
meteor

#meteor

Table of Contents

About 1

Chapter 1: Getting started with meteor 2

Remarks 2

Versions 2

Examples 3

Getting Started 3

Install Meteor 3

On OS X and Linux 3

On Windows 3

Create your app 3

Run it 3

Sample apps 4

Managing Packages 4

Understanding build progress 5

Linux/OSX Example 5

Windows Example 5

Checking the Version of the Meteor Tool & Meteor Projects 5

Meteor Tool 5

Meteor Projects 5

Meteor Website 6

Updating Meteor Projects & Installed Packages 6

Build Mobile Apps 7

Chapter 2: Acceptance Testing (with Nightwatch) 8

Remarks 8

Examples 8

App Surface Area 8

Custom Commands 9

Inspecting Meteor Objects on the Client 10

Forms & Input Types 10

Components & Page Objects 12

Chapter 3: Accessing Meteor build machines from Windows 14

Remarks 14

Examples 14

Using PuTTY (Advanced) 14

Using Cygwin (Unix tools on Windows) 14

Chapter 4: Assets 16

Examples 16

Accessing Assets on the Server 16

Text files 16

Binary files 16

Chapter 5: Background tasks 17

Remarks 17

Examples 17

Simple cron 17

Chapter 6: Basic Codeship Setup for Automated Testing 18

Examples 18

Setup Codeship 18

Prepare the Project 18

Chapter 7: Beginner guide to Installing Meteor 1.4 on AWS EC2 20

Examples 20

Signup for AWS Service 20

Chapter 8: Blaze Templating 25

Introduction 25

Examples 25

Populate a template from a method call 25

Data context of a template 25

Template Helpers 26

Chapter 9: Blaze User Interface Recipes (Bootstrap; No jQuery) 28

Remarks 28

Examples 28

Drop Down Menu 28

Navbars 29

Modals 30

Tagging 31

Alerts and Errors 33

Tabbed Workflow 35

Chapter 10: Continuous Deployment to Galaxy from Codeship 38

Remarks 38

Examples 38

Setup 38

Chapter 11: Continuous Integration & Device Clouds (with Nightwatch) 39

Remarks 39

Examples 39

Travis 39

Circle 40

SauceLabs 42

BrowserStack 42

Chapter 12: Debugging 44

Examples 44

Browser Debuggers 44

Add Debugger Breakpoints to your App 44

Server Side Debugging with Node Inspector 44

Server Side Debugging with npm debug 45

Meteor Shell 45

Other Debugging Utilities 45

Chapter 13: Deployment with Upstart 46

Examples 46

Upstart Service 46

Copying Files To Your Server Then Build 46

Bundle Then Copy To Server 46

Writing Your Upstart Script 46

Upstart Script For Replica Sets 47

Running Your Upstart Script 47

Setting up a Server to Host Multiple Meteor Apps 48

Chapter 14: Development Tools 49

Examples 49

Integrated Development Environments 49

Database Tools 49

Remote Collaboration Utilities for Distributed Developers 49

REST Clients 50

Debuggers 50

Mobile Coding on iOS 50

Chapter 15: Directory Structure 51

Introduction 51

Remarks 51

Examples 52

Classic Directory Structures 52

Package-Only Directory Structure 52

Imports/Modules Directory Structure 52

Mixed-Mode Directory Structure 53

Directory load order 53

Chapter 16: Electrify - Compiling Meteor as a Locally Installable App 54

Examples 54

Installing Electrify for a Meteor application 54

Using Electrify on a Meteor Application 55

Chapter 17: Environment Detection 57

Examples 57

Advanced Environment Configurations 57

Specifying app parameters with METEOR_SETTINGS 57

Environment Detection on the Server 58

Client Environment Detection using Meteor Methods 58

Client Environment Detection using NODE_ENV 59

Chapter 18: Environment Variables 60

Parameters 60

Examples 62

Using Environment Variables with Meteor 62

Setting Meteor SMTP server 62

Chapter 19: ES2015 modules (Import & Export) 63

Remarks 63

Examples 63

Importing in app modules 63

Importing in Meteor packages 63

Exporting variables from app modules 63

Exporting symbols from Meteor packages 64

Chapter 20: ESLint 65

Examples 65

Adding eslint to your Meteor project 65

Using an npm script to lint your code 65

Chapter 21: File Uploading 66

Remarks 66

Examples 66

Server/Client 66

Dropzone (with iron:router) 68

Filepicker.io 69

CollectionFS 69

Server Uploads 70

Chapter 22: Full Installation - Mac OSX 72

Examples 72

Install Node & NPM 72

Meteor Installation Walkthrough 72

Mongo Installation 73

Other Development Tools 73

Chapter 23: Horizontal Scaling 75

Examples 75

Deploying an Application with Separated Database (MONGO_URL) 75

Replica Set Configuration 75

Configuring a Replica Set to Use Oplogging 75

Oplog Upstart Script 76

Sharding 76

Chapter 24: Integration of 3rd Party APIs 77

Examples 77

Basic HTTP Call 77

Create A Package For Your API Wrapper 77

Create an Atmosphere Package For Your API Wrapper 77

Include the API Package in your Application 78

Using the API Wrapper Object in your App 78

Chapter 25: Logging 79

Examples 79

Basic Server Side Logging 79

Client Side Logging Tools 79

Advanced Server Logging Tools 79

Logging error on database flap 79

Logging info on the data context in a template helper 80

Logging events and user interactions 80

Logging with log level variables 80

Disable Logging in Production 81

Winston 81

Loglevel 81

Chapter 26: Meteor + React 82

Remarks 82

Examples 82

Setup and "Hello World" 82

Create reactive container using createContainer 82

Displaying a MongoDB collection 83

Chapter 27: Meteor + React + ReactRouter 86

Introduction 86

Examples 86

Create the project 86

Note: 86

Add React + ReactRouter 87

Note: 88

Step 3- Add Accounts 88

Note: 89

Add roles 89

Note: 91

Chapter 28: Meteor User Accounts 93

Examples 93

Meteor accounts package 93

Accounts-password 93

Accessing user data 94

Other accounts functions 94

Don’t use the default profile field 94

Chapter 29: Mobile Apps 96

Examples 96

Page Layout on Different Devices - CSS 96

Fixed Sized Windows 96

Offline Caching 96

Disable Scroll-Bounce 97

Multitouch & Gestures 97

Create your Icons and Splash Screen Assets 98

Meteor Cordova Architecture Pipeline 98

IOS Development 100

IOS Device Testing 100

Configure your Cordova project (config.xml) 100

Detecting the deviceready event 101

Chapter 30: Mongo Collections 102

Remarks 102

Examples 102

Creating Records in a Legacy Database 102

Inserting data into a document 102

Getting the _id of the most recently created document 102

Timeseries Data 103

Filtering with Regexes 103

Geospatial Collections - Learning More 104

Auditing Collection Queries 105

Observers & Worker Functions 105

Chapter 31: Mongo Database Management 107

Remarks 107

Examples 107

Analyzing An Inherited Database 107

Connect To A Database on *.meteorapp.com 107

Download a Database from *.meteor.com 107

Export Data from local Meteor development instance? 108

Restore Data from a Dumpfile 108

Export a Collection to JSON 108

Import a JSON File into Meteor 108

Copying Data Between Staging and Local Databases 108

Compact a Mongo Database on an Ubuntu Box 109

Reset a Replica Set 109

Connect Remotely to a Mongo Instance on *.meteor.com 109

Accessing Mongo Log Files on a Local Meteor Instance 110

Rotate Log Files on an Ubuntu Box 110

Chapter 32: Mongo Schema Migrations 111

Remarks 111

Examples 111

Add Version Field To All Records in a Collection 111

Remove Array From All Records In A Collection 111

Rename Collection 111

Find Field Containing Specific String 111

Create New Field From Old 112

Pull Objects Out of an Array and Place in a New Field 112

Blob Record From One Collection Into Another Collection (ie. Remove Join & Flatten) 112

Make Sure Field Exists 112

Make Sure Field has Specific Value 112

Remove Record if Specific Field is Specific Value 112

Change Specific Value of Field to New Value 113

Unset Specific Field to Null 113

Convert ObjectId to String 113

Convert Field Values from Numbers to Strings 113

Convert Field Values from Strings to Numbers 113

Create a Timestamp from an ObjectID in the _id Field 113

Create an ObjectID from a Date Object 114

Find All the Records that Have Items in an Array 114

Chapter 33: MongoDB 115

Introduction 115

Examples 115

Export a Remote Mongo DB, Import Into a Local Meteor Mongo DB 115

Get the Mongo URL of Your Local Meteor Mongo DB 115

Connect Your Local Meteor App to an Alternative Mongo DB 115

Linux/MacOS Example: 115

Windows Example 115

NPM 116

Running Meteor without MongoDB 116

Getting Started 116

Query Documents 117

Inserting Documents 117

Updating Documents 117

Deleting Documents 117

Chapter 34: MongoDB Aggregation 119

Remarks 119

Examples 119

Server Aggregation 119

Aggregation in a Server Method 120

Chapter 35: Nightwatch - Configuration & Setup 121

Remarks 121

Examples 121

Configuration 121

Installation & Usage 122

Setting up launch scripts 123

Folder Structure 124

Data Driven Testing 124

Chapter 36: Node/NPM 126

Examples 126

Meteor Tested/Supported Node Version 126

Chapter 37: Offline Apps 127

Remarks 127

Examples 127

Meteor.status() 127

Enable Appcache 127

Enable GroundDB 128

Things to Be Careful Of 128

Chapter 38: Performance Tuning 129

Remarks 129

Examples 129

Designing and Deploying Production Ready Software 129

Chapter 39: Publishing A Release Track 131

Remarks 131

Examples 131

Basic Usage 131

Release Manifest 131

Customizing the Meteor Tool 132

Extracting a Release Manifest from .meteor/versions 132

Displaying the Release Manifest for a Specific Release 132

Publishing a Release From Checkout 132

Fetching the Latest Commits for Each Package in a Release 132

Chapter 40: Publishing Data 133

Remarks 133

Examples 133

Basic Subscription and Publication 133

Global publications 134

Named publications 134

Template scoped subscriptions 134

Publish into an ephemeral client-side named collection. 135

Creating and responding to an error on a publication. 135

Reactively re-subscribing to a publication 136

Wait in the Blaze view while published data is being fetched 136

Validating User Account On Publish 137

Publish multiple cursors 137

Simulate delay in publications 137

Merging Publications 137

Chapter 41: Reactive (Vars & Dictionaries) 139

Examples 139

Reactive Query 139

Chapter 42: Replica Sets and Sharding 141

Remarks 141

Examples 141

Replica Set Quickstart 141

Replica Set Configuration 142

Chapter 43: Retrieving data from a Meteor.call 143

Examples 143

The basics of Meteor.call 143

Using Session variable 144

Server side 144

Client side 144

Using ReactiveVar 144

Server side 144

Client side 145

Chapter 44: Routing 146

Examples 146

Routing with Iron Router 146

With FlowRouter 147

Install FlowRouter 147

Rendering a template 147

Rendering a template with parameters and/or query 148

Chapter 45: Use Private Meteor Packages on Codeship 149

Remarks 149

Examples 149

Install MGP 149

Configure Codeship to Install Private Github Packages 149

Chapter 46: Using Meteor with a Proxy Server 151

Examples 151

Using the `HTTP[S]_PROXY` env var 151

Setting Up a Proxy Tier 151

Chapter 47: Using Polymer with Meteor 152

Examples 152

Using differential:vulcanize 152

Chapter 48: Wrapping asynchronous methods into a Fiber for synchronous execution. 154

Syntax 154

Parameters 154

Remarks 154

Examples 154

Synchronously executing asynchronous NPM methods w/ callbacks. 154

Credits 156

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: meteor

It is an unofficial and free meteor ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official meteor.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/meteor
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with meteor

Remarks

Meteor is a full-stack JavaScript platform for developing modern Web and mobile applications.

Within one project, you are able to build your client (browser and/or hybrid mobile App for Android
and/or iOS) and server sides.

