and access tokens

» access token: Authorize access to a protected resource. Limited lifetime. Must be kept
secret, security considerations are less strict due to their shorter life.

» Refresh token: Allows your application to obtain new access tokens without needing to re-
authenticate. Long lifetime. Store in secure long-term storage

Usage recomendations:

* Web applications: refresh the access token before it expires, each time user open the
application and at fixed intervals. Alternatively renew the access token when a user performs
an action. If the user uses an expired access token, the session is considered inactive and a
new access token is required. This new token can be obtained with a refresh token or
requiring credentials

* Mobile/Native applications: Application login once and only once. Refresh token does not
expire and can be exchanged for a valid JWT. Take in account special events like changing
password

Other common techniques

» Allow change user unique ID if account is compromised with a new user&password login

» To invalidate tokens when user changes their password or permissions, sign the token with a
hash of those fields. If any of these field change, any previous tokens automatically fail to
verify. The downside is that it requires access to the database

» Change signature algorithm to revoke all current tokens in a major security issue

https://riptutorial.com/ 8

Read Invalidating Json Web Tokens online: https://riptutorial.com/jwt/topic/6224/invalidating-json-
web-tokens

https://riptutorial.com/

https://riptutorial.com/jwt/topic/6224/invalidating-json-web-tokens
https://riptutorial.com/jwt/topic/6224/invalidating-json-web-tokens

C_hapter 3: Serializations

Examples

JWS Compact Serialization

The Compact Serialization is the most common serialization format and is designed to be used in

a web context.

JWS are represented into a string that contains Base64 Url Safe encoded information seperated

by an dot ".".
This mode does not support unprotected headers.

Line breaks added for readability

BASEG64URL (UTF8 (JWS Protected Header)) || '.' ||
BASE64URL (JWS Payload) || '.' ||
BASE64URL (JWS Signature)

Example

eyJhbGciO0iJQUzMANCIsImtpZCI6ImIpbGIvimdhZ2dpbnNAaG9iYml0b24uzX
hhbXBszSJ9

SXTigJlzIGEgZGFuzZ2Vyb3VzIGJIlc21luZXNzLCBGem9kbywgZ2 9pbmecgb3VOIH
1vdXIgZGO9vcidgWW91IHNOZXAgb250byB0aGUgcmO9hZCwgYW5kIGImIH1vdSBk
b24ndCBrZWVwIH1vdXIgZmV1dCwgdGhlcmXigJdlzIG5vIGtub3dpbmcgd2hlcm
UgeW91IG1lpZ2h0IGJI1IHN3ZXBOIGIMZiB0by4

cu22eBgkYDKgI1lTpzDXGvaFfz6WGoz7fUDcfTO0kkOy42miAh2qgyBzklxEsnk2T
PN6-tPid6VrklHkgsGgDgHCAP608TTB5dDDIt11Vo6_10LPpcbUrhiUSMxbbXU
vdviXzg-UD8biiReQF1£fz28zGWVsdiNAUE8ZnyPEgVFn4422dNgiVIRmBgrYRX
e8P_1307p8Vdz0TTrxUeT31m8d9shnr21 fJT8ImUjvAA2Xez2M1lp8cBES5awDzT
0gIOn6uiPlaCN_2_jLAeQT1gRHt fa64QQSUMFAAjJVKPbByi7xhoOuTOcbH510a
6GYmMJUAfmWjwZ60D41ifKo8DYM-XT72Eaw

JWE Compact Serialization

The Compact Serialization is the most common serialization format and is designed to be used in

a web context.

JWE are represented into a string that contains Base64 Url Safe encoded information seperated

by an dot ".".
This mode does not support unprotected headers or AAD.

