
Lua

#lua

Table of Contents

About 1

Chapter 1: Getting started with Lua 2

Remarks 2

Versions 2

Examples 3

Installation 3

Comments 5

Executing Lua programs 6

Getting Started 8

variables 8

types 9

The special type nil 9

expressions 9

Defining functions 10

booleans 10

garbage-collection 10

tables 10

conditions 10

for loops 11

do blocks 11

Some tricky things 12

Nil and Nothing aren't the same (COMMON PITFALL!) 12

Leaving gaps in arrays 13

Hello World 13

Chapter 2: Booleans in Lua 14

Remarks 14

Examples 14

The boolean type 14

Booleans and other values 14

Logical Operations 14

Checking if variables are defined 15

Conditional contexts 15

Logical Operators 16

Order of Precedence 16

Short-cut Evaluation 16

Idiomatic conditional operator 17

Truth tables 17

Emulating Ternary Operator with 'and' 'or' logical operators. 18

Syntax 18

Use in variable assignment/initialization 18

Use in table constructor 19

Use as function argument 19

Use in return statement 19

Caveat 19

Chapter 3: Coroutines 20

Syntax 20

Remarks 20

Examples 20

Create and use a coroutine 20

Chapter 4: Error Handling 24

Examples 24

Using pcall 24

Handling errors in Lua 25

Chapter 5: Functions 27

Syntax 27

Remarks 27

Examples 27

Defining a function 27

Calling a function. 28

Anonymous functions 29

Creating anonymous functions 29

Understanding the syntactic sugar 29

Functions are first class values 29

Default parameters 30

Multiple results 31

Variable number of arguments 32

Named Arguments 32

Checking argument types 32

Closures 34

typical usage example 34

more advanced usage example 34

Chapter 6: Garbage collector and weak tables 36

Syntax 36

Parameters 36

Examples 36

Weak tables 36

Chapter 7: Introduction to Lua C API 37

Syntax 37

Remarks 37

Examples 37

Creating Lua Virtual Machine 37

Calling Lua functions 38

Embedded Lua Interpreter with Custom API and Lua Customization 39

Table manipulation 40

Getting the content at a particular index: 40

Setting the content at a particular index: 41

Transferring the content from a table to another: 41

Chapter 8: Iterators 42

Examples 42

Generic For Loop 42

Standard Iterators 42

Stateless Iterators 42

Pairs Iterator 43

Ipairs Iterator 43

Character Iterator 43

Prime Numbers Iterator 44

Stateful Iterators 44

Using Tables 44

Using Closures 45

Using Coroutines 45

Chapter 9: Metatables 46

Syntax 46

Parameters 46

Remarks 46

Examples 46

Creation and usage of metatables 46

Using tables as metamethods 46

Garbage collector - the __gc metamethod 47

More metamethods 47

Make tables callable 48

Indexing of tables 49

Reading 49

Writing 50

Raw table access 50

Simulating OOP 51

Chapter 10: Object-Orientation 53

Introduction 53

Syntax 53

Examples 53

Simple Object Orientation 53

Changing metamethods of an object 54

Chapter 11: Pattern matching 56

Syntax 56

Remarks 56

Examples 57

Lua pattern matching 57

string.find (Introduction) 59

The find function 59

Introducing Patterns 59

The `gmatch` function 60

How it works 60

Introducing captures: 60

The gsub function 60

How it works 60

string argument 61

function argument 61

table argument 61

Chapter 12: PICO-8 62

Introduction 62

Examples 62

Game loop 62

Mouse input 63

Game modes 63

Chapter 13: Sets 65

Examples 65

Search for an item in a list 65

Using a Table as a Set 65

Create a set 65

Add a member to the set 65

Remove a member from the set 66

Membership Test 66

Iterate over elements in a set 66

Chapter 14: Tables 67

Syntax 67

Remarks 67

Examples 67

Creating tables 67

Iterating tables 68

Basic Usage 69

Avoiding gaps in tables used as arrays 72

Defining our terms 72

When? 73

Tips 74

Chapter 15: Variadic Arguments 76

Introduction 76

Syntax 76

Remarks 76

Examples 77

Basics 77

Advanced Usage 78

Chapter 16: Writing and using modules 80

Remarks 80

Examples 80

Writing the module 80

Using the module 81

Credits 82

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: lua

It is an unofficial and free Lua ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official Lua.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/lua
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Lua

Remarks

Lua is minimalistic, lightweight and embeddable scripting language. It's being designed,
implemented, and maintained by a team at PUC-Rio, the Pontifical Catholic University of Rio de
Janeiro in Brazil. The mailing list is open to get involved.

Common use-cases for Lua includes scripting video games, extending applications with plugins
and configs, wrapping some high-level business logic or just embedding into devices like TVs,
cars, etc.

For high performance tasks there is independent implementation using just-in-time-compiler
available called LuaJIT.

Versions

Version Notes
Release
Date

1.0 Initial, non-public release.
1993-07-
28

1.1 First public release. Conference paper describing it.
1994-07-
08

2.1
Starting with Lua 2.1, Lua became freely available for all purposes,
including commercial uses. Journal paper describing it.

1995-02-
07

2.2 Long strings, the debug interface, better stack tracebacks
1995-11-
28

2.4 External luac compiler
1996-05-
14

2.5 Pattern matching and vararg functions.
1996-11-
19

1997-07-3.0 Introduced auxlib, a library for helping writing Lua libraries

https://riptutorial.com/ 2

https://i.stack.imgur.com/46fGZ.gif
https://www.lua.org/
https://www.lua.org/authors.html
http://www.puc-rio.br/
https://www.lua.org/lua-l.html
http://luajit.org/
https://www.lua.org/semish94.html
https://www.lua.org/spe.html

Version Notes
Release
Date

01

3.1 Anonymous functions and function closures via "upvalues".
1998-07-
11

3.2 Debug library and new table functions
1999-07-
08

3.2.2
2000-02-
22

4.0 Multiple states, "for" statements, API revamp.
2000-11-
06

4.0.1
2002-07-
04

5.0
Coroutines, metatables, full lexical scoping, tail calls, booleans move
to MIT license.

2003-04-
11

5.0.3
2006-06-
26

5.1
Module system revamp, incremental garbage collector, metatables
for all types, luaconf.h revamp, fully reentrant parser, variadic
arguments.

2006-02-
21

5.1.5
2012-02-
17

5.2 Emergency garbage collector, goto, finalizers for tables.
2011-12-
16

5.2.4
2015-03-
07

5.3 Basic UTF-8 support, bitwise ops, 32/64bit integers.
2015-01-
12

5.3.4 Latest version.
2017-01-
12

Examples

Installation

https://riptutorial.com/ 3

Binaries

Lua binaries are provided by most GNU/Linux distributions as a package.

For example, on Debian, Ubuntu, and their derivatives it can be acquired by executing this:

sudo apt-get install lua50

sudo apt-get install lua51

sudo apt-get install lua52

There are some semi-official builds provided for Windows, MacOS and some other operating
systems hosted at SourceForge.

Apple users can also install Lua easily using Homebrew:

brew install lua

(Currently Homebrew has 5.2.4, for 5.3 see Homebrew/versions.)

Source

Source is available at the official page. Acquisition of sources and build itself should be trivial. On
Linux systems the following should be sufficient:

$ wget http://lua.org/ftp/lua-5.3.3.tar.gz
$ echo "a0341bc3d1415b814cc738b2ec01ae56045d64ef ./lua-5.3.3.tar.gz" | sha1sum -c -
$ tar -xvf ./lua-5.3.3.tar.gz
$ make -C ./lua-5.3.3/ linux

In the example above we're basically downloading a source tarball from the official site, verifying
its checksum, and extracting and executing make. (Double check the checksum at the official page
.)

Note: you must specify what build target you want. In the example, we specified linux. Other
available build targets include solaris, aix, bsd, freebsd, macosx, mingw, etc. Check out
doc/readme.html, which is included in the source, for more details. (You can also find the latest
version of the README online.)

Modules

Standard libraries are limited to primitives:

coroutine - coroutine management functionality•
debug - debug hooks and tools•
io - basic IO primitives•
package - module management functionality•
string - string and Lua specific pattern matching functionality•

https://riptutorial.com/ 4

http://luabinaries.sourceforge.net/
http://brew.sh/
https://github.com/Homebrew/homebrew-versions
https://www.lua.org/download.html
https://www.lua.org/download.html
https://www.lua.org/download.html
https://www.lua.org/download.html

table - primitives for dealing with an essential but complex Lua type - tables•
os - basic OS operations•
utf8 - basic UTF-8 primitives (since Lua 5.3)•

All of those libraries can be disabled for a specific build or loaded at run-time.

Third-party Lua libraries and infrastructure for distributing modules is sparse, but improving.
Projects like LuaRocks, Lua Toolbox, and LuaDist are improving the situation. A lot of information
and many suggestions can be found on the older Lua Wiki, but be aware that some of this
information is quite old and out of date.

Comments

Single-line comments in Lua start with -- and continue until the end of line:

-- this is single line comment
-- need another line
-- huh?

Block comments start with --[[and end with]]:

--[[
 This is block comment.
 So, it can go on...
 and on...
 and on....
]]

Block comments use the same style of delimiters as long strings; any number of equal signs can
be added between the brackets to delimit a comment:

--[=[
 This is also a block comment
 We can include "]]" inside this comment
--]=]

--[==[
 This is also a block comment
 We can include "]=]" inside this comment
--]==]

A neat trick to comment out chunks of code is to surround it with --[[and --]]:

--[[
 print'Lua is lovely'
--]]

To reactivate the chunk, simply append a - to the comment opening sequence:

---[[
 print'Lua is lovely'

https://riptutorial.com/ 5

https://luarocks.org/
https://lua-toolbox.com/
http://luadist.org/
http://lua-users.org/wiki/

--]]

This way, the sequence -- in the first line starts a single-line comment, just like the last line, and
the print statement is not commented out.

Taking this a step further, two blocks of code can be setup in such a way that if the first block is
commented out the second won't be, and visa versa:

---[[
 print 'Lua is love'
--[=[]]
 print 'Lua is life'
--]=]

To active the second chunk while disabling the first chunk, delete the leading - on the first line:

--[[
 print 'Lua is love'
--[=[]]
 print 'Lua is life'
--]=]

Executing Lua programs

Usually, Lua is being shipped with two binaries:

lua - standalone interpreter and interactive shell•
luac - bytecode compiler•

Lets say we have an example program (bottles_of_mate.lua) like this:

local string = require "string"

function bottle_take(bottles_available)

 local count_str = "%d bottles of mate on the wall."
 local take_str = "Take one down, pass it around, " .. count_str
 local end_str = "Oh noes, " .. count_str
 local buy_str = "Get some from the store, " .. count_str
 local bottles_left = 0

 if bottles_available > 0 then
 print(string.format(count_str, bottles_available))
 bottles_left = bottles_available - 1
 print(string.format(take_str, bottles_left))
 else
 print(string.format(end_str, bottles_available))
 bottles_left = 99
 print(string.format(buy_str, bottles_left))
 end

 return bottles_left
end

https://riptutorial.com/ 6

local bottle_count = 99

while true do
 bottle_count = bottle_take(bottle_count)
end

The program itself can be ran by executing following on Your shell:

$ lua bottles_of_mate.lua

Output should look like this, running in the endless loop:

Get some from the store, 99 bottles of mate on the wall.
99 bottles of mate on the wall.
Take one down, pass it around, 98 bottles of mate on the wall.
98 bottles of mate on the wall.
Take one down, pass it around, 97 bottles of mate on the wall.
97 bottles of mate on the wall.
...
...
3 bottles of mate on the wall.
Take one down, pass it around, 2 bottles of mate on the wall.
2 bottles of mate on the wall.
Take one down, pass it around, 1 bottles of mate on the wall.
1 bottles of mate on the wall.
Take one down, pass it around, 0 bottles of mate on the wall.
Oh noes, 0 bottles of mate on the wall.
Get some from the store, 99 bottles of mate on the wall.
99 bottles of mate on the wall.
Take one down, pass it around, 98 bottles of mate on the wall.
...

You can compile the program into Lua's bytecode by executing following on Your shell:

$ luac bottles_of_mate.lua -o bottles_of_mate.luac

Also bytecode listing is available by executing following:

$ luac -l bottles_of_mate.lua

main <./bottles.lua:0,0> (13 instructions, 52 bytes at 0x101d530)
0+ params, 4 slots, 0 upvalues, 2 locals, 4 constants, 1 function
 1 [1] GETGLOBAL 0 -1 ; require
 2 [1] LOADK 1 -2 ; "string"
 3 [1] CALL 0 2 2
 4 [22] CLOSURE 1 0 ; 0x101d710
 5 [22] MOVE 0 0
 6 [3] SETGLOBAL 1 -3 ; bottle_take
 7 [24] LOADK 1 -4 ; 99
 8 [27] GETGLOBAL 2 -3 ; bottle_take
 9 [27] MOVE 3 1
 10 [27] CALL 2 2 2
 11 [27] MOVE 1 2
 12 [27] JMP -5 ; to 8
 13 [28] RETURN 0 1

https://riptutorial.com/ 7

function <./bottles.lua:3,22> (46 instructions, 184 bytes at 0x101d710)
1 param, 10 slots, 1 upvalue, 6 locals, 9 constants, 0 functions
 1 [5] LOADK 1 -1 ; "%d bottles of mate on the wall."
 2 [6] LOADK 2 -2 ; "Take one down, pass it around, "
 3 [6] MOVE 3 1
 4 [6] CONCAT 2 2 3
 5 [7] LOADK 3 -3 ; "Oh noes, "
 6 [7] MOVE 4 1
 7 [7] CONCAT 3 3 4
 8 [8] LOADK 4 -4 ; "Get some from the store, "
 9 [8] MOVE 5 1
 10 [8] CONCAT 4 4 5
 11 [9] LOADK 5 -5 ; 0
 12 [11] EQ 1 0 -5 ; - 0
 13 [11] JMP 16 ; to 30
 14 [12] GETGLOBAL 6 -6 ; print
 15 [12] GETUPVAL 7 0 ; string
 16 [12] GETTABLE 7 7 -7 ; "format"
 17 [12] MOVE 8 1
 18 [12] MOVE 9 0
 19 [12] CALL 7 3 0
 20 [12] CALL 6 0 1
 21 [13] SUB 5 0 -8 ; - 1
 22 [14] GETGLOBAL 6 -6 ; print
 23 [14] GETUPVAL 7 0 ; string
 24 [14] GETTABLE 7 7 -7 ; "format"
 25 [14] MOVE 8 2
 26 [14] MOVE 9 5
 27 [14] CALL 7 3 0
 28 [14] CALL 6 0 1
 29 [14] JMP 15 ; to 45
 30 [16] GETGLOBAL 6 -6 ; print
 31 [16] GETUPVAL 7 0 ; string
 32 [16] GETTABLE 7 7 -7 ; "format"
 33 [16] MOVE 8 3
 34 [16] MOVE 9 0
 35 [16] CALL 7 3 0
 36 [16] CALL 6 0 1
 37 [17] LOADK 5 -9 ; 99
 38 [18] GETGLOBAL 6 -6 ; print
 39 [18] GETUPVAL 7 0 ; string
 40 [18] GETTABLE 7 7 -7 ; "format"
 41 [18] MOVE 8 4
 42 [18] MOVE 9 5
 43 [18] CALL 7 3 0
 44 [18] CALL 6 0 1
 45 [21] RETURN 5 2
 46 [22] RETURN 0 1

Getting Started

variables

var = 50 -- a global variable
print(var) --> 50
do
 local var = 100 -- a local variable

https://riptutorial.com/ 8

 print(var) --> 100
end
print(var) --> 50
-- The global var (50) still exists
-- The local var (100) has gone out of scope and can't be accessed any longer.

types

num = 20 -- a number
num = 20.001 -- still a number
str = "zaldrizes buzdari iksos daor" -- a string
tab = {1, 2, 3} -- a table (these have their own category)
bool = true -- a boolean value
bool = false -- the only other boolean value
print(type(num)) --> 'number'
print(type(str)) --> 'string'
print(type(bool)) --> 'boolean'
type(type(num)) --> 'string'

-- Functions are a type too, and first-class values in Lua.
print(type(print)) --> prints 'function'
old_print = print
print = function (x) old_print "I'm ignoring the param you passed me!" end
old_print(type(print)) --> Still prints 'function' since it's still a function.
-- But we've (unhelpfully) redefined the behavior of print.
print("Hello, world!") --> prints "I'm ignoring the param you passed me!"