Reference pages:

Meteor Guide•
Meteor API Docs•
Meteor Tutorials•
Meteor Forums•

Versions

Version Release Date

0.4.0 2012-08-30

0.5.0 2013-10-17

0.6.0 2013-04-04

0.7.0 2013-12-20

0.8.0 2014-04-21

0.9.0 2014-08-26

0.9.1 2014-09-04

0.9.2 2014-09-15

0.9.3 2014-09-25

0.9.4 2014-10-13

1.0.1 2014-12-09

1.0.2 2014-12-19

1.0.3.1 2014-12-09

1.1.0 2015-03-31

https://riptutorial.com/ 2

https://guide.meteor.com/index.html
http://docs.meteor.com/index.html
https://www.meteor.com/tutorials
https://forums.meteor.com/
http://docs.meteor.com/changelog.html#v04020120830
http://docs.meteor.com/changelog.html#v05020121017
http://docs.meteor.com/changelog.html#v06020130404
http://docs.meteor.com/changelog.html#v07020131217
http://docs.meteor.com/changelog.html#v08020140327
http://docs.meteor.com/changelog.html#v09020140826
http://docs.meteor.com/changelog.html#v09120140904
http://docs.meteor.com/changelog.html#v09220140915
http://docs.meteor.com/changelog.html#v09320140925
http://docs.meteor.com/changelog.html#v09420141013
http://docs.meteor.com/changelog.html#v10120141209
http://docs.meteor.com/changelog.html#v10220141219
http://docs.meteor.com/changelog.html#v103120150120
http://docs.meteor.com/changelog.html#v1120150331

Version Release Date

1.2.0 2015-09-21

1.3.0 2016-03-27

1.4.0 2016-07-25

1.5.0 2017-05-30

Examples

Getting Started

Install Meteor

On OS X and Linux

Install the latest official Meteor release from your terminal:

$ curl https://install.meteor.com/ | sh

On Windows

Download the official Meteor installer here.

Create your app

Once you've installed Meteor, create a project:

$ meteor create myapp

Run it

Run it locally:

$ cd myapp
$ meteor npm install
$ meteor

https://riptutorial.com/ 3

http://docs.meteor.com/changelog.html#v1220150921
http://docs.meteor.com/changelog.html#v1320160327
http://docs.meteor.com/changelog.html#v1420160725
http://docs.meteor.com/changelog.html#v1520170530
https://install.meteor.com/windows

Note: Meteor server running on: http://localhost:3000/

Then head to http://localhost:3000 to see your new Meteor application.

Read more about getting started with Meteor at the [Meteor Guide].•
Explore Meteor Packages at atmosphere - a modern, fast, well engineered package
manager.

•

Sample apps

Meteor has several sample apps built-in. You can create a project with one of them and learn from
how it was built. To create a sample app, install Meteor (see Getting Started) and then type:

meteor create --example <app name>

For example to create a sample todos app, write:

meteor create --example todos

To get a list of all sample apps, type:

meteor create --list

Managing Packages

Meteor has it's own package repository on atmospherejs.com

You can add new packages from atmosphere by running:

meteor add [package-author-name:package-name]

For example:

meteor add kadira:flow-router

Similarly, you can remove the same package by:

meteor remove kadira:flow-router

To see current packages in your project, type:

meteor list

List of packages can also be found in the file ./meteor/packages. To add a package add the
package name in this file and to remove delete it.

https://riptutorial.com/ 4

http://localhost:3000/
http://localhost:3000
http://guide.meteor.com/#quickstart
https://atmospherejs.com/
http://www.riptutorial.com/meteor/example/1459/getting-started
http://atmospherejs.com

To add a package locally, (e.g. unpublished packages or edited version of published packages),
save the package in packages folder in the root.

Starting with version 1.3, Meteor added support for npm packages.

You can use the npm command inside Meteor project's directory as you would normally do without
Meteor, or with the meteor npm command, which will use the bundled version of npm.

Understanding build progress

Sometimes builds take longer than expected. There are a few environment variables you can set
to better understand what's happening during the build process.

METEOR_DEBUG_BUILD=1 (logs progress)
METEOR_PROFILE=<n> (logs time spent)
METEOR_DEBUG_SPRINGBOARD=1 (?)
METEOR_DEBUG_SQL=1 (logs SQLITE calls)
METEOR_PROGRESS_DEBUG=1 (? looks like it might be useful, but seems confusing)

Where <n> is a number of ms. Any process taking longer than this will be logged.

Linux/OSX Example

export METEOR_DEBUG_BUILD=1
export METEOR_PROFILE=100
meteor

Windows Example

set METEOR_DEBUG_BUILD=1
set METEOR_PROFILE=100
meteor

Checking the Version of the Meteor Tool & Meteor Projects

Meteor Tool

To check the installed version of the Meteor tool, just run the following command outside of any
Meteor projects:

meteor --version

To get a list of all official (recommended) Meteor releases, run:

meteor show METEOR

https://riptutorial.com/ 5

Meteor Projects

If you want to check the project version of Meteor, you can also execute the following command
inside a project:

meteor --version

or just print content of the file .meteor/release:

cat .meteor/release

In case you want to check the version of the packages which are currently installed in your Meteor
project, print the content of the file .meteor/versions:

cat .meteor/versions

Meteor Website

To see which version of Meteor a Meteor based website is running, dump the contents of
Meteor.release in your browsers console while visiting the website:

Meteor.release

Updating Meteor Projects & Installed Packages

The Meteor Tool will notify you when a newer release is available.

To update Meteor projects to the latest release, execute the following command inside a Meteor
project:

meteor update

In case you want to update your Meteor project to a specific Meteor release, run the following
command inside the project:

meteor update --release <release>

If you want to update all non-core packages, run:

meteor update --packages-only

You can also update specific packages by passing their names as a command line argument to
meteor update, for example:

https://riptutorial.com/ 6

meteor update [packageName packageName2 ...]

Build Mobile Apps

Meteor uses Cordova to package your application into a hybrid Mobile App. Once packaged, the
App can be distributed like native Apps (through Apple App Store, Google Play Store, etc.)

Add the target platform(s) to your Meteor project:1.

meteor add-platform android
meteor add-platform ios # Only available with Mac OS

Install the Android SDK and/or Xcode (for iOS, requires Mac OS).2.

Run your project (start with development mode):3.

meteor run android # You may need to configure a default Android emulator first

For iOS (only available with Mac OS):

meteor run ios # This will auto start an iOS simulator

Build your App package for distribution:4.

meteor build <output_folder> --server <url_app_should_connect_to>

This will create android and/or ios folder(s) alongside your server bundle.

The android folder contains the release-unsigned.apk file that you need to sign and zip align.•
The ios folder contains the Xcode project that you need to sign.•

See also the Meteor Mobile Apps topic.
Reference page: Meteor Guide > Build > Mobile

Read Getting started with meteor online: https://riptutorial.com/meteor/topic/439/getting-started-
with-meteor

https://riptutorial.com/ 7

http://www.riptutorial.com/topic/884
https://guide.meteor.com/mobile.html#adding-platforms
https://guide.meteor.com/mobile.html#installing-prerequisites
https://guide.meteor.com/mobile.html#running-your-app
https://guide.meteor.com/mobile.html#building-and-submitting
http://www.riptutorial.com/meteor/topic/3705/mobile-apps
https://guide.meteor.com/mobile.html
https://riptutorial.com/meteor/topic/439/getting-started-with-meteor
https://riptutorial.com/meteor/topic/439/getting-started-with-meteor

Chapter 2: Acceptance Testing (with
Nightwatch)

Remarks

Nightwatch has been providing Acceptance and End-to-End testing for Meteor apps since v0.5
days, and has managed migrations from PHP to Spark to Blaze and to React; and all major
Continuous Integration platforms. For additional help, please see:

Nightwatch API Documentation
Nightwatch.js Google Group

Examples

App Surface Area

At it's most basic level, acceptance testing is essentially black-box testing, which is fundamentally
concerned with testing inputs and outputs of a closed system. As such, there are three essential
features to acceptance testing: locating a resource, reading data, and writing data. When it comes
to browsers and webapps, these three features basically boil down to the following:

Load a webpage or application view1.
Inspect user interface elements (i.e. DOM)2.
Trigger an event / simulate a user interaction3.

We call this the surface area of the application. Surface area is anything that a user sees or
experiences. It's the outside of a blackbox system. And since users interact with modern web
applications on video screens using web browsers, our surface coverage is defined by universal
resource locators (URLs) and viewports. And so our very first walkthrough starts off looking
something like the following:

module.exports = {
 "Hello World" : function (client) {
 client
 // the location of our Meteor app
 .url("http://localhost:3000")

 // the size of the viewport
 .resizeWindow(1024, 768)

 // test app output
 .verify.elementPresent('h1')
 .verify.containsText('h1', "Welcome to Meteor!")
 .verify.containsText('p', "You've pressed the button 0 times")
 .verify.elementPresent('button')

 // simulate user input
 .click('button').pause(500)

https://riptutorial.com/ 8

http://nightwatchjs.org/
https://groups.google.com/forum/#!forum/nightwatchjs

 // test app output again, to make sure input worked
 .verify.containsText('p', "button 1 times")

 // saving a copy of our viewport pixel grid
 .saveScreenshot('tests/nightwatch/screenshots/homepage.png')
 .end();
 }
};

Custom Commands

Nightwatch supports creating custom commands that can simulating keystrokes, mouse clicks,
and other inputs. A custom command can be chained with other Nightwatch commands, like so:

module.exports = {
 "Login App" : function (client) {
 client
 .url("http://localhost:3000")
 .login("janedoe@somewhere.com", "janedoe123")
 .end();
 }
};

To enable this, define a command in ./tests/nightwatch/commands/login like so:

exports.command = function(username, password) {

 this
 .verify.elementPresent('#login')

 // we clear the input in case there's any data remaining from previous visits
 .clearValue("#emailInput")
 .clearValue("#passwordInput")

 // we simulate key presses
 .setValue("#emailInput", username)
 .setValue("#passwordInput", password)

 // and we simulate a mouse click
 .click("#signInToAppButton").pause(1000)

 return this; // allows the command to be chained.
};

To make this all work, you will need to add id attributes to your login page. At some level, it will
need to roughly look something like the following:

<template name="login">
 <div id="login">
 <input id="emailInput" name="email" type="email" />
 <input id="passwordInput" name="password" type="password" />
 <button id="#signInToAppButton">Sign In</button>
 </div>
</template>

https://riptutorial.com/ 9

Inspecting Meteor Objects on the Client

Since Nightwatch has access to the browser console, it's possible to inspect client side objects
using the .execute() API. In the following example, we're checking the Session object for a
particular session variable. First, we begin by creating the file
./tests/nightwatch/api/meteor/checkSession, where we will keep the following command:

// syncrhonous version; only works for checking javascript objects on client
exports.command = function(sessionVarName, expectedValue) {
 var client = this;
 this
 .execute(function(data){
 return Session.get(data);
 }, [sessionVarName], function(result){
 client.assert.ok(result.value);
 if(expectedValue){
 client.assert.equal(result.value, expectedValue);
 }
 })
 return this;
};

We can then chain it like so:

module.exports = {
 "Check Client Session" : function (client) {
 client
 .url("http://localhost:3000")
 .checkSession("currentUser", "Jane Doe")
 .end();
 }
};

Forms & Input Types

To upload a file, you'll first need to create a /data directory, and add the file you'll want to upload.

tests/nightwatch/data/IM-0001-1001.dcm

Your form will need an input with type of file. (Some people don't like the styling options this input
provides; and a common pattern is to make this input hidden; and to have another button on the
page click it on behalf of the user.)

<form id="myform">
 <input type="file" id="fileUpload">
 <input type="text" name="first_name">
 <input type="text" name="last_name">

 <input type="date" name="dob_month">
 <input type="date" name="dob_day">
 <input type="date" name="dob_year">

 <input type="radio" name="gender" value="M">

https://riptutorial.com/ 10

 <input type="radio" name="gender" value="F">
 <input type="radio" name="gender" value="O">

 <input type="select" name="hs_graduation_year">
 <input type="text" name="city">
 <input type="select" name="state">

 <input type="submit" name="submit" value="Submit">
</form>

Your tests will then need to use setValue() and resolve the path to the local file asset.

module.exports = {
 "Upload Study" : function (client) {
 console.log(require('path').resolve(__dirname + '/../data'));

 var stringArray = "Chicago";

 client
 .url(client.globals.url)
 .verify.elementPresent("form#myform")

 // input[type="file"]
 .verify.elementPresent("input#fileUpload")
 .setValue('input#fileUpload', require('path').resolve(__dirname + '/../data/IM-0001-
1001.dcm'))

 // input[type="text"]
 .setValue('input[name="first_name"]', 'First')
 .setValue('input[name="last_name"]', 'Last')

 // input[type="date"]
 .click('select[name="dob_month"] option[value="3"]')
 .click('select[name="dob_day"] option[value="18"]')
 .click('select[name="dob_year"] option[value="1987"]')

 // input[type="radio"]
 .click('input[name="gender"][value="M"]')

 // input[type="number"]
 .click('select[name="hs_graduation_year"] option[value="2002"]')

 // input[type="text"]
 // sometimes Nightwatch will send text faster than the browser can handle
 // which will cause skipping of letters. In such cases, we need to slow
 // Nightwatch down; which we do by splitting our input into an array
 // and adding short 50ms pauses between each letter
 for(var i=0; i < userIdArray.length; i++) {
 client.setValue('input[name="city"]', stringArray[i]).pause(50)
 }

 // input[type="select"]
 // after an array input above, we need to resume our method chain...
 client.click('select[name="state"] option[value="CA"]')

 // input[type="number"]
 .setValue('input[name="zip"]', '01234')

 //input [type="submit"]
 .click('button[type="submit"]')

https://riptutorial.com/ 11

 .end();
 }
};

Credit to Daniel Rinehart for inpsiring this example.

