
makefile

#makefile

Table of Contents

About 1

Chapter 1: Getting started with makefile 2

Remarks 2

Versions 2

Examples 3

Basic Makefile 3

Defining Rules 4

Quick start 4

Pattern Rules 5

Implicit Rules 5

generic rule to gzip a file 6

makefile Hello World 6

Chapter 2: .PHONY target 7

Examples 7

Using .PHONY for non-files targets 7

Using .PHONY for recursive invocations of 'make' command 7

Chapter 3: Advanced Makefile 9

Examples 9

Building from different source folders to different target folders 9

Zipping lists 11

Chapter 4: GNU Pattern Rules 13

Examples 13

Basic Pattern Rule 13

Targets matching multiple Pattern Rules 13

Directories in Pattern Rules 13

Pattern Rules with multiple targets 14

Chapter 5: Variables 15

Examples 15

Referencing a Variable 15

Simply-Expanded Variables 15

Recursively-Expanded Variables 15

Automatic Variables 16

Conditional Variable Assignment 16

Appending Text To an Existing Variable 17

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: makefile

It is an unofficial and free makefile ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official makefile.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/makefile
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with makefile

Remarks

A makefile is a text file which controls the operation of the make program. The make program is
typically used to manage the creation of programs from their source files, but it can be more
generally used to handle any process where files (or targets) need to be regenerated after other
files (or prerequisites) have been modified. The makefile describes the relationship between
targets and prerequisites, and also specifies the commands needed to bring the target up-to-date
when one or more of the prerequisites has changed. The only way that make determines "out of
date-ness" is by comparing the modification time of target files and their prerequisites.

Makefiles are somewhat unique in a few ways which can be confusing initially.

First, a makefile consists of two completely different programming languages in the same file. The
bulk of the file is written in a language that make can understand: this provides variable assignment
and expansion, some preprocessor capabilities (including other files, conditional parsing of
sections of the file, etc.) as well as the definition of targets and their prerequisites. In addition,
each target can have a recipe associated with it which specifies which commands should be
invoked to cause that target to be brought up-to-date. The recipe is written as a shell script
(POSIX sh by default). The make program doesn't parse this script: it runs a shell and passes the
script to the shell to be run. The fact that recipes are not parsed by make, but instead handled by a
separate shell process, is central in understanding makefiles.

Second, a makefile is not a procedural language like a script: as make parses the makefile it
constructs a directed graph internally where targets are the nodes of the graph and the
prerequisite relationships are the edges. Only after all makefiles have been completely parsed and
the graph is complete will make choose one node (target) and attempt to bring it up to date. In order
to ensure a target is up to date, it must first ensure that each of that target's prerequisites are up to
date, and so on recursively.

Versions

Name
Also Known
As

Initial
Version

Version
Release
Date

POSIX
make

1992
IEEE Std 1003.1-2008, 2016
Edition

2016-09-30

NetBSD
make

bmake 1988 20160926 2016-09-26

GNU make gmake 1988 4.2.1 2016-06-10

SunPro
make

dmake 2006 2015-07-13

https://riptutorial.com/ 2

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
http://www.opengroup.org/austin/
http://www.crufty.net/help/sjg/bmake.htm
https://www.gnu.org/software/make/
https://illumos.org/man/1/dmake
http://src.illumos.org/source/xref/illumos-gate/usr/src/cmd/make/bin/main.cc#22

Name
Also Known
As

Initial
Version

Version
Release
Date

MSVS
nmake

2003 2015p3 2016-06-27

Examples

Basic Makefile

Consider writing a "hello world!" program in c. Lets say our source code is in a file called source.c,
now in order to run our program we need to compile it, typically on Linux (using gcc) we would
need to type $> gcc source.c -o output where output is the name of the executable to be
generated. For a basic program this works well but as programs become more complex our
compilation command can also become more complex. This is where a Makefile comes in,
makefiles allow us to write out a fairly complex set of rules for how to compile a program and then
simply compile it by typing make on the command line. For instance here is a possible example
Makefile for the hello wold example above.

Basic Makefile

Lets make a basic Makefile and save it to our system in the same directory as our source code
named Makefile. Note that this file needs to be named Makefile, however the capitol M is optional.
That said it is relatively standard to use a capitol M.

output: source.c
 gcc source.c -o output

Note that there is exactly one tab before the gcc command on the second line (this is important in
makefiles). Once this Makefile is written every time the user types make (in the same directory as
the Makefile) make will check to see if source.c has been modified (checks the time stamp) if it
has been modified more recently than output it will run the compilation rule on the following line.

