
less

#less

Table of Contents

About 1

Chapter 1: Getting started with less 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Sample Less Syntax 4

Compiling a Less file from the command line 4

Nesting in Less 6

Joining Files - Imports 7

Chapter 2: Color Operation Functions 8

Syntax 8

Parameters 8

Remarks 8

Contrast 8

Examples 9

Setting text color depending on the darkness or lightness of background color 9

Set a darker or lighter shade of the background color for another property 9

Darken 9

Lighten 9

Changing opacity 10

Chapter 3: Extend 11

Introduction 11

Syntax 11

Parameters 11

Examples 11

Basic Example 11

Multiple extends on a single selector 12

Extending nested selectors 14

Less Extend only supports exact matching 15

Pseudo Elements 17

Chapter 4: Guards (for writing conditional mixins) 19

Syntax 19

Parameters 19

Examples 19

Style an element based on a variable's value 19

Chapter 5: Loops 21

Examples 21

Writing a simple for loop 21

Writing a for-each loop 22

Chapter 6: Mixins 23

Examples 23

Introduction 23

Prevent a mixin definition from appearing in the compiled CSS file 24

Add !important to every property in a mixin without manually typing it 24

Chapter 7: Parent selectors 26

Remarks 26

Examples 26

Basic parent selector 26

Changing the selector order within a nested block 27

Select sibling elements that have the same class without repeating selector 27

Chapter 8: Variables 29

Examples 29

Introduction 29

Operations in Colour 29

Concatenate value of two or more variables 29

Referencing a Variable Within a CSS Function 30

Variables can make your recursive work easy 31

Credits 32

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: less

It is an unofficial and free less ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official less.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/less
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with less

Remarks

Less is an open-source pre-processor. It makes writing and maintaining CSS easier by allowing
the author to define and use variables, mixins etc. It also has features like Guards using which
conditional styles can be written, Loops which help to keep the code DRY and a lot of in-built
functions to perform math operations, string and color manipulations etc.

Not to be confused with the Unix tool of the same name.

Versions

Version Release Date

2.7.1 2016-05-09

2.7.0 2016-05-07

2.6.1 2016-03-04

2.6.0 2016-01-29

2.5.3 2015-09-25

2.5.2 2015-09-24

2.5.1 2015-05-21

2.5.0 2015-04-03

2.4.0 2015-02-07

2.3.1 2015-01-28

2.3.0 2015-01-27

2.2.0 2015-01-04

2.1.2 2014-12-20

2.1.1 2014-11-27

2.1.0 2014-11-23

2.0.0 2014-11-09

1.7.5 2014-09-03

https://riptutorial.com/ 2

Version Release Date

1.7.4 2014-07-27

1.7.3 2014-06-22

1.7.2 2014-06-19

1.7.1 2014-06-08

1.7.0 2014-02-27

1.6.3 2014-02-08

1.6.2 2014-02-02

1.6.1 2014-01-12

1.6.0 2014-01-01

1.5.1 2013-11-17

1.5.0 2013-10-21

1.4.2 2013-07-20

1.4.1 2013-07-05

1.4.0 2013-06-05

1.3.3 2012-12-30

1.3.2 2012-12-28

1.3.1 2012-10-18

1.3.0 2012-03-10

1.2.1 2012-01-15

1.2.0 2012-01-07

The change log for all the versions can be found in the official GitHub page.

Examples

Installation or Setup

Less has been one of the most popular CSS Pre-processors, and has also been widely deployed
in numerous front-end frameworks like Bootstrap, Foundation, etc. The Less Compiler is a

https://riptutorial.com/ 3

https://github.com/less/less.js/blob/master/CHANGELOG.md

JavaScript based compiler, which can be obtained from a Content Delivery Network:

<script src="//cdnjs.cloudflare.com/ajax/libs/less.js/2.5.1/less.min.js"></script>

You need to add your Less document before the JavaScript compiler is loaded, using <link />
tag. The Less stylesheet along with the compiler looks like this:

<link rel="stylesheet/less" type="text/css" href="main.less" />
<script src="//cdnjs.cloudflare.com/ajax/libs/less.js/2.5.1/less.min.js"></script>

Note: Compiling Less in the client-side (or in the browser) is generally not recommended. It should
used only for development or when using dynamic settings that make it not possible to compile
server-side.

Sample Less Syntax

The following example is a sample Less file which shows how variables are declared and used,
how mixins are defined and called in Less.

