
lucene

#lucene

Table of Contents

About 1

Chapter 1: Getting started with lucene 2

Remarks 2

Versions 2

Examples 2

Setup 2

Hello World 3

Chapter 2: Analysis 5

Examples 5

Creating a custom analyzer 5

Iterating manually through analyzed tokens 5

Chapter 3: Deleting Documents using a Multi-Term Query 6

Introduction 6

Syntax 6

Remarks 6

Caveats with the Choice of Analyzer 6

Examples 6

Choice of Analyzer 6

Query Parser 7

Query API 7

Delete the Documents that Match the Query 7

Chapter 4: Queries 8

Examples 8

BooleanQuery 8

PhraseQuery 9

DisjunctionMaxQuery 9

Boosting queries 9

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: lucene

It is an unofficial and free lucene ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official lucene.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/lucene
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with lucene

Remarks

Apache Lucene is a Java-based full text search library.

Versions

Version Release Date

2.9.4 2010-12-03

3.0.3 2010-12-03

3.6.2 2013-01-16

4.10.4 2015-10-14

5.5.2 2016-06-24

6.3.0 2016-11-08

Examples

Setup

Lucene is a Java library. If you don't have a Java development environment set up already, see
the Java documentation.

Download the latest version of Lucene from the Apache website, and unzip it.

Add the required jars to your classpath. The following jars will be required by many projects,
including the Hello World example here:

core/lucene-core-6.1.0.jar: Core Lucene functionality.•
core/analysis/common/lucene-analyzers-common-6.1.0.jar: Provides a variety of analyzers,
including the ubiquitous StandardAnalyzer.

•

queryparser/lucene-queryparser-6.1.0.jar: Provides the query parser.•

Place the code in HelloLucene.java. Compile it with this command:

javac -classpath "core/*:queryparser/*" HelloLucene.java

And run it with this command:

https://riptutorial.com/ 2

https://lucene.apache.org/core/2_9_4/changes/Changes.html
https://lucene.apache.org/core/3_0_3/changes/Changes.html
https://lucene.apache.org/core/3_6_2/changes/Changes.html
https://lucene.apache.org/core/4_0_0/MIGRATE.html
https://lucene.apache.org/core/5_0_0/MIGRATE.html
https://lucene.apache.org/core/6_3_0/MIGRATE.html
http://www.riptutorial.com/java/topic/84/getting-started-with-java-language
https://lucene.apache.org/core/

java -classpath ".:core/*:queryparser/*" HelloLucene

Hello World

This basic Lucene example creates a simple index, and searches on it.

Note: RAMDirectory creates a memory-resident index, and is handy for experimenting and testing,
but in practice most people will need to have an index stored in the file system (see
FSDirectory.open).

import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.index.*;
import org.apache.lucene.queryparser.classic.*;
import org.apache.lucene.search.*;
import org.apache.lucene.store.*;

public class HelloLucene {
 public static void main(String[] args) throws IOException, ParseException
 {
 //Create a new index and open a writer
 Directory dir = new RAMDirectory();
 Analyzer analyzer = new StandardAnalyzer();
 IndexWriterConfig config = new IndexWriterConfig(analyzer);
 IndexWriter writer = new IndexWriter(dir, config);

 //Create a document to index
 Document doc = new Document();
 doc.add(new TextField("text", "Hello World!", Field.Store.YES));

 //Index the document and close the writer
 System.out.println("Indexing document: " + doc);
 writer.addDocument(doc);
 writer.close();

 //Open an IndexSearcher
 IndexReader reader = DirectoryReader.open(dir);
 IndexSearcher searcher = new IndexSearcher(reader);

 //Create a query
 QueryParser parser = new QueryParser("text", analyzer);
 Query query = parser.parse("world");