Line breaks added for readability

https://riptutorial.com/

10

BASEG64URL (UTF8 (JWE Protected Header)) || '.' ||
BASE64URL (JWE Encrypted Key) || '.' ||
BASEG4URL (JWE Initialization Vector) || '.' ||
BASE64URL (JWE Ciphertext) || '.' ||

BASE64URL (JWE Authentication Tag)

Example

eyJhbGci0iJSUOELTOFFUCISImtpZCI6InNhbXdpc2UuZ2FtZ2V1QGhvYmJIpdG
uLmV4AYWlwbGUiLCJ1lbmMiOiJBMJU2RONNINO

r7T99rwrBTbTI7IJM8fU3E11i7226HEB7IchCxNuh71Ciud48LxeolRdAtFF4nzQ1
beYO1l5S_PJsAXZwSXtDePz9hk-Bbt sTBqC2UsPOdwjCONhNupNNu9uHIVEtDyu
cvI6hvALeZ60GnhNV4v1zx2k701D89mAzfw—_kT3tkuorpDU-CpBENfIHX1Q58
—Aad3FzMuo3Fn9buEP2yXakLXYal5BUXQsupM4A1GD4_H4Bd7V3u9h8Gkg8Bpx
KdUV9ScfJIQTcYm6eJEBz3aSwIaK4T3-dwiWpuBOhROQXBosJzSlasnuHtVMt 2pK
IIfux5BC6hulvmY7kzV7W7alUrpY¥m 3H4zYvyMegSpGgFmW2k8zp0O878TR1Zx7
PZfPYDSXZySOCEfKKkMozT_giCwZTSz4du¥Ynt8hS4Z9sGthXn9uDgd6ewycMagnQ
fOTs_lycTWmY—-agqWVDKhjYNREO3NiwRtb5BE-tOdFWCASQJ3uuAgPGrO2AWBe 3
8Uj0Ob01vXnlSpyvYZ3WFc7WOJYaTa7A8DRN6MCO6T—xDmMuxC0G7S2rscw510QQU
06MvZT1FOt0UviuKBal03cxA_nIBIhLMjY2kOTxQMmpDPTr6Cbo8aKaOnx6ASES
Jx9paBpnNmOOKH355_QlrQhDWUN6A2GG8iFayJ69xDEJHAVCGRzZN3woEI20zDR
s

—nBoKLHOYkLZPSIO

04k2cnGN8rSSw3IDolYuySkgeS_t2mlGXk1SggBdpACm6UJuJowOHCSyt jgYgR
L-I-soPlwgMUf4UgRWWeaOGNw6vGW-xyMO11TYxrXfVzITaRdhYt EMRBVBWbEwW
P7ualDRfvaOjgzv6Ifa3brcAM64d8p51hhNcizPersuhwbf-pGYzseva-TUaL8
iWnctc-sSwy7SQmRkfhD jwbz0fz6kFovEgj64X1I5s7E6GLp5fnbYGLalQUiML
7Cc2GxgvI7zgqWo0YIEc7aCf1l1LG1l-8BboVWFAZKLKI9vNoycrYHumwzK1luLWEbSV
maPp0slY2n525DxDfWaVFULKQOxXME56vn4BI9QOMpWAbnypNimbM8zVOw

UCGiqJIxhBI3IFVdPalHHVA

General JWS JSON Serialization Syntax

The JWS JSON Serialization represents digitally signed or MACed content as a JSON object. This

representation is neither optimized for compactness nor URL-safe.

This syntax is optimized for more than one digital signature and/or MAC operation.

Line breaks added for readability

{

"payload":"<payload contents>",

"signatures": [
{"protected":"<integrity-protected header 1 contents>",
"header":<non-integrity-protected header 1 contents>,
"signature":"<signature 1 contents>"},

{"protected":"<integrity-protected header N contents>",
"header":<non-integrity-protected header N contents>,
"signature":"<signature N contents>"}]

https://riptutorial.com/

11

Example

"payload": "SXTigJlzIGEgZGFuZ2Vyb3VzIGJlc2luZXNzLCBGcm9kbywg
22 9pbmcgb3VOIH1vdAXIgZGI9vci4gWWI1IHNOZXAgb250byB0aGUgcm9h
ZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIHl1vdXIgZmV1dCwgdGhlcmXi
gJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IGlpZ2h0IGJLIIHN3ZXBOIGOm
ZiBOby4",