/* Variables */
@color-base: #87ceeb;

/* Simple mixin to set border */

.set-border(@width; @style; @color) {
 border: @width @style darken(@color, 10%);
}

/* Main CSS */
.class1 {
 background-color: @color-base;
 .set-border(1px; solid; @color-base);
 .class2 {
 background-color: #fff;
 color: @color-base;
 .set-border(1px; solid; #fff);
 }
}

The above code when compiled will produce the following CSS: (comments are stripped for
brevity)

.class1 {
 background-color: #87ceeb;
 border: 1px solid #5bbce4;
}
.class1 .class2 {
 background-color: #fff;
 color: #87ceeb;
 border: 1px solid #e6e6e6;
}

Compiling a Less file from the command line

https://riptutorial.com/ 4

lessc [options] <source> [destination]

The above command is used to compile Less files in the command line. Options are the various
settings that the compiler should use either during compilation or after compilation. Options
include -x or --compress for compressing or minifying the output CSS file, -sm=on or --strict-
math=on for applying math operations only on values enclosed within parenthesis etc. The next
comes the path of the source Less file that has to be compiled. Destination is the path and name
of the output file. If this is not provided the output is printed out in the command line window itself.

Consider the below Less code

/* Filename: test.less */
#demo {
 color: @color;
 background: beige;
 width: 100% / 4;
}
@color: red;

Print compiled CSS in Command window:

When the following command is executed in the command line, the test.less file would be
compiled and the output will be printed directly on the command window as no destination path is
provided.

lessc test.less

Output:

#demo {
 color: red;
 background: beige;
 width: 25%;
}

Create a CSS file and write compiled output to the file:

The same file when compiled with the below statement will create a file named test.css in the
same path as the test.less file and print/write the output to that CSS file.

lessc test.less > test.css

Create a CSS file and minify it:

The below command will print/write the output to a CSS file and also compress it at the end.

lessc -x test.less > test.css

Output:

https://riptutorial.com/ 5

#demo{color:red;background:beige;width:25%}

With Strict Math option enabled:

When the strict match option is enabled, the output will be as follows because the values for width
is not enclosed within braces.

lessc -sm=on test.less > test.css

Output:

#demo {
 color: red;
 background: beige;
 width: 100% / 4;
}

Nesting in Less

In Less you can write much more simple CSS rules and also keep them well formatted, so instead
of writing this code:

CSS

.item {
 border: 1px solid;
 padding: 4px;
}
.item .content, .item .image {
 float: left;
}
.item .content {
 font-size: 12px;
}
.item .image {
 width: 300px;
}

you can just write this:

Less

.item {
 border: 1px solid;
 padding: 4px;
 .content, .image {
 float: left;
 }
 .content {
 font-size: 12px;
 }
 .image {
 width: 300px;

https://riptutorial.com/ 6

 }
}

and Less will compile that code into the normal CSS we all know.

Joining Files - Imports

The @import statement allows you to insert CSS/Less code from another file into your own
CSS/Less file.

.foo {
 background: #900;
}
@import "my-other-css-file.css";
@import "my-other-less-file.less";

Read Getting started with less online: https://riptutorial.com/less/topic/4716/getting-started-with-
less

https://riptutorial.com/ 7

https://riptutorial.com/less/topic/4716/getting-started-with-less
https://riptutorial.com/less/topic/4716/getting-started-with-less

Chapter 2: Color Operation Functions

Syntax

contrast(<reference-color>, <output-for-light-refcolor>, <output-for-dark-refcolor>,
<threshold>)

•

lighten(<reference-color>, <amount>, <method>)•
darken(<reference-color>, <amount>, <method>)•

Parameters

Parameter Details

reference-
color

The color based on which the color operation should be performed.

output-for-
light-ref-color

The color value that should be output when reference color is a dark color.
This is optional and default value is white.

output-for-
dark-ref-color

The color value that should be output when reference color is a light color.
This is optional and default value is black.

threshold

This is a percentage value which defines when the reference color is
considered as a dark color and when it is considered as a light color. Color
comparison is done using gamma-corrected luma values. This is optional
and the default value is 43%

amount
This is a percentage value which specifies the amount by which the
reference color should be darkened or lightened.

method
This can either be absolute or relative and defines whether the adjustment
should be relative to the current value or not. It is an optional field and the
default value is absolute.

