
marklogic

#marklogic



Table of Contents

About 1

Chapter 1: Getting started with marklogic 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Chapter 2: Marklogic 8 Features 4

Remarks 4

Examples 4

New features in MarkLogic 8 4

Chapter 3: Search in MarkLogic 5

Remarks 5

Examples 5

Fetching all the documents with word "marklogic" 5

Fetching all the documents with word "marklogic", document in collection "first-collection 5

Fetching all the documents with a particular value of an element 5

Checking presence of elements and attributes in documents 5

Chapter 4: Very simple CRUD examples for XML documents 7

Examples 7

Create a simple document 7

Read/access our sample document 7

Update the simple document 8

Bonus: Simple Search example (Another way to read) 8

Delete - Last, but not least 9

Chapter 5: Working with fn:count, xdmp:estimate and cts:frequency 11

Remarks 11

Examples 11

Using fn:count() to get the number of matching documents 11

Using xdmp:estimate() to get the number of matching documents 11

Counting documents when fragments are defined 11



Credits 13



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: marklogic

It is an unofficial and free marklogic ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official marklogic.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/marklogic
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with marklogic

Remarks

This section provides an overview of what marklogic is, and why a developer might want to use it.

It should also mention any large subjects within marklogic, and link out to the related topics. Since 
the Documentation for marklogic is new, you may need to create initial versions of those related 
topics.

Versions

Version URL to Download URL to Release Notes Release Date

8.0-5.5 Download Rel Notes 2016-07-15

7.0-6.4 Download Rel Notes 2015-07-15

9.0-1.1 Download Rel Notes 2017-05-10

Examples

Installation or Setup

Detailed instructions on getting MarkLogic set up or installed can be found in the Installation Guide
. The full offering of documentation is available via docs.marklogic.com

The overall setup process involves

Installing the binary/rpm1. 
Starting the services2. 
Configuring first and subsequent hosts3. 

A "Hello World" example is not really necessary to verify setup. The setup process includes 
verification of success, in that once installed, the user will navigate a browser to the administrative 
interface. If something has been missed, the services are not started, or something went wrong 
with the installation process, the interface will not come up. Full step-by-step procedures are 
included in the document referenced.

Once installed and basic configuration is in place, a great tool to get started with interacting with 
the system is called "Query Console" and is available via browser, usually at port 8000. The 
typical URL for an instance installed on a developer's local machine is 
http://localhost:8000/qconsole

This powerful tool has a separate document available here.

https://riptutorial.com/ 2

https://developer.marklogic.com/products
https://docs.marklogic.com/guide/relnotes/chap3
https://developer.marklogic.com/products/marklogic-server/7.0
https://docs.marklogic.com/7.0/guide/relnotes/chap3
http://developer.marklogic.com/products
http://docs.marklogic.com/guide/relnotes/chap3
http://docs.marklogic.com/guide/installation
http://docs.marklogic.com/
http://localhost:8000/qconsole
http://docs.marklogic.com/guide/qconsole


Read Getting started with marklogic online: https://riptutorial.com/marklogic/topic/5308/getting-
started-with-marklogic

https://riptutorial.com/ 3

https://riptutorial.com/marklogic/topic/5308/getting-started-with-marklogic
https://riptutorial.com/marklogic/topic/5308/getting-started-with-marklogic


Chapter 2: Marklogic 8 Features

Remarks

This section provides an overview of what's new in MarkLogic 8 and its other updated versions. 
Use case for each feature also needs to be added.

Examples

New features in MarkLogic 8

Server-Side JavaScript•
Native JSON•
Samplestack Sample Application•
Temporal Documents•
REST Management•
API Improvements•
More Semantics Features, Including SPARQL 1.1, Inferencing, and SPARQL UPDATE•
Node.js Client API•
REST and Java Client API Improvements•
Enhanced HTTP Server Features•
Flexible Replication Enhancements•
Incremental Backup•
Document Library Services (DLS) Improvements•
MLCP Enhancements•

Read Marklogic 8 Features online: https://riptutorial.com/marklogic/topic/5386/marklogic-8-
features

https://riptutorial.com/ 4

https://riptutorial.com/marklogic/topic/5386/marklogic-8-features
https://riptutorial.com/marklogic/topic/5386/marklogic-8-features