Components & Page Objects

Page Objects are similar to Custom Commands; except they are collections of custom commands
that are associated with a specific UI component. This works extremely well with modern
component based design, such as in React.

module.exports = {
 url: 'http://localhost:3000/login',
 commands: [{
 login: function(email, password) {
 return this
 .clearValue('input[name="emailAddress"]')
 .clearValue('input[name="password"]')

 .setValue('input[name="emailAddress"]', email)
 .setValue('input[name="password"]', password)

 .verify.elementPresent('#loginButton')
 .click("#loginButton");
 },
 clear: function() {
 return this
 .waitForElementVisible('@emailInput')
 .clearValue('@emailInput')
 .clearValue('@passInput')
 .waitForElementVisible('@loginButton')
 .click('@loginButton')
 },
 checkElementsRendered: function(){
 return this
 .verify.elementPresent("#loginPage")
 .verify.elementPresent('input[name="emailAddress"]')
 .verify.elementPresent('input[name="password"]')
 },
 pause: function(time, client) {
 client.pause(time);
 return this;
 },
 saveScreenshot: function(path, client){
 client.saveScreenshot(path);
 return this;
 }
}],
 elements: {
 emailInput: {
 selector: 'input[name=email]'
 },
 passInput: {
 selector: 'input[name=password]'
 },
 loginButton: {
 selector: 'button[type=submit]'

https://riptutorial.com/ 12

https://groups.google.com/forum/#!searchin/nightwatchjs/radio%7Csort:relevance/nightwatchjs/PV-zaHLRtsA/2nbZ8v1ud84J

 }
 }
};

The only caveat with using the PageObject pattern in testing components, is that the
implementation breaks the method chaining flow that the native Nightwatch verify.elementPresent
provides. Instead, you'll need to assign the page object to a variable, and instantiate a new
method chain for each page. A reasonable price to pay for a consistent and reliable pattern for
testing code reuse.

module.exports = {
 tags: ['accounts', 'passwords', 'users', 'entry'],
 'User can sign up.': function (client) {

 const signupPage = client.page.signupPage();
 const indexPage = client.page.indexPage();

 client.page.signupPage()
 .navigate()
 .checkElementsRendered()
 .signup('Alice', 'Doe', 'alice@test.org', 'alicedoe')
 .pause(1500, client);

 indexPage.expect.element('#indexPage').to.be.present;
 indexPage.expect.element('#authenticatedUsername').text.to.contain('Alice Doe');
 },
}

Read Acceptance Testing (with Nightwatch) online:
https://riptutorial.com/meteor/topic/6454/acceptance-testing--with-nightwatch-

https://riptutorial.com/ 13

https://riptutorial.com/meteor/topic/6454/acceptance-testing--with-nightwatch-

Chapter 3: Accessing Meteor build machines
from Windows

Remarks

On Mac and Linux, the meteor command line tool assumes that the ssh command line tool, used to
make secure connections to other computers, is always present. On Windows, this tool needs to
be installed. Below are listed two options for setting it up and using it.

Examples

Using PuTTY (Advanced)

If you don't want to add Unix commands to your PATH on Windows, you can download a
standalone SSH client like PuTTY. Download PuTTY here, then follow the instructions below to
get a build machine.

Call meteor admin get-machine <os-architecture> --json1.
Copy and save the private key from the returned JSON data2.
Follow the directions here to convert the private key into a format that PuTTY accepts3.
Enter the hostname, username, and private key into PuTTY, and you're good to go!4.

Using Cygwin (Unix tools on Windows)

The easiest way to get up and running is to install Git for Windows from this download page, and
select "Use Git and optional Unix tools from the Windows Command Prompt" as in the screenshot
below.

https://riptutorial.com/ 14

http://www.putty.org/
http://meinit.nl/using-your-openssh-private-key-in-putty
http://git-scm.com/downloads

After this, meteor admin get-machine <os-architecture> will work exactly as it does on Linux and
Mac. Keep in mind that you might need to restart your terminal to get the new commands.

Read Accessing Meteor build machines from Windows online:
https://riptutorial.com/meteor/topic/518/accessing-meteor-build-machines-from-windows

https://riptutorial.com/ 15

https://riptutorial.com/meteor/topic/518/accessing-meteor-build-machines-from-windows

Chapter 4: Assets

Examples

Accessing Assets on the Server

Static server assets must be placed in the private directory.

Text files

Text files can be accessed by using the Assets.getText(assetPath, [asyncCallback]) method. For
example, the following JSON file is named my_text_asset.json and is located in the private
directory:

{
 "title": "Meteor Assets",
 "type": "object",
 "users": [{
 "firstName": "John",
 "lastName": "Doe"
 }, {
 "firstName": "Jane",
 "lastName": "Doe"
 }, {
 "firstName": "Matthias",
 "lastName": "Eckhart"
 }]
}

You can access this file on the server by using the following code:

var myTextAsset = Assets.getText('my_text_asset.json');
var myJSON = JSON.parse(myTextAsset);
console.log(myJSON.title); // prints 'Meteor Assets' in the server's console

Binary files

If you want to access assets on the server as an EJSON binary, use the
Assets.getBinary(assetPath, [asyncCallback]) method. Here's a code example for accessing an
image named my_image.png which is located in the private/img directory:

var myBinaryAsset = Assets.getBinary('img/my_image.png');

Read Assets online: https://riptutorial.com/meteor/topic/3379/assets

https://riptutorial.com/ 16

https://riptutorial.com/meteor/topic/3379/assets

Chapter 5: Background tasks

Remarks

The package cron-tick is a very simple package for background tasks but it does not support
multiple processes, if you run your app in multiple processes (or containers) use
percolate:synced-cron instead.

Examples

Simple cron

Use the package percolate:synced-cron

Define a job:

 SyncedCron.add({
 name: 'Find new matches for a saved user filter and send alerts',
 schedule: function(parser) {
 // parser is a later.parse object
 return parser.text('every 10 minutes');
 },
 job: function() {
 user.alerts.map(a => a.findMatchesAndAlert());
 }
});

Starting up your defined jobs:

SyncedCron.start();

It supports syncronizing jobs between multiple processes, like Galaxy with more than 1 container.

Read Background tasks online: https://riptutorial.com/meteor/topic/4772/background-tasks

https://riptutorial.com/ 17

https://riptutorial.com/meteor/topic/4772/background-tasks

Chapter 6: Basic Codeship Setup for
Automated Testing

Examples

Setup Codeship

Go to Codeship.com and create an account (or login)•
Create a new project•
Import your project via Github or Bitbucket•
On the screen "Configure Your Tests" use these commands:

Select "I want to create my own custom commands" from the "Select your technology
to prepopulate basic commands" dropdown.

○

Enter the following commands:

 curl -o meteor_install_script.sh https://install.meteor.com/
 chmod +x meteor_install_script.sh
 sed -i "s/type sudo >\/dev\/null 2>&1/\ false /g" meteor_install_script.sh
 ./meteor_install_script.sh
 export PATH=$PATH:~/.meteor/
 meteor --version
 meteor npm install

○

Leave the test commands like this:

npm test

○

•

Push a new commit to Github / Bitbucket•
That's it•

Prepare the Project

Write some tests•
Install dispatch:mocha-phantomjs:

meteor add dispatch:mocha-phantomjs

•

Add a test-command to your package.json.

{
 "name": "awesome meteor package",
 "scripts": {
 "test": "meteor test --driver-package dispatch:mocha-phantomjs --once"
 }
}

•

https://riptutorial.com/ 18

https://codeship.com
https://guide.meteor.com/testing.html
https://atmospherejs.com/practicalmeteor/mocha

Make sure that you can run npm test in your project root.•

Read Basic Codeship Setup for Automated Testing online:
https://riptutorial.com/meteor/topic/6741/basic-codeship-setup-for-automated-testing

https://riptutorial.com/ 19

https://riptutorial.com/meteor/topic/6741/basic-codeship-setup-for-automated-testing

Chapter 7: Beginner guide to Installing
Meteor 1.4 on AWS EC2

Examples

Signup for AWS Service

Since lots of beginners are confused about cloud hosting.I am writing this guide to walk through
setting meteor on aws with ubuntu os. If you already have your instance running feel free to skip
this step and go straight to installing meteor on aws.

Login into AWS Console.Select EC2. Go to EC2 Dashboard. Under Create Instance click launch
instance.

Select ubuntu instance in next step

https://riptutorial.com/ 20

http://i.stack.imgur.com/b8wwE.png

Create key pair & download private key to your local machine.

Login via shell to aws (using private key, make sure private key is in your path or run command
from directory which contains private key)

ssh -i "myprivatekey.pem" ubuntu@ec2-xx-xx-xx-xx.ap-south-1.compute.amazonaws.com

ec2-xx-xx-xx-xx.ap-south-1.compute.amazonaws.com is public dns instance name on amazon
console. ubuntu is username. You can also use public ip address.

STEPS TO INSTALL METEOR ON AWS INSTANCE (using mupx)

copy private key from local machine to aws server ssh folder1.

example /home/ubuntu/.ssh/myprivatekey.pem

update packager to latest version2.

sudo apt-get update

install python software properties3.

 sudo apt-get install python-software-properties

install npm and node(optionally also install nvm)4.

https://riptutorial.com/ 21

http://i.stack.imgur.com/XrF6l.png

sudo apt-get install npm

Install nvm

curl https://raw.githubusercontent.com/creationix/nvm/v0.11.1/install.sh | bash

Install node

nvm install 4.4.7

nvm use 4.4.7

Install aws cli5.

sudo apt-get install awscli

Install meteor up6.

 sudo npm install -g mupx

 sudo npm install -g mupx-letsencrypt

(meteor 1.4 is currently available only by mpux-letsencrypt)

Initialize mupx by going into your project directory or create new directory if not exists7.

mupx-letsencrypt init

If you get error like below , then may legacy node is there you need to create link

/usr/bin/env: node: No such file or directory

sudo ln -s /usr/bin/nodejs /usr/bin/node

Install meteor8.

curl https://install.meteor.com | /bin/sh

edit mup.json (Make sure to fill username:ubuntu and correct location of private key from
step 1)

use nano file editor (to edit on files on ubuntu, also can use vi)

9.

 nano mup.json

Example mup.json

https://riptutorial.com/ 22

 {
 // Server authentication info
 "servers": [
 {
 "host": "ec2-xx-xx-xx-xx.ap-south-1.compute.amazonaws.com",
 "username": "ubuntu",
 //"password": "password",
 // or pem file (ssh based authentication)
 "pem": "~/.ssh/myprivatekey.pem",
 // Also, for non-standard ssh port use this
 //"sshOptions": { "port" : 49154 },
 // server specific environment variables
 "env": {}
 }
],

 // Install MongoDB on the server. Does not destroy the local MongoDB on future setups
 "setupMongo": true,

 // WARNING: Node.js is required! Only skip if you already have Node.js installed on server.
 "setupNode": false,

 // WARNING: nodeVersion defaults to 0.10.36 if omitted. Do not use v, just the version
number.
 //"nodeVersion": "4.4.7",

 // Install PhantomJS on the server
 "setupPhantom": true,

 // Show a progress bar during the upload of the bundle to the server.
 // Might cause an error in some rare cases if set to true, for instance in Shippable CI
 "enableUploadProgressBar": true,

 // Application name (no spaces).
 "appName": "my-app",

 // Location of app (local directory). This can reference '~' as the users home directory.
 // i.e., "app": "/Users/ubuntu/my-app",
 // This is the same as the line below.
 "app": "/Users/ubuntu/my-app",

 // Configure environment
 // ROOT_URL must be set to https://YOURDOMAIN.com when using the spiderable package & force
SSL
 // your NGINX proxy or Cloudflare. When using just Meteor on SSL without spiderable this is
not necessary
 "env": {
 "PORT": 80,
 "ROOT_URL": "http://myapp.com",
 // only needed if mongodb is on separate server
 "MONGO_URL": "mongodb://url:port/MyApp",
 "MAIL_URL": "smtp://postmaster%40myapp.mailgun.org:adj87sjhd7s@smtp.mailgun.org:587/"
 },

 // Meteor Up checks if the app comes online just after the deployment.
 // Before mup checks that, it will wait for the number of seconds configured below.
 "deployCheckWaitTime": 60
}

Setup Meteor including mongo running following command in project directory.10.

https://riptutorial.com/ 23

mupx-letsencrypt setup

deploy project using mupx

mupx-letsencrypt deploy

11.