Remarks

Contrast

In the contrast function, the output-for-dark-ref-color and output-for-light-ref-color can be provided
in any order. The function automatically identifies which is the dark color (to be used when ref
color is light) and which is light color (to be used when ref color is dark) based on their own luma
values.

https://riptutorial.com/ 8

Examples

Setting text color depending on the darkness or lightness of background
color

#demo-element {
 background: @theme-color;
 color: contrast(@theme-color, black, white, 50%);
}

@theme-color: red;

The above example will set the text color of the element as white if the background-color is dark
and vice-versa. This is achieved using the contrast() color operation function.

The contrast function accepts four parameters where the first one is the reference color based on
which the output should be provided. A dark color that should be output when the reference color
is light and a light that should be output when reference color is dark . Threshold is a percentage
which defines when a color is considered as a light color and when dark.

A demo of this example can be found here.

Set a darker or lighter shade of the background color for another property

Darken

#demo {
 @refcolor: #f0b9b8;
 background: @refcolor;
 border: 1px solid darken(@refcolor, 25%);
}

The above code makes use of the darken() function to set the border color as a shade that is 25%
darker than the reference color (which is also the background color).

Less compiler cannot read the value assigned to one property and use it for another and so a
separate variable should be defined. This variable will be directly assigned to the background color
whereas for the border color, the darken function is used to get a darker shade.

Lighten

#demo {
 @refcolor: #f0b9b8;
 background: @refcolor;
 box-shadow: 2px 2px 0px lighten(@refcolor, 5%);
}

https://riptutorial.com/ 9

http://lesscss.org/functions/#color-operations-contrast
http://codepen.io/hari_shanx/pen/oLrokR

The above code makes use of the lighten() function to set the shadow color as a shade that is 5%
lighter than the reference color (which is also the background color).

Changing opacity

It is possible to change the opacity of a color with fade() function.

fade() takes 2 parameters:

a color•
opacity (in %)•

Example:

@elegant: #eeffgg;

.light-elegant {
 background-color: fade(@elegant, 20%);
}

<div class="light-elegant">
 I have a 20% elegant background!
</div>

Read Color Operation Functions online: https://riptutorial.com/less/topic/4718/color-operation-
functions

https://riptutorial.com/ 10

https://riptutorial.com/less/topic/4718/color-operation-functions
https://riptutorial.com/less/topic/4718/color-operation-functions

Chapter 3: Extend

Introduction

This is related to the extend functionality of less, which was introduced in v1.4.0.

"Extend is a Less pseudo-class which merges the selector it is put on with ones that match what it
references." [ref]

Syntax

selector1:extend(css selector){ //other styles go here}1.
selector1{ &:extend(css selector)); //other styles go here }2.

Parameters

Parameter Details

css
selector

This is any generic CSS selector, and may include .class, #id, ::pseudoElements
, etc

Examples

Basic Example

The following Less:

.paragraph{
 font-size: 12px;
 color: blue;
 background: white;
}
.parent{
 font-size: 14px;
 color: black;
 background: green;
 .nestedParagraph:extend(.paragraph){

 }
}

will compile into the following css:

.paragraph,

.parent .nestedParagraph {
 font-size: 12px;
 color: blue;

https://riptutorial.com/ 11

http://lesscss.org/features/#extend-feature
https://github.com/less/less.js/blob/master/CHANGELOG.md
http://lesscss.org/features/#extend-feature
http://www.riptutorial.com/css/example/4044/basic-selectors
http://www.riptutorial.com/css/example/4044/basic-selectors
http://www.riptutorial.com/css/example/4044/basic-selectors
http://www.riptutorial.com/css/example/4044/basic-selectors

 background: white;
}
.parent {
 font-size: 14px;
 color: black;
 background: green;
}

We have applied the styles for .paragraph to the .parent .nestedParagraph element! Assuming our
HTML is:

<div class="parent">
 Words
 <div class="nestedParagraph">
 Nested Words
 </div>
</div>

Our output will be

This is one way to easily apply many pre-configured styles to deeply nested components.

Extend may additionally be used with &, the parent select feature, the below compiles to the same
as above.