Variables in Makefiles

Depending on the project you may want to introduce some variables to your make file. Here is an
example Makefile with variables present.

CFLAGS = -g -Wall

output: source.c
 gcc $< $(CFLAGS) -o $@

Now lets explore what happened here. In the first line we declared a variable named CFLAGS that
holds several common flags you may wish to pass to the compiler, note that you can store as
many flags as you like in this variable. Then we have the same line as before telling make to
check source.c to see if it has been changed more recently than output, if so it runs the
compilation rule. Our compilation rule is mostly the same as before but it has been shortened by

https://riptutorial.com/ 3

https://msdn.microsoft.com/en-us/library/dd9y37ha(v=vs.71).aspx

using variables, the $< variable is built into make (referred to as an automatic variable see
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html) and it always
stands for the source so in this case source.c. $(CFLAGS) is our variable that we defined before, but
note that we had to put the variable in parenthesis with a $ in front like this$(someVariable). This is
the syntax for telling Make to expand the variable out to what you typed before. Finally we have
the $@ symbol, once again this is a variable built into make, and it simply stands for the target of
the compilation step, so in this case it stands for output.

Clean

Make clean is another useful concept to learn about make files. Lets modify the Makefile from
above

CFLAGS = -g -Wall
TARGETS = output

output: source.c
 gcc $< $(CFLAGS) -o $@

clean:
 rm $(TARGETS)

As you can see we simply added one more rule to our Makefile, and one additional variable that
contains all of our targets. This is a somewhat common rule to have in makefiles as it allows you
to quickly remove all of the binaries you produced simply by typing $> make clean. By typing make
clean you tell the make program to run the clean rule and then make will run the rm command to
delete all of your targets.

I hope this brief overview of using make helps you speed up your workflow, Makefiles can become
very complex, but with these ideas you should be able to get started using make and have a better
understanding of what is going on in other programmers Makefiles. For more information about
using make an excellent resource is https://www.gnu.org/software/make/manual/.

Defining Rules

Quick start

A rule describes when and how certain files (rule's targets) are created. It can also serve to
update a target file if any of the files required for its creation (target's prerequisites) are newer
than the target.

Rules follow the syntax below: (Note that commands following a rule are indented by a tab)

targets: prerequisites
 <commands>

where targets and prerequisites are file names or special reserved names and commands (if
present) are executed by a shell to build/rebuild targets that are out-of-date.

https://riptutorial.com/ 4

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
https://www.gnu.org/software/make/manual/

To execute a rule one can simply run the make command in the terminal from the same directory
where the Makefile resides. Running make without specifying the target, will execute the first rule
defined in the Makefile. By convention, the first rule in the Makefile is often called all or default,
commonly listing all valid build targets as prerequisites.

make only executes the rule if the target is out-of-date, meaning either it doesn't exist or its
modification time is older than any of its prerequisites. If the list of prerequisites is empty, the rule
will only be executed when it is first invoked to build the targets. However, when the rule does not
create a file and the target is a dummy variable, the rule will always be executed.

GNU make

Pattern Rules

Pattern rules are used to specify multiple targets and construct prerequisite names from target
names. They are more general and more powerful compared to ordinary rules as each target can
have its own prerequisites. In pattern rules, a relationship between a target and a prerequisite is
build based on prefixes including path names and suffixes, or both.

Imagine we want to build the targets foo.o and bar.o, by compiling C scripts, foo.c and bar.c,
respectively. This could be done by using the ordinary rules below:

foo.o: foo.c
 cc -c $< -o $@

bar.o: bar.c
 cc -c $< -o $@

where automatic variable $< is the name of the first prerequisite and $@ the name of the target (A
complete list of automatic variables can be found here).

However, as the targets share the same suffix, the above two rules can now be substituted by the
following pattern rule:

%.o: %.c
 cc -c $< -o $@

Implicit Rules

Implicit rules tell make how to use customary methods to build certain types of target files, which
are used very often. make uses the target file name to determine which implicit rule to invoke.