Some helpful commands

To check mupx logs

mupx logs -f

To check Docker

 docker -D info

To check network status

netstat -a

To check current running process including cpu and memory utilization

 top

Install mongo client to get mongo shell acccess on aws

sudo apt-get install mongodb-clients

To run mongodb queries

mongo projectName

Once Inside mongo shell run

 db.version()
 db.users.find()

Thanks arunoda for providing wonderful tool https://github.com/arunoda/meteor-up

Thanks mupx-letsencrypt team for good work. https://www.npmjs.com/package/mupx-letsencrypt

Read Beginner guide to Installing Meteor 1.4 on AWS EC2 online:
https://riptutorial.com/meteor/topic/4773/beginner-guide-to-installing-meteor-1-4-on-aws-ec2

https://riptutorial.com/ 24

https://github.com/arunoda/meteor-up
https://www.npmjs.com/package/mupx-letsencrypt
https://riptutorial.com/meteor/topic/4773/beginner-guide-to-installing-meteor-1-4-on-aws-ec2

Chapter 8: Blaze Templating

Introduction

Blaze is a powerful library for creating user interfaces by writing dynamic, reactive HTML
templates. Blaze templating allows for loops and conditional logic to be used directly in HTML
markup. This section explains and demonstrates the proper usage of templating in Meteor.js with
Blaze.

Examples

Populate a template from a method call

<template name="myTemplate">
 {{#each results}}
 <div>{{name}}{{age}}</div>
 {{/each}}
</template>

Template.myTemplate.onCreated(function() {
 this.results = new ReactiveVar();
 Meteor.call('myMethod', (error, result) => {
 if (error) {
 // do something with the error
 } else {
 // results is an array of {name, age} objects
 this.results.set(result);
 }
 });
});

Template.myTemplate.helpers({
 results() {
 return Template.instance().results.get();
 }
});

Data context of a template

Whenever a template is called upon, the default data context of the template is implicitly gained
from the caller as in example the childTemplate gains the data context of the parentTemplate i.e
caller template

<template name="parentTemplate">
 {{#with someHelperGettingDataForParentTemplate}}
 <h1>My name is {{firstname}} {{lastname}}</h1>
 //some stuffs here
 {{> childTemplate}}
 {{/with}}
</template>

https://riptutorial.com/ 25

In the above situation,whatever data the helper extracts for parent template are automatically
gained by childTemplate.For example,the {{firstname}} and {{lastname}} can be accessed from
childTemplate as well as shown below.

<template name="childTemplate">
<h2>My name is also {{firstname}} {{lastname}}</h2>
</template>

We can even explicitly define the data context of the childTemplate by passsing arguments to the
template like in below example.

<template name="parentTemplate">
 {{#with someHelperGettingDataForParentTemplate}}
 <h1>My name is {{firstname}} {{lastname}}</h1>
 //some stuffs here
 {{> childTemplate childData=someHeplerReturningDataForChild}}
 {{/with}}
</template>

Assuming the helper someHelperReturningDataForChild returns object like {profession:"Meteor
Developer",hobby:"stackoverflowing"},this particular object will be the explicit data context for the
childTemplate. Now in child template we can do something like

<template name="childTemplate">
 <h2>My profession is {{profession}}</h2>
 <h3>My hobby is {{hobby}}</h3>
</template>

Template Helpers

Template helpers are an essential part of Blaze and provide both business logic and reactivity to a
Template. It is important to remember that Template helpers are actually reactive computations
that are rerun whenever their dependencies change. Depending on your needs, Template helpers
can be defined globally or scoped to a specific template. Examples of each Template helper
definition approach is provided below.

Example of a Template helper scoped to a single template.1.

First define your template:

<template name="welcomeMessage">
 <h1>Welcome back {{fullName}}</h1>
</template>

Then define the Template helper. This assumes that the data context of the template contains a
firstName and lastName property.

Template.welcomeMessage.helpers({
 fullName: function() {
 const instance = Template.instance();

https://riptutorial.com/ 26

http://blazejs.org/api/templates.html#Template-helpers
http://docs.meteor.com/api/tracker.html#Tracker-autorun

 return instance.data.firstName + ' ' + instance.data.lastName
 },
});

Example of a global Template helper (this helper can be used from within any Template)2.

First register the helper:

Template.registerHelper('equals', function(item1, item2) {
 if (!item1 || !item2) {
 return false;
 }

 return item1 === item2;
});

With the equals helper defined, I can now use it within any template:

<template name="registration">
 {{#if equals currentUser.registrationStatus 'Pending'}}
 <p>Don't forget to complete your registration!<p>
 {{/if}}
</template>

Read Blaze Templating online: https://riptutorial.com/meteor/topic/2434/blaze-templating

https://riptutorial.com/ 27

https://riptutorial.com/meteor/topic/2434/blaze-templating

Chapter 9: Blaze User Interface Recipes
(Bootstrap; No jQuery)

Remarks

The above Blaze examples are highly compatible with the http://bootsnipp.com/ library, which only
provides the HTML and CSS for components, and leaves the javascript up to the developer. This
allows for components to share the same underlying sorting, filtering, query, and cursor methods.

Examples

Drop Down Menu

The following example creates a Bootstrap Drop-Down menu, using only Blaze and no JQuery.

Document Object Model

 <nav class="nav navbar-nav">
 <li class="dropdown">
 {{getSelectedValue}} <span
class="glyphicon glyphicon-user pull-right">
 <ul class="fullwidth dropdown-menu">
 <li id="firstOption" class="fullwidth">15 Minutes <span class="glyphicon
glyphicon-cog pull-right">
 <li class="divider">
 <li id="secondOption">30 Minutes <span class="glyphicon glyphicon-stats
pull-right">
 <li class="divider">
 <li id="thirdOption">1 Hour 42

 <li class="divider">
 <li id="fourthOption">4 Hour <span class="glyphicon glyphicon-heart
pull-right">
 <li class="divider">
 <li id="fifthOption">8 Hours <span class="glyphicon glyphicon-log-out
pull-right">

 </nav>

Javascript

Template.examplePage.helpers({
 getSelectedValue:function(){
 return Session.get('selectedValue');
 }
});
Template.dropDownWidgetName.events({

https://riptutorial.com/ 28

http://bootsnipp.com/

 'click #firstOption':function(){
 Session.set('selectedValue', 1);
 },
 'click #secondOption':function(){
 Session.set('selectedValue', "blue");
 },
 'click #thirdOption':function(){
 Session.set('selectedValue', $('#thirdOption').innerText);
 },
 'click #fourthOption':function(){
 Session.set('selectedValue', Session.get('otherValue'));
 },
 'click #fifthOption':function(){
 Session.set('selectedValue', Posts.findOne(Session.get('selectedPostId')).title);
 },
});

Navbars

A very common task is to create responsive navbars and to create action/footer bars that have
different controls based on what page a user is on, or what role a user belongs to. Lets go over
how to make these controls.

Router

Router.configure({
 layoutTemplate: 'appLayout',
});
Router.route('checklistPage', {
 path: '/lists/:_id',
 onBeforeAction: function() {
 Session.set('selectedListId', this.params._id);
 this.next();
 },
 yieldTemplates: {
 'navbarFooter': {
 to: 'footer'
 }
 }
 });

Create a Navbar Template

<template name="navbarFooter">
 <nav id="navbarFooterNav" class="navbar navbar-default navbar-fixed-bottom"
role="navigation">
 <ul class="nav navbar-nav">
 <u>A</u>dd Post
 <u>E</u>dit Post
 <u>D</u>elete Post

 <ul class="nav navbar-nav navbar-right">
 <u>H</u>elp

 </nav>
</template>

https://riptutorial.com/ 29

Define Yields in the Layout

<template name="appLayout">
 <div id="appLayout">
 <header id="navbarHeader">
 {{> yield 'header'}}
 </header>

 <div id="mainPanel">
 {{> yield}}
 </div>

 <footer id="navbarFooter" class="{{getTheme}}"">
 {{> yield 'footerActionElements' }}
 </footer>
 </div>
</template>

Modals

This follwing is a pure-Blaze approach to toggling UI elements into and outof existence. Think of
this as a replacement for modal dialogs. In fact, there are a number of ways to implement modal
dialogs using this method (simply add background masks and animations).

Document Object Model

<template name="topicsPage">
 <div id="topicsPage" class="container">
 <div class="panel">
 <div class="panel-heading">
 Nifty Panel
 </div>
 <!-- -->
 <div class="panel-footer">
 <!-- step 1. we click on the button object -->
 <div id="createTopicButton" class="btn {{ getPreferredButtonTheme }}">Create
Topic</div>
 </div>
 </div>

 <!-- step 5 - the handlebars gets activated by the javascript controller -->
 <!-- and toggle the creation of new objects in our model -->
 {{#if creatingNewTopic }}
 <div>
 <label for="topicTextInput"></label>
 <input id="topicTextInput" value="enter some text..."></input>
 <button class="btn btn-warning">Cancel</button>
 <button class="btn btn-success">OK</button>
 </div>
 {{/if}}
 </div>
</template>

Javascript

// step 2 - the button object triggers an event in the controller

https://riptutorial.com/ 30

// which toggles our reactive session variable
Template.topicsPage.events({
 'click #createTopicButton':function(){
 if(Session.get('is_creating_new topic'){
 Session.set('is_creating_new_topic', false);
 }else{
 Session.set('is_creating_new_topic', true);
 }
 }
});

// step 0 - the reactive session variable is set false
Session.setDefault('is_creating_new_topic', false);

// step 4 - the reactive session variable invalidates
// causing the creatNewTopic function to be rerun
Template.topicsPage.creatingNewTopic = function(){
 if(Session.get('is_creating_new_topic')){
 return true;
 }else{
 return false;
 }
}

Tagging

The Database Layer First, we want to set up the Data Distribution Protocol, to make sure that we
can persist data to the database, and get it to the client. Three files need to be created... one on
the server, one on the client, and one shared between both.

// client/subscriptions.js
Meteor.subscribe('posts');

//lib/model.js
Posts = new Meteor.Collection("posts");
Posts.allow({
 insert: function(){
 return true;
 },
 update: function () {
 return true;
 },
 remove: function(){
 return true;
 }
});

// server.publications.js
Meteor.publish('posts', function () {
 return Posts.find();
});

This example assumes the following document schema for the tagging pattern:

{
 _id: "3xHCsDexdPHN6vt7P",

https://riptutorial.com/ 31

 title: "Sample Title",
 text: "Lorem ipsum, solar et...",
 tags: ["foo", "bar", "zkrk", "squee"]
}

Document Object Model
Second, we want to create our object model in the application layer. The following is how you
would use a Bootstrap panel to render a post with title, text, and tags. Note that selectedPost,
tagObjects, and tag are all helper functions of the blogPost template. title and text are fields from
our document record.

<template name="blogPost">
 {{#with selectedPost }}
 <div class="blogPost panel panel-default">
 <div class="panel-heading">
 {{ title }}
 </div>
 {{ text }}
 <div class="panel-footer">
 <ul class="horizontal-tags">
 {{#each tagObjects }}
 <li class="tag removable_tag">
 <div class="name">{{tag}}<i class="fa fa-times"></i></div>

 {{/each}}
 <li class="tag edittag">
 <input type="text" id="edittag-input" value="" /><i class="fa fa-plus"></i>

 </div>
 </div>
 {{/with}}
</template>

Javascript
Next, we want to set up some controllers to return data, implement some data input, and so forth.

// you will need to set the selectedPostId session variable
// somewhere else in your application
Template.blogPost.selectedPost = function(){
 return Posts.findOne({_id: Session.get('selectedPostId')});
}

// next, we use the _.map() function to read the array from our record
// and convert it into an array of objects that Handlebars/Spacebars can parse
Template.blogPost.tagObjects = function () {
 var post_id = this._id;
 return _.map(this.tags || [], function (tag) {
 return {post_id: post_id, tag: tag};
 });
};

// then we wire up click events
Template.blogPost.events({
 'click .fa-plus': function (evt, tmpl) {
 Posts.update(this._id, {$addToSet: {tags: value}});
 },

https://riptutorial.com/ 32

 'click .fa-times': function (evt) {
 Posts.update({_id: this._id}, {$pull: {tags: this.tag}});
 }
});

Styling
Lastly, we want to define some different Views for phone, tablet, and desktops; and some basic UI
styling depending on user input. This example uses the Less precompiler, although the syntax
should be roughly the same for Sass and Stylus.

// default desktop view
.fa-plus:hover{
 cursor: pointer;
}
.fa-times:hover{
 cursor: pointer;
}
// landscape orientation view for tablets
@media only screen and (min-width: 768px) {
 .blogPost{
 padding: 20px;
 }
}
// portrait orientation view for tablets
@media only screen and (max-width: 768px) {
 .blogPost{
 padding: 0px;
 border: 0px;
 }
}
// phone view
@media only screen and (max-width: 480px) {
 blogPost{
 .panel-footer{
 display: none;
 }
 }
}

Alerts and Errors

Alerts and errors are nearly the simplest of all Meteor component patterns. They're so simple, in
fact, that they barely register as a pattern in of themselves. Instead of adding FlashAlert modules
or patterns, all you really need to do is style a Handlebar template appropriate, add a helper, and
wire it up to a reactive Session variable.