.paragraph{
 font-size: 12px;
 color: blue;
 background: white;
}
.parent{
 font-size: 14px;
 color: black;
 background: green;
 .nestedParagraph{
 &:extend(.paragraph);
 }
}

Multiple extends on a single selector

The following Less

.paragraph{
 font-size: 12px;
 color: darkgrey;
 background: white;
}

https://riptutorial.com/ 12

https://i.stack.imgur.com/E6GXT.png
http://lesscss.org/features/#parent-selectors-feature

.special-paragraph{
 font-size: 24px;
 font-weight: bold;
 color: black;
}

.parent{
 background: lightgrey;
 .nestedParagraph{
 &:extend(.paragraph);
 &:extend(.special-paragraph);
 }
}

Will compile to

.paragraph,

.parent .nestedParagraph {
 font-size: 12px;
 color: darkgrey;
 background: white;
}
.special-paragraph,
.parent .nestedParagraph {
 font-size: 24px;
 font-weight: bold;
 color: black;
}
.parent {
 background: lightgrey;
}

With the provided html:

<div class="parent">
 Parent Words
 <div class="nestedParagraph">
 Nested Words
 </div>
</div>

<div class="special-paragraph">
 Special Words
</div>

<div class="paragraph">
 Normal Paragraph
</div>

We see the following result:

https://riptutorial.com/ 13

In this particular example, nestedParagraph would like to use paragraph's styles, with the overrides
from special-paragraph. Styles may easily be overridden by paying attention to the order elements
are extended in.

Extending nested selectors

You may also extend nested selectors. The below Less

.otherChild{
 color: blue;
}

.otherParent{
 color: red;
 .otherChild{
 font-size: 12px;
 color: green;
 }
}

.parent{
 .nestedParagraph{
 &:extend(.otherParent .otherChild);
 }
}

Will compile to

.otherChild {
 color: blue;
}
.otherParent {
 color: red;
}
.otherParent .otherChild,
.parent .nestedParagraph {
 font-size: 12px;
 color: green;
}

With the following html

https://riptutorial.com/ 14

https://i.stack.imgur.com/hVqna.png

<div class="otherParent">
 Other Parent Words
 <div class="otherChild">
 Other Nested Words
 </div>
</div>

<div class="parent">
 Parent Words
 <div class="nestedParagraph">
 Nested Words
 </div>
</div>

The result is

The font color for the nested paragraph is green, not blue! This shows we can extend nested
selectors!

Less Extend only supports exact matching

The following Less

div.paragraph{
 color: blue;
}

*.paragraph{
 color: green;
}

.otherClass.paragraph{
 color: red;
}

.paragraph.otherClass{
 color: darkgrey;
}

.parent{
 .nestedParagraph{
 &:extend(.paragraph);
 }
}

Will compile into

https://riptutorial.com/ 15

https://i.stack.imgur.com/fxUNY.png

div.paragraph {
 color: blue;
}
*.paragraph {
 color: green;
}
.otherClass.paragraph {
 color: red;
}
.paragraph.otherClass {
 color: darkgrey;
}

Using the following HTML

<div class="parent">
 Parent Words
 <div class="nestedParagraph">
 Nested Words
 </div>
</div>

<div class="paragraph">
 Paragraph
</div>

<ul class="paragraph">
 ul paragraph
 1
 2

<div class="otherClass paragraph">
 Other Class Paragraph
</div>

<div class="paragraph otherClass">
 Other Class Paragraph
</div>

Our result is

https://riptutorial.com/ 16

We can see that Less Extend only supports exact matching, as the Nested Words do not have
styled applied to them.

Pseudo Elements

The following Less

.addDivider::before{
 content: "";
 height: 80%;
 background: white;
 width: 1px;
 position: absolute;
 top: 10%;
 left: 0;
}

.nav-bar{
 background: black;
 display: flex;
 flex-direction: row;
 width: 400px;
 .nav-item{
 color: white;
 width: 100px;
 list-style-type: none;
 position: relative;
 text-align: center;
 padding: 0;
 &:not(:first-child){
 &::before{
 &:extend(.addDivider::before);
 }
 }

https://riptutorial.com/ 17

https://i.stack.imgur.com/ZEbpg.png

 }
}

Will compile into the following CSS

.addDivider::before,

.nav-bar .nav-item:not(:first-child)::before {
 content: "";
 height: 80%;
 background: white;
 width: 1px;
 position: absolute;
 top: 10%;
 left: 0;
}
.nav-bar {
 background: black;
 display: flex;
 flex-direction: row;
 width: 400px;
}
.nav-bar .nav-item {
 color: white;
 width: 100px;
 list-style-type: none;
 position: relative;
 text-align: center;
 padding: 0;
}

Using the following HTML

<div class="nav-bar">
 <div class="nav-item">one</div>
 <div class="nav-item">two</div>
 <div class="nav-item">three</div>
 <div class="nav-item">four</div>
</div>

Our result is

We have defined a default divider pseudoclass which we have added into a nested element! The
white borders can now be added to other elements using extend.