The special type nil

Another type in Lua is nil. The only value in the nil type is nil. nil exists to be different from all
other values in Lua. It is a kind of non-value value.

print(foo) -- This prints nil since there's nothing stored in the variable 'foo'.
foo = 20
print(foo) -- Now this prints 20 since we've assigned 'foo' a value of 20.

-- We can also use `nil` to undefine a variable
foo = nil -- Here we set 'foo' to nil so that it can be garbage-collected.

if nil then print "nil" end --> (prints nothing)
-- Only false and nil are considered false; every other value is true.
if 0 then print "0" end --> 0
if "" then print "Empty string!" --> Empty string!

expressions

a = 3
b = a + 20 a = 2 print(b, a) -- hard to read, can also be written as
b = a + 20; a = 2; print(a, b) -- easier to read, ; are optional though
true and true --> returns true
true and 20 --> 20
false and 20 --> false
false or 20 --> 20

https://riptutorial.com/ 9

true or 20 --> true
tab or {}
 --> returns tab if it is defined
 --> returns {} if tab is undefined
 -- This is useful when we don't know if a variable exists
tab = tab or {} -- tab stays unchanged if it exists; tab becomes {} if it was previously nil.

a, b = 20, 30 -- this also works
a, b = b, a -- switches values

Defining functions

function name(parameter)
 return parameter
end
print(name(20)) --> 20
-- see function category for more information
name = function(parameter) return parameter end -- Same as above

booleans

Only false and nil evaluate as false, everything else, including 0 and the empty string evaluate as
true.

garbage-collection

tab = {"lots", "of", "data"}
tab = nil; collectgarbage()
-- tab does no longer exist, and doesn't take up memory anymore.

tables

tab1 = {"a", "b", "c"}
tab2 = tab1
tab2[1] = "d"
print(tab1[1]) --> 'd' -- table values only store references.
--> assigning tables does not copy its content, only the reference.

tab2 = nil; collectgarbage()
print(tab1) --> (prints table address) -- tab1 still exists; it didn't get garbage-collected.

tab1 = nil; collectgarbage()
-- No more references. Now it should actually be gone from memory.

These are the basics, but there's a section about tables with more information.

conditions

if (condition) then

https://riptutorial.com/ 10

 -- do something
elseif (other_condition) then
 -- do something else
else
 -- do something
end

for loops

There are two types of for loop in Lua: a numeric for loop and a generic for loop.

A numeric for loop has the following form:

for a=1, 10, 2 do -- for a starting at 1, ending at 10, in steps of 2
 print(a) --> 1, 3, 5, 7, 9
end

The third expression in a numeric for loop is the step by which the loop will increment. This
makes it easy to do reverse loops:

 for a=10, 1, -1 do
 print(a) --> 10, 9, 8, 7, 6, etc.
 end

If the step expression is left out, Lua assumes a default step of 1.

 for a=1, 10 do
 print(a) --> 1, 2, 3, 4, 5, etc.
 end

Also note that the loop variable is local to the for loop. It will not exist after the loop is over.

•

Generic for loops work through all values that an iterator function returns:

for key, value in pairs({"some", "table"}) do
 print(key, value)
 --> 1 some
 --> 2 table
end

Lua provides several built in iterators (e.g., pairs, ipairs), and users can define their own
custom iterators as well to use with generic for loops.

•

do blocks

local a = 10
do
 print(a) --> 10
 local a = 20
 print(a) --> 20

https://riptutorial.com/ 11

end
print(a) --> 10

Some tricky things

Sometimes Lua doesn't behave the way one would think after reading the documentation. Some
of these cases are:

Nil and Nothing aren't the same (COMMON
PITFALL!)

As expected, table.insert(my_table, 20) adds the value 20 to the table, and table.insert(my_table,
5, 20) adds the value 20 at the 5th position. What does table.insert(my_table, 5, nil) do though?
One might expect it to treat nil as no argument at all, and insert the value 5 at the end of the table,
but it actually adds the value nil at the 5th position of the table. When is this a problem?

(function(tab, value, position)
 table.insert(tab, position or value, position and value)
end)({}, 20)
-- This ends up calling table.insert({}, 20, nil)
-- and this doesn't do what it should (insert 20 at the end)

A similar thing happens with tostring():

print (tostring(nil)) -- this prints "nil"
table.insert({}, 20) -- this returns nothing
-- (not nil, but actually nothing (yes, I know, in lua those two SHOULD
-- be the same thing, but they aren't))

-- wrong:
print (tostring(table.insert({}, 20)))
-- throws error because nothing ~= nil

--right:
local _tmp = table.insert({}, 20) -- after this _tmp contains nil
print(tostring(_tmp)) -- prints "nil" because suddenly nothing == nil

This may also lead to errors when using third party code. If, for example, the documentation of
some function states "returns donuts if lucky, nil otherwise", the implementation might looks
somewhat like this

function func(lucky)
 if lucky then
 return "donuts"
 end
end

this implementation might seem reasonable at first; it returns donuts when it has to, and when you
type result = func(false) result will contain the value nil.

https://riptutorial.com/ 12

However, if one were to write print(tostring(func(false))) lua would throw an error that looks
somewhat like this one stdin:1: bad argument #1 to 'tostring' (value expected)

Why is that? tostring clearly gets an argument, even though it's nil. Wrong. func returns nothing
at all, so tostring(func(false)) is the same as tostring() and NOT the same as tostring(nil).

Errors saying "value expected" are a strong indication that this might be the source of the problem.

Leaving gaps in arrays

This is a huge pitfall if you're new to lua, and there's a lot of information in the tables category

Hello World

This is hello world code:

print("Hello World!")

How it works? It's simple! Lua executes print() function and uses "Hello World" string as
argument.

Read Getting started with Lua online: https://riptutorial.com/lua/topic/659/getting-started-with-lua

https://riptutorial.com/ 13

http://www.riptutorial.com/lua/example/8360/avoiding-gaps-in-tables-used-as-arrays
http://www.riptutorial.com/lua/topic/676/tables
https://riptutorial.com/lua/topic/659/getting-started-with-lua

Chapter 2: Booleans in Lua

Remarks

Booleans, truth, and falsity are straightforward in Lua. To review:

There is a boolean type with exactly two values: true and false.1.
In a conditional context (if, elseif, while, until), a boolean is not required. Any expression
can be used.

2.

In a conditional context, false and nil count as false, and everything else counts as true.3.
Although 3 already implies this: if you're coming from other languages, remember that 0 and
the empty string count as true in conditional contexts in Lua.

4.

Examples

The boolean type

Booleans and other values

When dealing with lua it is important to differentiate between the boolean values true and false
and values that evaluate to true or false.

There are only two values in lua that evaluate to false: nil and false, while everything else,
including the numerical 0 evaluate to true.

Some examples of what this means:

if 0 then print("0 is true") end --> this will print "true"
if (2 == 3) then print("true") else print("false") end --> this prints "false"
if (2 == 3) == false then print("true") end --> this prints "true"
if (2 == 3) == nil then else print("false") end
--> prints false, because even if nil and false both evaluate to false,
--> they are still different things.

Logical Operations

Logical operators in lua don't necessarily return boolean values:

and will return the second value if the first value evaluates to true;

or returns the second value if the first value evaluates to false;

This makes it possible to simulate the ternary operator, just like in other languages:

https://riptutorial.com/ 14

local var = false and 20 or 30 --> returns 30
local var = true and 20 or 30 --> returns 20
-- in C: false ? 20 : 30

This can also be used to initialize tables if they don't exist

tab = tab or {} -- if tab already exists, nothing happens

or to avoid using if statements, making the code easier to read

print(debug and "there has been an error") -- prints "false" line if debug is false
debug and print("there has been an error") -- does nothing if debug is false
-- as you can see, the second way is preferable, because it does not output
-- anything if the condition is not met, but it is still possible.
-- also, note that the second expression returns false if debug is false,
-- and whatever print() returns if debug is true (in this case, print returns nil)

Checking if variables are defined

One can also easily check if a variable exists (if it is defined), since non-existant variables return
nil, which evaluates to false.

local tab_1, tab_2 = {}
if tab_1 then print("table 1 exists") end --> prints "table 1 exists"
if tab_2 then print("table 2 exists") end --> prints nothing

The only case where this does not apply is when a variable stores the value false, in which case it
technically exists but still evaluates to false. Because of this, it is a bad design to create functions
which return false and nil depending on the state or input. We can still check however whether
we have a nil or a false:

if nil == nil then print("A nil is present") else print("A nil is not present") end
if false == nil then print("A nil is present") else print("A nil is not present") end
-- The output of these calls are:
-- A nil is present!
-- A nil is not present

Conditional contexts

Conditional contexts in Lua (if, elseif, while, until) do not require a boolean. Like many
languages, any Lua value can appear in a condition. The rules for evaluation are simple:

false and nil count as false.1.

Everything else counts as true.

if 1 then
 print("Numbers work.")
end

2.

https://riptutorial.com/ 15

if 0 then
 print("Even 0 is true")
end

if "strings work" then
 print("Strings work.")
end
if "" then
 print("Even the empty string is true.")
end

Logical Operators

In Lua, booleans can be manipulated through logical operators. These operators include not, and,
and or.

In simple expressions, the results are fairly straightforward:

print(not true) --> false
print(not false) --> true
print(true or false) --> true
print(false and true) --> false

Order of Precedence

The order of precedence is similar to the math operators unary -, * and +:

not•
then and•
then or•

This can lead to complex expressions:

print(true and false or not false and not true)
print((true and false) or ((not false) and (not true)))
 --> these are equivalent, and both evaluate to false

Short-cut Evaluation

The operators and and or might only be evaluated using the first operand, provided the second is
unnecessary:

function a()
 print("a() was called")
 return true
end

function b()
 print("b() was called")

https://riptutorial.com/ 16

 return false
end

print(a() or b())
 --> a() was called
 --> true
 -- nothing else
print(b() and a())
 --> b() was called
 --> false
 -- nothing else
print(a() and b())
 --> a() was called
 --> b() was called
 --> false

Idiomatic conditional operator

Due to the precedence of the logical operators, the ability for short-cut evaluation and the
evaluation of non-false and non-nil values as true, an idiomatic conditional operator is available
in Lua:

function a()
 print("a() was called")
 return false
end
function b()
 print("b() was called")
 return true
end
function c()
 print("c() was called")
 return 7
end

print(a() and b() or c())
 --> a() was called
 --> c() was called
 --> 7

print(b() and c() or a())
 --> b() was called
 --> c() was called
 --> 7

Also, due to the nature of the x and a or b structure, a will never be returned if it evaluates to false,
this conditional will then always return b no matter what x is.

print(true and false or 1) -- outputs 1

Truth tables

Logical operators in Lua don't "return" boolean, but one of their arguments. Using nil for false and

https://riptutorial.com/ 17

https://en.wikipedia.org/wiki/%3F:

numbers for true, here's how they behave.

print(nil and nil) -- nil
print(nil and 2) -- nil
print(1 and nil) -- nil
print(1 and 2) -- 2

print(nil or nil) -- nil
print(nil or 2) -- 2
print(1 or nil) -- 1
print(1 or 2) -- 1

As you can see, Lua will always return the first value that makes the check fail or succeed. Here's
the truth tables showing that.

 x | y || and x | y || or
------------------ ------------------
false|false|| x false|false|| y
false|true || x false|true || y
true |false|| y true |false|| x
true |true || y true |true || x

For those who need it, here's two function representing these logical operators.

function exampleAnd(value1, value2)
 if value1 then
 return value2
 end
 return value1
end

function exampleOr(value1, value2)
 if value1 then
 return value1
 end
 return value2
end

Emulating Ternary Operator with 'and' 'or' logical operators.

In lua, the logical operators and and or returns one of the operands as the result instead of a
boolean result. As a consequence, this mechanism can be exploited to emulate the behavior of
the ternary operator despite lua not having a 'real' ternary operator in the language.

Syntax

condition and truthy_expr or falsey_expr

Use in variable assignment/initialization

https://riptutorial.com/ 18

local drink = (fruit == "apple") and "apple juice" or "water"

Use in table constructor

local menu =
{
 meal = vegan and "carrot" or "steak",
 drink = vegan and "tea" or "chicken soup"
}

Use as function argument

print(age > 18 and "beer" or "fruit punch")

Use in return statement

function get_gradestring(student)
 return student.grade > 60 and "pass" or "fail"
end

Caveat

There are situations where this mechanism doesn't have the desired behavior. Consider this case

local var = true and false or "should not happen"

In a 'real' ternary operator, the expected value of var is false. In lua, however, the and evaluation
'falls through' because the second operand is falsey. As a result var ends up with should not
happen instead.

Two possible workarounds to this problem, refactor this expression so the middle operand isn't
falsey. eg.

local var = not true and "should not happen" or false

or alternatively, use the classical if then else construct.

Read Booleans in Lua online: https://riptutorial.com/lua/topic/3101/booleans-in-lua

https://riptutorial.com/ 19

https://riptutorial.com/lua/topic/3101/booleans-in-lua

Chapter 3: Coroutines

Syntax

coroutine.create(function) returns a coroutine (type(coroutine) == 'thread') containing the
function.

•

coroutine.resume(co, ...) resume, or start the coroutine. Any additional arguments given to
resume are returned from the coroutine.yield() that previously paused the coroutine. If the
coroutine had not been started the additional arguments become the arguments of the
function.

•

coroutine.yield(...) yields the currently running coroutine. Execution picks back up after the
call to coroutine.resume() that started that coroutine. Any arguments given to yield are
returned from the corresponding coroutine.resume() that started the coroutine.