Prerequisites
The following code requires the LESS precompiler and Bootstrap-3, respectively. You will need to
run the following commands at the command prompt to get them to work.

meteor add less
meteor add ian:bootstrap-3

Document Object Model: Define Alert Object Start by adding some elements to your document

https://riptutorial.com/ 33

object model. In this case, we want to create a div element for our alert, that's wired up to two
Handlebar helpers.

<template name="postsPage">
 <div id="postsPage" class="page">
 <div id="postsPageAlert" class="{{alertColor}}">{{alertMessage}}</div>
 <div class="postsList">
 <!-- other code you can ignore in this example -->
 </div>
 <div id="triggerAlertButton" class="btn btn-default">
 </div>
</template>

Javascript: Define Template Helpers Then we want to wire up some controllers that will
populate the object model with data. We do so with two reactive session variables, and two
handlebar helpers.

Session.setDefault('alertLevel', false);
Session.setDefault('alertMessage', "");

Template.postsPage.alertColor = function(){
 if(Session.get('alertLevel') == "Success"){
 return "alert alert-success";
 }else if(Session.get('alertLevel') == "Info"){
 return "alert alert-info";
 }else if(Session.get('alertLevel') == "Warning"){
 return "alert alert-warning";
 }else if(Session.get('alertLevel') == "Danger"){
 return "alert alert-danger";
 }else{
 return "alert alert-hidden"
 }
}

Template.postsPage.alertMessage = function(){
 return Session.get('alertMessage');
}

Styling: Define DOM Visibility Then we want to go back to our CSS, and define two views of the
postsPage element. In the first View, we display all of the contents in our object model. In the
second view, only some of the contents of our object model are displayed.

#postsPage{
 .alert{
 display: block;
 }
 .alert-hidden{
 display: none;
 }
}

Javascript: Triggering the Alert
Lastly, we go back to our controllers, and we define an event controller, which will trigger our alert
when clicked.

https://riptutorial.com/ 34

Template.postsPage.events({
 'click #triggerAlertButton':function(){
 Session.set('alertLevel', 'Success');
 Session.set('alertMessage', 'You successfully read this important alert message.');
 }
});

And that's all there is to it! Super simple, right? You can now set the alertLevel and alertMessage
session variables anywhere in your codebase, and your application will reactively show alerts and
error messages! :)

Tabbed Workflow

Document Object Model
Start by creating your tabs and panes in your Object Model...

<template name="samplePage">
 <div id="samplePage" class="page">
 <ul class="nav nav-tabs">
 <li id="firstPanelTab">First
 <li id="secondPanelTab">Second

 <div id="firstPanel" class="{{firstPanelVisibility}}">
 {{> firstPanel }}
 </div>
 <div id="secondPanel" class="{{secondPanelVisibility}}">
 {{> secondPanel }}
 </div>
 </div>
</template>

Javascript

// this variable controls which tab is displayed and associated application state
Session.setDefault('selectedPanel', 1);

Template.name.helpers({
 firstPanelVisibility: function (){
 if(Session.get('selectedPanel') === 1){
 return "visible";
 }else{
 return "hidden";
 }
 },
 secondPanelVisibility: function (){
 if(Session.get('selectedPanel') === 2){
 return "visible";
 }else{
 return "hidden";
 }
 },
 thirdPanelVisibility: function (){
 if(Session.get('selectedPanel') === 3){
 return "visible";
 }else{

https://riptutorial.com/ 35

 return "hidden";
 }
 },
 firstPanelActive: function (){
 if(Session.get('selectedPanel') === 1){
 return "active panel-tab";
 }else{
 return "panel-tab";
 }
 },
 secondPanelActive: function (){
 if(Session.get('selectedPanel') === 2){
 return "active panel-tab";
 }else{
 return "panel-tab";
 }
 },
 thirdPanelActive: function (){
 if(Session.get('selectedPanel') === 3){
 return "active panel-tab";
 }else{
 return "panel-tab";
 }
 }
});

Styling

.visible {
 display: block;
 visibility: visible;
}
.hidden {
 display: none;
 visibility: hidden;
}

Active Tab For added effect, you can extend this pattern by injecting classes to indicate the active
tab.

<li id="firstPanelTab" class="{{firstPanelActive}}">First
<li id="secondPanelTab" class="{{secondPanelActive}}">Second

Template.firstPanel.helpers({
 firstPanelActive: function (){
 if(Session.get('selectedPanel') === 1){
 return "active";
 }else{
 return "";
 }
 },
 secondPanelActive: function (){
 if(Session.get('selectedPanel') === 2){
 return "active";
 }else{
 return "";
 }
 },

https://riptutorial.com/ 36

});

Read Blaze User Interface Recipes (Bootstrap; No jQuery) online:
https://riptutorial.com/meteor/topic/4202/blaze-user-interface-recipes--bootstrap--no-jquery-

https://riptutorial.com/ 37

https://riptutorial.com/meteor/topic/4202/blaze-user-interface-recipes--bootstrap--no-jquery-

Chapter 10: Continuous Deployment to
Galaxy from Codeship

Remarks

This topic is heavily inspired by Nate Strausers Migrating Meteor Apps from Modulus to Galaxy
with Continuous Deployment from Codeship.

Examples

Setup

Create a deployment_token.json:

 METEOR_SESSION_FILE=deployment_token.json meteor login

•

Create the following environment variables on Codeship: (
https://codeship.com/projects/PROJECT_NUMBER/configure_environment)

METEOR_TARGET: your.domain.com○

METEOR_TOKEN: Copy/Paste the contents of deployment_token.json. Something
like: {"sessions": {"www.meteor.com": {"session": "12345 ...

○

METEOR_SETTING: Copy/Paste the contents of your settings.json. Something like:
{"private": {...

○

•

Create a new deployment pipeline here
https://codeship.com/projects/YOUR_PROJECT_NUMBER/deployment_branches/new

We deploy only the master branch. So set: Branch is exactly: master.○

•

Add a "Custom Script" as your deployment with the following content:•

echo $METEOR_TOKEN > deployment_token.json
echo $METEOR_SETTINGS > deployment_settings.json
meteor npm prune --production
DEPLOY_HOSTNAME=galaxy.meteor.com METEOR_SESSION_FILE=deployment_token.json meteor deploy
$METEOR_TARGET --settings deployment_settings.json

Read Continuous Deployment to Galaxy from Codeship online:
https://riptutorial.com/meteor/topic/6743/continuous-deployment-to-galaxy-from-codeship

https://riptutorial.com/ 38

https://medium.com/@natestrauser/migrating-meteor-apps-from-modulus-to-galaxy-with-continuous-deployment-from-codeship-aed2044cabd9#.o6huyy9w2
https://medium.com/@natestrauser/migrating-meteor-apps-from-modulus-to-galaxy-with-continuous-deployment-from-codeship-aed2044cabd9#.o6huyy9w2
https://codeship.com/projects/PROJECT_NUMBER/configure_environment)
https://codeship.com/projects/YOUR_PROJECT_NUMBER/deployment_branches/new
https://riptutorial.com/meteor/topic/6743/continuous-deployment-to-galaxy-from-codeship

Chapter 11: Continuous Integration & Device
Clouds (with Nightwatch)

Remarks

Nightwatch has been providing Acceptance and End-to-End testing for Meteor apps since v0.5
days, and has managed migrations from PHP to Spark to Blaze and to React; and all major
Continuous Integration platforms. For additional help, please see:

Nightwatch API Documentation
Nightwatch.js Google Group

Examples

Travis

Travis is the original Continuous Integration service that became popular in the Meteor community.
It's solid and reliable, has long had a open-source hosting tier, and has run hundreds of thousands
of Nightwatch tests over the years.

.travis.yml
Simply put a .travis.yml file in the root of your application, like so:

this travis.yml file is for the leaderboard-nightwatch example, when run standalone
language: node_js

node_js:
 - "0.10.38"

services:
 - mongodb

sudo: required

env:
 global:
 - TRAVIS=true
 - CONFIG_PREFIX=`npm config get prefix`
 - DISPLAY=:99.0
 - NODE_ENV=`travis`
 matrix:

cache:
 directories:
 - .meteor/local/build/programs/server/assets/packages
 - .meteor

before_install:
 # set up the node_modules dir, so we know where it is
 - "mkdir -p node_modules &"

https://riptutorial.com/ 39

http://nightwatchjs.org/
https://groups.google.com/forum/#!forum/nightwatchjs

 # install nightwatch, selenium, , so we can launch nightwatch and selenium
 - "meteor npm install nightwatch selenium-server-standalone-jar chromedriver"

 # fire up xvfb on port :99.0
 - "sh -e /etc/init.d/xvfb start"

 # set the xvfb screen size to 1280x1024x16
 - "/sbin/start-stop-daemon --start --quiet --pidfile /tmp/custom_xvfb_99.pid --make-pidfile
--background --exec /usr/bin/Xvfb -- :99 -ac -screen 0 1280x1024x16"

 # install meteor
 - "curl https://install.meteor.com | /bin/sh"

 # give meteor a few seconds after installing
 - "sleep 10"

 # setup Meteor app
 - "cd webapp"
 - "meteor &"

 # give Meteor some time to download packages, init data, and to start
 - "sleep 60"

then run nightwatch using the chromedriver
script: "nightwatch -c .meteor/nightwatch.json"

Circle

Circle is the newer Continuous Integration service that's become popular among Meteorites. It's
got all of the latest bells and whistles, as far as continuous integration goes. The following script
supports many new features, including:

screenshots•
artifacts•
git submodules•
environment detection•
directory caching•
parallelism optimization•
npm scripts•
continuous deployment•
webhooks•

.circle.yml

Customize the test machine
machine:

 # Timezone
 timezone:
 America/Los_Angeles # Set the timezone

 # Add some environment variables
 environment:
 CIRCLE_ENV: test

https://riptutorial.com/ 40

https://circleci.com/

 CXX: g++-4.8
 DISPLAY: :99.0
 NPM_PREFIX: /home/ubuntu/nvm/v0.10.33
 INITIALIZE: true
 NODE_ENV: circle

Customize checkout
checkout:
 post:
 #- git submodule sync
 #- git submodule update --init --recursive # use submodules

general:
 build_dir: webapp
 artifacts:
 - "./tests/nightwatch/screenshots" # relative to the build directory

Customize dependencies
dependencies:
 cache_directories:
 - "~/.meteor" # relative to the user's home directory
 - ~/nvm/v0.10.33/lib/node_modules/starrynight
 - ~/nvm/v0.10.33/bin/starrynight

 pre:
 # Install Starrynight unless it is cached
 - if [! -e ~/nvm/v0.10.33/bin/starrynight]; then npm install -g starrynight; else echo
"Starrynight seems to be cached"; fi;
 # Install Meteor
 - mkdir -p ${HOME}/.meteor
 # If Meteor is already cached, do not need to build it again.
 - if [! -e ${HOME}/.meteor/meteor]; then curl https://install.meteor.com | /bin/sh; else
echo "Meteor seems to be cached"; fi;
 # Link the meteor executable into /usr/bin
 - sudo ln -s $HOME/.meteor/meteor /usr/bin/meteor
 # Check if the helloworld directory already exists, if it doesn't, create the helloworld
app
 # The following doesn't work, because it should be checking ${HOME}/active-
entry/helloworld
 # - if [! -e ${HOME}/helloworld]; then meteor create --release METEOR@1.1.0.3
helloworld; else echo "helloworld app seems to be cached"; fi;

 override:
 #- meteor list

Customize test commands
test:
 pre:
 #- starrynight fetch
 #- cd packages && rm -rf temp
 #- cd packages && ls -la
 #- starrynight autoconfig
 - meteor update --release METEOR@1.3.3
 - meteor npm install --save jquery bootstrap react react-dom react-router react-bootstrap
react-komposer
 - cat .meteor/nightwatch.json
 - meteor:
 background: true
 - sleep 60
 override:

https://riptutorial.com/ 41

 - meteor npm run-script nightwatch

Customize deployment commands
#deployment:
production:
branch: master
commands:
- printf "<Meteor username>\n<Meteor password>\n" | meteor deploy myapp.meteor.com

Custom notifications
#notify:
 #webhooks:
 # A list of hashes representing hooks. Only the url field is supported.
 #- url: https://someurl.com/hooks/circle

SauceLabs

SauceLabs is an Automated Testing Platform for the enterprise. It supports both continuous
integration, cross browser testing, and a mobile device cloud. Costs are higher than with Travis,
Circle, or BrowserStack, hwoever.