Chapter 3: Search in MarkLogic

Remarks

This section provides an overview of search in MarkLogic. Intent is to cover cts:search, 
search:search and qbe with use cases and examples

Examples

Fetching all the documents with word "marklogic"

cts:search( 
    fn:doc(), 
    cts:word-query("marklogic"))

Fetching all the documents with word "marklogic", document in collection 
"first-collection"

This can be done in the following two ways -

cts:search( 
    fn:collection("first-collection"), 
    cts:word-query("marklogic"))

In this, the scope is changed from all the documents to documents in collection "first-collection" 
only.

In the second approach, use of cts:collection-query has been made. This should give better 
performance than the first approach.

cts:search( 
    fn:doc(), 
    cts:and-query(( 
        cts:collection-query("first-collection"), 
        cts:word-query("marklogic")))

Fetching all the documents with a particular value of an element

This query returns all the documents with element "company" and its value as "marklogic"

cts:element-value-query(xs:QName('company'), 'marklogic'))

Checking presence of elements and attributes in documents

The following query returns the documents which have an element named "company" -

https://riptutorial.com/ 5

https://docs.marklogic.com/cts:collection-query


cts:element-value-query( 
xs:QName('company'), '*', ("wildcarded")))

The following query returns the documents which have an element named "company" with an 
attribute named "name" -

cts:element-attribute-value-query( 
xs:QName('company'), xs:QName('name'), '*', ("wildcarded"))) 

Read Search in MarkLogic online: https://riptutorial.com/marklogic/topic/5401/search-in-marklogic

https://riptutorial.com/ 6

https://riptutorial.com/marklogic/topic/5401/search-in-marklogic


Chapter 4: Very simple CRUD examples for 
XML documents

Examples

Create a simple document

This very simple snippet of XQuery can be executed in QueryConsole using the built-in 
"Documents" database as a sandbox. Each piece of the snippet has a comment to explain what 
the following line of code means.

xquery version "1.0-ml"; 
(: Let's first insert a simple document to get started :) 
(: You need a URI- the location where the document is found in the database :) 
let $uri := "/stuff/mysimpledocument.xml" 
(: Documents need content. This is a simple XML node :) 
let $doc := 
  <my-document> 
    <body>Very simple example</body> 
  </my-document> 
(: Permissions are a big topic. For now, we'll use the default permissions. :) 
let $permissions := xdmp:default-permissions() 
(: Document collections are optional. One or more can be specified :) 
(: Adding a collection for further examples that will use it. :) 
let $collections := "simple-example" 
(: Now we're just going to insert this document in the database :) 
let $insert := xdmp:document-insert($uri,$doc,$permissions,$collections) 
return <message>Document saved to {$uri}</message>

When this is executed, the console returns

<message>Document saved to /stuff/mysimpledocument.xml</message>

Now that the document exists, we can test additional operations...

Read/access our sample document

If we know the desired URI of the document we are looking for:

fn:doc("/stuff/mysimpledocument.xml")

Returns the full document from the database, using the URI to locate it.

Since this is XQuery, we can use XPath to find the document when we know about the structure, 
but not the URI:

/my-document

https://riptutorial.com/ 7



Returns the element "my-document" and its contents...

Update the simple document

We will now add some additional XML nodes to the "my-document" element and update the 
document. The snippet again contains comments to explain what is happening.

xquery version "1.0-ml"; 
(: We are preserving the same URI as we used originally :) 
let $uri := "/stuff/mysimpledocument.xml" 
(: Need to get the existing contents so we can append to those :) 
let $orig-content := fn:doc($uri)/my-document 
(: Documents need content. This is a simple XML node :) 
let $new-content := 
  <notes> 
    <note>Anything can be changed</note> 
    <note>New content is added in this example, but we could replace it all too</note> 
  </notes> 
(: Now to build the new xml. There's lots of ways to do this :) 
(: line 17 inserts the original contents into this new node construct :) 
(: line 18 inserts the $new-content after the original contents :) 
let $new-doc-content := 
  <my-document> 
    {$orig-content/node()} 
    {$new-content} 
  </my-document> 
(: Leave permissions untouched... :) 
let $permissions := xdmp:document-get-permissions($uri) 
(: Leave collections untouched... :) 
let $collections := xdmp:document-get-collections($uri) 
(: Now we're just going to insert this document in the database :) 
let $insert := xdmp:document-insert($uri,$new-doc-content,$permissions,$collections) 
return <message>Document {$uri} updated</message>