•

coroutine.status(co) returns the status of the coroutine, which can be :

"dead" : the function in the coroutine has reached it's end and the coroutine cannot be
resumed anymore

○

"running" : the coroutine has been resumed and is running○

"normal" : the coroutine has resumed another coroutine○

"suspended" : the coroutine has yielded, and is waiting to be resumed○

•

coroutine.wrap(function) returns a function that when called resumes the coroutine that
would have been created by coroutine.create(function).

•

Remarks

The coroutine system has been implemented in lua to emulate multithreading existing in other
languages. It works by switching at extremely high speed between different functions so that the
human user think they are executed at the same time.

Examples

Create and use a coroutine

All functions to interact with coroutines are avaliable in the coroutine table. A new coroutine is
created by using the coroutine.create function with a single argument: a function with the code to
be executed:

thread1 = coroutine.create(function()
 print("honk")
 end)

print(thread1)

https://riptutorial.com/ 20

-->> thread: 6b028b8c

A coroutine object returns value of type thread, representing a new coroutine. When a new
coroutine is created, its initial state is suspended:

print(coroutine.status(thread1))
-->> suspended

To resume or start a coroutine, the function coroutine.resume is used, the first argument given is
the thread object:

coroutine.resume(thread1)
-->> honk

Now the coroutine executes the code and terminates, changing its state to dead, wich cannot be
resumed.

print(coroutine.status(thread1))
-->> dead

Coroutines can suspend its execution and resume it later thanks to the coroutine.yield function:

thread2 = coroutine.create(function()
 for n = 1, 5 do
 print("honk "..n)
 coroutine.yield()
 end
 end)

As you can see, coroutine.yield() is present inside the for loop, now when we resume the
coroutine, it will execute the code until it reachs a coroutine.yield:

coroutine.resume(thread2)
-->> honk 1
coroutine.resume(thread2)
-->> honk 2

After finishing the loop, the thread status becomes dead and cannot be resumed. Coroutines also
allows the exchange between data:

thread3 = coroutine.create(function(complement)
 print("honk "..complement)
 coroutine.yield()
 print("honk again "..complement)
end)
coroutine.resume(thread3, "stackoverflow")
-->> honk stackoverflow

If the coroutine is executed again with no extra arguments, the complement will still the argument
from the first resume, in this case "stackoverflow":

https://riptutorial.com/ 21

coroutine.resume(thread3)
-->> honk again stackoverflow

Finally, when a coroutine ends, any values returned by its function go to the corresponding
resume:

thread4 = coroutine.create(function(a, b)
 local c = a+b
 coroutine.yield()
 return c
end)
coroutine.resume(thread4, 1, 2)
print(coroutine.resume(thread4))
-->> true, 3

Coroutines are used in this function to pass values back to a calling thread from deep within a
recursive call.

local function Combinations(l, r)
 local ll = #l
 r = r or ll
 local sel = {}
 local function rhelper(depth, last)
 depth = depth or 1
 last = last or 1
 if depth > r then
 coroutine.yield(sel)
 else
 for i = last, ll - (r - depth) do
 sel[depth] = l[i]
 rhelper(depth+1, i+1)
 end
 end
 end
 return coroutine.wrap(rhelper)
end

for v in Combinations({1, 2, 3}, 2) do
 print("{"..table.concat(v, ", ").."}")
end
--> {1, 2}
--> {1, 3}
--> {2, 3}

Coroutines can also be used for lazy evaluation.

-- slices a generator 'c' taking every 'step'th output from the generator
-- starting at the 'start'th output to the 'stop'th output
function slice(c, start, step, stop)
 local _
 return coroutine.wrap(function()
 for i = 1, start-1 do
 _ = c()
 end
 for i = start, stop do
 if (i - start) % step == 0 then
 coroutine.yield(c())

https://riptutorial.com/ 22

 else
 _ = c()
 end
 end
 end)
end

local alphabet = {}
for c = string.byte('a'), string.byte('z') do
 alphabet[#alphabet+1] = string.char(c)
end
-- only yields combinations 100 through 102
-- requires evaluating the first 100 combinations, but not the next 5311633
local s = slice(Combinations(alphabet, 10), 100, 1, 102)
for i in s do
 print(table.concat(i))
end
--> abcdefghpr
--> abcdefghps
--> abcdefghpt

Coroutines can be used for piping constructs as described in Programming In Lua. The author of
PiL, Roberto Ierusalimschy, has also published a paper on using coroutines to implement more
advanced and general flow control mechanics like continuations.

Read Coroutines online: https://riptutorial.com/lua/topic/3410/coroutines

https://riptutorial.com/ 23

https://www.lua.org/pil/9.2.html
http://www.inf.puc-rio.br/~roberto/docs/MCC15-04.pdf
https://riptutorial.com/lua/topic/3410/coroutines

Chapter 4: Error Handling

Examples

Using pcall

pcall stands for "protected call". It is used to add error handling to functions. pcall works similar as
try-catch in other languages. The advantage of pcall is that the whole execution of the script is
not being interrupted if errors occur in functions called with pcall. If an error inside a function
called with pcall occurs an error is thrown and the rest of the code continues execution.

Syntax:

pcall(f , arg1,···)

Return Values:

Returns two values

status (boolean)1.

Returns true if the function was executed with no errors.•
Returns false if an error occured inside the function.•

return value of the function or error message if an error occurred inside the function block.2.

pcall may be used for various cases, however a common one is to catch errors from the function
which has been given to your function. For instance, lets say we have this function:

local function executeFunction(funcArg, times) then
 for i = 1, times do
 local ran, errorMsg = pcall(funcArg)
 if not ran then
 error("Function errored on run " .. tostring(i) .. "\n" .. errorMsg)
 end
 end
end

When the given function errors on run 3, the error message will be clear to the user that it is not
coming from your function, but from the function which was given to our function. Also, with this in
mind a fancy BSoD can be made notifying the user. However, that is up to the application which
implements this function, as an API most likely won't be doing that.

Example A - Execution without pcall

function square(a)

https://riptutorial.com/ 24

 return a * "a" --This will stop the execution of the code and throws an error, because of
the attempt to perform arithmetic on a string value
end

square(10);

print ("Hello World") -- This is not being executed because the script was interrupted due
to the error

Example B - Execution with pcall

function square(a)
 return a * "a"
end

local status, retval = pcall(square,10);

print ("Status: ", status) -- will print "false" because an error was thrown.
print ("Return Value: ", retval) -- will print "input:2: attempt to perform arithmetic on a
string value"
print ("Hello World") -- Prints "Hello World"

Example - Execution of flawless code

function square(a)
 return a * a
end

local status, retval = pcall(square,10);

print ("Status: ", status) -- will print "true" because no errors were thrown
print ("Return Value: ", retval) -- will print "100"
print ("Hello World") -- Prints "Hello World"

Handling errors in Lua

Assuming we have the following function:

function foo(tab)
 return tab.a
end -- Script execution errors out w/ a stacktrace when tab is not a table

Let's improve it a bit

function foo(tab)
 if type(tab) ~= "table" then
 error("Argument 1 is not a table!", 2)
 end
 return tab.a
end -- This gives us more information, but script will still error out

If we don't want a function to crash a program even in case of an error, it is standard in lua to do
the following:

https://riptutorial.com/ 25

function foo(tab)
 if type(tab) ~= "table" then return nil, "Argument 1 is not a table!" end
 return tab.a
end -- This never crashes the program, but simply returns nil and an error message

Now we have a function that behaves like that, we can do things like this:

if foo(20) then print(foo(20)) end -- prints nothing
result, error = foo(20)
if result then print(result) else log(error) end

And if we DO want the program to crash if something goes wrong, we can still do this:

result, error = foo(20)
if not result then error(error) end

Fortunately we don't even have to write all that every time; lua has a function that does exactly this

result = assert(foo(20))

Read Error Handling online: https://riptutorial.com/lua/topic/4561/error-handling

https://riptutorial.com/ 26

https://riptutorial.com/lua/topic/4561/error-handling

Chapter 5: Functions

Syntax

funcname = function(paramA, paramB, ...) body; return exprlist end -- a simple function•
function funcname(paramA, paramB, ...) body; return exprlist end -- shorthand for above•
local funcname = function(paramA, paramB, ...) body; return exprlist end -- a lambda•
local funcname; funcname = function(paramA, paramB, ...) body; return exprlist end --
lambda that can do recursive calls

•

local function funcname(paramA, paramB, ...) body; return exprlist end -- shorthand for
above

•

funcname(paramA, paramB, ...) -- call a function•
local var = var or "Default" -- a default parameter•
return nil, "error messages" -- standard way to abort with an error•

Remarks

Functions are usually set with function a(b,c) ... end and rarely with setting a variable to an
anonymous function (a = function(a,b) ... end). The opposite is true when passing functions as
parameters, anonymous functions are mostly used, and normal functions aren't used as often.

Examples

Defining a function

function add(a, b)
 return a + b
end
-- creates a function called add, which returns the sum of it's two arguments

Let's look at the syntax. First, we see a function keyword. Well, that's pretty descriptive. Next we
see the add identifier; the name. We then see the arguments (a, b) these can be anything, and
they are local. Only inside the function body can we access them. Let's skip to the end, we see...
well, the end! And all that's in between is the function body; the code that's ran when it is called.
The return keyword is what makes the function actually give some useful output. Without it, the
function returns nothing, which is equivalent to returning nil. This can of course be useful for things
that interact with IO, for example:

function printHello(name)
 print("Hello, " .. name .. "!");
end

In that function, we did not use the return statement.

Functions can also return values conditionally, meaning that a function has the choice of returning

https://riptutorial.com/ 27

nothing (nil) or a value. This is demonstrated in the following example.

function add(a, b)
 if (a + b <= 100) then
 return a + b -- Returns a value
 else
 print("This function doesn't return values over 100!") -- Returns nil
 end
end

It is also possible for a function to return multiple values seperated by commas, as shown:

function doOperations(a, b)
 return a+b, a-b, a*b
end

added, subbed, multiplied = doOperations(4,2)

Functions can also be declared local

do
 local function add(a, b) return a+b end
 print(add(1,2)) --> prints 3
end
print(add(2, 2)) --> exits with error, because 'add' is not defined here

They can be saved in tables too:

tab = {function(a,b) return a+b end}
(tab[1])(1, 2) --> returns 3

Calling a function.

Functions are only useful if we can call them. To call a function the following syntax is used:

print("Hello, World!")

We're calling the print function. Using the argument "Hello, World". As is obvious, this will print
Hello, World to the output stream. The returned value is accessible, just like any other variable
would be.

local added = add(10, 50) -- 60

Variables are also accepted in a function's parameters.

local a = 10
local b = 60

local c = add(a, b)

print(c)

https://riptutorial.com/ 28

Functions expecting a table or a string can be called with a neat syntactic sugar: parentheses
surrounding the call can be omitted.

print"Hello, world!"
for k, v in pairs{"Hello, world!"} do print(k, v) end

Anonymous functions

Creating anonymous functions

Anonymous functions are just like regular Lua functions, except they do not have a name.

doThrice(function()
 print("Hello!")
end)

As you can see, the function is not assigned to any name like print or add. To create an
anonymous function, all you have to do is omit the name. These functions can also take
arguments.

Understanding the syntactic sugar

It is important to understand that the following code

function double(x)
 return x * 2
end

is actually just a shorthand for

double = function(x)
 return x * 2
end

However, the above function is not anonymous as the function is directly assigned to a variable!

Functions are first class values

This means that a function is a value with the same rights as conventional values like numbers
and strings. Functions can be stored in variables, in tables, can be passed as arguments, and can
be returned by other functions.

To demonstrate this, we'll also create a "half" function:

half = function(x)
 return x / 2
end

https://riptutorial.com/ 29

So, now we have two variables, half and double, both containing a function as a value. What if we
wanted to create a function that would feed the number 4 into two given functions, and compute
the sum of both results?

We'll want to call this function like sumOfTwoFunctions(double, half, 4). This will feed the double
function, the half function, and the integer 4 into our own function.

function sumOfTwoFunctions(firstFunction, secondFunction, input)
 return firstFunction(input) + secondFunction(input)
end

The above sumOfTwoFunctions function shows how functions can be passed around within
arguments, and accessed by another name.

Default parameters

function sayHello(name)
 print("Hello, " .. name .. "!")
end

That function is a simple function, and it works well. But what would happen if we just called
sayHello()?

stdin:2: attempt to concatenate local 'name' (a nil value)
stack traceback:
 stdin:2: in function 'sayHello'
 stdin:1: in main chunk
 [C]: in ?

That's not exactly great. There are two ways of fixing this:

You immediately return from the function:

function sayHello(name)
 if not (type(name) == "string") then
 return nil, "argument #1: expected string, got " .. type(name)
 end -- Bail out if there's no name.
 -- in lua it is a convention to return nil followed by an error message on error

 print("Hello, " .. name .. "!") -- Normal behavior if name exists.
end

1.

You set a default parameter.

To do this, simply use this simple expression

2.

function sayHello(name)
 name = name or "Jack" -- Jack is the default,
 -- but if the parameter name is given,
 -- name will be used instead
 print("Hello, " .. name .. "!")
end

https://riptutorial.com/ 30

The idiom name = name or "Jack" works because or in Lua short circuits. If the item on the left side
of an or is anything other than nil or false, then the right side is never evaluated. On the other
hand, if sayHello is called with no parameter, then name will be nil, and so the string "Jack" will be
assigned to name. (Note that this idiom, therefore, will not work if the boolean false is a reasonable
value for the parameter in question.)

Multiple results

Functions in Lua can return multiple results.

For example:

function triple(x)
 return x, x, x
end

When calling a function, to save these values, you must use the following syntax:

local a, b, c = triple(5)

Which will result in a = b = c = 5 in this case. It is also possible to ignore returned values by using
the throwaway variable _ in the desired place in a list of variables:

local a, _, c = triple(5)

In this case, the second returned value will be ignored. It's also possible to ignore return values by
not assigning them to any variable:

local a = triple(5)

Variable a will be assigned the first return value and the remaining two will be discarded.

When a variable amount of results are returned by a function, one can store them all in a table, by
executing the function inside it:

local results = {triple(5)}

This way, one can iterate over the results table to see what the function returned.

Note

This can be a surprise in some cases, for example:

local t = {}
table.insert(t, string.gsub(" hi", "^%s*(.*)$", "%1")) --> bad argument #2 to 'insert'
(number expected, got string)

This happens because string.gsub returns 2 values: the given string, with occurrences of the

https://riptutorial.com/ 31

pattern replaced, and the total number of matches that occurred.

To solve this, either use an intermediate variable or put () around the call, like so:

table.insert(t, (string.gsub(" hi", "^%s*(.*)$", "%1"))) --> works. t = {"hi"}

This grabs only the first result of the call, and ignores the rest.