"signatures": [

{
"protected": "eyJhbGciOiJSUzI1INiJ9",
"header": {
"kid": "bilbo.baggins@hobbiton.example"

}y

"signature": "MIsjqtV1Opa7lKE-Mss8_Nqg2YH4FGhiocsqrgi5SNvy
G53uoimicltcMdSg-gptrzZc7CG6Svw2Y13TDIgHZzTUrL_1R2ZFcC
ryNFiHkSwl29EghGpwkpxaTn_ THJTCglNbADkolMZBCdwzJIxwdZc
~1R1pO2HibUYyXSwO97BSe0_evZKdjvvKSgsIqjytKSeAMbhMBdM
ma622_BG5t4sdbuCHtF jp9iJdmkio47AIwgkZV1aIlZsv33uPUgBBC
XbYoQJdwt 7TmxP ft HUN1GoOSMxR_3thmXTCm4US—-xiNOyhbm8afKK6
49jU6_TPtQHiJeQIxz9G3Tx—-083B745_AfYOnlCow"

"header": {
"alg": "ES512",
"kid": "bilbo.baggins@hobbiton.example"
}y
"signature": "ARcVLnaJJaUWG8fG-8t5BREVAUTY8n8YHjwDOlmuhc
dCoFZFFJjfISu0Cdkn9Ybdlmi54ho0x924DUz8sK7ZXkhc7AFM80b
LETvNCrgcI3Jk1l2U5IX3utNhODH6vT7xgylQahsn0fyb4zSAkje8b
AWz4vIfjSpCMYxxm4fgV3g7Z2Y¥hm5eD"

"protected": "eyJhbGciOiJIUzIINiIsImtpZCI6IJjAXOGMwYWULLT
RkOWItNDcxYi11ZmQ2LWV1ZjMxXNGJ jNzAzNyJI",

"signature": "sOh6KThzkfBBBkLspWlh84VsJZFTsPPgMDA7glMd7p
Oll

Flattened JWS JSON Serialization Syntax

As the General JWS JSON Serialization Syntax, the JWS JSON Serialization represents digitally
signed or MACed content as a JSON object. This representation is neither optimized for
compactness nor URL-safe.

The flattened syntax is optimized for the single digital signature or MAC case.
Line breaks added for readability

"payload":"<payload contents>",

"protected":"<integrity-protected header contents>",

"header":<non-integrity-protected header contents>,
"signature":"<signature contents>"

https://riptutorial.com/

Example

"payload": "SXTigJlzIGEgZGFuZ2Vyb3VzIGJ1lc2luZXNzLCBGcm9Okbywg
Z29pbmcgb3VOIH1vdXIgZG9vci4gWWI1IHNOZXAgb250byB0aGUgcm9h
ZCwgYW5kIGImIH1vdSBkb24ndCBrZWVwIHlvdXIgZmV1dCwgdGhlcmXi
gJlzIG5vIGtub3dpbmcgd2hlcmUgeW91IGlpZ2h0IGI1IHN3ZXBOIGOm
ZiBOby4",

"protected": "eyJhbGciOiJIUzI1INiJ9",

"header": {

"kid": "018cOae5-4d9%b-471b-bfd6-eef314bc7037"
}r
"signature": "bWUSVaxorn7bEF1djytBd0kHv70Ly5pvbomzMWSOr20"

General JWE JSON Serialization Syntax

The JWE JSON Serialization represents encrypted content as a JSON object. This representation
is neither optimized for compactness nor URL safe.

This syntax is optimized for more than one recipient.