{
 "selenium" : {
 "start_process" : false,
 "host" : "ondemand.saucelabs.com",
 "port" : 80,
 },
 "test_settings" : {
 "chrome_saucelabs": {
 "selenium_host": "ondemand.saucelabs.com",
 "selenium_port": 80,
 "username": "${SAUCE_USERNAME}",
 "access_key": "${SAUCE_ACCESS_KEY}",
 "use_ssl": false,
 "silent": true,
 "output": true,
 "screenshots": {
 "enabled": false,
 "on_failure": true,
 "path": ""
 },
 "desiredCapabilities": {
 "name": "test-example",
 "browserName": "chrome"
 },
 "globals": {
 "myGlobal": "some_sauce_global"
 }
 },
 }
}

BrowserStack

BrowserStack uses a device cloud for cross-browser testing. The intent is to allow testing of

https://riptutorial.com/ 42

https://saucelabs.com/
https://www.browserstack.com/

Selenium scripts on every device possible.

{
 "selenium" : {
 "start_process" : false,
 "host" : "hub.browserstack.com",
 "port" : 80,
 },

 "test_settings" : {
 "default" : {
 "launch_url" : "http://hub.browserstack.com",
 "selenium_port" : 80,
 "selenium_host" : "hub.browserstack.com",
 "silent": true,
 "screenshots" : {
 "enabled" : false,
 "path" : "",
 },
 "desiredCapabilities": {
 "browserName": "firefox",
 "javascriptEnabled": true,
 "acceptSslCerts": true,
 "browserstack.user": "USERNAME",
 "browserstack.key": "KEY"
 }
 }
 }
}

Read Continuous Integration & Device Clouds (with Nightwatch) online:
https://riptutorial.com/meteor/topic/6550/continuous-integration---device-clouds--with-nightwatch-

https://riptutorial.com/ 43

https://riptutorial.com/meteor/topic/6550/continuous-integration---device-clouds--with-nightwatch-

Chapter 12: Debugging

Examples

Browser Debuggers

Both Chrome and Safari have built in debuggers. With Chrome, all you have to do is right-click on
a web page and 'Inspect Element'. With Safari, you'll have to go into Preferences > Advanced and
click on 'Show Develop menu in menu bar'.

With Firefox, you'll need to install Firebug

Add Debugger Breakpoints to your App

You'll need to add debugger statements to your code:

Meteor.methods({
 doSomethingUself: function(){
 debugger;
 niftyFunction();
 }
});

Server Side Debugging with Node Inspector

For server side debugging, you'll need to use a tool like Node Inspector. Before you get started,
check out some of these useful tutorials.

HowToNode - Debugging with Node Inspector
Strongloop - Debugging Applications
Easily Debugging Meteor.js Walkthrough with Screenshots of Using Node Inspector with Meteor

tl;dr - there are a number of utilities in the Meteor ecosystem which are designed to be run at the
same time as your Meteor application. They only work if your Meteor app is up and running and
they can connect to a running website. meteor mongo, Robomongo, Nightwatch... these are all
utilities that need your application to already be running. NodeInspector is one of these utilities.

install node-inspector
terminal-a$ npm install -g node-inspector

start meteor
terminal-a$ NODE_OPTIONS='--debug-brk --debug' mrt run

alternatively, some people report this syntax being better
terminal-a$ sudo NODE_OPTIONS='--debug' ROOT_URL=http://myapp.com meteor --port 80

launch node-inspector along side your running app
terminal-b$ node-inspector

https://riptutorial.com/ 44

https://getfirebug.com/
https://howtonode.org/debugging-with-node-inspector
https://docs.strongloop.com/display/SLC/Debugging+applications
http://joshowens.me/easily-debugging-meteor-js/
https://github.com/meteor/meteor/issues/1411

go to the URL given by node-inspector
http://localhost:8080/debug?port=5858

Server Side Debugging with npm debug

Besides Node Inspector, some people have reported success with a npm utility called debug.

MeteorHacks - Debugging Meteor with npm debug

Meteor Shell

As of Meteor 1.0.2, there's a new command shell which you can use to do interactive debugging
and manage your app from the server side, just like you do with the Chrome Console on the client
side! Check it out:

meteor shell

Other Debugging Utilities

Meteor Dump
Meteor Toys
Constellation

Meteor DevTools

Read Debugging online: https://riptutorial.com/meteor/topic/3378/debugging

https://riptutorial.com/ 45

http://meteorhacks.com/debugging-meteor-packages-and-apps.html
https://atmospherejs.com/rwatts/meteordump
http://meteor.toys/
https://atmospherejs.com/babrahams/constellation
https://chrome.google.com/webstore/detail/meteor-devtools/ippapidnnboiophakmmhkdlchoccbgje
https://riptutorial.com/meteor/topic/3378/debugging

Chapter 13: Deployment with Upstart

Examples

Upstart Service

This deployment guide assumes you're using an Ubuntu server, and are either self-hosting or
using an Infrastructure as a Service (IaaS) provider, such as Amazon Web Services or
Rackspace. Your Ubuntu server needs to be running a daemon for launching other apps, for which
we recommend the Upstart service. You can find more about Upstart with the following links:

Upstart - Getting Started
Getting Started with Upstart Scripts on Ubuntu
UbuntuBootupHowTo
Upstart Intro, Cookbook, and Best Practices
Run NodeJS As a Service on Ubuntu Karmic

Copying Files To Your Server Then Build

One favored approach to deploying to a server is to use Git or GitHub. This basically involves
logging into your server, moving to the directory you want to run your app from, then cloning your
files directly from GitHub. You then build your app on the server. This approach ensures that
platform specific files get built correctly, but requires that Meteor is installed on the server (500+
MB), and can result in slightly different builds wind up in production if your servers are slightly
different.

cd /var/www
sudo git clone http://github.com/myaccount/myapp.git
cd /var/www/myapp
meteor build --directory ../myapp-production
sudo service myapp restart

Bundle Then Copy To Server

Alternatively, you may want to build your application, and then deploy it..

cd myapp
meteor build --directory ../output
cd ..
scp output -r username@destination_host:/var/www/myapp-production

Writing Your Upstart Script

You'll need an upstart script in your /etc/init/ directory. Name it with your app's name, ending in
.conf, such as /etc/init/myapp.conf. The basic upstart script looks something like this:

https://riptutorial.com/ 46

http://upstart.ubuntu.com/getting-started.html
http://buddylindsey.com/getting-started-with-and-understanding-upstart-scripts-on-ubuntu/
https://help.ubuntu.com/community/UbuntuBootupHowto
http://upstart.ubuntu.com/cookbook/
http://kvz.io/blog/2009/12/15/run-nodejs-as-a-service-on-ubuntu-karmic/

/etc/init/myapp.conf
description "myapp.mydomain.com"
author "somebody@gmail.com"

Automatically Run on Startup
start on started mountall
stop on shutdown

Automatically Respawn:
respawn
respawn limit 99 5

script
 export HOME="/root"
 export MONGO_URL='mongodb://myapp.compose.io:27017/meteor'
 export ROOT_URL='http://myapp.mydomain.com'
 export PORT='80'

 exec /usr/local/bin/node /var/www/myapp/main.js >> /var/log/myapp.log 2>&1
end script

Upstart Script For Replica Sets

If you're running a replica set or have a need to shard your database, you'll want an upstart script
that looks something like this:

/etc/init/myapp.conf
description "myapp.mydomain.com"
author "somebody@gmail.com"

used to be: start on startup
until we found some mounts weren't ready yet while booting:
start on started mountall
stop on shutdown

Automatically Respawn:
respawn
respawn limit 99 5

script
 # upstart likes the $HOME variable to be specified
 export HOME="/root"

 # our example assumes you're using a replica set and/or oplog integreation
 export MONGO_URL='mongodb://mongo-a,mongo-b,mongo-c:27017/?replicaSet=meteor'

 # root_url and port are the other two important environment variables to set
 export ROOT_URL='http://myapp.mydomain.com'
 export PORT='80'

 exec /usr/local/bin/node /var/www/production/main.js >> /var/log/node.log 2>&1
end script

Running Your Upstart Script

Finally, you'll need to start the Upstart daemon, and initialize your app as a service.

https://riptutorial.com/ 47

sudo service myapp start

Setting up a Server to Host Multiple Meteor Apps

https://www.phusionpassenger.com/
https://github.com/phusion/passenger
https://github.com/phusion/passenger/wiki/Phusion-Passenger:-Meteor-tutorial#wiki-installing

Read Deployment with Upstart online: https://riptutorial.com/meteor/topic/3377/deployment-with-
upstart

https://riptutorial.com/ 48

https://www.phusionpassenger.com/
https://github.com/phusion/passenger
https://github.com/phusion/passenger/wiki/Phusion-Passenger:-Meteor-tutorial#wiki-installing
https://riptutorial.com/meteor/topic/3377/deployment-with-upstart
https://riptutorial.com/meteor/topic/3377/deployment-with-upstart

Chapter 14: Development Tools

Examples

Integrated Development Environments

Development usually begins with an editor or an Integrated Development Environment. The
following IDEs are known to support Meteor to some extent:

Atom - Javascript IDE that can fully leverage Meteor's isomorphic javascript framework. If
you want to be able to hack on your editor itself, this is the one to choose.

•

Cloud9 - The newest Cloud Development offering that supports Meteor, with a tutorial.•
MeteorDevTools - Chrome extension for Blaze, DDP, and Minimongo.•
Sublime - Light-weight and popular text editor.•
WebStorm - The most full featured IDE currently available for Meteor.•

Database Tools

Once you get past your 'Hello World' app, you'll need to start paying attention to your collection
and document schemas, and will need some tools for managing your database.

Robomongo - A longtime community favorite for managing Mongo. Highly recommended.•
JSON Generator - Invaluable utility for generating sample datasets.•
MacOSX Mongo Preference Page - Preferences GUI for MacOSX.•
MongoHub - Another Mongo GUI, similar to RoboMongo. MacOSX only.•
Mongo3 - One of the few cluster management tools around. Able to visualize replication
sets. Only downside is it's built in Ruby.

•

Mongo Monitoring Service - Once you're ready to bring something into production, MMS is
invaluable. Now known as MongoDB Atlas.

•

Mongo Express - Web-based MongoDB admin interface, written with Node.js and express•

Remote Collaboration Utilities for Distributed Developers

Developing Meteor apps usually means developing multi-client reactivity, which requires
collaboration tools. The following tools have proven to be popular within the Meteor community.

Google Hangouts - Video conferencing and chat.•
Zenhub.io - Kanban boards for GitHub.•
InVision - Collaborative wireframing and prototyping.•
Meeting Hero - Collaborative meeting planning.•
Hackpad - Collaborative document editing.•
Slack - Collaborative project tracking feeds.•
MadEye - Collaborative web editor.•
Screenhero - Collaborative screen sharing.•
Proto.io - Wireframing and prototyping.•

https://riptutorial.com/ 49

https://atom.io/
https://c9.io/
https://chrome.google.com/webstore/detail/meteor-devtools/ippapidnnboiophakmmhkdlchoccbgje
http://www.sublimetext.com/
https://www.jetbrains.com/webstorm/
https://robomongo.org/
http://www.json-generator.com/
http://blog.mongodb.org/post/28925264384/macosx-preferences-pane-for-mongodb
https://github.com/jeromelebel/MongoHub-Mac
https://github.com/derailed/mongo3
https://www.mongodb.com/cloud
https://github.com/mongo-express/mongo-express
http://www.google.com/+/learnmore/hangouts/
http://zenhub.io
https://projects.invisionapp.com/d/main#/projects
http://www.meetinghero.com/
https://hackpad.com
https://slack.com/
http://madeye.io/
http://screenhero.com
https://proto.io/

HuBoard - Kanban boards for GitHub.•
Zapier - The best apps. Together.•
Teamwork.com - Traditional project management & gannt charts.•
Sprint.ly - More kanban boards and sprint planning that works with GitHub.•
LucidChart - Online Visio alternative.•
Waffle.io - Trello/ZenHub alternative that integrates with GitHub.•

REST Clients

If you want to integrate Meteor with an external API, it's likely that it's going to exposed as a REST
interface. We tend to use the following Chrome apps for testing REST APIs.

Postman•
DHC Rest Client•

Online tools:

Hurl.it•
RequestBin•

Debuggers

Most debugging happens in the terminal or in the Chrome or Safari develop tools, which are plenty
sophisticated enough for 99% of your needs. However, if you want to debug on Firefox or need
extra server debugging functionality, there are a few extra utilities you can use.

Firefox - Firebug•
Node-Inspector•
Meteor Toys or add directly- meteor add meteortoys:allthings•

Mobile Coding on iOS

Texttastic Code Editor - Code editor with syntax highlighting for iOS devices.

Working Copy - Clone Github repositories to your iPad and code on the go.

CodeHub - Browse and maintain your GitHub repositories. Management tool.

iOctocat - Social utility for following Github projects.

iMockups for iPad - Wireframes and mockups. Supports wireframes for desktops and mobile.