Read Extend online: https://riptutorial.com/less/topic/9706/extend

https://riptutorial.com/ 18

https://i.stack.imgur.com/S66bG.png
https://riptutorial.com/less/topic/9706/extend

Chapter 4: Guards (for writing conditional
mixins)

Syntax

Mixin with Guards•
.mixin-name(<arguments>) when <is-negation> (<ref-variable> <operator> <value>)•
CSS Guards•
<selector> when <is-negation> (<ref-variable> <operator> <value>)•

Parameters

Parameter Details

arguments The variables that are passed to the parametric mixin. Arguments are optional.

is-negation
This indicates whether the guard condition is a not condition or not. For example
when not (@type = error) means the mixin will be used whenever the value of
@type is not error.

ref-
variable

This is the variable whose value determines which mixin's properties should be
applied to the element. This is mandatory.

operator
This is the operator that is used for evaluating the condition. It can be =, >, <, >=,
<=. This is not mandatory. When the operator and value is not given, the
compiler assumes the condition to be <ref-variable> = true.

value
The value that is used for evaluating the condition. This is optional but becomes
mandatory when an operator is provided.

Examples

Style an element based on a variable's value

.set-colors(@type) when (@type = error) {
 @base-color: #d9534f;
 background: @base-color;
 color: contrast(@base-color, lighten(@base-color, 25%), darken(@base-color, 25%));
 border: 1px solid contrast(@base-color, lighten(@base-color, 25%), darken(@base-color,
25%));
}
.set-colors(@type) when (@type = info) {
 @base-color: #5bc0de;
 background: @base-color;
 color: contrast(@base-color, lighten(@base-color, 5%), darken(@base-color, 5%));

https://riptutorial.com/ 19

 border: 1px solid contrast(@base-color, lighten(@base-color, 5%), darken(@base-color, 5%));
}
.set-colors() {
 background: white;
 color: black;
 border: 1px solid black;
}

.error-message {
 .set-colors(error);
}
.info-message {
 .set-colors(info);
}
.default-div {
 .set-colors;
}

In the above example, the background, border and color are assigned based on the type of element.
If the element is a default text div then the background will be white whereas the text and border
would be black. If it is an "error" message display div or an "info" message display div then the
colors are assigned based on the type.

The compiled CSS output would be as follows:

.error-message {
 background: #d9534f;
 color: #f0b9b8;
 border: 1px solid #f0b9b8;
}
.info-message {
 background: #5bc0de;
 color: #46b8da;
 border: 1px solid #46b8da;
}
.default-div {
 background: white;
 color: black;
 border: 1px solid black;
}

Read Guards (for writing conditional mixins) online: https://riptutorial.com/less/topic/4795/guards--
for-writing-conditional-mixins-

https://riptutorial.com/ 20

https://riptutorial.com/less/topic/4795/guards--for-writing-conditional-mixins-
https://riptutorial.com/less/topic/4795/guards--for-writing-conditional-mixins-

Chapter 5: Loops

Examples

Writing a simple for loop

Usage of loops is an excellent way to keep the code DRY and avoid repetition. Unlike in Sass,
there are no built-in @for or @each directive in Less for writing loops but it can still be written using
recursive mixins. A recursive mixin is nothing but a mixin which keeps calling itself.

There are four key components to a loop written using Less and they are as follows:

A mixin with guard expressions. The guard is used to terminate the loop when the loop's exit
criteria is met. In terms of a JavaScript for loop (for([initialization]; [condition]; [final-
expression])), the guard is the [condition].

•

A primary call to the mixin to execute the first iteration. This primary call to the mixin can be
made from within a selector block (if the mixin doesn't have a selector wrapping all its
contents) or from outside a selector block (if the mixin has a selector wrapping its contents).
In terms of a JavaScript for loop, this primary call serves as the [initialization] as it sets
the base value for the counter-like variable.

•

A call to the mixin from within itself to make it recursive. This call typically passes an
incremented or a decremented value of the counter variable as the argument. Thus it
invokes the subsequent iterations. In terms of a JS for loop, this does the [final-expression]
along with the next call.

