
liferay

#liferay

Table of Contents

About 1

Chapter 1: Getting started with liferay 2

Remarks 2

Versions 2

Examples 4

A basic installation for development and tests 4

Chapter 2: Configure Google Tag manager(GTM) in liferay 6

Introduction 6

Examples 6

Using GTM to configure GA events 6

Chapter 3: Create a Quartz scheduler in liferay 11

Remarks 11

Examples 11

Create a quartz scheduler to display some information 11

Create a dynamic quartz scheduler programmatically 12

Chapter 4: Debug remote liferay server via Eclipse 15

Examples 15

Debug remote liferay server via Eclipse(without Liferay Remote IDE connector eclipse plugi 15

Chapter 5: Deploying a Plugin 18

Examples 18

Deploying to Glassfish 18

Chapter 6: Hooks in Liferay 19

Remarks 19

Examples 19

JSP Hook 19

Struts Action Hooks 20

Hello User "Name" with hooks 21

Model Listener Hook 22

Background 22

Differences 23

Example 23

portal.properties 23

liferay-hook.xml 23

Getting Started 23

Listener Development 26

Properties Configuration 28

Explanation 29

Build and Deploy 29

Please let me know if you have any questions, comments, concerns, etc. All constructive fe 32

Chapter 7: Inter portlet communication 33

Introduction 33

Remarks 33

Examples 33

Using Public render parameter 33

Using Portlet session 34

Using eventing feature 34

Chapter 8: Setting up SSL 37

Remarks 37

Examples 37

How to enable SSL on Tomcat and Liferay 37

Chapter 9: Using Dynamic and custom SQL query in Liferay 38

Introduction 38

Remarks 38

Examples 38

Using Dynamic query in Liferay 38

Chapter 10: Using Restful web service in Liferay 39

Examples 39

Consume Liferay JSON service for GET requests 39

Credits 43

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: liferay

It is an unofficial and free liferay ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official liferay.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/liferay
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with liferay

Remarks

Liferay Portal CE is a portal software built in Java by Liferay Inc.

Liferay DXP (Digital Experience Platform) is a platform built on top of Liferay Portal for digital
solutions, integrating customer and user satisfaction analysis tools and Enterprise-grade quality
performances and tooling. It was known as formerly known as Liferay Portal EE.

Since version 7.0 it is built using OSGi through Apache Felix.

Versions

Version Code name Release type Release Date

7.0.1 GA2 Wilberforce Community Edition 2016-06-10

7.0.10 Wilberforce Digital Experience Platform 2016-05-04

7.0.0 GA1 Wilberforce Community Edition 2016-03-31

6.2.3 GA4 Newton Community Edition 2015-04-17

6.2.2 GA3 Newton Community Edition 2015-01-15

6.2.1 GA2 Newton Community Edition 2014-02-28

6.2.10 GA1 Newton Enterprise Edition 2013-12-03

6.2.0 GA1 Newton Community Edition 2013-11-01

6.1.2 GA3 Paton Community Edition 2013-08-23

6.1.30 GA3 Paton Enterprise Edition 2013-08-16

6.1.1 GA2 Paton Community Edition 2012-07-31

6.1.20 GA2 Paton Enterprise Edition 2012-07-31

6.1.10 GA1 Paton Enterprise Edition 2012-02-15

6.1.0 GA1 Paton Community Edition 2012-01-01

6.0.12 SP2 Bunyan Enterprise Edition 2011-11-07

6.0.6 Bunyan Community Edition 2011-03-04

https://riptutorial.com/ 2

Version Code name Release type Release Date

6.0.11 SP1 Bunyan Enterprise Edition 2011-01-13

5.2 SP5 Augustine Enterprise Edition 2010-10-20

6.0.10 Bunyan Enterprise Edition 2010-09-10

6.0.5 Bunyan Community Edition 2010-08-16

6.0.4 Bunyan Community Edition 2010-07-23

6.0.3 Bunyan Community Edition 2010-07-20

6.0.2 Bunyan Community Edition 2010-06-08

5.2 SP4 Augustine Enterprise Edition 2010-05-19

6.0.1 Bunyan Community Edition 2010-04-20

5.1 SP5 Calvin Enterprise Edition 2010-03-12

6.0.0 Bunyan Community Edition 2010-03-04

5.2 SP3 Augustine Enterprise Edition 2010-01-07

5.2 SP2 Augustine Enterprise Edition 2009-11-17

5.1 SP4 Calvin Enterprise Edition 2009-10-23

5.2 SP1 Augustine Enterprise Edition 2009-08-07

5.1 SP3 Calvin Enterprise Edition 2009-07-20

5.2 Augustine Enterprise Edition 2009-06-01

5.2.3 Augustine Community Edition 2009-05-12

5.1 SP2 Calvin Enterprise Edition 2009-05-12

5.2.2 Augustine Community Edition 2009-02-26

5.1 SP1 Calvin Enterprise Edition 2009-02-18

5.2.1 Augustine Community Edition 2009-02-03

5.2.0 Augustine Community Edition 2009-01-26

5.1 SP Calvin Enterprise Edition 2008-12-16

5.1.2 Calvin Community Edition 2008-10-03

https://riptutorial.com/ 3

Version Code name Release type Release Date

5.1.1 Calvin Community Edition 2008-08-11

5.1.0 Calvin Community Edition 2008-07-17

5.0.1 RC Luther Community Edition 2008-04-14

5.0.0 RC Luther Community Edition 2008-04-09

Examples

A basic installation for development and tests

Running the latest Liferay CE is straightforward:

Go to https://www.liferay.com/downloads.1.
Choose a bundle among the ones listed. For beginners, the Tomcat bundle is a good choice.
Click in "Download."

2.

Unzip the download package whenever you find fit. The unzipped directory will be the
LIFERAY_HOME directory.

3.

To start Liferay, just run the script LIFERAY_HOME/tomcat-x.xx.xx/bin/startup.sh; only on
Windows environments run the script LIFERAY_HOME\tomcat-x.xx.xx\bin\startup.bat.

4.

By default, once Liferay is up, a browser will open its local URL (http://localhost:8080/).5.
To log in, use the email test@liferay.com, and the password test.6.
To stop Liferay, just run the script LIFERAY_HOME/tomcat-x.xx.xx/bin/shutdown.sh; only on
Windows environments run the script LIFERAY_HOME\tomcat-x.xx.xx\bin\shutdown.bat.