Blueprint - iOS wireframing and mockups. Primarily for iOS development, but somewhat usable for
web apps.

JSON Designer - Data architecture and data schema design.

Read Development Tools online: https://riptutorial.com/meteor/topic/4200/development-tools

https://riptutorial.com/ 50

https://huboard.com
https://zapier.com/
https://www.teamwork.com/
https://sprint.ly/
https://www.lucidchart.com
https://waffle.io/
http://www.getpostman.com/
https://chrome.google.com/webstore/detail/dev-http-client/aejoelaoggembcahagimdiliamlcdmfm
https://www.hurl.it/
http://requestb.in/
https://getfirebug.com/
https://github.com/node-inspector/node-inspector
http://meteor.toys/
https://itunes.apple.com/us/app/textastic-code-editor-6/id1049254261?mt=8
https://itunes.apple.com/us/app/working-copy-powerful-git/id896694807?mt=8
https://itunes.apple.com/us/app/codehub-github-for-ios/id707173885?mt=8
https://itunes.apple.com/us/app/ioctocat-github-for-iphone/id669642611
https://itunes.apple.com/us/app/imockups-for-ipad/id364885913
https://itunes.apple.com/us/app/blueprint-ios-mockup/id405203705?mt=8
https://itunes.apple.com/us/app/json-designer/id432736126
https://riptutorial.com/meteor/topic/4200/development-tools

Chapter 15: Directory Structure

Introduction

Before the release of Meteor 1.3, Meteor developers were frustrated with Meteor.js' handling of file
dependencies and global variables. In response, Meteor set new standards for project structures
in order to make the project dependency system more streamlined. This topic explains the
standardized project structure and the principles behind it.

Remarks

client
All code in the client directory is run only in the client-side, or web browser.

client/compatibility
The compatibility directory contains legacy or 3rd party code, such as jQuery libraries, etc.

lib
The lib directory is loaded before other directories in your Meteor project, and is loaded on both
the server and client. This is the preferred place to define data models, isomorphic libraries, and
business logic.

imports
The imports directory is a directory on the server that is available to both the server and client, but
only before the client bundle gets shipped to the client.

packages
The packages directory is where custom packages are stored during local development. When
using the standard command meteor add package:name to add a package, Meteor will look first in
this directory if a local package has the corresponding description name in its package.js file. If not,
it will poll Atmosphere as usual.

private
The private directory contains static files that should only be available on the web server.

public
The public directory contains static files that are only available on the application client. This may
including branding assets, etc.

server
The server directory contains server-side assets. This can include authentication logic, methods,
and other code that may need security consideration.

tests
The tests directory is omitted by default when your application is bundled and deployed.

https://riptutorial.com/ 51

As suggested by Richard Silverton it is a convenient idea to put not only the meteor project
directory under version control, but also its parent directory.

That way you can keep files under version control without having meteor to deal with it.

Examples

Classic Directory Structures

The first thing you need to know when structuring your apps is that the Meteor tool has some
directories that are hard-coded with specific logic. At a very basic level, the following directories
are "baked in" the Meteor bundler.

client/ # client application code
client/compatibility/ # legacy 3rd party javascript libraries
imports/ # for lazy loading feature
lib/ # any common code for client/server.
packages/ # place for all your atmosphere packages
private/ # static files that only the server knows about
public/ # static files that are available to the client
server/ # server code
tests/ # unit test files (won't be loaded on client or
server)

Reference page: Meteor Guide > Special directories

Package-Only Directory Structure

Many people find themselves eventually supporting multiple applications, and desire to share code
between apps. This leads to the concept of microservice architecture, and all-package apps.
Essentially, the code from the entire classic directory structure is refactored out into packages.

Even though there is no hard-coded logic for directories in packages, we find that it's a good
practice to use the classic directory structure when creating packages. This creates a natural
refactor path as features are prototyped in the app, and then extracted into packages to be
published and shared. The directory names are shared, so there's less confusion among team
members.

client/ # client application code
packages/ # place for all your atmosphere packages
packages/foo/client # client application code
packages/foo/lib # any common code for client/server
packages/foo/server # server code
packages/foo/tests # tests
server/ # server code

Imports/Modules Directory Structure

The most recent versions of Meteor ship with support for ecmascript, aka ES6 or ES2015. Instead
of packages, Javascript now supports import statements and modules, which replaces the need

https://riptutorial.com/ 52

https://blog.tableflip.io/large-meteor-projects-best-practices/
https://guide.meteor.com/structure.html#special-directories

for package-only applications. The latest directory structure is similar to the package-only
structure, but uses the /imports directory instead of /packages.

imports #
imports/api # isomorphic methods
imports/lib # any common code for client/server
imports/client # client application code
imports/server # server code

Mixed-Mode Directory Structure

And, of course, you can mix these approaches, and use both packages and imports along side
your application specific code. A mix-mode structure is most common in three situations: a
franken-app, which is just sort of pulling a bit from here-and-there without any overall strategy; an
app that's being actively refactored from either Classic or Package-Only structures to the
Imports/Modules structure.

client/ # client application code
client/compatibility/ # legacy 3rd party javascript libraries
imports #
imports/api # isomorphic methods
imports/lib # any common code for client/server
imports/client # client application code
imports/server # server code
lib/ # any common code for client/server.
packages/ # place for all your atmosphere packages
packages/foo/client # client application code
packages/foo/lib # any common code for client/server
packages/foo/server # server code
packages/foo/tests # tests
private/ # static files that only the server knows about
public/ # static files that are available to the client
server/ # server code
tests/ # unit test files (won't be loaded on client or
server)

Directory load order

HTML template files are always loaded before everything else

Files beginning with main. are loaded last

Files inside any lib/ directory are loaded next

Files with deeper paths are loaded next

Files are then loaded in alphabetical order of the entire path

Reference Link

Reference page: Meteor Guide > Application Structure > Default file load order

Read Directory Structure online: https://riptutorial.com/meteor/topic/3072/directory-structure

https://riptutorial.com/ 53

https://guide.meteor.com/structure.html
https://guide.meteor.com/structure.html
https://riptutorial.com/meteor/topic/3072/directory-structure

Chapter 16: Electrify - Compiling Meteor as a
Locally Installable App

Examples

Installing Electrify for a Meteor application

Electron ports HTML web applications to native applications for a range of devices, including
creating native desktop applications. It's also very easy to get started!

To begin, we must have electron, nodejs, npm, git and meteor installed. Familiarity with these tools
is vital for working with Meteor, so make sure you know about these things first.

Electron

npm install -g electrify

electron is what we're using! Read more here.•
electrify is a tool for packaging Meteor apps. Read mode here.•

Other requirements for installing and using Electrify with Meteor

Meteor

curl https://install.meteor.com/ | sh

There are many ways to install Meteor, see here.

meteor is the JavaScript framework we'll be using for building our application. It provides us
with a lot of coding simplifications for some rather conceptually hard problems in web
applications; its simplicity has been noted as useful for prototypical projects. Read more here
.

•

NodeJS

apt-get install nodejs build-essentials

There are many ways to install, depending on your OS. Find out which way you need here.

nodejs is the package for Node.js, which is a Javascript environment for running JavaScript
on the server side. Read more here.

•

npm

https://riptutorial.com/ 54

http://electron.atom.io/
https://github.com/arboleya/electrify
https://www.meteor.com/install
https://www.meteor.com/tutorials/blaze/creating-an-app
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/about/

npm should be bundled with the nodejs installation. Check it is by running the command npm -v after
installing nodejs.

npm is the Node Package Manager. It's a huge collection of open source modules that you
can easily add into your Node projects. Read more here.

•

Using Electrify on a Meteor Application

Let's download a Meteor Todos example project, using a Linux shell (command line) script, to test
out Electrifying a project for the first time:

Requirements for this section:

Git

apt-get install git-all

There are many ways to install Git. Check them out here.

git is a version control system for files. They can be stored remotely (i.e., online) in public
repositories (GitHub being a rather famous one) or private repositories (BitBucket provides
limited free private repositories, as an example). Read more [here][5].

•

#!/usr/bin/bash

Change this parameter to choose where to clone the repository to.
TODOSPATH="/home/user/development/meteor-todos"

Download the repository to the $TODOSPATH location.
git clone https://github.com/meteor/todos.git "$TODOSPATH"

Change directory (`cd`) into the Todos project folder.
cd "$TODOSPATH"

We should now have a project folder named 'meteor-todos', at the location specified within the
TODOSPATH parameter. We've also changed directory (cd) into the project folder, so let's add
Electrify to this project!

It's really this simple.
electrify

That's right - a single word command, and our project is ready. Permissions may cause errors for
you when trying to run electrify as a command, in wihch case try sudo electrify to override the
permissions.

However, do attempt to resolve these permission issues - it is not good practice to unnecessarily
sudo (which I'd elaborate upon, but I could write a whole other topic on why that is!)

Read Electrify - Compiling Meteor as a Locally Installable App online:

https://riptutorial.com/ 55

https://docs.npmjs.com/getting-started/what-is-npm
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://riptutorial.com/meteor/topic/2526/electrify---compiling-meteor-as-a-locally-installable-app

https://riptutorial.com/ 56

https://riptutorial.com/meteor/topic/2526/electrify---compiling-meteor-as-a-locally-installable-app

Chapter 17: Environment Detection

Examples

Advanced Environment Configurations

For more complex applications, you'll want to build up a ``settings.json` object using multiple
environment variables.

if(Meteor.isServer){
 Meteor.startup(function()){
 // this needs to be run on the server
 var environment, settings;

 environment = process.env.METEOR_ENV || "development";

 settings = {
 development: {
 public: {
 package: {
 name: "jquery-datatables",
 description: "Sort, page, and filter millions of records. Reactively.",
 owner: "LumaPictures",
 repo: "meteor-jquery-datatables"
 }
 },
 private: {}
 },
 staging: {
 public: {},
 private: {}
 },
 production: {
 public: {},
 private: {}
 }
 };

 if (!process.env.METEOR_SETTINGS) {
 console.log("No METEOR_SETTINGS passed in, using locally defined settings.");
 if (environment === "production") {
 Meteor.settings = settings.production;
 } else if (environment === "staging") {
 Meteor.settings = settings.staging;
 } else {
 Meteor.settings = settings.development;
 }
 console.log("Using [" + environment + "] Meteor.settings");
 }
 });
}

Specifying app parameters with METEOR_SETTINGS

https://riptutorial.com/ 57

The METEOR_SETTINGS environment variable can accept JSON objects, and will expose that
object in the Meteor.settings object. First, add a settings.json to your app root with some
configuration info.

{
 "public":{
 "ga":{
 "account":"UA-XXXXXXX-1"
 }
 }
}

Then you'll need to launch your application using your settings file.

run your app in local development mode with a settings file
meteor --settings settings.json

or bundle and prepare it as if you're running in production
and specify a settings file
meteor bundle --directory /path/to/output
cd /path/to/output
MONGO_URL="mongodb://127.0.0.1:27017" PORT=3000 METEOR_SETTINGS=$(cat /path/to/settings.json)
node main.js

These settings can then be accessed from Meteor.settings and used in your app.

Meteor.startup(function(){
 if(Meteor.isClient){
 console.log('Google Analytics Account', Meteor.settings.public.ga.account);
 }
});

Environment Detection on the Server

Environment variables are also available to the server via the process.env object.

if (Meteor.isServer) {
 Meteor.startup(function () {
 // detect environment by getting the root url of the application
 console.log(JSON.stringify(process.env.ROOT_URL));

 // or by getting the port
 console.log(JSON.stringify(process.env.PORT));

 // alternatively, we can inspect the entire process environment
 console.log(JSON.stringify(process.env));
 });
}

Client Environment Detection using Meteor Methods

To detect the environment on the server, we have to create a helper method on the server, as the
server will determine which environment it is in, and then call the helper method from the client.

https://riptutorial.com/ 58

Basically, we just relay the environment info from the server to the client.

//--

// server/server.js
// we set up a getEnvironment method

Meteor.methods({
 getEnvironment: function(){
 if(process.env.ROOT_URL == "http://localhost:3000"){
 return "development";
 }else{
 return "staging";
 }
 }
 });

//--

// client/main.js
// and then call it from the client

Meteor.call("getEnvironment", function (result) {
 console.log("Your application is running in the " + result + "environment.");
});

Client Environment Detection using NODE_ENV

As of Meteor 1.3, Meteor now exposes the NODE_ENV variable on the client by default.

if (Meteor.isClient) {
 Meteor.startup(function () {
 if(process.env.NODE_ENV === "testing"){
 console.log("In testing...");
 }
 if(process.env.NODE_ENV === "production"){
 console.log("In production...");
 }
 });
}

Read Environment Detection online: https://riptutorial.com/meteor/topic/4198/environment-
detection

https://riptutorial.com/ 59

https://riptutorial.com/meteor/topic/4198/environment-detection
https://riptutorial.com/meteor/topic/4198/environment-detection

Chapter 18: Environment Variables

Parameters

Parameter Details

PORT
Port that the Meteor app will be
available on.