 //Search for results of the query in the index
 System.out.println("Searching for: \"" + query + "\"");
 TopDocs results = searcher.search(query, 10);
 for (ScoreDoc result : results.scoreDocs) {
 Document resultDoc = searcher.doc(result.doc);
 System.out.println("score: " + result.score +
 " -- text: " + resultDoc.get("text"));
 }
 reader.close();
 }
}

https://riptutorial.com/ 3

https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/store/FSDirectory.html#open-java.nio.file.Path-

Read Getting started with lucene online: https://riptutorial.com/lucene/topic/3132/getting-started-
with-lucene

https://riptutorial.com/ 4

https://riptutorial.com/lucene/topic/3132/getting-started-with-lucene
https://riptutorial.com/lucene/topic/3132/getting-started-with-lucene

Chapter 2: Analysis

Examples

Creating a custom analyzer

Most analysis customization is in the createComponents class, where the Tokenizer and TokenFilters
are defined.

CharFilters can be added in the initReader method.

Analyzer analyzer = new Analyzer() {
 @Override
 protected Reader initReader(String fieldName, Reader reader) {
 return new HTMLStripCharFilter(reader);
 }

 @Override
 protected TokenStreamComponents createComponents(String fieldName) {
 Tokenizer tokenizer = new StandardTokenizer();
 TokenStream stream = new StandardFilter(tokenizer);
 //Order matters! If LowerCaseFilter and StopFilter were swapped here, StopFilter's
 //matching would be case sensitive, so "the" would be eliminated, but not "The"
 stream = new LowerCaseFilter(stream);
 stream = new StopFilter(stream, StopAnalyzer.ENGLISH_STOP_WORDS_SET);
 return new TokenStreamComponents(tokenizer, stream);
 }
};

Iterating manually through analyzed tokens

TokenStream stream = myAnalyzer.tokenStream("myField", textToAnalyze);
stream.addAttribute(CharTermAttribute.class);
stream.reset();
while(stream.incrementToken()) {
 CharTermAttribute token = stream.getAttribute(CharTermAttribute.class);
 System.out.println(token.toString());
}

stream.close();

A number of Attributes are available. The most common is CharTermAttribute, which is used to get
the analyzed term as a String.

Read Analysis online: https://riptutorial.com/lucene/topic/4830/analysis

https://riptutorial.com/ 5

https://lucene.apache.org/core/6_1_0/core/org/apache/lucene/util/Attribute.html
https://riptutorial.com/lucene/topic/4830/analysis

Chapter 3: Deleting Documents using a Multi-
Term Query

Introduction

Deleting documents from a Lucene index is easy when you have a primary key field in your
document (like in traditional SQL databases).

However, sometimes deleting a number of documents based on multiple fields in the document is
what you need. The Lucene API allows you to achieve this by specifying a query to use for
deletion.

To do this, pick the right Analyzer, construct the query, pass the query to the indexWriter to delete
the documents.

Syntax

indexWriter.deleteDocuments(multiTermQuery);1.
Query multiTermQuery = new QueryParser("", analyzer).parse("field_name1:"field value 1"
AND field_name2:"field value 2"");

2.

BooleanQuery multiTermQuery = new BooleanQuery(); multiTermQuery.add(new
TermQuery(new Term("field_name1", "field value 1")), BooleanClause.Occur.MUST);
multiTermQuery.add(new TermQuery(new Term("field_name2", "field value 2")),
BooleanClause.Occur.MUST);

3.

Remarks

Caveats with the Choice of Analyzer

It's not immediately obvious, but the analyzer that you are using makes a huge difference to the
way your query is run. This is because the StandardAnalyzer filters out common English words
like "the" and "a". You might want to pick a different analyzer (like KeywordAnalyzer) so that it
matches exactly. This obviously depends on you application of Lucene of course.

Examples

Choice of Analyzer

First of all, watch out which analyzer you are using. I was stumped for a while only to realise that
the StandardAnalyzer filters out common words like 'the' and 'a'. This is a problem when your field
has the value 'A'. You might want to consider the KeywordAnalyzer:

https://riptutorial.com/ 6

See this post around the analyzer.