The pattern rule example we saw in the previous section, does not actually need to be declared in
a Makefile as make has an implicit rule for C compilation. Thus, in the following rule, the
prerequisites foo.o and bar.o will be build using the implicit rule for C compilation, before building
foo.

https://riptutorial.com/ 5

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

foo : foo.o bar.o
 cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

A catalogue of implicit rules and the variables used by them can be found here.

generic rule to gzip a file

if a directory contain 2 files:

$ ls
makefile
example.txt

and makefile contain the following text

%.gz: %
 gzip $<

then you can obtain example.txt.gz by typing in the shell

$ make -f makefile example.txt.gz

the makefile consist of only one rule that instruct make how to create a file whose name end with
.gz if there is a file with the same name but the .gz suffix.

makefile Hello World

C:\makefile:

helloWorld :
[TAB]echo hello world

run results:

C:\>make
echo hello world
hello world

Note: [TAB] should be replaced by an actual tab, stackoverflow replaces tabs with spaces, and
spaces are not used the same as tabs in a makefile.

Read Getting started with makefile online: https://riptutorial.com/makefile/topic/1793/getting-
started-with-makefile

https://riptutorial.com/ 6

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html#tag_20_76_13_09
https://riptutorial.com/makefile/topic/1793/getting-started-with-makefile
https://riptutorial.com/makefile/topic/1793/getting-started-with-makefile

Chapter 2: .PHONY target

Examples

Using .PHONY for non-files targets

Use .PHONY to specify the targets that are not files, e.g., clean or mrproper.

Good example

.PHONY: clean
clean:
 rm *.o temp

Bad example

clean:
 rm *.o temp

In the good example make knows that clean is not a file, therefore it will not search if it is or not up
to date and will execute the recipe.

In the bad example make will look for a file named clean. If it doesn't exist or is not up to date it will
execute the recipe, but if it does exist and is up to date the recipe will not be executed.

Using .PHONY for recursive invocations of 'make' command

Recursive use of make means using make as a command within a makefile. This technique is
useful when a large project contains sub-directories, each having their respective makefiles. The
following example will help understand advantage of using .PHONY with recursive make.

/main
 |_ Makefile
 |_ /foo
 |_ Makefile
 |_ ... // other files
 |_ /bar
 |_ Makefile
 |_ ... // other files
 |_ /koo
 |_ Makefile
 |_ ... // other files

To run sub-directory's makefile from within the makefile of main, the main's makefile would have
looping as shown below (there are other ways in which this can be achieved, but that is out of
scope of the current topic)

SUBDIRS = foo bar koo

https://riptutorial.com/ 7

subdirs:
 for dir in $(SUBDIRS); do \
 $(MAKE) -C $$dir; \
 done

However, there are pitfalls with this method.

Any error detected in a sub-make is ignored by this rule, so it will continue to build the rest of
the directories even when one fails.

1.

Make's ability to perform Parallel execution of multiple build targets is not utilized since only
one rule is used.

2.

By declaring the sub-directories as .PHONY targets (you must do this as the sub-directory
obviously always exists; otherwise it won’t be built) these problems can be overcome.

SUBDIRS = foo bar koo

.PHONY: subdirs $(SUBDIRS)

subdirs: $(SUBDIRS)

$(SUBDIRS):
 $(MAKE) -C $@

Read .PHONY target online: https://riptutorial.com/makefile/topic/5542/-phony-target

https://riptutorial.com/ 8

https://riptutorial.com/makefile/topic/5542/-phony-target

Chapter 3: Advanced Makefile

Examples

Building from different source folders to different target folders

Main features of this Makefile :

Automatic detection of C sources in specified folders•
Multiple source folders•
Multiple corresponding target folders for object and dependency files•
Automatic rule generation for each target folder•
Creation of target folders when they don't exist•
Dependency management with gcc : Build only what is necessary•
Works on Unix and DOS systems•
Written for GNU Make•

This Makefile can be used to build a project with this kind of structure :

\---Project
 +---Sources
 | +---Folder0
 | | main.c
 | |
 | +---Folder1
 | | file1_1.c
 | | file1_1.h
 | |
 | \---Folder2
 | file2_1.c
 | file2_1.h
 | file2_2.c
 | file2_2.h
 \---Build
 | Makefile
 | myApp.exe
 |
 +---Folder0
 | main.d
 | main.o
 |
 +---Folder1
 | file1_1.d
 | file1_1.o
 |
 \---Folder2
 file2_1.d
 file2_1.o
 file2_2.d
 file2_2.o