When executed, this returns the message

<message>Document /stuff/mysimpledocument.xml updated</message>

Now run the different read commands above to see the updated content. It should look like this:

<my-document> 
    <body>Very simple example</body> 
    <notes> 
        <note>Anything can be changed</note> 
        <note>New content is added in this example, but we could replace it all too</note> 
    </notes> 
</my-document>

Bonus: Simple Search example (Another way to read)

MarkLogic is first and foremost a search engine, so let's use two different methods to search for 
this document.

Using search:search()

https://riptutorial.com/ 8



This gives a peek into using search:search() to develop search applications. This library provides 
Google-like search results and will likely speed up your development of simple search tools. More 
information and a deeper dive can be found here.

xquery version "1.0-ml"; 
import module namespace search = "http://marklogic.com/appservices/search" 
     at "/MarkLogic/appservices/search/search.xqy"; 
(: What is search without a keyword? :) 
let $term := "very simple" 
return search:search($term)

The result looks a bit confusing, but you can see that it returns one result, our example document.

Using cts:search()

More advanced search situations might call for more granular search capabilities. This is just to 
whet your appetite for what is available in search. More detailed information is found here.

xquery version "1.0-ml"; 
(: What is search without a keyword? :) 
let $term := "very simple" 
(: Complex queries can be made from individual cts queries. Here, we just have one simple 
query :) 
let $query := cts:word-query($term,"case-insensitive") 
(: Return the documents that match the query :) 
return cts:search(fn:doc(),$query)

This is an incredibly simple example. BTW, if we want to get back the URI for the matching 
documents, instead of the documents themselves, we can change the last line of this snippet to-

return 
  for $result in cts:search(fn:doc(),$query) 
    return fn:base-uri($result)

Delete - Last, but not least

To round out simple examples of CRUD operations, we present the following examples. Always 
use great care in deleting documents.

(: When we know the URI, we can delete it very easily :) 
let $uri := "/stuff/mysimpledocument.xml" 
return xdmp:document-delete($uri)

or simplified:

xdmp:document-delete("/stuff/mysimpledocument.xml")

You can certainly use XPath to find the document, get the URI of it, and then delete it with 
something like this, but the danger is that any documents that are returned by the XPath 
expressions will be removed. Not always a good thing.

https://riptutorial.com/ 9

http://docs.marklogic.com/search
http://docs.marklogic.com/guide/search-dev


(: Use caution when using XPath to select target docs to delete :) 
for $doc in /my-document 
return xdmp:document-delete(fn:base-uri($doc))

Want to delete all documents? This will do it, but be very careful you know what database your 
code will execute against.

for $doc in fn:doc() 
return xdmp:document-delete(fn:base-uri($doc))

Read Very simple CRUD examples for XML documents online: 
https://riptutorial.com/marklogic/topic/5498/very-simple-crud-examples-for-xml-documents

https://riptutorial.com/ 10

https://riptutorial.com/marklogic/topic/5498/very-simple-crud-examples-for-xml-documents


Chapter 5: Working with fn:count, 
xdmp:estimate and cts:frequency

Remarks

This section provides an overview of fn:count, xdmp:estimate and cts:frequency along with 
examples and use cases

Examples

Using fn:count() to get the number of matching documents

The XML document, I will be using throughout the examples is -

<a> 
    <b>test-value</b> 
    <d>fragment-d</d> 
    <c-root> 
        <d>fragment-d</d> 
        <e>fragment-e</e> 
    </c-root> 
</a>

The following queries returns the number of documents with value fragment-d for element d -

Using a cts:search

fn:count(cts:search(fn:doc(), cts:element-value-query(xs:QName("d"), "fragment-d")))