•

Last but not the least, the other contents of the mixin which is equivalent to the statement in a
typical for loop syntax.

•

Below is a simple for loop written in Less that creates multiple #img* selectors (where * is a
number) and also sets the background-image property as image*.png.

.for-loop(@index) when (@index > 0) { /* recursive mixin with guard expression - condition */

 /* the statement */
 #img@{index} {
 background-image: url("http://mysite.com/image@{index}.png");
 }
 /* end of the statement */

 .for-loop(@index - 1); /* the next iteration's call - final-expression*/
}
.for-loop(3); /* the primary call - initialization */

Compiled CSS:

#img3 {
 background-image: url("http://mysite.com/image3.png");
}
#img2 {
 background-image: url("http://mysite.com/image2.png");

https://riptutorial.com/ 21

}
#img1 {
 background-image: url("http://mysite.com/image1.png");
}

Writing a for-each loop

A for-each loop in Less has the same key components as a for loop except for the following
differences:

A variable which contains the list of items that has to be iterated over.•
An extract() function to extract each item in the variable based on the loop's index.•
A length() function to calculate the length of the array (that is, the no of items in the list) and
use it in the primary mixin call (for [initialization]).

•

Below is a sample for-each loop written in Less that iterates through each item in the @images
variable, creates a #id selector where the id is the same as the item/image name and also sets
the background image property for it.

@images: cat, dog, apple, orange; /* the array list of items */

.for-each-loop(@index) when (@index > 0) { /* recursive mixin call with guard - condition */

 @image: extract(@images, @index); /* extract function to fetch each item from the list */

 /* the statement */
 #@{image} {
 background-image: url("http://mysite.com/@{image}.png");
 }
 /* end of the statement */

 .for-each-loop(@index - 1); /* the next iteration's call - final-expression */
}

.for-loop(length(@images)); /* the primary call with length() function - initialization */

Compiled CSS:

#orange {
 background-image: url("http://mysite.com/orange.png");
}
#apple {
 background-image: url("http://mysite.com/apple.png");
}
#dog {
 background-image: url("http://mysite.com/dog.png");
}
#cat {
 background-image: url("http://mysite.com/cat.png");
}

Read Loops online: https://riptutorial.com/less/topic/5424/loops

https://riptutorial.com/ 22

https://riptutorial.com/less/topic/5424/loops

Chapter 6: Mixins

Examples

Introduction

Mixins are similar to defining and calling functions. Say, if we need to create a repetitive style,
mixins are handy. Mixins may or may not take parameters. For e.g.:

.default-round-borders {
 border-radius: 5px;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}

.round-borders (@radius) {
 border-radius: @radius;
 -moz-border-radius: @radius;
 -webkit-border-radius: @radius;
}

We have two types of declarations above. One takes in a parameter and the other doesn't. Let's
see how this is being used somewhere:

@sky-blue: #87ceeb;
@dark-sky-blue: #baffff;

#header {
 background: @sky-blue;
 .default-round-borders;
}

.btn {
 background: @dark-sky-blue;
 .round-borders(3px);
}

The above code, compiled all together will give an output like this:

#header {
 background: #87ceeb;
 border-radius: 5px;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
}
.btn {
 background: #baffff;
 border-radius: 3px;
 -moz-border-radius: 3px;
 -webkit-border-radius: 3px;
}

https://riptutorial.com/ 23

Prevent a mixin definition from appearing in the compiled CSS file

.default-settings() {
 padding: 4px;
 margin: 4px;
 font-size: 16px;
 border: 1px solid gray;
}

#demo {
 .default-settings;
}

The above example when compiled would only produce the following output. The .default-
settings() mixin definition would not be output in the compiled CSS file because parenthesis is
added after it.

#demo {
 padding: 4px;
 margin: 4px;
 font-size: 16px;
 border: 1px solid gray;
}

If these parenthesis are not attached, the Less compiler will treat the mixin definition also as CSS
selector and so will print it also in the output CSS file.

Add !important to every property in a mixin without manually typing it

When we attach the !important keyword to a mixin call, the Less compiler will automatically add
the !important to all properties that are present within the mixin.