7.

With these steps, you will have Liferay up and running in a "demo" mode. Liferay will use an
Hypersonic DB by default, but it is unfit for production. Also, test@liferay.com is an administrator
account with a default password, so it should be changed eventually. Yet, these steps are good to

https://riptutorial.com/ 4

https://www.liferay.com/downloads
http://i.stack.imgur.com/B8mdi.png
http://localhost:8080/)

get some idea on how Liferay looks like and works.

Read Getting started with liferay online: https://riptutorial.com/liferay/topic/932/getting-started-with-
liferay

https://riptutorial.com/ 5

https://riptutorial.com/liferay/topic/932/getting-started-with-liferay
https://riptutorial.com/liferay/topic/932/getting-started-with-liferay

Chapter 2: Configure Google Tag
manager(GTM) in liferay

Introduction

This documentation is not specific to liferay but can be used with reference to any web application.

Liferay provides Google Analytics(referred as GA ahead) by default,after configuring Analytics id
GA-##### in Site settings.But this provides limited functionality,only allowing to track page
views(Page title and URL).In order to expand it further,we can either embed GA script directly onto
the site theme to trigger the required events or use GTM.

Examples

Using GTM to configure GA events

GTM simplifies the whole process of managing tags.In GTM terminology

We put a GTM javascript snippet on the concerned page,in portal_normal.vm in custom
theme in liferay, containing the GTM id and a data layer structure(if needed) to map values
from page to variables

1.

Corresponding to data layer variables,we need to create Variables at GTM end,which
retrieve data from data layer

2.

Subsequently,we create tags,which are basically fields which maps variables from data layer
to events,which are triggered on certain conditions,leading to events being sent to respective
tracking tool(GA,in our case).

3.

Below is a sample of GTM javascript snippet embedded on a page,

 <body>
 <!-- 1) Data layer section -->
 <script type="text/javascript">
 dataLayer = [{
 "page" : "<? Virtual path of the page ?>"
 ,"pageType" : "<? Page type ?>"
 ,"user" : {
 "type" : "<? User type ?>"
 ,"userId" : "<? Logged user id ?>"
 ,"country" : "<? Logged user country ?>"
 ,"userRole" : "<? Role of user ?>"
 }
 }];
 </script>
 <!-- 2) GTM Container -->
 <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-PK9HK8"
 height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
 <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
 new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],

https://riptutorial.com/ 6

 j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
 '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
 })(window,document,'script','dataLayer','<GTM-ID>');</script>
 <!-- End Google Tag Manager -->

Post including this script in page,we need to configure the respective variables and tags from GTM
end.

https://riptutorial.com/ 7

https://i.stack.imgur.com/fULpl.png

https://riptutorial.com/ 8

https://i.stack.imgur.com/H765R.png
https://i.stack.imgur.com/uefBn.png

Post we have configured the required fields,we can view events on GA console upon a user view.

https://riptutorial.com/ 9

https://i.stack.imgur.com/sQLOb.png

In order to view the data sent from portal to GA,we can use Google Analytics Debugger plugin,to
view events being sent to GA via browser console.

Read Configure Google Tag manager(GTM) in liferay online:
https://riptutorial.com/liferay/topic/8723/configure-google-tag-manager-gtm--in-liferay

https://riptutorial.com/ 10

https://i.stack.imgur.com/rlHQC.png
https://chrome.google.com/webstore/detail/google-analytics-debugger/jnkmfdileelhofjcijamephohjechhna
https://riptutorial.com/liferay/topic/8723/configure-google-tag-manager-gtm--in-liferay

Chapter 3: Create a Quartz scheduler in
liferay

Remarks

A scheduler serves to perform background tasks at certain defined intervals.

As per Liferay portlet DTD

<!- The scheduler-entry element contains the declarative data of a scheduler. ->

!ELEMENT scheduler-entry (scheduler-description?, scheduler-event-listener-class,
trigger)

<!- The scheduler-description value describes a scheduler. ->

!ELEMENT scheduler-description (#PCDATA)

<!- The scheduler-event-listener-class value must be a class that implements
com.liferay.portal.kernel.messaging.MessageListener. This class will receive a message at a
regular interval specified by the trigger element. ->

!ELEMENT scheduler-event-listener-class (#PCDATA)

<!- The trigger element contains configuration data to indicate when to trigger the class specified
in scheduler-event-listener-class. ->

!ELEMENT trigger (cron | simple)

Examples

Create a quartz scheduler to display some information

In order to create a scheduler,the entry needs to be created in

liferay-portlet.xml

provding scheduler class and trigger value for timing of scheduler triggering

<portlet-name>GetSetGo</portlet-name>
 <icon>/icon.png</icon>
 <scheduler-entry>
 <scheduler-description>This scheduler logs User count from portal</scheduler-
description>
 <scheduler-event-listener-class>com.example.scheduler.SchedulerSample</scheduler-
event-listener-class>
 <trigger>

https://riptutorial.com/ 11

http://www.liferay.com/dtd/liferay-portlet-app_6_2_0.dtd

 <simple>
 <simple-trigger-value>
 5
 </simple-trigger-value>
 <time-unit>minute</time-unit>
 </simple>
 </trigger>
 </scheduler-entry>

The given entry provides

Scheduler description1.

Class name,which implements MessageListener class2.

Trigger,which provides intervals for defining trigger point for scheduler

-Using Cron

-Using Simple trigger value

3.

In the given example,the scheduler will trigger after every 5 mins.

Next up we need to create scheduler class

package com.example.scheduler;

import com.liferay.portal.kernel.exception.SystemException;
import com.liferay.portal.kernel.log.Log;
import com.liferay.portal.kernel.log.LogFactoryUtil;
import com.liferay.portal.kernel.messaging.Message;
import com.liferay.portal.kernel.messaging.MessageListener;
import com.liferay.portal.kernel.messaging.MessageListenerException;
import com.liferay.portal.service.UserLocalServiceUtil;

public class SchedulerSample implements MessageListener {

 @Override
 public void receive(Message arg0) throws MessageListenerException {
 Log log=LogFactoryUtil.getLog(SchedulerSample.class);

 try {
 log.info("User Count for portal:"+UserLocalServiceUtil.getUsersCount());
 } catch (SystemException e) {

 log.info("User count is currently unavailable");
 }

 }

}

This scheduler simply displays output portal user count after every trigger interval to server
console.