Line breaks added for readability

{
"protected":"<integrity-protected shared header contents>",
"unprotected" :<non-integrity-protected shared header contents>,
"recipients": [
{"header" :<per-recipient unprotected header 1 contents>,
"encrypted_key":"<encrypted key 1 contents>"},

{"header" :<per-recipient unprotected header N contents>,

"encrypted_key":"<encrypted key N contents>"}],
"aad":"<additional authenticated data contents>",
"iv":"<initialization vector contents>",
"ciphertext":"<ciphertext contents>",
"tag":"<authentication tag contents>"

Example

"recipients": [
{

"encrypted_key": "dYOD28kabOVvf4ODgxVAJXgHcSZICSOp8M51zj
wj4w6Y5G4XJIQSNNIBiqyvUUAOcpL7S7-cFe7Pio7gV_Q06WnCSa—
vhiweme4bWrBf 7cHWEQJdXihidAYWVajJIaKMXMvFRMV6iD1Rr076
DFthg2_AV0_tSiV6xSEIFqtlxnYPpmP91tc5WIDOGb-wgjw0-b-S
11aS11QVbuP78dQ7Fa0zAVzz jHX-xvyM2wxj_otxr9clN1LnZMbe
YSrRicJK5xodviWgkpIdkMHo4LvdhRRvzoKz1ic89JFWP1nBg V4n
5trGuExtp_-dbHcGlihgc_wGgho9fLMK8JOArYLcMDNQ",

https://riptutorial.com/ 13

"header": {

"alg": "RSALl_5",
"kid": "frodo.baggins@hobbiton.example"
}
by
{
"encrypted_key": "ExInT0i09BgBMYF6-mawb5tZ1lgoZXThD1zWKsHi
xJuw_elY4gSSId_w",
"header": {
"alg": "ECDH-ES+A256KW",
"kid": "peregrin.took@tuckborough.example",
"epk": {
"kty": "EC",
"crv": "P-384",
"x": "Uzdvk3pi5wKCRclizp5_r00jeqT-168i8g2b8mva8diRhs
E2xAn2DtMRb25Ma2CX",
"y": "VDrRyFJh-KwdlEjAgmj5Eo-CTHAZ53MC7PjjpLioy3ylE]
I1pOMbw91fzz84pbfm"
}
}
by
{
"encrypted_key": "a7CclAejo_7JSuPB8zeagxXRam8dwCfmkt 9-Wy
TpS1E",
"header": {
"alg": "A256GCMKW",
"kid": "18ec08el-bfa9-4d95-b205-2b4dd1ld4321d",
"tag": "59NghlLl1YtVIhfD3pgRGvw",
"iv": "AvpeoPZ9Ncn9mkBn"

}
1y

"unprotected": {

"cty": "text/plain"

by

"protected": "eyJlbmMiOiJBMTI4QO0JDLUhTMjU2In0O",

"ivy": "VgEIHY20EnzUtZF12RpBlg",

"ciphertext": "ajm2Q-OpPXCr7-MHXicknbllsxLdXxK_yLdsO0KuhJzfWK
04SjdxQeSw2L9mu3a_k1C55kCQ_3x1kcVKCS5yr__ Ts48VOoKO0k63_QRM
9t BURMFgLByJ8vOYQX00JW4VUHILMGhEF -t VQWB7Kz8mr8zeE7txFOMSa
P6ga7-si¥xStR7_G07Thdl jh-zGTO0wxM5g-VRORt qOK6AXpL1wEqQRp7p
kt2zRMO0ZAXgSpelO6FJ7FHLDYEFND-zDIZukLpCbzhzMDLLw2-8I14FQ
rgi-iEuzHgIJFIJn2wh9Tj0cg_kOZy9BgMRZbmYXMY9YQjorZ_ P_JYG3
ARAIF30jDNgpdYe—K_5Q5crGJSDNyij_ygEiItR5jssQVH20£fDQdLCht
azg",

"tag": "BESYyFN7TO09KY7i8zKs5_g"

Flattened JWE JSON Serialization Syntax

The flattened JWE JSON Serialization syntax is based upon the general syntax, but flattens it,
optimizing it for the single-recipient case.