•

Using XPath

fn:count(fn:doc()[//d="fragment-d"]))

•

Using xdmp:estimate() to get the number of matching documents

xdmp:estimate(cts:search(fn:doc(), cts:element-value-query(xs:QName("d"), "fragment-d")))

xdmp:estimate can not be used on XPaths unlike fn:count is used in previous example

xdmp:estimate actually gives the number of matching fragments

Counting documents when fragments are defined

The XML document to consider in this example -

<a> 
    <b>test-value</b> 

https://riptutorial.com/ 11

https://docs.marklogic.com/fn:count
https://docs.marklogic.com/xdmp:estimate
https://docs.marklogic.com/cts:frequency
https://docs.marklogic.com/cts:search
https://docs.marklogic.com/xdmp:estimate
https://docs.marklogic.com/fn:count
https://docs.marklogic.com/xdmp:estimate


    <d>fragment-d</d> 
    <c-root> 
        <d>fragment-d</d> 
        <e>fragment-e</e> 
    </c-root> 
</a>

A fragment root is declared on <c-root>

If this is the only document in the database, xdmp:estimate and fn:count are going to behave 
differently -

xdmp:estimate(cts:search(fn:doc(), cts:element-value-query(xs:QName("d"), "fragment-d")))

Result of the above query will be 2 (Number of fragments)

fn:count(cts:search(fn:doc(), cts:element-value-query(xs:QName("d"), "fragment-d")))

Result of the above query will be 1 (Number of documents)

In terms of performance xdmp:estimate is much better than fn:count as it takes the 
advantages of indexes while resolving the search results

Read Working with fn:count, xdmp:estimate and cts:frequency online: 
https://riptutorial.com/marklogic/topic/6300/working-with-fn-count--xdmp-estimate-and-cts-
frequency

https://riptutorial.com/ 12

https://docs.marklogic.com/xdmp:estimate
https://docs.marklogic.com/fn:count
https://docs.marklogic.com/xdmp:estimate
https://docs.marklogic.com/fn:count
https://riptutorial.com/marklogic/topic/6300/working-with-fn-count--xdmp-estimate-and-cts-frequency
https://riptutorial.com/marklogic/topic/6300/working-with-fn-count--xdmp-estimate-and-cts-frequency


Credits

S. 
No

Chapters Contributors

1
Getting started with 
marklogic

Community, Harry Bakken, Tamas

2 Marklogic 8 Features Ankit Bhardwaj

3 Search in MarkLogic Ankit Bhardwaj

4
Very simple CRUD 
examples for XML 
documents

Harry Bakken

5

Working with 
fn:count, 
xdmp:estimate and 
cts:frequency

Ankit Bhardwaj

https://riptutorial.com/ 13

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4747818/harry-bakken
https://riptutorial.com/contributor/969460/tamas
https://riptutorial.com/contributor/4042199/ankit-bhardwaj
https://riptutorial.com/contributor/4042199/ankit-bhardwaj
https://riptutorial.com/contributor/4747818/harry-bakken
https://riptutorial.com/contributor/4042199/ankit-bhardwaj

	About
	Chapter 1: Getting started with marklogic
	Remarks
	Versions
	Examples
	Installation or Setup


	Chapter 2: Marklogic 8 Features
	Remarks
	Examples
	New features in MarkLogic 8


	Chapter 3: Search in MarkLogic
	Remarks
	Examples
	Fetching all the documents with word "marklogic"
	Fetching all the documents with word "marklogic", document in collection "first-collection"
	Fetching all the documents with a particular value of an element
	Checking presence of elements and attributes in documents


	Chapter 4: Very simple CRUD examples for XML documents
	Examples
	Create a simple document
	Read/access our sample document
	Update the simple document
	Bonus: Simple Search example (Another way to read)
	Delete - Last, but not least


	Chapter 5: Working with fn:count, xdmp:estimate and cts:frequency
	Remarks
	Examples
	Using fn:count() to get the number of matching documents
	Using xdmp:estimate() to get the number of matching documents
	Counting documents when fragments are defined


	Credits