Create a dynamic quartz scheduler programmatically

https://riptutorial.com/ 12

There are specific scenarios where in we might need to create a Quartz scheduler,based on user
input on when a scheduler should be triggered,apart from we can handle cases,where we have
certain pre-defined functionalities,which need to be triggered based on user action,at a certain
period.

This example receives user input on trigger timing,to trigger a scheduler.Here ScheduledJobListener
class imlements MessageListener,which contains business logic to be executed on triggering the
scheduler.The job is scheduled using SchedulerEngineHelperUtilclass to trigger the job,after
configuring the required params:

Trigger(using the cron text string and job name)1.
Message(using implementation for MessageListener class and portletId)2.
Scheduler storage types(which is MEMORY_CLUSTERED by default,can be set as
PERSISTED to be stored in DB)

3.

DestinationNames(which is SCHEDULER_DISPATCH for Liferay) which decides Message
Bus destination to be used

4.

The below snippet is part of action phase of the portlet interacting with user,to create and schedule
a quartz job.

 //Dynamic scheduling
 String portletId= (String)req.getAttribute(WebKeys.PORTLET_ID);

 String jobName= ScheduledJobListener.class.getName();

 Calendar startCalendar = new GregorianCalendar(year , month, day, hh, mm, ss);
 String jobCronPattern = SchedulerEngineHelperUtil.getCronText(startCalendar, false);
 //Calendar object & flag for time zone sensitive calendar

 Trigger trigger=new
CronTrigger(ScheduledJobListener.class.getName(),ScheduledJobListener.class.getName(),
jobCronPattern);

 Message message=new Message();
 message.put(SchedulerEngine.MESSAGE_LISTENER_CLASS_NAME,jobName);
 message.put(SchedulerEngine.PORTLET_ID, portletId);

 try {
 SchedulerEngineHelperUtil.schedule(

trigger,StorageType.PERSISTED,"Message_Desc",DestinationNames.SCHEDULER_DISPATCH,
 message,0);
 } catch (SchedulerException e)
 {
 e.printStackTrace();
 }

Here,in order to create cron text,params are retrieved from user input For the cron text,we can
also use the given reference for creating the cron pattern

 1. Seconds
 2. Minutes
 3. Hours
 4. Day-of-Month

https://riptutorial.com/ 13

 5. Month
 6. Day-of-Week
 7. Year (optional field)
 Expression **Meaning**
 0 0 12 * * ? Fire at 12pm (noon) every day
 0 15 10 ? * * Fire at 10:15am every day
 0 15 10 * * ? Fire at 10:15am every day
 0 15 10 * * ? * Fire at 10:15am every day
 0 15 10 * * ? 2005 Fire at 10:15am every day during the year 2005
 0 * 14 * * ? Fire every minute starting at 2pm and ending at 2:59pm, every day
 0 0/5 14 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm, every day
 0 0/5 14,18 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm, AND fire
every 5 minutes starting at 6pm and ending at 6:55pm, every day
 0 0-5 14 * * ? Fire every minute starting at 2pm and ending at 2:05pm, every day
 0 10,44 14 ? 3 WED Fire at 2:10pm and at 2:44pm every Wednesday in the month of March.
 0 15 10 ? * MON-FRI Fire at 10:15am every Monday, Tuesday, Wednesday, Thursday and
Friday
 0 15 10 15 * ? Fire at 10:15am on the 15th day of every month
 0 15 10 L * ? Fire at 10:15am on the last day of every month
 0 15 10 L-2 * ? Fire at 10:15am on the 2nd-to-last last day of every month
 0 15 10 ? * 6L Fire at 10:15am on the last Friday of every month
 0 15 10 ? * 6L Fire at 10:15am on the last Friday of every month
 0 15 10 ? * 6L 2002-2005 Fire at 10:15am on every last friday of every month during
the years 2002, 2003, 2004 and 2005
 0 15 10 ? * 6#3 Fire at 10:15am on the third Friday of every month
 0 0 12 1/5 * ? Fire at 12pm (noon) every 5 days every month, starting on the first day
of the month.
 0 11 11 11 11 ? Fire every November 11th at 11:11am.

and directly create a crontext string to be used based on user input

 String jobCronPattern="0 */5 * * * ?";

Here in this case,it fires after every five minutes.

References:

Dynamic scheduler creation1.
Scheduler application2.
Quartz FAQs3.

Read Create a Quartz scheduler in liferay online: https://riptutorial.com/liferay/topic/7998/create-a-
quartz-scheduler-in-liferay

https://riptutorial.com/ 14

https://web.liferay.com/community/forums/-/message_boards/message/48993955
https://web.liferay.com/marketplace/-/mp/application/35025281
http://www.quartz-scheduler.org/documentation/faq.html
https://riptutorial.com/liferay/topic/7998/create-a-quartz-scheduler-in-liferay
https://riptutorial.com/liferay/topic/7998/create-a-quartz-scheduler-in-liferay

Chapter 4: Debug remote liferay server via
Eclipse

Examples

Debug remote liferay server via Eclipse(without Liferay Remote IDE connector
eclipse plugin)

To debug a server instance, start in debug mode. To do so, configure these parameters to be
passed to the server:

-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

to setenv.bat(Windows) or setenv.sh(Unix)

These initialize the server in debug mode, and listen for debug requests on the given port. Start
the server and post the config.

In eclipse, the remote debug config needs to be configured to attach the source to the remote
server. Follow the given steps:

Go to Run->Debug Configurations->Remote java application:1.

https://riptutorial.com/ 15

Create a new configuration from Remote Java Application:2.

https://riptutorial.com/ 16

https://i.stack.imgur.com/FtGBh.png

Enter the given details:3.

 Host name:localhost(For local instance)or Ip of the machine
 Port:8000(By default)

Click Debug to intitiate attachments to the server instance.4.

Read Debug remote liferay server via Eclipse online:
https://riptutorial.com/liferay/topic/7891/debug-remote-liferay-server-via-eclipse

https://riptutorial.com/ 17

https://i.stack.imgur.com/pkkM9.png
https://riptutorial.com/liferay/topic/7891/debug-remote-liferay-server-via-eclipse

Chapter 5: Deploying a Plugin

Examples

Deploying to Glassfish

So, you make first a .war file let's say a portlet of name <YOUR PLUGIN>.war. You wanna have it
running on a glassfish domain under Liferay portal.