Variable number of arguments

Variadic Arguments

Named Arguments

local function A(name, age, hobby)
 print(name .. "is " .. age .. " years old and likes " .. hobby)
end
A("john", "eating", 23) --> prints 'john is eating years old and likes 23'
-- oops, seems we got the order of the arguments wrong...
-- this happens a lot, specially with long functions that take a lot of arguments
-- and where the order doesn't follow any particular logic

local function B(tab)
 print(tab.name .. "is " .. tab.age .. " years old and likes " .. tab.hobby)
end
local john = {name="john", hobby="golf", age="over 9000", comment="plays too much golf"}
B(john)
--> will print 'John is over 9000 years old and likes golf'
-- I also added a 'comment' argument just to show that excess arguments are ignored by the
function

B({name = "tim"}) -- can also be written as
B{name = "tim"} -- to avoid cluttering the code
--> both will print 'tim is nil years old and likes nil'
-- remember to check for missing arguments and deal with them

function C(tab)
 if not tab.age then return nil, "age not defined" end
 tab.hobby = tab.hobby or "nothing"
 -- print stuff
end

-- note that if we later decide to do a 'person' class
-- we just need to make sure that this class has the three fields
-- age, hobby and name, and it will be compatible with these functions

-- example:
local john = ClassPerson.new("John", 20, "golf") -- some sort of constructor
john.address = "some place" -- modify the object
john:do_something("information") -- call some function of the object
C(john) -- this works because objects are *usually* implemented as tables

Checking argument types

Some functions only work on a certain type of argument:

https://riptutorial.com/ 32

http://www.riptutorial.com/lua/topic/4475/variadic-arguments

function foo(tab)
 return tab.bar
end
--> returns nil if tab has no field bar, which is acceptable
--> returns 'attempt to index a number value' if tab is, for example, 3
--> which is unacceptable

function kungfoo(tab)
 if type(tab) ~= "table" then
 return nil, "take your useless " .. type(tab) .." somewhere else!"
 end

 return tab.bar
end

this has several implications:

print(kungfoo(20)) --> prints 'nil, take your useless number somewhere else!'

if kungfoo(20) then print "good" else print "bad" end --> prints bad

foo = kungfoo(20) or "bar" --> sets foo to "bar"

now we can call the function with whatever parameter we want, and it won't crash the program.

-- if we actually WANT to abort execution on error, we can still do
result = assert(kungfoo({bar=20})) --> this will return 20
result = assert(kungfoo(20)) --> this will throw an error

So, what if we have a function that does something with an instance of a specific class? This is
difficult, because classes and objects are usually tables, so the type function will return 'table'.

local Class = {data="important"}
local meta = {__index=Class}

function Class.new()
 return setmetatable({}, meta)
end
-- this is just a very basic implementation of an object class in lua

object = Class.new()
fake = {}

print(type(object)), print(type(fake)) --> prints 'table' twice

Solution: compare the metatables

-- continuation of previous code snippet
Class.is_instance(tab)
 return getmetatable(tab) == meta
end

Class.is_instance(object) --> returns true
Class.is_instance(fake) --> returns false
Class.is_instance(Class) --> returns false
Class.is_instance("a string") --> returns false, doesn't crash the program

https://riptutorial.com/ 33

Class.is_instance(nil) --> also returns false, doesn't crash either

Closures

do
 local tab = {1, 2, 3}
 function closure()
 for key, value in ipairs(tab) do
 print(key, "I can still see you")
 end
 end
 closure()
 --> 1 I can still see you
 --> 2 I can still see you
 --> 3 I can still see you
end

print(tab) --> nil
-- tab is out of scope

closure()
--> 1 I can still see you
--> 2 I can still see you
--> 3 I can still see you
-- the function can still see tab

typical usage example

function new_adder(number)
 return function(input)
 return input + number
 end
end
add_3 = new_adder(3)
print(add_3(2)) --> prints 5

more advanced usage example

function base64.newDecoder(str) -- Decoder factory
 if #str ~= 64 then return nil, "string must be 64 characters long!" end

 local tab = {}
 local counter = 0
 for c in str:gmatch"." do
 tab[string.byte(c)] = counter
 counter = counter + 1
 end

 return function(str)
 local result = ""

 for abcd in str:gmatch"..?.?.?" do
 local a, b, c, d = string.byte(abcd,1,-1)
 a, b, c, d = tab[a], tab[b] or 0, tab[c] or 0, tab[d] or 0

https://riptutorial.com/ 34

 result = result .. (
 string.char(((a<<2)+(b>>4))%256) ..
 string.char(((b<<4)+(c>>2))%256) ..
 string.char(((c<<6)+d)%256)
)
 end
 return result
 end
end

Read Functions online: https://riptutorial.com/lua/topic/1250/functions

https://riptutorial.com/ 35

https://riptutorial.com/lua/topic/1250/functions

Chapter 6: Garbage collector and weak tables

Syntax

collectgarbage(gcrule [, gcdata]) -- collect garbage using gcrule1.
setmetatable(tab, {__mode = weakmode}) -- set weak mode of tab to weakmode2.

Parameters

parameter details

gcrule &
gcdata

Action to gc (garbage collector): "stop" (stop collecting), "restart" (start
collecting again), "collect" or nil (collect all garbage), "step" (do one collecting
step), "count" (return count of used memory in KBs), "setpause" and data is
number from 0% to 100% (set pause parameter of gc), "setstepmul" and data is
number from 0% to 100 (set "stepmul" for gc).

weakmode
Type of weak table: "k" (only weak keys), "v" (only weak values), "vk" (weak
keys and values)

Examples

Weak tables

local t1, t2, t3, t4 = {}, {}, {}, {} -- Create 4 tables
local maintab = {t1, t2} -- Regular table, strong references to t1 and t2
local weaktab = setmetatable({t1, t2, t3, t4}, {__mode = 'v'}) -- table with weak references.

t1, t2, t3, t4 = nil, nil, nil, nil -- No more "strong" references to t3 and t4
print(#maintab, #weaktab) --> 2 4

collectgarbage() -- Destroy t3 and t4 and delete weak links to them.
print(#maintab, #weaktab) --> 2 2

Read Garbage collector and weak tables online: https://riptutorial.com/lua/topic/5769/garbage-
collector-and-weak-tables

https://riptutorial.com/ 36

https://riptutorial.com/lua/topic/5769/garbage-collector-and-weak-tables
https://riptutorial.com/lua/topic/5769/garbage-collector-and-weak-tables

Chapter 7: Introduction to Lua C API

Syntax

lua_State *L = lua_open(); // Create a new VM state; Lua 5.0•
lua_State *L = luaL_newstate(); // Create a new VM state; Lua 5.1+•
int luaL_dofile(lua_State *L, const char *filename); // Run a lua script with the given filename
using the specified lua_State

•

void luaL_openlibs(lua_State *L); // Load all standard libraries into the specified lua_State•
void lua_close(lua_State *L); // Close VM state and release any resources inside•
void lua_call(lua_State *L, int nargs, int nresults); // Call the luavalue at index -(nargs + 1)•

Remarks

Lua as well provides a proper C API to it's Virtual Machine. In contrary to VM itself, C API interface
is stack based. So, most of the functions intended to be used with data is either adding some stuff
on-top of virtual stack, or removing from it. Also, all the API calls must be used carefully within
stack and it's limitations.

In general, anything available on Lua language can be done using it's C API. Also, there is some
addition functionality like direct access to internal registry, change behavior of standard memory
allocator or garbage collector.

You can compile provided Lua C API examples by executing following on Your terminal:

$ gcc -Wall ./example.c -llua -ldl -lm

Examples

Creating Lua Virtual Machine

#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

int main(void)
{

5.1

 /* Start by creating a new VM state */
 lua_State *L = luaL_newstate();

 /* Load standard Lua libraries: */
 luaL_openlibs(L);

5.1

https://riptutorial.com/ 37

 /* For older version of Lua use lua_open instead */
 lua_State *L = lua_open();

 /* Load standard libraries*/
 luaopen_base(L);
 luaopen_io(L);
 luaopen_math(L);
 luaopen_string(L);
 luaopen_table(L);

 /* do stuff with Lua VM. In this case just load and execute a file: */
 luaL_dofile(L, "some_input_file.lua");

 /* done? Close it then and exit. */
 lua_close(L);

 return EXIT_SUCCESS;
}

Calling Lua functions

#include <stdlib.h>

#include <lauxlib.h>
#include <lua.h>
#include <lualib.h>

int main(void)
{
 lua_State *lvm_hnd = lua_open();
 luaL_openlibs(lvm_hnd);

 /* Load a standard Lua function from global table: */
 lua_getglobal(lvm_hnd, "print");

 /* Push an argument onto Lua C API stack: */
 lua_pushstring(lvm_hnd, "Hello C API!");

 /* Call Lua function with 1 argument and 0 results: */
 lua_call(lvm_hnd, 1, 0);

 lua_close(lvm_hnd);

 return EXIT_SUCCESS;
 }

In the example above we're doing these things:

creating and setting up Lua VM as shown on the first example•
getting and pushing a Lua function from global Lua table onto virtual stack•
pushing string "Hello C API" as an input argument onto the virtual stack•
instructing VM to call a function with one argument which is already on the stack•
closing and cleaning up•

NOTE:

https://riptutorial.com/ 38

Bare in mind, that lua_call() pops the function and it's arguments from the stack leaving only the
result.

Also, it would be safer using Lua protected call - lua_pcall() instead.

Embedded Lua Interpreter with Custom API and Lua Customization

Demonstrate how to embed a lua interpreter in C code, expose a C-defined function to Lua script,
evaluate a Lua script, call a C-defined function from Lua, and call a Lua-defined function from C
(the host).

In this example, we want the mood to be set by a Lua script. Here is mood.lua:

-- Get version information from host
major, minor, build = hostgetversion()
print("The host version is ", major, minor, build)
print("The Lua interpreter version is ", _VERSION)

-- Define a function for host to call
function mood(b)

 -- return a mood conditional on parameter
 if (b and major > 0) then
 return 'mood-happy'
 elseif (major == 0) then
 return 'mood-confused'
 else
 return 'mood-sad'
 end
end

Notice, mood() is not called in the script. It is just defined for the host application to call. Also notice
that the script calls a function called hostgetversion() that is not defined in the script.

Next, we define a host application that uses 'mood.lua'. Here is the 'hostlua.c':

#include <stdio.h>
#include <lua.h>
#include <lualib.h>
#include <lauxlib.h>

/*
 * define a function that returns version information to lua scripts
 */
static int hostgetversion(lua_State *l)
{
 /* Push the return values */
 lua_pushnumber(l, 0);
 lua_pushnumber(l, 99);
 lua_pushnumber(l, 32);

 /* Return the count of return values */
 return 3;
}

int main (void)

https://riptutorial.com/ 39

{
 lua_State *l = luaL_newstate();
 luaL_openlibs(l);

 /* register host API for script */
 lua_register(l, "hostgetversion", hostgetversion);

 /* load script */
 luaL_dofile(l, "mood.lua");

 /* call mood() provided by script */
 lua_getglobal(l, "mood");
 lua_pushboolean(l, 1);
 lua_call(l, 1, 1);

 /* print the mood */
 printf("The mood is %s\n", lua_tostring(l, -1));
 lua_pop(l, 1);

 lua_close(l);
 return 0;
}

And here is the output:

The host version is 0 99 32
Lua interpreter version is Lua 5.2
The mood is mood-confused

Even after we have compile 'hostlua.c', we are still free to modify 'mood.lua' to change the output
of our program!

Table manipulation

In order to access or alter an index on a table, you need to somehow place the table into the
stack.
Let's assume, for this examples that your table is a global variable named tbl.

Getting the content at a particular index:

int getkey_index(lua_State *L)
{
 lua_getglobal(L, "tbl"); // this put the table in the stack
 lua_pushstring(L, "index"); // push the key to access
 lua_gettable(L, -2); // retrieve the corresponding value; eg. tbl["index"]

 return 1; // return value to caller
}

As we have seen, all you have to do is to push the table into the stack, push the index and call
lua_gettable. the -2 argument means that the table is the second element from the top of the
stack.
lua_gettable triggers metamethods. If you do not want to trigger metamethods, use lua_rawget

https://riptutorial.com/ 40

instead. It uses the same arguments.

Setting the content at a particular index:

int setkey_index(lua_State *L)
{
 // setup the stack
 lua_getglobal(L, "tbl");
 lua_pushstring(L, "index");
 lua_pushstring(L, "value");
 // finally assign the value to table; eg. tbl.index = "value"
 lua_settable(L, -3);

 return 0;
}

The same drill as getting the content. You have to push the stack, push the index and then push
the value into the stack. after that, you call lua_settable. the -3 argument is the position of the table
in the stack. To avoid triggering metamethods, use lua_rawset instead of lua_settable. It uses the
same arguments.

Transferring the content from a table to another:

int copy_tableindex(lua_State *L)
{
 lua_getglobal(L, "tbl1"); // (tbl1)
 lua_getglobal(L, "tbl2");// (tbl1)(tbl2)
 lua_pushstring(L, "index1");// (tbl1)(tbl2)("index1")
 lua_gettable(L, -3);// (tbl1)(tbl2)(tbl1.index1)
 lua_pushstring(L, "index2");// (tbl1)(tbl2)(tbl1.index1)("index2")
 lua_pushvalue(L, -2); // (tbl1)(tbl2)(tbl1.index1)("index2")(tbl1.index1)
 lua_settable(L, -4);// (tbl1)(tbl2)(tbl1.index1)
 lua_pop(L, 1);

 return 0;
}

Now we are putting together all we learned here. I put the stack content on the comments so you
do not get lost.

We put both tables into the stack, push the index of table 1 into the stack, and get the value at
tbl1.index1. Note the -3 argument on gettable. I am looking at the first table (third from the top)
and not the second. Then we push the index of the second table, copy the tbl1.index1 to the top of
the stack and then call lua_settable, on the 4th item from the top.

For housecleaning sake, I have purged the top element, so only the two tables remains at the
stack.

Read Introduction to Lua C API online: https://riptutorial.com/lua/topic/671/introduction-to-lua-c-api

https://riptutorial.com/ 41

https://riptutorial.com/lua/topic/671/introduction-to-lua-c-api

Chapter 8: Iterators

Examples

Generic For Loop

Iterators utilize a form of the for loop known as the generic for loop.

The generic form of the for loop uses three parameters:

An iterator function that gets called when the next value is needed. It receives both the
invariant state and control variable as parameters. Returning nil signals termination.

1.

The invariant state is a value that doesn't change during the iteration. It is typically the
subject of the iterator, such as a table, string, or userdata.

2.

The control variable represents an initial value for iteration.3.

We can write a for loop to iterate all key-value pairs in a table using the next function.

local t = {a=1, b=2, c=3, d=4, e=5}

-- next is the iterator function
-- t is the invariant state
-- nil is the control variable (calling next with a nil gets the first key)
for key, value in next, t, nil do
 -- key is the new value for the control variable
 print(key, value)
 -- Lua calls: next(t, key)
end

Standard Iterators

The Lua standard library provides two iterator functions that can be used with a for loop to
traverse key-value pairs within tables.