Line breaks added for readability

{

"protected":"<integrity-protected header contents>",
"unprotected" :<non-integrity-protected header contents>,

https://riptutorial.com/

14

"header" :<more non-integrity-protected header contents>,
"encrypted_key":"<encrypted key contents>",
"aad":"<additional authenticated data contents>",
"iv":"<initialization vector contents>",
"ciphertext":"<ciphertext contents>",
"tag":"<authentication tag contents>"

Example

"protected": "eyJhbGciOiJBMTI4S1ciLCJraWQiOiI4MWIyMDk2NS04Mz
MyLTQzZDktYTQ20C04MJE2MGFkOTFhYzgiLCJ1lbmMiOiJBMTI4RONNIN
o",

"encrypted_key": "4YiiQ ZzH76TalkJmYfRFgOVOMIpnx4X",

"aad": "WyJ2Y2FyZCIsWlsidmVyc2lvbiIse30sInR1eHQiLCIOLJA1XSxb
ImZulix7£fSwidGV4dCIsIkllcmlhZG9JIEJyYW5keWJ1lY2siXSxbImdi
LHt9LCJ0ZXh0IixbIkJyYW5keWJ1Y2siLCINZXIpYWRvYyIsIklyLiTs
IiJdXSxbImJkYXkiTLHt9LCJ0ZXh0IiwiVEEgMjk4MiJdLFsi1Z2VuzZGVy
Iix7fSwidGv4dCIsIk0ixvid",

"iv": "veCx9ece20rS7c_N",

"ciphertext": "Z_3cbr0k3bVM6N30SNmHz7Lyf31PppGEf3Pjl7wNZgteJO
UiB8p74SchQP8xygMloFRWCNzeIlab6s6BcEtp8gEFigqTUEYyiNkOWDNoF14
T_ANFgF-p2Mx8zkbKxI70PK8KNarFbyxIDvICNgBLba-v3uzXBdB89fz
0I-Lv4P jOFAQGHrgvlriXAmKbgkft 9cB4WeyZw8MldbBhc-V_KWZslrs
LNygon_JJWd_ek6LOn5NRehvApgf 9ZrxB4ag3FXBx0OxCys35PhCdaggy
2kfUf120kwKnWUbgXVD1C6HXLI1gHhCwXDG59weHrRDQeHyMRoOB1 joV3
X_bUTJIDnKBFOod7nLz-cj48JMx3SnCZTpbQAkKEV",

"tag": "vOaH_Rajnpy_3hOtgvZHRA"

Read Serializations online: https://riptutorial.com/jwt/topic/5988/serializations

https://riptutorial.com/

https://riptutorial.com/jwt/topic/5988/serializations

Credits

Chapters

Getting started with
jwt

Invalidating Json
Web Tokens

3 Serializations

Contributors

Alex, Community, Florent Morselli, Nate Barbettini, pedrofb,
RamenChef, Set

pedrofb

Florent Morselli

https://riptutorial.com/

16

https://riptutorial.com/contributor/2687918/alex
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2157818/florent-morselli
https://riptutorial.com/contributor/3191599/nate-barbettini
https://riptutorial.com/contributor/6371459/pedrofb
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2833802/set
https://riptutorial.com/contributor/6371459/pedrofb
https://riptutorial.com/contributor/2157818/florent-morselli

	About
	Chapter 1: Getting started with jwt
	Remarks

	Further Reading
	Examples
	Unsigned JWT

	Header
	Payload
	Signed JWT (JWS)

	Header
	Payload
	JSON Web Encryption (JWE)
	How to tell if you have a JWS or JWE?

	JWS (signed)##
	JWE (encrypted)
	What to store in a JWT

	Registered Claims
	Example

	Chapter 2: Invalidating Json Web Tokens
	Remarks
	Examples
	Remove the token from client storage

	Cookies
	Delete 'token' with javascript
	Token blacklist

	Manage the blacklist
	Rotate tokens

	Refresh and access tokens
	Other common techniques

	Chapter 3: Serializations
	Examples
	JWS Compact Serialization

	Example
	JWE Compact Serialization

	Example
	General JWS JSON Serialization Syntax

	Example
	Flattened JWS JSON Serialization Syntax

	Example
	General JWE JSON Serialization Syntax

	Example
	Flattened JWE JSON Serialization Syntax

	Example

	Credits