Steps to success:

Navigate to Control Panel -> Plugins Installation on Liferay1.
Hit Install new portlets2.
Hit Configuration3.
Fill in to Deploy Directory a new place for deployment let's say <YOUR DOMAIN>/autodeploy24.
Check that in the next line target is <YOUR DOMAIN>/autodeploy (it is the Glassfish default
deployment directory)

5.

Hit Save6.

Now deployment will be done by copy pasting files to that new directory <YOUR DOMAIN>/autodeploy2.
The rest of it is handled automatically. Setting takes action immediately.

Done with deployment: Make a victory jig and enjoy :)

..you stop dancing and face a bug. You want a new revision to be deployed.. In this case, continue
reading.

So, you have built your war again and want to re-deploy. Do the following:

undeploy old stuff from <YOUR DOMAIN>/autodeploy folder by deleting the war file. Don't delete
any other file.

1.

result is that <YOUR PLUGIN>.war_UnDeployed file will appear.2.
deploy new file by copying the newly built war in <YOUR DOMAIN>/autodeploy2 folder.3.
result is that <YOUR PLUGIN>.war_deployed will appear in <YOUR DOMAIN>/autodeploy folder.4.

Make a dance again :)

Read Deploying a Plugin online: https://riptutorial.com/liferay/topic/1708/deploying-a-plugin

https://riptutorial.com/ 18

https://riptutorial.com/liferay/topic/1708/deploying-a-plugin

Chapter 6: Hooks in Liferay

Remarks

This works with Liferay Portal up to version 6.2.

Examples

JSP Hook

JSP hooks are a special liferay plugin that allow to modify core portlet jsp-s, lets say you want to
modify the login portlet to show Welcome in my custom login!.

The minimal structure for a Hook Plugin is as follows:

[project-name]-hook/
 └── docroot/
 ├── WEB-INF/
 │ ├── src/
 │ ├── lib/
 │ ├── liferay-hook.xml
 │ ├── liferay-plugin-package.properties
 │ └── web.xml
 └── META-INF/
 ├── custom_jsps/
 └── MANIFEST.MF

liferay-hook.xml is the file that distiguishes the type of hook you're using, here you define inside
the hook tag the proper parameter for the hook, for JSP hook:

<?xml version="1.0"?>
<!DOCTYPE hook PUBLIC "-//Liferay//DTD Hook 6.2.0//EN" "http://www.liferay.com/dtd/liferay-
hook_6_2_0.dtd">

<hook>
 <custom-jsp-dir>/custom_jsps</custom-jsp-dir>
</hook>

login.jsp is found in Liferay in /docroot/html/portlet/login/login.jsp, to make a hook of it we need
to add a jsp with the same name and path in our custom_jsps folder.

When the hook is deployed, Liferay will look in the liferay-hook.xml for the custom-jsp-dir value
and will replace all the portal JSPs with the ones found in this directory. The original jsp's are
saved with name <orginal name>.portal.jsp to be restored in case of hook undeployment.

We can even call the original JSPs in the new modified JSP if we want to keep the code making
this adaptable to updates or upgrades of the underlying Liferay platform version. To do this, in
your custom JSP use the following pattern:

https://riptutorial.com/ 19

<liferay-util:buffer var="contentHtml">
 <liferay-util:include page="/html/{ JSP file’s path }" />
</liferay-util:buffer>

where { JSP file’s path } in this case will be portlet/login/login.portal.jsp. Doing this is called
extending the original jsp.

Then we can add content to it with:

<%
contentHtml = StringUtil.add("Stuff I'm adding BEFORE the original content",
contentHtml,"\n");
contentHtml = StringUtil.add(contentHtml,"Stuff I'm adding AFTER the original content","\n");
%>
<%= contentHtml %>

Struts Action Hooks

This type of Hook can be used to override core portal (e.g c/portal/login) and portlet struts
actions (e.g /login/forgot_password), this actions for Liferay Portal are specified in a struts-
config.xml file in its WEB-INF folder.To override an action:

in liferay-hook.xml file of your hook plugin under docroot/WEB-INF, add a struts-action
element within the hook element.

1.

Inside struts-action element, add struts-action-path that specifies the action path you’re
overriding and struts-action-impl that specifies your custom action class.This looks like:

2.

 <struts-action-path>/login/login</struts-action-path>
 <struts-action-impl>
 com.myhook.action.ExampleStrutsPortletAction
 </struts-action-impl>
</struts-action>

Create a Struts portlet action class that extends BaseStrutsPortletAction. An example of this
class is:

3.

 public class ExampleStrutsPortletAction extends BaseStrutsPortletAction {

 public void processAction(StrutsPortletAction originalStrutsPortletAction,
 PortletConfig portletConfig, ActionRequest actionRequest,
 ActionResponse actionResponse) throws Exception {

 System.out.println("Custom Struts Action");

 originalStrutsPortletAction.processAction(originalStrutsPortletAction,
 portletConfig, actionRequest, actionResponse);
 }

 public String render(StrutsPortletAction originalStrutsPortletAction,
 PortletConfig portletConfig, RenderRequest renderRequest,
 RenderResponse renderResponse) throws Exception {

 System.out.println("Custom Struts Action");

https://riptutorial.com/ 20

 return originalStrutsPortletAction.render(null, portletConfig,
 renderRequest, renderResponse);
 }
}

Calling the method being overridden, like originalStrutsPortletAction.processAction, is not
obligatory but a best practice to keep the behavior from the Action unchanged in regards of Liferay
Portal. This type of hook can be used to add new Struts Actions also, it's the same as modifying
an existing action, in this case liferay-hook.xml would be:

<struts-action>
 <struts-action-path>/my/custom/path</struts-action-path>
 <struts-action-impl>
 com.myhook.action.ExampleStrutsAction
 </struts-action-impl>
</struts-action>

Hello User "Name" with hooks

This example will show how to make a simple "Hello User [name]" after the login. The example is
based on performing a custom action using a hook

From your command line terminal, navigate to your Plugins SDK’s hooks folder. To create a hook
project, you must execute the create script. Here’s the format to follow in executing the script:

create.[sh|bat] [project-name] "[Hook Display Name]"

On Linux and Mac OS X, you’d enter a command similar to the one in this example:

./create.sh Hello-user "Hello User"

On Windows, you’d enter a command similar to the one in this example:

create.bat Hello-user "My Hook"

Liferay IDE’s New Project wizard and the create scripts generate hook projects in your Plugin
SDK’s hooks folder. The Plugins SDK automatically appends “-hook” to your project name.