To iterate over a sequence table we can use the library function ipairs.

for index, value in ipairs {'a', 'b', 'c', 'd', 'e'} do
 print(index, value) --> 1 a, 2 b, 3 c, 4 d, 5 e
end

To iterator over all keys and values in any table we can use the library function pairs.

for key, value in pairs {a=1, b=2, c=3, d=4, e=5} do
 print(key, value) --> e 5, c 3, a 1, b 2, d 4 (order not specified)
end

Stateless Iterators

https://riptutorial.com/ 42

http://www.lua.org/manual/5.3/manual.html#3.3.5
http://www.lua.org/manual/5.3/manual.html#pdf-next
http://www.lua.org/manual/5.3/manual.html#pdf-ipairs
http://www.lua.org/manual/5.3/manual.html#pdf-pairs

Both pairs and ipairs represent stateless iterators. A stateless iterator uses only the generic for
loop's control variable and invariant state to compute the iteration value.

Pairs Iterator

We can implement the stateless pairs iterator using the next function.

-- generator function which initializes the generic for loop
local function pairs(t)
 -- next is the iterator function
 -- t is the invariant state
 -- control variable is nil
 return next, t, nil
end

Ipairs Iterator

We can implement the stateless ipairs iterator in two separate functions.

-- function which performs the actual iteration
local function ipairs_iter(t, i)
 local i = i + 1 -- next index in the sequence (i is the control variable)
 local v = t[i] -- next value (t is the invariant state)
 if v ~= nil then
 return i, v -- index, value
 end
 return nil -- no more values (termination)
end

-- generator function which initializes the generic for loop
local function ipairs(t)
 -- ipairs_iter is the iterator function
 -- t is the invariant state (table to be iterated)
 -- 0 is the control variable (first index)
 return ipairs_iter, t, 0
end

Character Iterator

We can create new stateless iterators by fulfilling the contract of the generic for loop.

-- function which performs the actual iteration
local function chars_iter(s, i)
 if i < #s then
 i = i + 1
 return i, s:sub(i, i)
 end
end

-- generator function which initializes the generic for loop
local function chars(s)
 return chars_iter, s, 0
end

https://riptutorial.com/ 43

http://www.lua.org/manual/5.3/manual.html#pdf-pairs
http://www.lua.org/manual/5.3/manual.html#pdf-ipairs
http://www.lua.org/manual/5.3/manual.html#3.3.5
http://www.lua.org/manual/5.3/manual.html#3.3.5

-- used like pairs and ipairs
for i, c in chars 'abcde' do
 print(i, c) --> 1 a, 2 b, 3 c, 4 f, 5 e
end

Prime Numbers Iterator

This is one more simple example of a stateless iterator.

-- prime numbers iterator
local incr = {4, 1, 2, 0, 2}
function primes(s, p, d)
 s, p, d = s or math.huge, p and p + incr[p % 6] or 2, 1
 while p <= s do
 repeat
 d = d + incr[d % 6]
 if d*d > p then return p end
 until p % d == 0
 p, d = p + incr[p % 6], 1
 end
end

-- print all prime numbers <= 100
for p in primes, 100 do -- passing in the iterator (do not call the iterator here)
 print(p) --> 2 3 5 7 11 ... 97
end

-- print all primes in endless loop
for p in primes do -- please note: "in primes", not "in primes()"
 print(p)
end

Stateful Iterators

Stateful iterators carry some additional information about the current state of the iterator.

Using Tables

The addition state can be packed into the generic for loop's invariant state.

 local function chars_iter(t, i)
 local i = i + 1
 if i <= t.len then
 return i, t.s:sub(i, i)
 end
 end

 local function chars(s)
 -- the iterators state
 local t = {
 s = s, -- the subject
 len = #s -- cached length
 }

https://riptutorial.com/ 44

http://www.lua.org/manual/5.3/manual.html#3.3.5

 return chars_iter, t, 0
 end

 for i, c in chars 'abcde' do
 print(i, c) --> 1 a, 2 b, 3 c, 4 d, 5 e
 end

Using Closures

Additional state can be wrapped within a function closure. Since the state is fully contained in the
scope of the closure the invariant state and control variable are not needed.

 local function chars(s)
 local i, len = 0, #s
 return function() -- iterator function
 i = i + 1
 if i <= len then
 return i, s:sub(i, i)
 end
 end
 end

 for i, c in chars 'abcde' do
 print(i, c) --> 1 a, 2 b, 3 c, 4 d, 5 e
 end

Using Coroutines

Additional state can be contained within a coroutine, again the invariant state and control variable
are not needed.

 local function chars(s)
 return coroutine.wrap(function()
 for i = 1, #s do
 coroutine.yield(s:sub(i, i))
 end
 end)
 end

 for c in chars 'abcde' do
 print(c) --> a, b, c, d, e
 end

Read Iterators online: https://riptutorial.com/lua/topic/4165/iterators

https://riptutorial.com/ 45

https://riptutorial.com/lua/topic/4165/iterators

Chapter 9: Metatables

Syntax

[[local] mt =]getmetatable(t) --> retrieve associated metatable for 't'•
[[local] t =]setmetatable(t, mt) --> set the metatable for 't' to 'mt' and returns 't'•

Parameters

Parameter Details

t Variable referring to a lua table; can also be a table literal.

mt Table to use as a metatable; can have zero or more metamethod fields set.

Remarks

There are some metamethods not mentioned here. For the full list and their usage, see the
corresponding entry in the lua manual.

Examples

Creation and usage of metatables

A metatable defines a set of operations which alter the behaviour of a lua object. A metatable is
just an ordinary table, which is used in a special way.

local meta = { } -- create a table for use as metatable

-- a metatable can change the behaviour of many things
-- here we modify the 'tostring' operation:
-- this fields should be a function with one argument.
-- it gets called with the respective object and should return a string
meta.__tostring = function (object)
 return string.format("{ %d, %d }", object.x, object.y)
end

-- create an object
local point = { x = 13, y = -2 }
-- set the metatable
setmetatable(point, meta)

-- since 'print' calls 'tostring', we can use it directly:
print(point) -- prints '{ 13, -2 }'

Using tables as metamethods

https://riptutorial.com/ 46

https://www.lua.org/manual/5.3/manual.html#2.4

Some metamethods don't have to be functions. To most important example for this is the __index
metamethod. It can also be a table, which is then used as lookup. This is quite commonly used in
the creation of classes in lua. Here, a table (often the metatable itself) is used to hold all the
operations (methods) of the class:

local meta = {}
-- set the __index method to the metatable.
-- Note that this can't be done in the constructor!
meta.__index = meta

function create_new(name)
 local self = { name = name }
 setmetatable(self, meta)
 return self
end

-- define a print function, which is stored in the metatable
function meta.print(self)
 print(self.name)
end

local obj = create_new("Hello from object")
obj:print()

Garbage collector - the __gc metamethod

5.2

Objects in lua are garbage collected. Sometimes, you need to free some resource, want to print a
message or do something else when an object is destroyed (collected). For this, you can use the
__gc metamethod, which gets called with the object as argument when the object is destroyed.
You could see this metamethod as a sort of destructor.

This example shows the __gc metamethod in action. When the inner table assigned to t gets
garbage collected, it prints a message prior to being collected. Likewise for the outer table when
reaching the end of script:

local meta =
{
 __gc = function(self)
 print("destroying self: " .. self.name)
 end
}

local t = setmetatable({ name = "outer" }, meta)
do
 local t = { name = "inner" }
 setmetatable(t, meta)
end

More metamethods

There are many more metamethods, some of them are arithmetic (e.g. addition, subtraction,

https://riptutorial.com/ 47

multiplication), there are bitwise operations (and, or, xor, shift), comparison (<, >) and also basic
type operations like == and # (equality and length). Lets build a class which supports many of
these operations: a call for rational arithmetic. While this is very basic, it shows the idea.

local meta = {
 -- string representation
 __tostring = function(self)
 return string.format("%s/%s", self.num, self.den)
 end,
 -- addition of two rationals
 __add = function(self, rhs)
 local num = self.num * rhs.den + rhs.num * self.den
 local den = self.den * rhs.den
 return new_rational(num, den)
 end,
 -- equality
 __eq = function(self, rhs)
 return self.num == rhs.num and self.den == rhs.den
 end
}

-- a function for the creation of new rationals
function new_rational(num, den)
 local self = { num = num, den = den }
 setmetatable(self, meta)

 return self
end

local r1 = new_rational(1, 2)
print(r1) -- 1/2

local r2 = new_rational(1, 3)
print(r1 + r2) -- 5/6

local r3 = new_rational(1, 2)
print(r1 == r3) -- true
-- this would be the behaviour if we hadn't implemented the __eq metamethod.
-- this compares the actual tables, which are different
print(rawequal(r1, r3)) -- false

Make tables callable

There is a metamethod called __call, which defines the bevahiour of the object upon being used
as a function, e.g. object(). This can be used to create function objects:

-- create the metatable with a __call metamethod
local meta = {
 __call = function(self)
 self.i = self.i + 1
 end,
 -- to view the results
 __tostring = function(self)
 return tostring(self.i)
 end
}

https://riptutorial.com/ 48

function new_counter(start)
 local self = { i = start }
 setmetatable(self, meta)
 return self
end

-- create a counter
local c = new_counter(1)
print(c) --> 1
-- call -> count up
c()
print(c) --> 2

The metamethod is called with the corresponding object, all remaining arguments are passed to
the function after that:

local meta = {
 __call = function(self, ...)
 print(self.prepend, ...)
 end
}

local self = { prepend = "printer:" }
setmetatable(self, meta)

self("foo", "bar", "baz")

Indexing of tables

Perhaps the most important use of metatables is the possibility to change the indexing of tables.
For this, there are two actions to consider: reading the content and writing the content of the table.
Note that both actions are only triggered if the corresponding key is not present in the table.

Reading

local meta = {}

-- to change the reading action, we need to set the '__index' method
-- it gets called with the corresponding table and the used key
-- this means that table[key] translates into meta.__index(table, key)
meta.__index = function(object, index)
 -- print a warning and return a dummy object
 print(string.format("the key '%s' is not present in object '%s'", index, object))
 return -1
end

-- create a testobject
local t = {}

-- set the metatable
setmetatable(t, meta)

print(t["foo"]) -- read a non-existent key, prints the message and returns -1

This could be used to raising an error while reading a non-existent key:

https://riptutorial.com/ 49

-- raise an error upon reading a non-existent key
meta.__index = function(object, index)
 error(string.format("the key '%s' is not present in object '%s'", index, object))
end

Writing

local meta = {}

-- to change the writing action, we need to set the '__newindex' method
-- it gets called with the corresponding table, the used key and the value
-- this means that table[key] = value translates into meta.__newindex(table, key, value)
meta.__newindex = function(object, index, value)
 print(string.format("writing the value '%s' to the object '%s' at the key '%s'",
 value, object, index))
 --object[index] = value -- we can't do this, see below
end

-- create a testobject
local t = { }

-- set the metatable
setmetatable(t, meta)

-- write a key (this triggers the method)
t.foo = 42

You may now ask yourself how the actual value is written in the table. In this case, it isn't. The
problem here is that metamethods can trigger metamethods, which would result in an infinitive
loop, or more precisely, a stack overflow. So how can we solve this? The solution for this is called
raw table access.

Raw table access

Sometimes, you don't want to trigger metamethods, but really write or read exactly the given key,
without some clever functions wrapped around the access. For this, lua provides you with raw
table access methods:

-- first, set up a metatable that allows no read/write access
local meta = {
 __index = function(object, index)
 -- raise an error
 error(string.format("the key '%s' is not present in object '%s'", index, object))
 end,
 __newindex = function(object, index, value)
 -- raise an error, this prevents any write access to the table
 error(string.format("you are not allowed to write the object '%s'", object))
 end
}

local t = { foo = "bar" }
setmetatable(t, meta)

-- both lines raise an error:
--print(t[1])

https://riptutorial.com/ 50

--t[1] = 42

-- we can now circumvent this problem by using raw access:
print(rawget(t, 1)) -- prints nil
rawset(t, 1, 42) -- ok

-- since the key 1 is now valid, we can use it in a normal manner:
print(t[1])

With this, we can now rewrite ower former __newindex method to actually write the value to the
table:

meta.__newindex = function(object, index, value)
 print(string.format("writing the value '%s' to the object '%s' at the key '%s'",
 value, object, index))
 rawset(object, index, value)
end

Simulating OOP

local Class = {} -- objects and classes will be tables
local __meta = {__index = Class}
-- ^ if an instance doesn't have a field, try indexing the class
function Class.new()
 -- return setmetatable({}, __meta) -- this is shorter and equivalent to:
 local new_instance = {}
 setmetatable(new_instance, __meta)
 return new_instance
end
function Class.print()
 print "I am an instance of 'class'"
end

local object = Class.new()
object.print() --> will print "I am an instance of 'class'"

Instance methods can be written by passing the object as the first argument.

-- append to the above example
function Class.sayhello(self)
 print("hello, I am ", self)
end
object.sayhello(object) --> will print "hello, I am <table ID>"
object.sayhello() --> will print "hello, I am nil"

There is some syntactic sugar for this.

function Class:saybye(phrase)
 print("I am " .. self .. "\n" .. phrase)
end
object:saybye("c ya") --> will print "I am <table ID>
 --> c ya"

We can also add default fields to a class.

https://riptutorial.com/ 51

local Class = {health = 100}
local __meta = {__index = Class}

function Class.new() return setmetatable({}, __meta) end
local object = Class.new()
print(object.health) --> prints 100
Class.health = 50; print(object.health) --> prints 50
-- this should not be done, but it illustrates lua indexes "Class"
-- when "object" doesn't have a certain field
object.health = 200 -- This does NOT index Class
print(object.health) --> prints 200

Read Metatables online: https://riptutorial.com/lua/topic/2444/metatables

https://riptutorial.com/ 52

https://riptutorial.com/lua/topic/2444/metatables

Chapter 10: Object-Orientation

Introduction

Lua itself offers no class system. It is, however possible to implement classes and objects as
tables with just a few tricks.

Syntax

function <class>.new() return setmetatable({}, {__index=<class>}) end•

Examples

Simple Object Orientation

Here's a basic example of how to do a very simple class system

Class = {}
local __instance = {__index=Class} -- Metatable for instances
function Class.new()
 local instance = {}
 setmetatable(instance, __instance)
 return instance
-- equivalent to: return setmetatable({}, __instance)
end

To add variables and/or methods, just add them to the class. Both can be overridden for every
instance.

Class.x = 0
Class.y = 0
Class:getPosition()
 return {self.x, self.y}
end

And to create an instance of the class:

object = Class.new()

or

setmetatable(Class, {__call = Class.new}
 -- Allow the class itself to be called like a function
object = Class()

And to use it:

https://riptutorial.com/ 53

object.x = 20
-- This adds the variable x to the object without changing the x of
-- the class or any other instance. Now that the object has an x, it
-- will override the x that is inherited from the class
print(object.x)
-- This prints 20 as one would expect.
print(object.y)
-- Object has no member y, therefore the metatable redirects to the
-- class table, which has y=0; therefore this prints 0
object:getPosition() -- returns {20, 0}

Changing metamethods of an object

Having

local Class = {}
Class.__meta = {__index=Class}
function Class.new() return setmetatable({}, Class.__meta)

Assuming we want to change the behavior of a single instance object = Class.new() using a
metatable,

there are a few mistakes to avoid:

setmetatable(object, {__call = table.concat}) -- WRONG

This exchanges the old metatable with the new one, therefore breaking the class inheritance

getmetatable(object).__call = table.concat -- WRONG AGAIN

Keep in mind that table "values" are only reference; there is, in fact, only one actual table for all
the instances of an object unless the constructor is defined as in 1, so by doing this we modify the
behavior of all instances of the class.