Makefile

https://riptutorial.com/ 9

Set project directory one level above of Makefile directory. $(CURDIR) is a GNU make
variable containing the path to the current working directory
PROJDIR := $(realpath $(CURDIR)/..)
SOURCEDIR := $(PROJDIR)/Sources
BUILDDIR := $(PROJDIR)/Build

Name of the final executable
TARGET = myApp.exe

Decide whether the commands will be shwon or not
VERBOSE = TRUE

Create the list of directories
DIRS = Folder0 Folder1 Folder2
SOURCEDIRS = $(foreach dir, $(DIRS), $(addprefix $(SOURCEDIR)/, $(dir)))
TARGETDIRS = $(foreach dir, $(DIRS), $(addprefix $(BUILDDIR)/, $(dir)))

Generate the GCC includes parameters by adding -I before each source folder
INCLUDES = $(foreach dir, $(SOURCEDIRS), $(addprefix -I, $(dir)))

Add this list to VPATH, the place make will look for the source files
VPATH = $(SOURCEDIRS)

Create a list of *.c sources in DIRS
SOURCES = $(foreach dir,$(SOURCEDIRS),$(wildcard $(dir)/*.c))

Define objects for all sources
OBJS := $(subst $(SOURCEDIR),$(BUILDDIR),$(SOURCES:.c=.o))

Define dependencies files for all objects
DEPS = $(OBJS:.o=.d)

Name the compiler
CC = gcc

OS specific part
ifeq ($(OS),Windows_NT)
 RM = del /F /Q
 RMDIR = -RMDIR /S /Q
 MKDIR = -mkdir
 ERRIGNORE = 2>NUL || true
 SEP=\\
else
 RM = rm -rf
 RMDIR = rm -rf
 MKDIR = mkdir -p
 ERRIGNORE = 2>/dev/null
 SEP=/
endif

Remove space after separator
PSEP = $(strip $(SEP))

Hide or not the calls depending of VERBOSE
ifeq ($(VERBOSE),TRUE)
 HIDE =
else
 HIDE = @
endif

Define the function that will generate each rule

https://riptutorial.com/ 10

define generateRules
$(1)/%.o: %.c
 @echo Building $$@
 $(HIDE)$(CC) -c $$(INCLUDES) -o $$(subst /,$$(PSEP),$$@) $$(subst /,$$(PSEP),$$<) -MMD
endef

.PHONY: all clean directories

all: directories $(TARGET)

$(TARGET): $(OBJS)
 $(HIDE)echo Linking $@
 $(HIDE)$(CC) $(OBJS) -o $(TARGET)

Include dependencies
-include $(DEPS)

Generate rules
$(foreach targetdir, $(TARGETDIRS), $(eval $(call generateRules, $(targetdir))))

directories:
 $(HIDE)$(MKDIR) $(subst /,$(PSEP),$(TARGETDIRS)) $(ERRIGNORE)

Remove all objects, dependencies and executable files generated during the build
clean:
 $(HIDE)$(RMDIR) $(subst /,$(PSEP),$(TARGETDIRS)) $(ERRIGNORE)
 $(HIDE)$(RM) $(TARGET) $(ERRIGNORE)
 @echo Cleaning done !

How to use this Makefile To adapt this Makefile to your project you have to :

Change the TARGET variable to match your target name1.
Change the name of the Sources and Build folders in SOURCEDIR and BUILDDIR2.
Change the verbosity level of the Makefile in the Makefile itself or in make call3.
Change the name of the folders in DIRS to match your sources and build folders4.
If required, change the compiler and the flags5.

Zipping lists

GNU make

This pairmap function takes three arguments:

A function name1.
First space-separated list2.
Second space-separated list3.

For each zipped tuple in the lists it will call the function with the following arguments:

Tuple element from the first list1.
Tuple element from the second list2.

It will expand to a space-separated list of the function expansions.

https://riptutorial.com/ 11

list-rem = $(wordlist 2,$(words $1),$1)
pairmap = $(and $(strip $2),$(strip $3),$(call \
 $1,$(firstword $2),$(firstword $3)) $(call \
 pairmap,$1,$(call list-rem,$2),$(call list-rem,$3)))

For example, this:

LIST1 := foo bar baz
LIST2 := 1 2 3

func = $1-$2

all:
 @echo $(call pairmap,func,$(LIST1),$(LIST2))

.PHONY: all

Will print foo-1 bar-2 baz-3.