For example, consider the below mixin:

.set-default-props() {
 margin: 4px;
 padding: 4px;
 border: 1px solid black;
 font-weight: normal;
}

When the !important is attached to the mixin call like below,

#demo {
 .set-default-props() !important;
}

the compiled CSS would look as follows:

#demo {
 margin: 4px !important;
 padding: 4px !important;

https://riptutorial.com/ 24

 border: 1px solid black !important;
 font-weight: normal !important;
}

Note: Usage of !important is considered as bad practice and must be used only as the
last resort.

Read Mixins online: https://riptutorial.com/less/topic/4748/mixins

https://riptutorial.com/ 25

https://riptutorial.com/less/topic/4748/mixins

Chapter 7: Parent selectors

Remarks

As at the time of writing (Aug '16), parent selector (&) always refers to the full parent selector chain
right till the top most level. It cannot be used to select just the immediate parent or the root most
ancestor alone.

That is, in the below code &#type1 would resolve to #demo-container .content#type1 and not just
.content or just #demo-container.

 #demo-container {
 padding: 4px;
 border: 1px solid gray;
 #heading {
 padding: 4px;
 font-size: 20px;
 }
 .content {
 padding: 2px;
 font-size: 18px;
 &#type1 {
 color: chocolate;
 }
 }
}

Examples

Basic parent selector

The & operator is the parent selector. When used in or as a selector, it is replaced with the full
parent selectors (entire sequence of selectors right upto to the topmost level of a nested block) in
the final CSS output.

It is useful when creating nested rules that require using the parent selector in a different way than
default, like changing the order of the parent selector placement or to concatenate it with other
selectors.

a {
 text-decoration: none;
 &:hover {
 text-decoration: underline;
 }
}

Results in the following CSS where the parent selector a was concatenated with the :hover rule:

a {

https://riptutorial.com/ 26

 text-decoration: none;
}
a:hover {
 text-decoration: underline;
}

One big advantage of using parent selectors wherever possible is the reduction of repetition of
selectors.

Changing the selector order within a nested block

Less allows the usage of the parent selector (&) anywhere in a complex selector and thus allows
changing styles when the current element is within another element which gives it a different
context:

For example, in the below code the parent selector is placed at the end and thus it actually
becomes the child's selector in the compiled CSS.

a {
 color: blue;
 .disabled-section & {
 color: grey;
 }
}

Compiled CSS:

a {
 color: blue;
}
.disabled-section a {
 color: grey;
}

Select sibling elements that have the same class without repeating selector

Less doesn't put any restrictions on the number of times the parent selector (&) can be used in a
complex selector and so, we can use it more than once like in the below examples to select sibling
elements without the need to repeat the selector.

.demo {
 border: 1px solid black; /* add border to all elements with demo class */
 & + & { /* select all .demo that have another .demo sibling immediately prior */
 background: red;
 }
 & + & + & { /* select all .demo that have two .demo sibling immediately prior */
 background: chocolate;
 }
 & ~ & { /* select all .demo elements that have another .demo sibling prior */
 color: beige;
 }
}

https://riptutorial.com/ 27

The above code when compiled will result in the following CSS:

.demo {
 border-left: 1px solid black;
}
.demo + .demo {
 background: red;
}
.demo + .demo + .demo {
 background: chocolate;
}
.demo ~ .demo {
 color: beige;
}

Read Parent selectors online: https://riptutorial.com/less/topic/5159/parent-selectors

https://riptutorial.com/ 28

https://riptutorial.com/less/topic/5159/parent-selectors

Chapter 8: Variables

Examples

Introduction

In Less, unlike Sass or Shell, the variables are declared by having names starting with a @ symbol.
For example:

@sky-blue: #87ceeb;

body {
 background-color: @sky-blue;
}

The above example gives you:

body {
 background-color: #87ceeb;
}

Here it explains how to declare a variable and make use of them.

Operations in Colour

Consider the following example:

@sky-blue: #87ceeb;
@dark-sky-blue: @sky-blue + #333;

body {
 background-color: @dark-sky-blue;
}

The above example gives you:

body {
 background-color: #baffff;
}

Here it explains how to declare a variable and also make operations on a particular variable as
well.

Concatenate value of two or more variables

To concatenate the value of two or more variables into a single string and print it as the output, we
need to make use of interpolation.

https://riptutorial.com/ 29

The following Less code,

#demo:after {
 @var1: Hello;
 @var2: World!!!;
 content: "@{var1} @{var2}";
}

when compiled would set "Hello World!!!" as value to the content property. Below is the compiled
CSS:

#demo:after {
 content: "Hello World!!!";
}

If the value of two or more variables just need to be placed next to each other in space separated
manner then interpolation is not required.