Whether you created your hook project from the Liferay IDE or from the command line, you end up
with the same project structure (see before).

Determine the event on which you want to trigger your custom action. Look in the
portal.properties documentation to find the matching event property. Hint: the event
properties have .event in their name. There are session, startup, shutdown, and portal event
properties in the following sections of the portal.properties documentation: Session -
Startup Events - Shutdown Events - Portal Events

•

In your hook project, create a Java class that extends the
com.liferay.portal.kernel.events.Action class. Override the
Action.run(HttpServletRequest, HttpServletResponse) method.

•

https://riptutorial.com/ 21

https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-2/performing-a-custom-action-using-a-hook
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Session
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Startup%20Events
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Shutdown%20Events
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Portal%20Events

 import com.liferay.portal.kernel.events.Action;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;
 import com.liferay.portal.model.User;
 import com.liferay.portal.util.PortalUtil;

 public class HelloUser extends Action {
 public void run(HttpServletRequest req, HttpServletResponse res) {
 User user = PortalUtil.getUser(req);
 System.out.println("Hello User "+user.getScreenName());
 }
 }

Important: If your action access the HttpServletRequest object, extend
com.liferay.portal.kernel.events.Action; otherwise, extend
com.liferay.portal.struts.SimpleAction.

Create a properties file, portal.properties, inside your hook project’s docroot/WEB-INF/src
folder. Then add the name of the portal event property that corresponds to the event on
which you want to perform your action. Specify your action class’ fully qualified name as the
property’s value.

`login.events.post=HelloUser`

For example, to perform a class’ action just prior to the portal logging in a user, you’d specify
the login.events.pre property with your action class as its value. It could look like this
property setting.

•

Important: Since portal properties like login.events.pre accept multiple values, you
must append your values to the existing values. You can repeatedly modify the
properties from additional hooks.

Only modify a portal property that accepts a single value from a single hook plugin. If
you modify a property’s value from multiple plugins, Liferay won’t know which value to
use.

Edit your docroot/WEB-INF/liferay-hook.xml file and add your
hook’s portal properties file name as the value for the
<portal-properties>...</portal-properties> element within your
hook’s <hook>...</hook> element. For example, if your hook’s properties file name is
portal.properties, you’d specify this element:

•

<portal-properties>portal.properties</portal-properties>

Deploy your hook, go to your hook path and enter ant clean deployyou will see the .war in
the dist folder.

•

Now if you login into liferay, you will see in the server log a message like "Hello user Admin".

Model Listener Hook

https://riptutorial.com/ 22

Background

Model Listener hook's are a type of Liferay plugin that listens for events taken on an model and
executes code in response. Model Listener hooks are similar to Custom Struts Action hooks in that
they respond to an action taken in the portal. However while Struts actions respond to an action
taken by a user, a Model Listener responds (before or after) an event involving a Liferay model.

Differences

Here are a few examples of Struts Actions v. Model Listeners for comparison.

Struts Action
User Login○

Account Creation○

Extend Session○

Move Folder○

•

Model Listener
After folder is created○

When user information is updated○

After bookmark is removed○

Before a role association is made○

•

The best resource for learning Liferay's architecture is through their source code. All
their source files are located on GitHub and by viewing their JavaDocs. You can see all
of the core portal models on the JavaDocs and all of the Struts Actions on the GitHub.

Example

In this tutorial we are going to develop a Model Listener that sends an email to a User after their
account is first created. To do this we are going to write a class called UserModelListener which
will extend Liferay's BaseModelListener. We will briefly go over hook creation and will cover the
necessary modifications to the following config files

portal.properties•

liferay-hook.xml•

Getting Started

To begin developing your Model Listener hook you must first launch your Liferay IDE or Liferay
Developer Studio application.

https://riptutorial.com/ 23

https://docs.liferay.com/portal/6.2/javadocs/com/liferay/portal/model/
https://github.com/liferay/liferay-portal/blob/6.2.x/portal-web/docroot/WEB-INF/struts-config.xml

Both the Liferay IDE and the Liferay Developer Studio are customized Eclipse
development environments. They are strikingly similar and one set of directions should
be sufficient for both environments.

Inside your development environment execute the following steps.

In the top left corner click File1.
Hover your mouse over New2.
Click Liferay Plugin Project3.

You will spawn this window.

https://riptutorial.com/ 24

Please enter the information as shown above

Project Name: User-Model-Listener•

https://riptutorial.com/ 25

https://i.stack.imgur.com/KvumU.jpg

Select Use Default Location•
Build Type: Ant•
Plugin type: Hook•

Make sure that your project is located inside your Liferays Plugins SDK Hook
directory. You will need to select your SDK and your Runtime accordingly.

In your Package Explorer perspective you will see the following directory structure.

Listener Development

Now that you have created your hook you will need to create your custom UserModelListener
class. This class will extend Liferay's BaseModelListener class.

https://riptutorial.com/ 26

https://i.stack.imgur.com/vJvaf.jpg

Liferay's BaseModelListener class is an abstract class that implements the
ModelListener interface. You do not want to implement the ModelListener interface
directly as it will require you to override all of it's methods.

The following methods are provided to you by the ModelListener interface through the
BaseModelListener abstract class.

onAfterAddAssociation•
onAfterCreate•
onAfterRemove•
onAfterRemoveAssociation•
onAfterUpdate•
onBeforeAddAssociation•
onBeforeCreate•
onBeforeRemove•
onBeforeRemoveAssociation•
onBeforeUpdate•

Create your UserModelListener class inside the following directory. To create the class via the
GUI simply execute the following commands

Click File in the top left corner•
Hover your mouse over New•
Click Class•

docroot/
 WEB-INF/
 src/

Enter the information shown below

https://riptutorial.com/ 27

Inside your UserModelListener class paste the following code

package com.example.hook;

Properties Configuration
In order to configure the association between our custom listener and our model we need to make

docroot/

Only one line needs to be added to the file.

value.object.listener.com.liferay.portal.model.User = com.example.hook.UserModelListener

We can generalize this by saying, for any Model Listener we create the associated pr

value.object.listener.fully.qualified.model.name = fully.qualified.listener.name

In other words if we wrote a CustomerDLFolderModelListener

https://riptutorial.com/ 28

https://i.stack.imgur.com/FMcSI.jpg

class, packaged inside com.example.code, for the DLFolder model we would have
the following property

value.object.listener.com.liferay.portal.model.DLFolder =
com.example.code.CustomerDLFolderModelListener

Lastly, locate your liferay-hook.xml file. In Source view, write the following.