One correct way of doing this:

Without changing the class:

setmetatable(
 object,
 setmetatable(
 {__call=table.concat},
 {__index=getmetatable(object)}
)
)

How does this work? - We create a new metatable as in mistake #1, but instead of leaving it
empty, we create a soft copy to the original metatable. One could say the new metatable "inherits"
from the original one as if it was a class instance itself. We can now override values of the original
metatable without modifying them.

https://riptutorial.com/ 54

Changing the class:

1st (recommended):

local __instance_meta = {__index = Class.__meta}
-- metatable for the metatable
-- As you can see, lua can get very meta very fast
function Class.new()
 return setmetatable({}, setmetatable({}, __instance_meta))
end

2nd (less recommended): see 1

1 function Class.new() return setmetatable({}, {__index=Class}) end

Read Object-Orientation online: https://riptutorial.com/lua/topic/8908/object-orientation

https://riptutorial.com/ 55

https://riptutorial.com/lua/topic/8908/object-orientation

Chapter 11: Pattern matching

Syntax

string.find(str, pattern [, init [, plain]]) -- Returns start and end index of match in str•

string.match(str, pattern [, index]) -- Matches a pattern once (starting at index)•

string.gmatch(str, pattern) -- Returns a function that iterates through all matches in str•

string.gsub(str, pattern, repl [, n]) -- Replaces substrings (up to a max of n times)•

. represents all characters•

%a represents all letters•

%l represents all lowercase letters•

%u represents all uppercase letters•

%d represents all digits•

%x represents all hexadecimal digits•

%s represents all whitespace characters•

%p represents all punctuation characters•

%g represents all printable characters except space•

%c represents all control characters•

[set] represents the class which is the union of all characters in set.•

[^set] represents the complement of set•

* greedy match 0 or more occurrences of previous character class•

+ greedy match 1 or more occurrences of previous character class•

- lazy match 0 or more occurrences of previous character class•

? match exactly 0 or 1 occurrence of previous character class•

Remarks

Throughout some examples, the notation (<string literal>):function <string literal> is used,
which is equivalent to string.function(<string literal>, <string literal>) because all strings
have a metatable with the __index field set to the string table.

https://riptutorial.com/ 56

Examples

Lua pattern matching

Instead of using regex, the Lua string library has a special set of characters used in syntax
matches. Both can be very similar, but Lua pattern matching is more limited and has a different
syntax. For instance, the character sequence %a matches any letter, while its upper-case version
represents all non-letters characters, all characters classes (a character sequence that, as a
pattern, can match a set of items) are listed below.

Character class Matching section

%a letters (A-Z, a-z)

%c control characters (\n, \t, \r, ...)

%d digits (0-9)

%l lower-case letter (a-z)

%p punctuation characters (!, ?, &, ...)

%s space characters

%u upper-case letters

%w alphanumeric characters (A-Z, a-z, 0-9)

%x hexadecimal digits (\3, \4, ...)

%z the character with representation 0

. Matches any character

As mentioned above, any upper-case version of those classes represents the complement of the
class. For instance, %D will match any non-digit character sequence:

string.match("f123", "%D") --> f

In addition to character classes, some characters have special functions as patterns:

() % . + - * [? ^ $

The character % represents a character escape, making %? match an interrogation and %% match
the percentage symbol. You can use the % character with any other non-alphanumeric character,
therefore, if you need to escape, for instance, a quote, you must use \\ before it, which escapes
any character from a lua string.

https://riptutorial.com/ 57

A character set, represented inside square brackets ([]), allows you to create a special character
class, combining different classes and single characters:

local foo = "bar123bar2341"
print(foo:match "[arb]") --> b

You can get the complement of the character set by starting it with ^:

local foo = "bar123bar2341"
print(string.match(foo, "[^bar]")) --> 1

In this example, string.match will find the first occurrence that isn't b, a or r.

Patterns can be more useful with the help of repetition/optional modifiers, patterns in lua offer
these four characters:

Character Modifier

+ One or more repetitions

* Zero or more repetitions

- Also zero or more repetitions

? Optional (zero or one occurrence)

The character + represents one or more matched characters in the sequence and it will always
return the longest matched sequence:

local foo = "12345678bar123"
print(foo:match "%d+") --> 12345678

As you can see, * is similar to +, but it accepts zero occurrences of characters and is commonly
used to match optional spaces between different patterns.

The character - is also similar to *, but instead of returning the longest matched sequence, it
matches the shortest one.

The modifier ? matches an optional character, allowing you to match, for example, a negative digit:

local foo = "-20"
print(foo:match "[+-]?%d+")

Lua pattern matching engine provides a few additional pattern matching items:

Character
item

Description

%n for n between 1 and 9 matches a substring equal to the n-th captured string

https://riptutorial.com/ 58

Character
item

Description

%bxy
matches substring between two distinct characters (balanced pair of x and y
)

%f[set]
frontier pattern: matches an empty string at any position such that the next
character
belongs to set and the previous character does not belong to set

string.find (Introduction)

The find function

First let's take a look at the string.find function in general:

The function string.find (s, substr [, init [, plain]]) returns the start and end index of a
substring if found, and nil otherwise, starting at the index init if it is provided (defaults to 1).

("Hello, I am a string"):find "am" --> returns 10 11
-- equivalent to string.find("Hello, I am a string", "am") -- see remarks

Introducing Patterns

("hello world"):find ".- " -- will match characters until it finds a space
 --> so it will return 1, 6

All except the following characters represent themselves ^$()%.[]*+-?). Any of these characters
can be represented by a % following the character itself.

("137'5 m47ch s0m3 d1g175"):find "m%d%d" -- will match an m followed by 2 digit
 --> this will match m47 and return 7, 9

("stack overflow"):find "[abc]" -- will match an 'a', a 'b' or a 'c'
 --> this will return 3 (the A in stAck)

("stack overflow"):find "[^stack]"
 -- will match all EXCEPT the letters s, t, a, c and k and the space character
 --> this will match the o in overflow

("hello"):find "o%d?" --> matches o, returns 5, 5
("hello20"):find "o%d?" --> matches o2, returns 5, 6
 -- the ? means the character is optional

("helllllo"):find "el+" --> will match elllll
("heo"):find "el+" --> won't match anything

("helllllo"):find "el*" --> will match elllll
("heo"):find "el*" --> will match e

https://riptutorial.com/ 59

("helelo"):find "h.+l" -- + will match as much as it gets
 --> this matches "helel"
("helelo"):find "h.-l" -- - will match as few as it can
 --> this wil only match "hel"

("hello"):match "o%d*"
 --> like ?, this matches the "o", because %d is optional
("hello20"):match "o%d*"
 --> unlike ?, it maches as many %d as it gets, "o20"
("hello"):match "o%d"
 --> wouldn't find anything, because + looks for 1 or more characters

The `gmatch` function

How it works

The string.gmatch function will take an input string and a pattern. This pattern describes on what to
actually get back. This function will return a function which is actually an iterator. The result of this
iterator will match to the pattern.

type(("abc"):gmatch ".") --> returns "function"

for char in ("abc"):gmatch "." do
 print char -- this prints:
 --> a
 --> b
 --> c
end

for match in ("#afdde6"):gmatch "%x%x" do
 print("#" .. match) -- prints:
 --> #af
 --> #dd
 --> #e6
end

Introducing captures:

This is very similair to the regular function, however it will return only the captures instead the full
match.

for key, value in ("foo = bar, bar=foo"):gmatch "(%w+)%s*=%s*(%w+)" do
 print("key: " .. key .. ", value: " .. value)
 --> key: foo, value: bar
 --> key: bar, value: foo
end

The gsub function

do not confuse with the string.sub function, which returns a substring!

https://riptutorial.com/ 60

How it works

string argument

("hello world"):gsub("o", "0")
 --> returns "hell0 w0rld", 2
 -- the 2 means that 2 substrings have been replaced (the 2 Os)

("hello world, how are you?"):gsub("[^%s]+", "word")
 --> returns "word word, word word word?", 5

("hello world"):gsub("([^%s])([^%s]*)", "%2%1")
 --> returns "elloh orldw", 2

function argument

local word = "[^%s]+"

function func(str)
 if str:sub(1,1):lower()=="h" then
 return str
 else
 return "no_h"
 end
end
("hello world"):gsub(word, func)
 --> returns "hello no_h", 2

table argument

local word = "[^%s]+"

sub = {}
sub["hello"] = "g'day"
sub["world"] = "m8"

("hello world"):gsub(word, sub)
 --> returns "g'day m8"

("hello world, how are you?"):gsub(word, sub)
 --> returns "g'day m8, how are you?"
 -- words that are not in the table are simply ignored

Read Pattern matching online: https://riptutorial.com/lua/topic/5829/pattern-matching

https://riptutorial.com/ 61

https://riptutorial.com/lua/topic/5829/pattern-matching

Chapter 12: PICO-8

Introduction

The PICO-8 is a fantasy console programmed in embedded Lua. It already has good
documentation. Use this topic to demonstrate undocumented or under-documented features.

Examples

Game loop

It's entirely possible to use PICO-8 as an interactive shell, but you probably want to tap into the
game loop. In order to do that, you must create at least one of these callback functions:

_update()•
_update60() (after v0.1.8)•
_draw()•

A minimal "game" might simply draw something on the screen:

function _draw()
 cls()
 print("a winner is you")
end

If you define _update60(), the game loop tries to run at 60fps and ignores update() (which runs at
30fps). Either update function is called before _draw(). If the system detects dropped frames, it'll
skip the draw function every other frame, so it's best to keep game logic and player input in the
update function:

function _init()
 x = 63
 y = 63

 cls()
end

function _update()
 local dx = 0 dy = 0

 if (btn(0)) dx-=1
 if (btn(1)) dx+=1
 if (btn(2)) dy-=1
 if (btn(3)) dy+=1

 x+=dx
 y+=dy
 x%=128
 y%=128
end

https://riptutorial.com/ 62

http://www.lexaloffle.com/pico-8.php?page=manual
http://www.lexaloffle.com/pico-8.php?page=manual
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://www.lexaloffle.com/bbs/?tid=3706

function _draw()
 pset(x,y)
end

The _init() function is, strictly speaking, optional as commands outside of any function are run at
startup. But it's a handy way to reset the game to initial conditions without rebooting the cartridge:

if (btn(4)) _init()

Mouse input

Although it's not officially supported, you can use mouse input in your games:

function _update60()
 x = stat(32)
 y = stat(33)

 if (x>0 and x<=128 and
 y>0 and y<=128)
 then

 -- left button
 if (band(stat(34),1)==1) then
 ball_x=x
 ball_y=y
 end
 end

 -- right button
 if (band(stat(34),2)==2) then
 ball_c+=1
 ball_c%=16
 end

 -- middle button
 if (band(stat(34),4)==4) then
 ball_r+=1
 ball_r%=64
 end
end

function _init()
 ball_x=63
 ball_y=63
 ball_c=10
 ball_r=1
end

function _draw()
 cls()
 print(stat(34),1,1)
 circ(ball_x,ball_y,ball_r,ball_c)
 pset(x,y,7) -- white
end

Game modes

https://riptutorial.com/ 63

http://www.lexaloffle.com/bbs/?tid=3549

If you want a title screen or an endgame screen, consider setting up a mode switching
mechanism:

function _init()
 mode = 1
end

function _update()
 if (mode == 1) then
 if (btnp(5)) mode = 2
 elseif (mode == 2) then
 if (btnp(5)) mode = 3
 end
end

function _draw()
 cls()
 if (mode == 1) then
 title()
 elseif (mode == 2) then
 print("press 'x' to win")
 else
 end_screen()
 end
end

function title()
 print("press 'x' to start game")
end

function end_screen()
 print("a winner is you")
end

Read PICO-8 online: https://riptutorial.com/lua/topic/8715/pico-8

https://riptutorial.com/ 64

https://riptutorial.com/lua/topic/8715/pico-8

Chapter 13: Sets

Examples

Search for an item in a list

There's no built in way to search a list for a particular item. However Programming in Lua shows
how you might build a set that can help:

function Set (list)
 local set = {}
 for _, l in ipairs(list) do set[l] = true end
 return set
end

Then you can put your list in the Set and test for membership:

local items = Set { "apple", "orange", "pear", "banana" }

if items["orange"] then
 -- do something
end

Using a Table as a Set

Create a set

 local set = {} -- empty set

Create a set with elements by setting their value to true:

 local set = {pear=true, plum=true}

 -- or initialize by adding the value of a variable:
 local fruit = 'orange'
 local other_set = {[fruit] = true} -- adds 'orange'

Add a member to the set

add a member by setting its value to true

 set.peach = true
 set.apple = true
 -- alternatively
 set['banana'] = true
 set['strawberry'] = true

https://riptutorial.com/ 65

http://www.lua.org/pil/11.5.html

Remove a member from the set

 set.apple = nil

Using nil instead of false to remove 'apple' from the table is preferable because it will make
iterating elements simpler. nil deletes the entry from the table while setting to false changes its
value.

Membership Test

 if set.strawberry then
 print "We've got strawberries"
 end

Iterate over elements in a set

 for element in pairs(set) do
 print(element)
 end

Read Sets online: https://riptutorial.com/lua/topic/3875/sets

https://riptutorial.com/ 66

https://riptutorial.com/lua/topic/3875/sets

Chapter 14: Tables

Syntax

ipairs(numeric_table) -- Lua table with numeric indices iterator•
pairs(input_table) -- generic Lua table iterator•
key, value = next(input_table, input_key) -- Lua table value selector•
table.insert(input_table, [position], value) -- insert specified value into the input table•
removed_value = table.remove(input_table, [position]) -- pop last or remove value specified
by position

•

Remarks

Tables are the only built-in data structure available in Lua. This is either elegant simplicity or
confusing, depending on how you look at it.

A Lua table is a collection of key-value pairs where the keys are unique and neither the key nor
the value is nil. As such, a Lua table can resemble a dictionary, hashmap or associative array
from other languages. Many structural patterns can be built with tables: stacks, queues, sets, lists,
graphs, etc. Finally, tables can be used to build classes in Lua and to create a module system.

Lua does not enforce any particular rules on how tables are used. The items contained in a table
can be a mixture of Lua types. So, for example, one table could contain strings, functions,
booleans, numbers, and even other tables as values or keys.

A Lua table with consecutive positive integer keys beginning with 1 is said to have a sequence.
The key-value pairs with positive integer keys are the elements of the sequence. Other languages
call this a 1-based array. Certain standard operations and functions only work on the sequence of
a table and some have non-deterministic behavior when applied to a table without a sequence.

Setting a value in a table to nil removes it from the table. Iterators would no longer see the related
key. When coding for a table with a sequence, it is important to avoid breaking the sequence; Only
remove the last element or use a function, like the standard table.remove, that shifts elements
down to close the gap.