// Create an analyzer:
// NOTE: We want the keyword analyzer so that it doesn't strip or alter any terms:
// In our example, the Standard Analyzer removes the term 'A' because it is a common English
word.
// http://stackoverflow.com/a/9071806/231860
KeywordAnalyzer analyzer = new KeywordAnalyzer();

Query Parser

Next, you can either create your query using the QueryParser:

See this post around overriding the default operator.

// Create a query parser without a default field in this example (the first argument):
QueryParser queryParser = new QueryParser("", analyzer);

// Optionally, set the default operator to be AND (we leave it the default OR):
// http://stackoverflow.com/a/9084178/231860
// queryParser.setDefaultOperator(QueryParser.Operator.AND);

// Parse the query:
Query multiTermQuery = queryParser.parse("field_name1:\"field value 1\" AND
field_name2:\"field value 2\"");

Query API

Or you can achieve the same by constructing the query yourself using their API:

See this tutorial around creating the BooleanQuery.

BooleanQuery multiTermQuery = new BooleanQuery();
multiTermQuery.add(new TermQuery(new Term("field_name1", "field value 1")),
BooleanClause.Occur.MUST);
multiTermQuery.add(new TermQuery(new Term("field_name2", "field value 2")),
BooleanClause.Occur.MUST);

Delete the Documents that Match the Query

Then we finally pass the query to the writer to delete documents that match the query:

See the answer to this question.

See the API here

// Remove the document by using a multi key query:
// http://www.avajava.com/tutorials/lessons/how-do-i-combine-queries-with-a-boolean-query.html
indexWriter.deleteDocuments(multiTermQuery);

Read Deleting Documents using a Multi-Term Query online:
https://riptutorial.com/lucene/topic/9959/deleting-documents-using-a-multi-term-query

https://riptutorial.com/ 7

http://stackoverflow.com/a/9071806/231860
http://stackoverflow.com/a/9084178/231860
http://www.avajava.com/tutorials/lessons/how-do-i-combine-queries-with-a-boolean-query.html
http://stackoverflow.com/a/4851313/231860
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/index/IndexWriter.html
https://riptutorial.com/lucene/topic/9959/deleting-documents-using-a-multi-term-query

Chapter 4: Queries

Examples

BooleanQuery

BooleanQuery is used to combine other queries.

They can be combined using three BooleanClause.Occur parameters:

BooleanClause.Occur.MUST - The subquery must be matched.•
BooleanClause.Occur.SHOULD - The subquery may not be matched, but will be scored more
highly if it is. If there are no MUST clauses, then at least one SHOULD clause must be
matched.

•

BooleanClause.Occur.MUST_NOT - The subquery must not match the document.•

In this example, a document will match if it has "important", but not "forbidden", and will get a
higher score if it also has "helpful".

Query importantQuery = new TermQuery(new Term("fieldname", "important"));
Query optionalQuery = new TermQuery(new Term("fieldname", "helpful"));
Query forbidQuery = new TermQuery(new Term("fieldname", "forbidden"));
BooleanQuery query = new BooleanQuery.Builder()
 .add(importantQuery, BooleanClause.Occur.MUST)
 .add(optionalQuery, BooleanClause.Occur.SHOULD)
 .add(forbidQuery, BooleanClause.Occur.MUST_NOT)
 .build();

Alternatively, you can also specify the minimum number of clauses that must be matched:

Query query1 = new TermQuery(new Term("fieldname", "one"));
Query query2 = new TermQuery(new Term("fieldname", "two"));
Query query3 = new TermQuery(new Term("fieldname", "three"));
BooleanQuery query = new BooleanQuery.Builder()
 .add(query1, BooleanClause.Occur.SHOULD)
 .add(query2, BooleanClause.Occur.SHOULD)
 .add(query3, BooleanClause.Occur.SHOULD)
 .setMinimumNumberShouldMatch(2)
 .build();

Gotcha: Clauses with BooleanClause.Occur.MUST_NOT do not match everything else, they only
eliminate matches. Your BooleanQuery must have at least one MUST or SHOULD clause, or it will
match nothing. This, for example, will NOT work:

//***This does NOT work!***
Query forbidQuery = new TermQuery(new Term("fieldname", "forbidden"));
BooleanQuery getEverythingElseQuery = new BooleanQuery.Builder()
 .add(forbidQuery, BooleanClause.Occur.MUST_NOT)
 .build();

https://riptutorial.com/ 8

PhraseQuery

PhraseQuery is used to search for a sequence of terms. The following matches the phrase "Hello
World" (after being indexed with StandardAnalyzer)

Query query = new PhraseQuery.Builder()
 .add(new Term("text", "hello"))
 .add(new Term("text", "world"))
 .build();

PhraseQuery can also handle "slop", or extra terms within a query, by setting a maximum edit
distance with setSlop. This will match "Lorem ipsum sit amet dolor":

Query query = new PhraseQuery.Builder()
 .add(new Term("text", "lorem"))
 .add(new Term("text", "amet"))
 .setSlop(2)
 .build();

You can also set exact position increments:

Query query = new PhraseQuery.Builder()
 .add(new Term("text", "lorem"), 0)
 .add(new Term("text", "sit"), 2)
 .add(new Term("text", "dolor"), 4)
 .build();

DisjunctionMaxQuery

This combines queries such that the best (that is, highest-scoring) match of it's subqueries
contributes to the final score.

List<Query> disjuncts = new ArrayList<Query>();
disjuncts.add(new TermQuery(new Term("fieldname", "hello")));
disjuncts.add(new TermQuery(new Term("fieldname", "world")));
Query query = new DisjunctionMaxQuery(disjuncts, 0.0f);

The second argument to the DisjunctionMaxQuery constructor is a tiebreaker value, which, when
non-zero, allows non-maximal matches to make some small contribution to score, in order to
break ties. It should generally be small (on the order of 0.1).

Boosting queries

A query can be boosted to increase it's score relative to other subqueries. This is done by
wrapping it with a BoostQuery

Query lessRelevantQuery = new TermQuery(new Term("fieldname", "ipsum"));
//Five times as interesting
Query highlyRelevantQuery = new BoostQuery(
 new TermQuery(new Term("fieldname", "lorem")),

https://riptutorial.com/ 9

https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

 5.0f);
BooleanQuery query = new BooleanQuery.Builder()
 .add(lessRelevantQuery, BooleanClause.Occur.SHOULD)
 .add(highlyRelevantQuery, BooleanClause.Occur.SHOULD)
 .build();

Read Queries online: https://riptutorial.com/lucene/topic/5614/queries

https://riptutorial.com/ 10

https://riptutorial.com/lucene/topic/5614/queries

Credits

S.
No

Chapters Contributors

1
Getting started with
lucene

Community, femtoRgon, Hamid Rohani, Heidar

2 Analysis femtoRgon

3
Deleting Documents
using a Multi-Term
Query

Luke Machowski

4 Queries femtoRgon

https://riptutorial.com/ 11

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1628375/femtorgon
https://riptutorial.com/contributor/777769/hamid-rohani
https://riptutorial.com/contributor/456582/heidar
https://riptutorial.com/contributor/1628375/femtorgon
https://riptutorial.com/contributor/231860/luke-machowski
https://riptutorial.com/contributor/1628375/femtorgon

	About
	Chapter 1: Getting started with lucene
	Remarks
	Versions
	Examples
	Setup
	Hello World

	Chapter 2: Analysis
	Examples
	Creating a custom analyzer
	Iterating manually through analyzed tokens

	Chapter 3: Deleting Documents using a Multi-Term Query
	Introduction
	Syntax
	Remarks

	Caveats with the Choice of Analyzer
	Examples
	Choice of Analyzer
	Query Parser
	Query API
	Delete the Documents that Match the Query

	Chapter 4: Queries
	Examples
	BooleanQuery
	PhraseQuery
	DisjunctionMaxQuery
	Boosting queries

	Credits