<?xml version="1.0"?>
<!DOCTYPE hook PUBLIC "-//Liferay//DTD Hook 6.2.0//EN" "http://www.liferay.com/dtd/liferay-
hook_6_2_0.dtd">

<hook>
 <portal-properties>portal.properties</portal-properties>
</hook>

Explanation

Line one is an optional prolog which specifies the document version and (in some cases)
the character set.

1.

Line 2 is a formal DocType Definition (DTD) which explicitly defines which elements and
attributes are valid

2.

Line 3 and 5 consist of the parent Hook element (one of the valid elements supported by
this DTD)

3.

Line 4 overrides and extends the portal.properties file in ${liferay.home}4.

To see what other elements can be used in this XML file you can reference the URL
within the DocType Definition. This is standard for all XML and SGML files with a DTD.
Another example of a Liferay XML file with a DTD is service.xml (Liferay's ORM
implementation based on Hibernate).

Build and Deploy

Building and deploying hooks is a simple process. Liferay Plugin development supports build and
dependency automation with

Ant•
Ivy•
Maven•
Gradle•

In our example we utilized Ant for build automation. The build.xml file contains the build
commands (known as targets in Ant). To build your hook simply execute the following
commands.

Located your build.xml file1.
In your IDE, drag the build.xml file into the Ant perspective2.

https://riptutorial.com/ 29

http://www.liferay.com/dtd/liferay-hook_6_2_0.dtd

Expand the file and run the all target3.

https://riptutorial.com/ 30

In your console view you should see something similar to the following

Buildfile: C:\liferay-plugins-sdk-6.2-ee-sp11\hooks\User-Listener-Hook-hook\build.xml

With your Hook successfully built it is now time to start your portal and deploy it. To start your ser

Right click on your Server and click Add or Remove1.

https://riptutorial.com/ 31

https://i.stack.imgur.com/xzDde.jpg

Locate User-Listener-Hook under the Available selection2.
Once highlighted click the Add button and click OK3.
Click the Play button in the Server perspective4.

Please let me know if you have any
questions, comments, concerns, etc. All
constructive feedback is greatly
appreciated!

Read Hooks in Liferay online: https://riptutorial.com/liferay/topic/3712/hooks-in-liferay

https://riptutorial.com/ 32

https://i.stack.imgur.com/Ac0Al.png
https://riptutorial.com/liferay/topic/3712/hooks-in-liferay

Chapter 7: Inter portlet communication

Introduction

This manual contains the various ways in which portlet can co-ordinate or communicate amongst
each other and the various scenarios for which a particular approach is used.

Remarks

References:

Public render param1.
JSR 286 specs2.
Portlet session3.

Examples

Using Public render parameter

This approach was introduced in JSR 286.

In JSR 168,render parameters set in processAction of a portlet were available only in that
portlet.With the Public Render Parameters feature, the render parameters set in the processAction
of one portlet will be available in render of other portlets also.In order to configure this,for all the
portlets supporting this:

Add <supported-public-render-parameter> tag ,just before the portlet tag ends in portlet.xml

<security-role-ref>
 <role-name>user</role-name>
</security-role-ref>
<supported-public-render-parameter>{param-name}</supported-public-render-parameter>
</portlet>

Add <public-render-parameter> tag just before the <portlet-app> tag ends

 <public-render-parameter>
 <identifier>{param-name}</identifier>
 <qname xmlns:x="localhost">x:{param-name}</qname>
 </public-render-parameter>
</portlet-app>

In the processAction method,the param value needs to be set in the response

res.setRenderParameter({param-name},{param-value});

https://riptutorial.com/ 33

https://blogs.oracle.com/deepakg/entry/jsr286_public_render_parameter_feature
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiMjJudz4nRAhUE7hoKHVN1C9oQFggcMAA&url=https%3A%2F%2Fwiki.jasig.org%2Fdownload%2Fattachments%2F25002428%2Fportlet-2-spec.pdf&usg=AFQjCNEDhqnvuPOfFdRgn8KV1fq_RRyjvQ
http://proliferay.com/liferay-portlet-session-attribute/

Post we are done with configuring this for all the required portlet,after executing the action phase
of the concerned portlet,the param should be available in render phase for all supporting portlets
on the page,irrespective of being part of same or different application(war).

Using Portlet session

This is one approach which has been there since JSR 168.It allows us to share attributes using
portlet session.A portlet session can have different types of scopes:

Portlet scope(attributes available only within portlet)1.
Application scope(attributes available within whole application[war])2.

In order to use this approach,we do not need to make any entries in portlet configuration,as portlet
session is readily available in portlet request:

PortletSession session = renderRequest.getPortletSession();
session.setAttribute("attribute-name","attribute-value", PortletSession.APPLICATION_SCOPE);

or

PortletSession session = renderRequest.getPortletSession();
session.setAttribute("attribute-name","attribute-value", PortletSession.PORTLET_SCOPE);

The attribute can only be retrieved from the respective scope only.Like for attribute set in portlet
scope,we need to fetch it using

PortletSession session = renderRequest.getPortletSession();
String attributeValue = (String) session.getAttribute("attribute-name",
PortletSession.PORTLET_SCOPE);

The major limitation of this approach is lack of sharing among other portlet,outside of application
scope.In order to overcome this,there is liferay specific approach to add <private-session-
attributes> to liferay-portlet.xml

 <private-session-attributes>false</private-session-attributes>
 <header-portlet-css>/css/main.css</header-portlet-css>
 <footer-portlet-javascript>/js/main.js</footer-portlet-javascript>
 <css-class-wrapper>{portlet-name}</css-class-wrapper>
</portlet>

for all portlets,where the attributes are set and retrieved.

Using eventing feature

The eventing mechanism is an extended version of the public render param,with additonal feature
to pass custom objects to other portlets,but with an overhead of event phase.