#demo {
 @top: 4px;
 @right: 2px;
 @bottom: 6px;
 @left: 4px;
 padding: @top @right @bottom @left;
}

When the above code is compiled, it would produce the following CSS.

#demo {
 padding: 4px 2px 6px 4px;
}

This approach will not work when there should be no space between the variable values (or) when
the resultant string needs to be within quotes. For those cases, usage of interpolation would be
mandatory.

Referencing a Variable Within a CSS Function

By default, LESS will use its own calc() unless told otherwise. So:

@column-count: 2;

.class-example {
 width: calc(100% / @column-count);
}

Would compile to this:

.class-example {
 width: 50%;
}

https://riptutorial.com/ 30

While it is our desired width, LESS has used it's own calc() function to calculate the width. The
calc() function never makes it to our CSS. If you would like LESS to not use its calc() function,
you need to escape your values like this:

width: calc(~"100% - @{column-count}");

Here we've prepended our values with a ~ and wrapped them in quotation marks. Variables can be
referenced as well, but you must wrap the variable name in { } brackets. This allows you use the
CSS calc() function for more complex calculations like this:

@column-count: 2;
@column-margin: 24px;

.class-example {
 width: calc("~(100% / @{column-count}) - @{column-margin}");
}

This compiles to:

.class-example {
 width: calc((100/2) - 24px);
}

Variables can make your recursive work easy

Variable declaration

@buttonColor: #FF0000;

/* Now you can use @buttonColor variable with css Functions. */

.product.into.detailed {
 additional-attributes{
 .lib-table-button(
 background-color: @buttonColor;
);
 }
}

Here function lib-tabgle-button used variable to set background color

Read Variables online: https://riptutorial.com/less/topic/4749/variables

https://riptutorial.com/ 31

https://riptutorial.com/less/topic/4749/variables

Credits

S.
No

Chapters Contributors

1
Getting started with
less

celtschk, Community, Harry, Praveen Kumar, Shlomi Haver,
Stephen Leppik

2
Color Operation
Functions

Harry, Mistalis

3 Extend Hodrobond

4
Guards (for writing
conditional mixins)

Harry

5 Loops Harry

6 Mixins Harry, Praveen Kumar

7 Parent selectors Harry, Jens

8 Variables Harry, Hynes, Praveen Kumar, Ronak Chauhan

https://riptutorial.com/ 32

https://riptutorial.com/contributor/1032073/celtschk
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/5505232/shlomi-haver
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/4927984/mistalis
https://riptutorial.com/contributor/3892581/hodrobond
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/925649/jens
https://riptutorial.com/contributor/2606013/harry
https://riptutorial.com/contributor/2640230/hynes
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/4436962/ronak-chauhan

	About
	Chapter 1: Getting started with less
	Remarks
	Versions
	Examples
	Installation or Setup
	Sample Less Syntax
	Compiling a Less file from the command line
	Nesting in Less
	Joining Files - Imports

	Chapter 2: Color Operation Functions
	Syntax
	Parameters
	Remarks

	Contrast
	Examples
	Setting text color depending on the darkness or lightness of background color
	Set a darker or lighter shade of the background color for another property

	Darken
	Lighten
	Changing opacity

	Chapter 3: Extend
	Introduction
	Syntax
	Parameters
	Examples
	Basic Example
	Multiple extends on a single selector
	Extending nested selectors
	Less Extend only supports exact matching
	Pseudo Elements

	Chapter 4: Guards (for writing conditional mixins)
	Syntax
	Parameters
	Examples
	Style an element based on a variable's value

	Chapter 5: Loops
	Examples
	Writing a simple for loop
	Writing a for-each loop

	Chapter 6: Mixins
	Examples
	Introduction
	Prevent a mixin definition from appearing in the compiled CSS file
	Add !important to every property in a mixin without manually typing it

	Chapter 7: Parent selectors
	Remarks
	Examples
	Basic parent selector
	Changing the selector order within a nested block
	Select sibling elements that have the same class without repeating selector

	Chapter 8: Variables
	Examples
	Introduction
	Operations in Colour
	Concatenate value of two or more variables
	Referencing a Variable Within a CSS Function
	Variables can make your recursive work easy

	Credits