Read Advanced Makefile online: https://riptutorial.com/makefile/topic/6154/advanced-makefile

https://riptutorial.com/ 12

https://riptutorial.com/makefile/topic/6154/advanced-makefile

Chapter 4: GNU Pattern Rules

Examples

Basic Pattern Rule

A pattern rule is indicated by a single % character in the target. The % matches a non-empty string
called the stem. The stem is then substituted for every % that appears in the prerequisite list.

For example, this rule:

%.o: %.c
 $(CC) $(CFLAGS) -c $< -o $@

Will match any target ending in .o. If the target was foo.o, the stem would be foo and it would
compile foo.c to foo.o. Targets and prerequisites can be accessed using automatic variables.

Targets matching multiple Pattern Rules

If a target matches multiple pattern rules, make will use the one whose prerequisites exist or can
be built. For example:

%.o: %.c
 $(CC) $(CFLAGS) -c $< -o $@
%.o: %.s
 $(AS) $(ASFLAGS) $< -o $@

Will compile foo.c to foo.o or assemble foo.s to foo.o, depending on which one of foo.c or foo.s
exists.

If multiple rules have prerequisites that exist or can be built, make will use the rule that matches to
the shortest stem. For example:

f%r:
 @echo Stem is: $*
fo%r:
 @echo Stem is: $*

Will use the second rule to make the target foo.bar, echoing Stem is: o.ba.

If multiple rules match to the shortest stem, make will use the first one in the Makefile.

Directories in Pattern Rules

If the target pattern doesn't contain slashes, make will remove the directory part from the target it's
trying to build before matching. The directory will then be put in front of the stem. When the stem is
used to build the target name and prerequisites, the directory part is stripped from it, the stem is

https://riptutorial.com/ 13

substituted in place of the % and finally the directory is put in front of the string. For example:

foo%.o: %.c
 $(CC) $(CFLAGS) -c $< -o $@

Will match lib/foobar.o, with:

Stem ($*): lib/bar•
Target name ($@): lib/foobar.o•
Prerequisites ($<, $^): lib/foobar.c•

In this example, a lib/foo%.o rule would take precedence over the foo%.o rule because it matches
to a shorter stem.

Pattern Rules with multiple targets

Pattern rules can have multiple targets but, unlike normal rules, the recipe is responsible for
making all the targets. For example:

debug/%.o release/%.o: %.c
 $(CC) $(CFLAGS_DEBUG) -c $< -o debug/$*.o
 $(CC) $(CFLAGS_RELEASE) -c $< -o release/$*.o

Is a valid rule, which will build both debug and release objects when one of them has to be built. If
we wrote something like:

debug/%.o release/%.o: %.c
 $(CC) $(CFLAGS) -c $< -o $@

It would work when only one of debug/*.o or release/*.o is built, but it would only build the first
target (and consider the second one to be up-to-date) when both have to be built.

Read GNU Pattern Rules online: https://riptutorial.com/makefile/topic/6860/gnu-pattern-rules

https://riptutorial.com/ 14

https://riptutorial.com/makefile/topic/6860/gnu-pattern-rules

Chapter 5: Variables

Examples

Referencing a Variable

To use the value stored in a variable, use the dollar sign followed by the variable name enclosed
by parentheses or curly braces.

x = hello
y = $(x)
y now contains the value "hello"
y = ${x}
parentheses and curly braces are treated exactly the same

If a variable's name is only one character long, the parentheses/braces can be omitted (e.g., $x).
This practice is used for automatic variables (see below), but is not recommended for general-
purpose variables.

Simply-Expanded Variables

Simply-expanded variables behave like variables from traditional programming languages. The
expression on the right-hand side is evaluated, and the result is stored in the variable. If the right-
hand side contains a variable reference, that variable is expanded before the assignment takes
place.

x := hello
y := $(x)
Both $(x) and $(y) will now yield "hello"
x := world
$(x) will now yield "world", and $(y) will yield "hello"

An alternative form is to use double-colon assignment:

x ::= hello

Single- and double-colon assignment are equivalent. The POSIX make standard only mentions
the ::= form, so implementations with strict standards compliance may not support the single-
colon version.