To achieve this,this mechanism consists of

https://riptutorial.com/ 34

Publisher portlet1.
Processor(consumer) portlet,where both may be part of different portlet applications.2.

To start with,

Add <supported-publishing-event> tag to the publisher portlet in portlet.xml

 <security-role-ref>
 <role-name>user</role-name>
 </security-role-ref>
 <supported-publishing-event>
 <qname xmlns:x="http:sun.com/events">x:Employee</qname>
 </supported-publishing-event>
 </portlet>

Add <supported-processing-event> tag to the processor portlet in portlet.xml

<security-role-ref>
 <role-name>user</role-name>
 </security-role-ref>
 <supported-processing-event>
 <qname xmlns:x="http:sun.com/events">x:Employee</qname>
 </supported-processing-event>
</portlet>

Add <event-definition>tag to both the portlets,defining event-name and type in portlet.xml

<event-definition>
 <qname xmlns:x="http:sun.com/events">x:Employee</qname>
 <value-type>com.sun.portal.portlet.users.Employee</value-type>
</event-definition>
 </portlet-app>

Next we need to create class for the event type(in case of custom type)

public class Employee implements Serializable {
 public Employee() {
 }
 private String name;
 private int userId;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getUserId() {
 return userId;
 }
 public void setUserId(int id)
 {
 this.userId = id;
 }

https://riptutorial.com/ 35

}

Now,in the publisher portlet,the event needs to be published in the action phase

 QName qname = new QName("http:sun.com/events" , "Employee");
 Employee emp = new Employee();
 emp.setName("Rahul");
 emp.setUserId(4567);
 res.setEvent(qname, emp);

Post we have published the event,it needs to be processed by the publisher portlet in the event
phase.

The event phase was introduced in JSR 286 and is executed before render phase of the
portlet,when applicable

@ProcessEvent(qname = "{http:sun.com/events}Employee")
public void processEvent(EventRequest request, EventResponse response) {

 Event event = request.getEvent();
 if(event.getName().equals("Employee")){
 Employee payload = (Employee)event.getValue();
 response.setRenderParameter("EmpName",
 payload.getName());
 }

}

which can then be retrieved from the render parameter via render request.

Read Inter portlet communication online: https://riptutorial.com/liferay/topic/8370/inter-portlet-
communication

https://riptutorial.com/ 36

https://riptutorial.com/liferay/topic/8370/inter-portlet-communication
https://riptutorial.com/liferay/topic/8370/inter-portlet-communication

Chapter 8: Setting up SSL

Remarks

Make sure you have a valid ssl certificate provided by a third party. You can also use a selfsigned
certificate, but for dev only. Letsencrypt provides free certificates that can be used in production....

Use keytool to import the certificate to the keystorechain of java.

Examples

How to enable SSL on Tomcat and Liferay

Make sure your tomcat configurations file, server.xml has this line:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11Protocol"
 maxHttpHeaderSize="8192" SSLEnabled="true"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="false" useBodyEncodingForURI="true"
 sslEnabledProtocols="TLSv1.2"
 keystorePass="passwordtokeystore"
 keystoreFile="/path/to/.keystoreChain"
 truststoreFile="%JAVA_HOME%/jdk1.8.0_91/jre/lib/security/cacerts"
 />

Its important to choose the right sslprotocols, you can add more sslprotocols with a comma
seperation inbetween the ssl protocols like this:

sslEnabledProtocols="TLSv1, TLSv1.1, TLSv1.2"

Then make sure that your portal-ext.properties file in Liferay have this configuration lines:

web.server.protocol=https

Read Setting up SSL online: https://riptutorial.com/liferay/topic/4320/setting-up-ssl

https://riptutorial.com/ 37

https://letsencrypt.com
https://riptutorial.com/liferay/topic/4320/setting-up-ssl

Chapter 9: Using Dynamic and custom SQL
query in Liferay

Introduction

There are scenarios when dealing with service layer in liferay, when we need to query database
with too many clauses or dealing with multiple tables.In such cases,we use either of:

1)Dynamic query(wrapper on Hibernate criteria API)

2)Custom SQL queries

Remarks

References:

Custom SQL1.
Dynamic query2.

Examples

Using Dynamic query in Liferay

For most of the scenarios involving entities from service layer,we can make do with the default
service calls,with some help from the finders as well.For simple scenarios involving multiple
entities,we move towards using Dynamic query API.This is a wrapper API for the Criteria API used
in Hibernate.It can be used for cases,where we need to generate dynamic query,which is not very
complex in nature,using several constructs from the API. To start with,some of the most commonly
used constructs are: DynamicQueryFactoryUtil-Used for constructing query

RestrictionsFactoryUtil-Used for providing restrictions i.e.fields for comparison with a certain value
to narrow down the results matching a certain value or within a range,etc

ProjectionFactoryUtil-Used for providing projections to get fields which will be part of search result
i.e. instead of providing the whole entity,will provide only certain fields or apply aggregration
function(such as min.max,avg) on the same.

PropertyFactoryUtil-Used for comparison of some property from the entity class to mostly do
comparsion with other fields from a query

The implementation of these classes are present in dao.orm.jpa package with all the available
methods

Read Using Dynamic and custom SQL query in Liferay online:
https://riptutorial.com/liferay/topic/10863/using-dynamic-and-custom-sql-query-in-liferay

https://riptutorial.com/ 38

https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/custom-sql
https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/dynamic-query
https://riptutorial.com/liferay/topic/10863/using-dynamic-and-custom-sql-query-in-liferay

Chapter 10: Using Restful web service in
Liferay

Examples

Consume Liferay JSON service for GET requests

Liferay exposes many default and custom services available to other systems via JSON. To
explore services on a particular liferay instance, use a given URL - A local instance in this case:

http://localhost:8080/api/jsonws/

https://riptutorial.com/ 39

Select the required service, consume the service with the given syntax and parameters:

https://riptutorial.com/ 40

https://i.stack.imgur.com/08Jc9.png

/user/get-user-by-email-address

Use companyId and emailAddress to retrieve the user with the expected datatypes, as well as
possible exceptions to be handled by the consumer.