Examples

Creating tables

Creating an empty table is as simple as this:

local empty_table = {}

You can also create a table in the form of a simple array:

https://riptutorial.com/ 67

local numeric_table = {
 "Eve", "Jim", "Peter"
}
-- numeric_table[1] is automatically "Eve", numeric_table[2] is "Jim", etc.

Bear in mind that by default, table indexing starts at 1.

Also possible is creating a table with associative elements:

local conf_table = {
 hostname = "localhost",
 port = 22,
 flags = "-Wall -Wextra"
 clients = { -- nested table
 "Eve", "Jim", "Peter"
 }
}

The usage above is syntax sugar for what's below. The keys in this instance are of the type, string.
The above syntax was added to make tables appear as records. This record-style syntax is
paralleled by the syntax for indexing tables with string keys, as seen in 'basic usage' tutorial.

As explained in the remarks section, the record-style syntax doesn't work for every possible key.
Additionally a key can be any value of any type, and the previous examples only covered strings
and sequential numbers. In other cases you'll need to use the explicit syntax:

local unique_key = {}
local ops_table = {
 [unique_key] = "I'm unique!"
 ["^"] = "power",
 [true] = true
}

Iterating tables

The Lua standard library provides a pairs function which iterates over the keys and values of a
table. When iterating with pairs there is no specified order for traversal, even if the keys of the
table are numeric.

for key, value in pairs(input_table) do
 print(key, " -- ", value)
end

For tables using numeric keys, Lua provides an ipairs function. The ipairs function will always
iterate from table[1], table[2], etc. until the first nil value is found.

for index, value in ipairs(numeric_table) do
 print(index, ". ", value)
end

Be warned that iteration using ipairs() will not work as you might want on few occasions:

https://riptutorial.com/ 68

input_table has "holes" in it. (See the section on "Avoiding gaps in tables used as arrays" for
more information.) For example:

table_with_holes = {[1] = "value_1", [3] = "value_3"}

•

keys weren't all numeric. For example:

mixed_table = {[1] = "value_1", ["not_numeric_index"] = "value_2"}

•

Of course, the following also works for a table that is a proper sequence:

for i = 1, #numeric_table do
 print(i, ". ", numeric_table[i])
end

Iterating a numeric table in reverse order is easy:

for i = #numeric_table, 1, -1 do
 print(i, ". ", numeric_table[i])
end

A final way to iterate over tables is to use the next selector in a generic for loop. Like pairs there is
no specified order for traversal. (The pairs method uses next internally. So using next is essentially
a more manual version of pairs. See pairs in Lua's reference manual and next in Lua's reference
manual for more details.)

for key, value in next, input_table do
 print(key, value)
end

Basic Usage

Basic table usage includes accessing and assigning table elements, adding table content, and
removing table content. These examples assume you know how to create tables.

Accessing Elements

Given the following table,

local example_table = {"Nausea", "Heartburn", "Indigestion", "Upset Stomach",
 "Diarrhea", cure = "Pepto Bismol"}

One can index the sequential part of the table by using the index syntax, the argument to the index
syntax being the key of the desired key-value pair. As explained in the creation tutorial, most of the
declaration syntax is syntactic sugar for declaring key-value pairs. Sequentially included elements,
like the first five values in example_table, use increasing integer values as keys; the record syntax
uses the name of the field as a string.

https://riptutorial.com/ 69

https://www.lua.org/manual/5.3/manual.html#3.3.5
https://www.lua.org/manual/5.3/manual.html#3.3.5
https://www.lua.org/manual/5.3/manual.html#3.3.5
https://www.lua.org/manual/5.3/manual.html#pdf-pairs
https://www.lua.org/manual/5.3/manual.html#pdf-pairs
https://www.lua.org/manual/5.3/manual.html#pdf-next
https://www.lua.org/manual/5.3/manual.html#pdf-next
https://www.lua.org/manual/5.3/manual.html#pdf-next

print(example_table[2]) --> Heartburn
print(example_table["cure"]) --> Pepto Bismol

For string keys there is syntax sugar to parallel the record-style syntax for string keys in table
creation. The following two lines are equivalent.

print(example_table.cure) --> Pepto Bismol
print(example_table["cure"]) --> Pepto Bismol

You can access tables using keys that you haven't used before, that is not an error as it in other
languages. Doing so returns the default value nil.

Assigning Elements

You can modify existing table elements by assigning to a table using the index syntax.
Additionally, the record-style indexing syntax is available for setting values as well

example_table.cure = "Lots of water, the toilet, and time"
print(example_table.cure) --> Lots of water, the toilet, and time

example_table[2] = "Constipation"
print(example_table[2]) --> Constipation

You can also add new elements to an existing table using assignment.

example_table.copyright_holder = "Procter & Gamble"
example_table[100] = "Emergency source of water"

Special Remark: Some strings are not supported with the record-syntax. See the remarks section
for details.

Removing Elements

As stated previously, the default value for a key with no assigned value is nil. Removing an
element from a table is as simple as resetting the value of a key back to the default value.

example_table[100] = "Face Mask"

The elements is now indistinguishable from an unset element.

Table Length

Tables are simply associative arrays (see remarks), but when contiguous integer keys are used
starting from 1 the table is said to have a sequence.

Finding the length of the sequence part of a table is done using #:

local example_table = {'a', 'l', 'p', 'h', 'a', 'b', 'e', 't'}
print(#example_table) --> 8

https://riptutorial.com/ 70

You can use the length operation to easily append items to a sequence table.

example_table[#example_table+1] = 'a'
print(#example_table) --> 9

In the above example, the previous value of #example_table is 8, adding 1 gives you the next valid
integer key in the sequence, 9, so... example_table[9] = 'a'. This works for any length of table.

Special Remark: Using integer keys that aren't contiguous and starting from 1 breaks the
sequence making the table into a sparse table. The result of the length operation is undefined in
that case. See the remarks section.

Using Table Library Functions to Add/Remove Elements

Another way to add elements to a table is the table.insert() function. The insert function only
works on sequence tables. There are two ways to call the function. The first example shows the
first usage, where one specifies the index to insert the element (the second argument). This
pushes all elements from the given index to #table up one position. The second example shows
the other usage of table.insert(), where the index isn't specified and the given value is appended
to the end of the table (index #table + 1).

local t = {"a", "b", "d", "e"}
table.insert(t, 3, "c") --> t = {"a", "b", "c", "d", "e"}

t = {"a", "b", "c", "d"}
table.insert(t, "e") --> t = {"a", "b", "c", "d", "e"}

To parallel table.insert() for removing elements is table.remove(). Similarly it has two calling
semantics: one for removing elements at a given position, and another for removing from the end
of the sequence. When removing from the middle of a sequence, all following elements are shifted
down one index.

local t = {"a", "b", "c", "d", "e"}
local r = table.remove(t, 3) --> t = {"a", "b", "d", "e"}, r = "c"

t = {"a", "b", "c", "d", "e"}
r = table.remove(t) --> t = {"a", "b", "c", "d"}, r = "e"

These two functions mutate the given table. As you might be able to tell the second method of
calling table.insert() and table.remove() provides stack semantics to tables. Leveraging that, you
can write code like the example below.

function shuffle(t)
 for i = 0, #t-1 do
 table.insert(t, table.remove(t, math.random(#t-i)))
 end
end

It implements the Fisher-Yates Shuffle, perhaps inefficiently. It uses the table.insert() to append
the randomly extracted element onto the end of same table, and the table.remove() to randomly

https://riptutorial.com/ 71

extract an element from the remaining unshuffled portion of the table.

Avoiding gaps in tables used as arrays

Defining our terms

By array here we mean a Lua table used as a sequence. For example:

-- Create a table to store the types of pets we like.
local pets = {"dogs", "cats", "birds"}

We're using this table as a sequence: a group of items keyed by integers. Many languages call
this an array, and so will we. But strictly speaking, there's no such thing as an array in Lua. There
are just tables, some of which are array-like, some of which are hash-like (or dictionary-like, if you
prefer), and some of which are mixed.

An important point about our pets array is that is has no gaps. The first item, pets[1], is the string
"dogs", the second item, pets[2], is the string "cats", and the last item, pets[3], is "birds". Lua's
standard library and most modules written for Lua assume 1 as the first index for sequences. A
gapless array therefore has items from 1..n without missing any numbers in the sequence. (In the
limiting case, n = 1, and the array has only one item in it.)

Lua provides the built-in function ipairs to iterate over such tables.

-- Iterate over our pet types.
for idx, pet in ipairs(pets) do
 print("Item at position " .. idx .. " is " .. pet .. ".")
end

This would print "Item at position 1 is dogs.", "Item at position 2 is cats.", "Item at position 3 is
birds."

But what happens if we do the following?

local pets = {"dogs", "cats", "birds"}
pets[12] = "goldfish"
for idx, pet in ipairs(pets) do
 print("Item at position " .. idx .. " is " .. pet .. ".")
end

An array such as this second example is a sparse array. There are gaps in the sequence. This
array looks like this:

{"dogs", "cats", "birds", nil, nil, nil, nil, nil, nil, nil, nil, "goldfish"}
-- 1 2 3 4 5 6 7 8 9 10 11 12

The nil values do not take up any aditional memory; internally lua only saves the values [1] =
"dogs", [2] = "cats", [3] = "birtds" and [12] = "goldfish"

https://riptutorial.com/ 72

To answer the immediate question, ipairs will stop after birds; "goldfish" at pets[12] will never be
reached unless we adjust our code. This is because ipairs iterates from 1..n-1 where n is the
position of the first nil found. Lua defines table[length-of-table + 1] to be nil. So in a proper
sequence, iteration stops when Lua tries to get, say, the fourth item in a three-item array.

When?

The two most common places for issues to arise with sparse arrays are (i) when trying to
determine the length of the array and (ii) when trying to iterate over the array. In particular:

When using the # length operator since the length operator stops counting at the first nil
found.

•

When using the ipairs() function since as mentioned above it stops iterating at the first nil
found.

•

When using the table.unpack() function since this method stops unpacking at the first nil
found.

•

When using other functions that (directly or indirectly) access any of the above.•

To avoid this problem, it is important to write your code so that if you expect a table to be an array,
you don't introduce gaps. Gaps can be introduced in several ways:

If you add something to an array at the wrong position.•
If you insert a nil value into an array.•
If you remove values from an array.•

You might think, "But I would never do any of those things." Well, not intentionally, but here's a
concrete example of how things could go wrong. Imagine that you want to write a filter method for
Lua like Ruby's select and Perl's grep. The method will accept a test function and an array. It
iterates over the array, calling the test method on each item in turn. If the item passes, then that
item gets added to a results array which is returned at the end of the method. The following is a
buggy implementation:

local filter = function (fun, t)
 local res = {}
 for idx, item in ipairs(t) do
 if fun(item) then
 res[idx] = item
 end
 end

 return res
end

The problem is that when the function returns false, we skip a number in the sequence. Imagine
calling filter(isodd, {1,2,3,4,5,6,7,8,9,10}): there will be gaps in the returned table every time
there's an even number in the array passed to filter.

Here's a fixed implementation:

https://riptutorial.com/ 73

local filter = function (fun, t)
 local res = {}
 for _, item in ipairs(t) do
 if fun(item) then
 res[#res + 1] = item
 end
 end

 return res
end

Tips

Use standard functions: table.insert(<table>, <value>) always appends to the end of the
array. table[#table + 1] = value is a short hand for this. table.remove(<table>, <index>) will
move all following values back to fill the gap (which can also make it slow).

1.

Check for nil values before inserting, avoiding things like table.pack(function_call()), which
might sneak nil values into our table.

2.

Check for nil values after inserting, and if necessary filling the gap by shifting all
consecutive values.

3.

If possible, use placeholder values. For example, change nil for 0 or some other placeholder
value.

4.

If leaving gaps is unavoidable, this should be propperly documented (commented).5.
Write a __len() metamethod and use the # operator.6.

Example for 6.:

tab = {"john", "sansa", "daenerys", [10] = "the imp"}
print(#tab) --> prints 3
setmetatable(tab, {__len = function() return 10 end})
-- __len needs to be a function, otherwise it could just be 10
print(#tab) --> prints 10
for i=1, #tab do print(i, tab[i]) end
--> prints:
-- 1 john
-- 2 sansa
-- 3 daenerys
-- 4 nil
-- ...
-- 10 the imp

for key, value in ipairs(tab) do print(key, value) end
--> this only prints '1 john \n 2 sansa \n 3 daenerys'

Another alternative is to use the pairs() function and filter out the non-integer indices:

for key in pairs(tab) do
 if type(key) == "number" then
 print(key, tab[key]
 end
end
-- note: this does not remove float indices
-- does not iterate in order

https://riptutorial.com/ 74

Read Tables online: https://riptutorial.com/lua/topic/676/tables

https://riptutorial.com/ 75

https://riptutorial.com/lua/topic/676/tables

Chapter 15: Variadic Arguments

Introduction

Varargs, as they are commonly known, allow functions to take an arbitrary number of arguments
without specification. All arguments given to such a function are packaged into a single structure
known as the vararg list; which is written as ... in Lua. There are basic methods for extracting the
number of given arguments and the value of those arguments using the select() function, but
more advanced usage patterns can leverage the structure to it's full utility.

Syntax

... -- Makes the function whose arguments list in which this appears a variadic function•
select(what, ...) -- If 'what' is a number in range 1 to the number of elements in the vararg,
returns the 'what'th element to the last element in the vararg. The return will be nil if the
index is out of bounds. If 'what' is the string '#', returns the number of elements in the vararg.

•

Remarks

Efficiency

The vararg list is implemented as a linked list in the PUC-Rio implementation of the language, this
means that indexes are O(n). That means that iterating over the elements in a vararg using
select(), like the example below, is an O(n^2) operation.

for i = 1, select('#', ...) do
 print(select(i, ...))
end

If you plan on iterating over the elements in a vararg list, first pack the list into a table. Table
accesses are O(1), so iterating is O(n) in total. Or, if you are so inclined, see the foldr() example
from the advanced usage section; it uses recursion to iterate over a vararg list in O(n).

Sequence Length Definition

The vararg is useful in that the length of the vararg respects any explicitly passed (or computed)
nils. For example.

function test(...)
 return select('#', ...)
end

test() --> 0
test(nil, 1, nil) --> 3

This behavior conflicts with the behavior of tables however, where the length operator # does not

https://riptutorial.com/ 76

work with 'holes' (embedded nils) in sequences. Computing the length of a table with holes is
undefined and cannot be relied on. So, depending upon the values in ..., taking the length of
{...} may not result in the 'correct' answer. In Lua 5.2+ table.pack() was introduced to handle this
deficiency (there is a function in the example that implements this function in pure Lua).

Idiomatic Use

Because varargs carry around their length people use them as sequences to avoid the issue with
holes in tables. This was not their intended usage and one the reference implementation of Lua
does not optimize for. Although such usage is explored in the examples, it is generally frowned
upon.