Recursively-Expanded Variables

When defining a recursively-expanded variable, the contents of the right-hand side are stored as-
is. If a variable reference is present, the reference itself is stored (not the value of the variable).
Make waits to expand the variable references until the variable is actually used.

x = hello

https://riptutorial.com/ 15

y = $(x)
Both $(x) and $(y) will now yield "hello"
x = world
Both $(x) and $(y) will now yield "world"

In this example, the definition of y is recursive. The reference to $(x) doesn't get expanded until
$(y) is expanded. This means that whenever the value of x changes, the value of y will change as
well.

Recursively-expanded variables are a powerful but easily-misunderstood tool. They can be used
to create constructs that resemble templates or functions, or even to automatically generate
portions of a makefile. They can also be the source of hard-to-debug problems. Be careful to only
use recursively-expanded variables when necessary.

Automatic Variables

Within the context of an individual rule, Make automatically defines a number of special variables.
These variables can have a different value for each rule in a makefile and are designed to make
writing rules simpler. These variables can only be used in the recipe portion of a rule.

Variable Description

$@ File name of the rule's target

$% The target member's name, if the rule's target is an archive

$< File name of the first prerequisite

$^ List of all prerequisites

$? List of all prerequisites that are newer than the target

$* The "stem" of an implicit or pattern rule

The following example uses automatic variables to generate a generic rule. This instructs make
how to construct a .o file out of a .c file with the same name. Since we don't know the specific
name of the affected files, we use $@ as a placeholder for the output file's name and $^ as a
placeholder for the prerequisite list (in this case, the list of input files).

%.o: %.c
 cc -Wall $^ -c $@

Conditional Variable Assignment

The ?= operator is an extension that behaves like =, except that the assignment only occurs if the
variable is not already set.

x = hello

https://riptutorial.com/ 16

x ?= world
$(x) will yield "hello"

Appending Text To an Existing Variable

The += operator is a common extension that adds the specified content to the end of the variable,
separated by a space.

x = hello
x += world

Variable references in the right-hand side will be expanded if and only if the original variable was
defined as a simply-expanded variable.

Read Variables online: https://riptutorial.com/makefile/topic/6191/variables

https://riptutorial.com/ 17

https://riptutorial.com/makefile/topic/6191/variables

Credits

S.
No

Chapters Contributors

1
Getting started with
makefile

chen, Community, Dan , Eldar Abusalimov, kdhp, levif,
MadScientist, mox, mxenoph, SketchBookGames

2 .PHONY target kdhp, madD7, TimF

3 Advanced Makefile Andrea Biondo, TimF

4 GNU Pattern Rules Andrea Biondo, kdhp

5 Variables bta

https://riptutorial.com/ 18

https://riptutorial.com/contributor/6566386/chen
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6466981/dan
https://riptutorial.com/contributor/545027/eldar-abusalimov
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/425540/levif
https://riptutorial.com/contributor/939557/madscientist
https://riptutorial.com/contributor/849877/mox
https://riptutorial.com/contributor/2776205/mxenoph
https://riptutorial.com/contributor/190113/sketchbookgames
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/2541267/madd7
https://riptutorial.com/contributor/6413048/timf
https://riptutorial.com/contributor/6644919/andrea-biondo
https://riptutorial.com/contributor/6413048/timf
https://riptutorial.com/contributor/6644919/andrea-biondo
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/79566/bta

	About
	Chapter 1: Getting started with makefile
	Remarks
	Versions
	Examples
	Basic Makefile
	Defining Rules

	Quick start
	Pattern Rules
	Implicit Rules
	generic rule to gzip a file
	makefile Hello World

	Chapter 2: .PHONY target
	Examples
	Using .PHONY for non-files targets
	Using .PHONY for recursive invocations of 'make' command

	Chapter 3: Advanced Makefile
	Examples
	Building from different source folders to different target folders
	Zipping lists

	Chapter 4: GNU Pattern Rules
	Examples
	Basic Pattern Rule
	Targets matching multiple Pattern Rules
	Directories in Pattern Rules
	Pattern Rules with multiple targets

	Chapter 5: Variables
	Examples
	Referencing a Variable
	Simply-Expanded Variables
	Recursively-Expanded Variables
	Automatic Variables
	Conditional Variable Assignment
	Appending Text To an Existing Variable

	Credits