The following example consumes this service from a portlet. The given utility class method makes
a call to the webservice, passing the necessary arguments:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import org.json.simple.parser.ParseException;

import sun.misc.BASE64Encoder;

import com.liferay.portal.kernel.util.StringUtil;
import com.liferay.portal.theme.ThemeDisplay;

public class WebServiceUtil {

public static String requestWebService(ThemeDisplay themeDisplay) {

 String url="http://localhost:8080/api/jsonws/user/get-user-by-email-address/company-
id/{company-id}/email-address/{email-address}";

 String groupId= Long.toString(themeDisplay.getCompanyId());
 String userEmail="test@liferay.com";

 String[] searchList={"{company-id}","{email-address}"};
 String[] replList={groupId,userEmail};

 //Path params are replaced with args to make web service call
 url=StringUtil.replace(url, searchList, replList);

 System.out.println(url);
 StringBuilder sb = new StringBuilder();
 JSONObject jsonObject=new JSONObject();
 try
 {
 URL urlVal = new URL(url);
 HttpURLConnection conn = (HttpURLConnection) urlVal.openConnection();

 //The user credentials are directly used here only for the purpose of example,always
fetech these details from an external props file.

 String uname ="test@liferay.com";
 String pswd="test";
 String authStr=uname+":"+pswd;

 //Encoding username+pswd to be added to request header for making web service
call
 String authStrEnc=new BASE64Encoder().encode(authStr.getBytes());

 /*Authorization type is set to consume web service

https://riptutorial.com/ 41

 and encoded combination is set in header to autheticate caller*/

 conn.setRequestMethod("GET");
 conn.setRequestProperty("Accept", "application/json");
 conn.setRequestProperty("Authorization", "Basic "+authStrEnc);

 BufferedReader brf = new BufferedReader(new InputStreamReader(conn.getInputStream()));

 JSONParser json=new JSONParser();
 jsonObject=(JSONObject)json.parse(brf);

 int cp;
 while ((cp = brf.read()) != -1) {
 sb.append((char) cp);
 }
 }
 catch(IOException e)
 {
 System.out.println("Something went wrong while reading/writing in stream!!");
 }
 catch (ParseException e) {
 System.out.println("Parse error");
 }

 //For purpose of simplicity we have fetched one of the fields from JSON response
 return (String)jsonObject.get("firstName");

}

}

Read Using Restful web service in Liferay online: https://riptutorial.com/liferay/topic/7821/using-
restful-web-service-in-liferay

https://riptutorial.com/ 42

https://riptutorial.com/liferay/topic/7821/using-restful-web-service-in-liferay
https://riptutorial.com/liferay/topic/7821/using-restful-web-service-in-liferay

Credits

S.
No

Chapters Contributors

1
Getting started with
liferay

brandizzi, Community, Pier Paolo Ramon, Pierpaolo Cira, rp.

2
Configure Google
Tag manager(GTM)
in liferay

Shivam Aggarwal

3
Create a Quartz
scheduler in liferay

Shivam Aggarwal

4
Debug remote liferay
server via Eclipse

4444, Shivam Aggarwal

5 Deploying a Plugin mico, Pier Paolo Ramon, rp.

6 Hooks in Liferay Chris Maggiulli, El0din, KLajdPaja, Pier Paolo Ramon, rp.

7
Inter portlet
communication

a_horse_with_no_name, Shivam Aggarwal

8 Setting up SSL El0din, rp., Tofik Sahraoui

9
Using Dynamic and
custom SQL query in
Liferay

Shivam Aggarwal

10
Using Restful web
service in Liferay

4444, Shivam Aggarwal

https://riptutorial.com/ 43

https://riptutorial.com/contributor/287976/brandizzi
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/461629/pier-paolo-ramon
https://riptutorial.com/contributor/2459308/pierpaolo-cira
https://riptutorial.com/contributor/783448/rp-
https://riptutorial.com/contributor/1194481/shivam-aggarwal
https://riptutorial.com/contributor/1194481/shivam-aggarwal
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1194481/shivam-aggarwal
https://riptutorial.com/contributor/549910/mico
https://riptutorial.com/contributor/461629/pier-paolo-ramon
https://riptutorial.com/contributor/783448/rp-
https://riptutorial.com/contributor/4671717/chris-maggiulli
https://riptutorial.com/contributor/3737058/el0din
https://riptutorial.com/contributor/4091231/klajdpaja
https://riptutorial.com/contributor/461629/pier-paolo-ramon
https://riptutorial.com/contributor/783448/rp-
https://riptutorial.com/contributor/330315/a-horse-with-no-name
https://riptutorial.com/contributor/1194481/shivam-aggarwal
https://riptutorial.com/contributor/3737058/el0din
https://riptutorial.com/contributor/783448/rp-
https://riptutorial.com/contributor/5930205/tofik-sahraoui
https://riptutorial.com/contributor/1194481/shivam-aggarwal
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1194481/shivam-aggarwal

	About
	Chapter 1: Getting started with liferay
	Remarks
	Versions
	Examples
	A basic installation for development and tests

	Chapter 2: Configure Google Tag manager(GTM) in liferay
	Introduction
	Examples
	Using GTM to configure GA events

	Chapter 3: Create a Quartz scheduler in liferay
	Remarks
	Examples
	Create a quartz scheduler to display some information
	Create a dynamic quartz scheduler programmatically

	Chapter 4: Debug remote liferay server via Eclipse
	Examples
	Debug remote liferay server via Eclipse(without Liferay Remote IDE connector eclipse plugin)

	Chapter 5: Deploying a Plugin
	Examples
	Deploying to Glassfish

	Chapter 6: Hooks in Liferay
	Remarks
	Examples
	JSP Hook
	Struts Action Hooks
	Hello User "Name" with hooks
	Model Listener Hook

	Background
	Differences
	Example
	portal.properties
	liferay-hook.xml

	Getting Started
	Listener Development
	Properties Configuration
	Explanation

	Build and Deploy
	Please let me know if you have any questions, comments, concerns, etc. All constructive feedback is greatly appreciated!
	Chapter 7: Inter portlet communication
	Introduction
	Remarks
	Examples
	Using Public render parameter
	Using Portlet session
	Using eventing feature

	Chapter 8: Setting up SSL
	Remarks
	Examples
	How to enable SSL on Tomcat and Liferay

	Chapter 9: Using Dynamic and custom SQL query in Liferay
	Introduction
	Remarks
	Examples
	Using Dynamic query in Liferay

	Chapter 10: Using Restful web service in Liferay
	Examples
	Consume Liferay JSON service for GET requests

	Credits