Examples

Basics

Variadic functions are created using the ... ellipses syntax in the argument list of the function
definition.

function id(...)
 return
end

If you called this function as id(1, 2, 3, 4, 5) then ... (AKA the vararg list) would contain the
values 1, 2, 3, 4, 5.

Functions can take required arguments as well as

function head(x, ...)
 return x
end

The easiest way to pull elements from the vararg list is to simply assign variables from it.

function head3(...)
 local a, b, c = ...
 return a, b, c
end

select() can also be used to find the number of elements and extract elements from ... indirectly.

function my_print(...)
 for i = 1, select('#', ...) do
 io.write(tostring(select(i, ...)) .. '\t')
 end
 io.write '\n'
end

... can be packed into a table for ease of use, by using {...}. This places all the arguments in the
sequential part of the table.

https://riptutorial.com/ 77

5.2

table.pack(...) can also be used to pack the vararg list into a table. The advantage of
table.pack(...) is that it sets the n field of the returned table to the value of select('#', ...). This
is important if your argument list may contain nils (see remarks section below).

function my_tablepack(...)
 local t = {...}
 t.n = select('#', ...)
 return t
end

The vararg list may also be returned from functions. The result is multiple returns.

function all_or_none(...)
 local t = table.pack(...)
 for i = 1, t.n do
 if not t[i] then
 return -- return none
 end
 end
 return ... -- return all
end

Advanced Usage

As stated in the basic examples, you can have variable bound arguments and the variable
argument list (...). You can use this fact to recursively pull apart a list as you would in other
languages (like Haskell). Below is an implementation of foldr() that takes advantage of that. Each
recursive call binds the head of the vararg list to x, and passes the rest of the list to a recursive
call. This destructures the list until there is only one argument (select('#', ...) == 0). After that,
each value is applied to the function argument f with the previously computed result.

function foldr(f, ...)
 if select('#', ...) < 2 then return ... end
 local function helper(x, ...)
 if select('#', ...) == 0 then
 return x
 end
 return f(x, helper(...))
 end
 return helper(...)
end

function sum(a, b)
 return a + b
end

foldr(sum, 1, 2, 3, 4)
--> 10

You can find other function definitions that leverage this programming style here in Issue #3
through Issue #8.

https://riptutorial.com/ 78

http://lua-users.org/wiki/VarargTheSecondClassCitizen

Lua's sole idiomatic data structure is the table. The table length operator is undefined if there are
nils located anywhere in a sequence. Unlike tables, the vararg list respects explicit nils as stated
in the basic examples and the remarks section (please read that section if you haven't yet). With
little work the vararg list can perform every operation a table can besides mutation. This makes the
vararg list a good candidate for implementing immutable tuples.

function tuple(...)
 -- packages a vararg list into an easily passable value
 local co = coroutine.wrap(function(...)
 coroutine.yield()
 while true do
 coroutine.yield(...)
 end
 end)
 co(...)
 return co
end

local t = tuple((function() return 1, 2, nil, 4, 5 end)())

print(t()) --> 1 2 nil 4 5 | easily unpack for multiple args
local a, b, d = t() --> a = 1, b = 2, c = nil | destructure the tuple
print((select(4, t()))) --> 4 | index the tuple
print(select('#', t())) --> 5 | find the tuple arity (nil
respecting)

local function change_index(tpl, i, v)
 -- sets a value at an index in a tuple (non-mutating)
 local function helper(n, x, ...)
 if select('#', ...) == 0 then
 if n == i then
 return v
 else
 return x
 end
 else
 if n == i then
 return v, helper(n+1, ...)
 else
 return x, helper(n+1, ...)
 end
 end
 end
 return tuple(helper(1, tpl()))
end

local n = change_index(t, 3, 3)
print(t()) --> 1 2 nil 4 5
print(n()) --> 1 2 3 4 5

The main difference between what's above and tables is that tables are mutable and have pointer
semantics, where the tuple does not have those properties. Additionally, tuples can hold explicit
nils and have a never-undefined length operation.

Read Variadic Arguments online: https://riptutorial.com/lua/topic/4475/variadic-arguments

https://riptutorial.com/ 79

https://riptutorial.com/lua/topic/4475/variadic-arguments

Chapter 16: Writing and using modules

Remarks

The basic pattern for writing a module is to fill a table with keys that are function names and values
that are the functions themselves. The module then returns this function for calling code to require
and use. (Functions are first-class values in Lua, so storing a function in a table is easy and
common.) The table can also contain any important constants in the form of, say, strings or
numbers.

Examples

Writing the module

--- trim: a string-trimming module for Lua
-- Author, date, perhaps a nice license too
--
-- The code here is taken or adapted from material in
-- Programming in Lua, 3rd ed., Roberto Ierusalimschy

-- trim_all(string) => return string with white space trimmed on both sides
local trim_all = function (s)
 return (string.gsub(s, "^%s*(.-)%s*$", "%1"))
end

-- trim_left(string) => return string with white space trimmed on left side only
local trim_left = function (s)
 return (string.gsub(s, "^%s*(.*)$", "%1"))
end

-- trim_right(string) => return string with white space trimmed on right side only
local trim_right = function (s)
 return (string.gsub(s, "^(.-)%s*$", "%1"))
end

-- Return a table containing the functions created by this module
return {
 trim_all = trim_all,
 trim_left = trim_left,
 trim_right = trim_right
}

An alternative approach to the one above is to create a top-level table and then store the functions
directly in it. In that idiom, our module above would look like this:

-- A conventional name for the table that will hold our functions
local M = {}

-- M.trim_all(string) => return string with white space trimmed on both sides
function M.trim_all(s)
 return (string.gsub(s, "^%s*(.-)%s*$", "%1"))
end

https://riptutorial.com/ 80

-- M.trim_left(string) => return string with white space trimmed on left side only
function M.trim_left(s)
 return (string.gsub(s, "^%s*(.*)$", "%1"))
end

-- trim_right(string) => return string with white space trimmed on right side only
function M.trim_right(s)
 return (string.gsub(s, "^(.-)%s*$", "%1"))
end

return M

From the point of view of the caller, there is little difference between the two styles. (One
difference worth mentioning is that the first style makes it more difficult for users to monkeypatch
the module. This is either a pro or a con, depending on your point of view. For more detail about
this, see this blog post by Enrique García Cota.)

Using the module

-- The following assumes that trim module is installed or in the caller's package.path,
-- which is a built-in variable that Lua uses to determine where to look for modules.
local trim = require "trim"

local msg = " Hello, world! "
local cleaned = trim.trim_all(msg)
local cleaned_right = trim.trim_right(msg)
local cleaned_left = trim.trim_left(msg)

-- It's also easy to alias functions to shorter names.
local trimr = trim.trim_right
local triml = trim.trim_left

Read Writing and using modules online: https://riptutorial.com/lua/topic/1148/writing-and-using-
modules

https://riptutorial.com/ 81

http://kiki.to/blog/2014/04/04/rule-3-allow-monkeypatching
https://riptutorial.com/lua/topic/1148/writing-and-using-modules
https://riptutorial.com/lua/topic/1148/writing-and-using-modules

Credits

S.
No

Chapters Contributors

1
Getting started with
Lua

1971chevycamaro, Allan Burleson, Community, DarkWiiPlayer,
Darryl L Johnson, elektron, greatwolf, Guilherme Salazar,
hjpotter92, hugomg, Kamiccolo, lhf, Nikola Geneshki, SoniEx2,
Telemachus

2 Booleans in Lua
DarkWiiPlayer, engineercoding, greatwolf, Kamiccolo, Katenkyo
, Samuel McKay, Telemachus

3 Coroutines 010110110101, Bjornir, Eshkation, Kamiccolo, ktb, SoniEx2

4 Error Handling Black, DarkWiiPlayer, engineercoding, greatwolf

5 Functions

Art C, Basilio German, DarkWiiPlayer, Firas Moalla, greatwolf,
Guilherme Salazar, Jon Ericson, Katenkyo, ktb, MBorsch,
Necktrox, qaisjp, RBerteig, Romário, SoniEx2, Telemachus,
Unheilig, WolfgangTS

6
Garbage collector
and weak tables

greatwolf, Kamiccolo, val

7
Introduction to Lua C
API

greatwolf, Jeremy Thien, Kamiccolo, Luiz Menezes, RBerteig,
tversteeg

8 Iterators Adam, Egor Skriptunoff, greatwolf

9 Metatables DarkWiiPlayer, greatwolf, Kamiccolo, pschulz, Telemachus

10 Object-Orientation DarkWiiPlayer, Kamiccolo

11 Pattern matching
DarkWiiPlayer, engineercoding, Eshkation, greatwolf, Kamiccolo
, Stephen Leppik

12 PICO-8 Jon Ericson

13 Sets Egor Skriptunoff, Jon Ericson, ryanpattison

14 Tables
DarkWiiPlayer, greatwolf, Hastumer, Kamiccolo, ktb, mjanicek,
SoniEx2, Telemachus, Tom Blodget

15 Variadic Arguments greatwolf, Kamiccolo, ktb, RamenChef, SoniEx2

16
Writing and using
modules

SoniEx2, Telemachus

https://riptutorial.com/ 82

https://riptutorial.com/contributor/5942247/1971chevycamaro
https://riptutorial.com/contributor/5703771/allan-burleson
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/3302914/darryl-l-johnson
https://riptutorial.com/contributor/8091085/elektron
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/2304106/guilherme-salazar
https://riptutorial.com/contributor/1190388/hjpotter92
https://riptutorial.com/contributor/90511/hugomg
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/107090/lhf
https://riptutorial.com/contributor/1513988/nikola-geneshki
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/26702/telemachus
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/5783381/katenkyo
https://riptutorial.com/contributor/2425820/samuel-mckay
https://riptutorial.com/contributor/26702/telemachus
https://riptutorial.com/contributor/451007/010110110101
https://riptutorial.com/contributor/6561009/bjornir
https://riptutorial.com/contributor/4076274/eshkation
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/6614127/ktb
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/6672727/art-c
https://riptutorial.com/contributor/1381216/basilio-german
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/3390291/firas-moalla
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/2304106/guilherme-salazar
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/5783381/katenkyo
https://riptutorial.com/contributor/6614127/ktb
https://riptutorial.com/contributor/1447381/mborsch
https://riptutorial.com/contributor/4454221/necktrox
https://riptutorial.com/contributor/1517394/qaisjp
https://riptutorial.com/contributor/68204/rberteig
https://riptutorial.com/contributor/2507567/romario
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/26702/telemachus
https://riptutorial.com/contributor/2227834/unheilig
https://riptutorial.com/contributor/4180253/wolfgangts
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/5697743/val
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/6162467/jeremy-thien
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/7066323/luiz-menezes
https://riptutorial.com/contributor/68204/rberteig
https://riptutorial.com/contributor/1350184/tversteeg
https://riptutorial.com/contributor/415823/adam
https://riptutorial.com/contributor/1847592/egor-skriptunoff
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/3197530/pschulz
https://riptutorial.com/contributor/26702/telemachus
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/4076274/eshkation
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1847592/egor-skriptunoff
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/2726734/ryanpattison
https://riptutorial.com/contributor/4984564/darkwiiplayer
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/4856617/hastumer
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/6614127/ktb
https://riptutorial.com/contributor/1086113/mjanicek
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/26702/telemachus
https://riptutorial.com/contributor/2226988/tom-blodget
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1150918/kamiccolo
https://riptutorial.com/contributor/6614127/ktb
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/3691554/soniex2
https://riptutorial.com/contributor/26702/telemachus

	About
	Chapter 1: Getting started with Lua
	Remarks
	Versions
	Examples
	Installation
	Comments
	Executing Lua programs
	Getting Started

	variables
	types
	The special type nil
	expressions
	Defining functions
	booleans
	garbage-collection
	tables
	conditions
	for loops
	do blocks
	Some tricky things

	Nil and Nothing aren't the same (COMMON PITFALL!)
	Leaving gaps in arrays
	Hello World

	Chapter 2: Booleans in Lua
	Remarks
	Examples
	The boolean type

	Booleans and other values
	Logical Operations
	Checking if variables are defined
	Conditional contexts
	Logical Operators
	Order of Precedence
	Short-cut Evaluation
	Idiomatic conditional operator
	Truth tables
	Emulating Ternary Operator with 'and' 'or' logical operators.

	Syntax
	Use in variable assignment/initialization
	Use in table constructor
	Use as function argument
	Use in return statement
	Caveat
	Chapter 3: Coroutines
	Syntax
	Remarks
	Examples
	Create and use a coroutine

	Chapter 4: Error Handling
	Examples
	Using pcall
	Handling errors in Lua

	Chapter 5: Functions
	Syntax
	Remarks
	Examples
	Defining a function
	Calling a function.
	Anonymous functions

	Creating anonymous functions
	Understanding the syntactic sugar
	Functions are first class values
	Default parameters
	Multiple results
	Variable number of arguments
	Named Arguments
	Checking argument types
	Closures

	typical usage example
	more advanced usage example

	Chapter 6: Garbage collector and weak tables
	Syntax
	Parameters
	Examples
	Weak tables

	Chapter 7: Introduction to Lua C API
	Syntax
	Remarks
	Examples
	Creating Lua Virtual Machine
	Calling Lua functions
	Embedded Lua Interpreter with Custom API and Lua Customization
	Table manipulation

	Getting the content at a particular index:
	Setting the content at a particular index:
	Transferring the content from a table to another:

	Chapter 8: Iterators
	Examples
	Generic For Loop
	Standard Iterators
	Stateless Iterators

	Pairs Iterator
	Ipairs Iterator
	Character Iterator
	Prime Numbers Iterator
	Stateful Iterators

	Using Tables
	Using Closures
	Using Coroutines

	Chapter 9: Metatables
	Syntax
	Parameters
	Remarks
	Examples
	Creation and usage of metatables
	Using tables as metamethods
	Garbage collector - the __gc metamethod
	More metamethods
	Make tables callable
	Indexing of tables

	Reading
	Writing
	Raw table access
	Simulating OOP

	Chapter 10: Object-Orientation
	Introduction
	Syntax
	Examples
	Simple Object Orientation
	Changing metamethods of an object

	Chapter 11: Pattern matching
	Syntax
	Remarks
	Examples
	Lua pattern matching
	string.find (Introduction)

	The find function
	Introducing Patterns
	The `gmatch` function

	How it works
	Introducing captures:
	The gsub function

	How it works
	string argument
	function argument
	table argument

	Chapter 12: PICO-8
	Introduction
	Examples
	Game loop
	Mouse input
	Game modes

	Chapter 13: Sets
	Examples
	Search for an item in a list
	Using a Table as a Set

	Create a set
	Add a member to the set
	Remove a member from the set
	Membership Test
	Iterate over elements in a set

	Chapter 14: Tables
	Syntax
	Remarks
	Examples
	Creating tables
	Iterating tables
	Basic Usage
	Avoiding gaps in tables used as arrays

	Defining our terms
	When?
	Tips

	Chapter 15: Variadic Arguments
	Introduction
	Syntax
	Remarks
	Examples
	Basics
	Advanced Usage

	Chapter 16: Writing and using modules
	Remarks
	Examples
	Writing the module
	Using the module

	Credits