MONGO_URL
URL to connect to the Mongo
instance.

ROOT_URL ...

OPLOG_URL ...

MONGO_OPLOG_URL ...

METEOR_ENV ...

NODE_ENV ...

NODE_OPTIONS ...

DISABLE_WEBSOCKETS ...

MAIL_URL ...

DDP_DEFAULT_CONNECTION_URL ...

HTTP_PROXY ...

HTTPS_PROXY ...

METEOR_OFFLINE_CATALOG ...

METEOR_PROFILE ...

METEOR_DEBUG_BUILD ...

TINYTEST_FILTER ...

MOBILE_ROOT_URL ...

NODE_DEBUG ...

BIND_IP ...

PACKAGE_DIRS ...

https://riptutorial.com/ 60

Parameter Details

DEBUG ...

METEOR_PRINT_CONSTRAINT_SOLVER_INPUT ...

METEOR_CATALOG_COMPRESS_RPCS ...

METEOR_MINIFY_LEGACY ...

METEOR_DEBUG_SQL ...

METEOR_WAREHOUSE_DIR ...

AUTOUPDATE_VERSION ...

USE_GLOBAL_ADK ...

METEOR_AVD ...

DEFAULT_AVD_NAME ...

METEOR_BUILD_FARM_URL ...

METEOR_PACKAGE_SERVER_URL ...

METEOR_PACKAGE_STATS_SERVER_URL ...

DEPLOY_HOSTNAME ...

METEOR_SESSION_FILE ...

METEOR_PROGRESS_DEBUG ...

METEOR_PRETTY_OUTPUT ...

APP_ID ...

AUTOUPDATE_VERSION ...

CONSTRAINT_SOLVER_BENCHMARK ...

DDP_DEFAULT_CONNECTION_URL ...

SERVER_WEBSOCKET_COMPRESSION ...

USE_JSESSIONID ...

METEOR_PKG_SPIDERABLE_PHANTOMJS_ARGS ...

WRITE_RUNNER_JS ...

https://riptutorial.com/ 61

Parameter Details

TINYTEST_FILTER ...

METEOR_PARENT_PID ...

METEOR_TOOL_PATH ...

RUN_ONCE_OUTCOME ...

TREE_HASH_DEBUG ...

METEOR_DEBUG_SPRINGBOARD ...

METEOR_TEST_FAIL_RELEASE_DOWNLOAD ...

METEOR_CATALOG_COMPRESS_RPCS ...

METEOR_TEST_LATEST_RELEASE ...

METEOR_WATCH_POLLING_INTERVAL_MS ...

EMACS ...

METEOR_PACKAGE_STATS_TEST_OUTPUT ...

METEOR_TEST_TMP ...

Examples

Using Environment Variables with Meteor

Environment variables can be defined before the meteor call, like so:

PORT=4000 meteor
NODE_ENV="staging" meteor

Setting Meteor SMTP server

Gmail Example

MAIL_URL=smtp://username%40gmail.com:password@smtp.gmail.com:465/

Note: This setup only allows 2000 emails to be sent per day. Please see
https://support.google.com/a/answer/176600?hl=en for alternative configurations.

Read Environment Variables online: https://riptutorial.com/meteor/topic/3154/environment-
variables

https://riptutorial.com/ 62

https://support.google.com/a/answer/176600?hl=en
https://riptutorial.com/meteor/topic/3154/environment-variables
https://riptutorial.com/meteor/topic/3154/environment-variables

Chapter 19: ES2015 modules (Import &
Export)

Remarks

MDN documentation for imports:
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import MDN
documentation for exports:
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/export ExploringJS
chapter on modules: http://exploringjs.com/es6/ch_modules.html

Examples

Importing in app modules

Node modules

import url from 'url';
import moment from 'moment';

Meteor packages

import { Meteor } from 'meteor/meteor';
import { SimpleSchema } from 'meteor/aldeed:simple-schema';

Importing in Meteor packages

In package.js:

Npm.depends({
 moment: "2.8.3"
});

In a package file:

import moment from 'moment';

Exporting variables from app modules

// Default export
export default {};

// Named export
export const SomeVariable = {};

https://riptutorial.com/ 63

https://developer.mozilla.org/en/docs/web/javascript/reference/statements/import
https://developer.mozilla.org/en/docs/web/javascript/reference/statements/export
http://exploringjs.com/es6/ch_modules.html

Exporting symbols from Meteor packages

In your mainModule file:

export const SomeVar = {};

Read ES2015 modules (Import & Export) online: https://riptutorial.com/meteor/topic/3763/es2015-
modules--import---export-

https://riptutorial.com/ 64

http://docs.meteor.com/#/full/pack_mainModule
https://riptutorial.com/meteor/topic/3763/es2015-modules--import---export-
https://riptutorial.com/meteor/topic/3763/es2015-modules--import---export-

Chapter 20: ESLint

Examples

Adding eslint to your Meteor project

We'll use the popular eslint-config-airbnb as a starter as well as Meteor specific rules using
eslint-import-resolver-meteor.

We also need to install babel-parser to lint Meteor enabled ES7 features such as async/await.

cd my-project
npm install --save-dev eslint-config-airbnb eslint-plugin-import eslint-plugin-react eslint-
plugin-jsx-a11y eslint babel-eslint eslint-import-resolver-meteor
touch .eslintrc.json

Then simply use this boilerplate .eslintrc.json to get started, you can override the rules as you
wish.

{
 "parser": "babel-eslint",
 "settings": {
 "import/resolver": "meteor"
 },
 "extends": "airbnb",
 "rules": {}
}

Using an npm script to lint your code

Edit your package.json to add the following script :

{
 "scripts": {
 "lint": "eslint .;exit 0"
 }
}

Then run it using npm run lint

We use exit 0 as a trick to gracefully terminate the script when linting fails, otherwise npm will use
eslint return code and crash.

Read ESLint online: https://riptutorial.com/meteor/topic/3772/eslint

https://riptutorial.com/ 65

https://riptutorial.com/meteor/topic/3772/eslint

Chapter 21: File Uploading

Remarks

The CollectionFS package has been shelved and discontinued by it's author; however, since
there's no alternative package in Atmosphere or the Meteor ecosystem for using Mongo's GridFS
functionality, and the code still works perfectly fine; we recommend not removing the example
from StackOverflow Documentation until some other GridFS solution can be documented as it's
replacement.

Additional Research
Filepicker.io Uploads and Image Conversion
Dario's Save File Pattern
Micha Roon's File Upload Pattern
EventedMind File Upload Package

Examples

Server/Client

Uploading files can be easy or really complicated, depending on what you're wanting to do. In
general, transfering a file itself isn't all that difficult. But there are lots of edge cases around
attachments, binary files, and the like. And the real sticking point is horizontal scaling, and creating
a solution that works when the server is cloned a second, third, and nth time.

Let's start with a basic server/client upload model. We begin by adding a file input element to the
document object model.

<template name="example">
 <input type=file />
</template>

Then attach an event to the input element within your controller, and call a local Meteor method
``startFileTransfer'' to initiate the transfer.

// client/example.js
Template.example.events({
 'change input': function(ev) {
 _.each(ev.srcElement.files, function(file) {
 Meteor.startFileTransfer(file, file.name);
 });
 }
});

// client/save.js
/**
 * @blob (https://developer.mozilla.org/en-US/docs/DOM/Blob)
 * @name the file's name

https://riptutorial.com/ 66

https://meteor.hackpad.com/Meteor-Cookbook-Filepicker.io-Uploads-and-Image-Conversion-hIpSwJQV3HJ
https://gist.github.com/dariocravero/3922137
https://coderwall.com/p/7tpa8w/file-upload-with-meteor-method
https://www.eventedmind.com/items/meteor-build-a-file-upload-package

 * @type the file's type: binary, text (https://developer.mozilla.org/en-
US/docs/DOM/FileReader#Methods)
 *
 * TODO Support other encodings: https://developer.mozilla.org/en-
US/docs/DOM/FileReader#Methods
 * ArrayBuffer / DataURL (base64)
 */
Meteor.startFileTransfer = function(blob, name, path, type, callback) {
 var fileReader = new FileReader(),
 method, encoding = 'binary', type = type || 'binary';
 switch (type) {
 case 'text':
 // TODO Is this needed? If we're uploading content from file, yes, but if it's from an
input/textarea I think not...
 method = 'readAsText';
 encoding = 'utf8';
 break;
 case 'binary':
 method = 'readAsBinaryString';
 encoding = 'binary';
 break;
 default:
 method = 'readAsBinaryString';
 encoding = 'binary';
 break;
 }
 fileReader.onload = function(file) {
 Meteor.call('saveFileToDisk', file.srcElement.result, name, path, encoding, callback);
 }
 fileReader[method](blob);
}

The client will then call the saveFileToDisk server method, which does the actual transfer and puts
everything to disk.

//
/**
 * TODO support other encodings:
 * http://stackoverflow.com/questions/7329128/how-to-write-binary-data-to-a-file-using-node-js
 */
Meteor.methods({
 saveFileToDisk: function(blob, name, path, encoding) {
 var path = cleanPath(path), fs = __meteor_bootstrap__.require('fs'),
 name = cleanName(name || 'file'), encoding = encoding || 'binary',
 chroot = Meteor.chroot || 'public';
 // Clean up the path. Remove any initial and final '/' -we prefix them-,
 // any sort of attempt to go to the parent directory '..' and any empty directories in
 // between '/////' - which may happen after removing '..'
 path = chroot + (path ? '/' + path + '/' : '/');

 // TODO Add file existance checks, etc...
 fs.writeFile(path + name, blob, encoding, function(err) {
 if (err) {
 throw (new Meteor.Error(500, 'Failed to save file.', err));
 } else {
 console.log('The file ' + name + ' (' + encoding + ') was saved to ' + path);
 }
 });

 function cleanPath(str) {

https://riptutorial.com/ 67

 if (str) {
 return str.replace(/\.\./g,'').replace(/\/+/g,'').
 replace(/^\/+/,'').replace(/\/+$/,'');
 }
 }
 function cleanName(str) {
 return str.replace(/\.\./g,'').replace(/\//g,'');
 }
 }
});

That's sort of the bare-bones approach, and it leaves a lot to be desired. It's maybe good for
uploading a CSV file or something, but that's about it.

Dropzone (with iron:router)

If we want something a bit more polished, with an integrated Dropzone UI and a REST endpoint,
we're going to need to start adding custom REST routes and packages with UI helpers.

Lets begin by importing Iron Router and Dropzone.

 meteor add iron:router
 meteor add awatson1978:dropzone

And configure the uploads url route that's specified in the dropzone helper.

Router.map(function () {
 this.route('uploads', {
 where: 'server',
 action: function () {
 var fs = Npm.require('fs');
 var path = Npm.require('path');
 var self = this;

 ROOT_APP_PATH = fs.realpathSync('.');

 // dropzone.js stores the uploaded file in the /tmp directory, which we access
 fs.readFile(self.request.files.file.path, function (err, data) {

 // and then write the file to the uploads directory
 fs.writeFile(ROOT_APP_PATH + "/assets/app/uploads/" +self.request.files.file.name,
data, 'binary', function (error, result) {
 if(error){
 console.error(error);
 }
 if(result){
 console.log('Success! ', result);
 }
 });
 });
 }
 });
 });

Cool! We have a file uploader with snazzy UI and a programmable REST endpoint. Unfortunately,

https://riptutorial.com/ 68

this doesn't scale particularly well.

Filepicker.io

To scale things, we have to stop using local storage on our server, and start using either a
dedicated file storage service or implement a horizontal storage layer. The easiest way to get
started with scalable file storage is to use a solution like Filepicker.io, which supports S3, Azure,
Rackspace, and Dropbox. loadpicker has been a popular Filerpicker unipackage for awhile.

meteor add mrt:filepicker

The Filepicker pattern is rather different than the other solutions, because it's really about 3rd
party integration. Begin by adding a filepicker input, which you'll see relies heavily on data-*
attributes, which is a fairly uncommon pattern in Meteor apps.

<input type="filepicker"
 id="filepickerAttachment"
 data-fp-button-class="btn filepickerAttachment"
 data-fp-button-text="Add image"
 data-fp-mimetypes="image/*"
 data-fp-container="modal"
 data-fp-maxsize="5000000"
 data-fp-services="COMPUTER,IMAGE_SEARCH,URL,DROPBOX,GITHUB,GOOGLE_DRIVE,GMAIL">

You'll walso want to set an API key, construct the filepicker widget, trigger it, and observe it's
outputs.

if(Meteor.isClient){
 Meteor.startup(function() {
 filepicker.setKey("YourFilepickerApiKey");
 });
 Template.yourTemplate.rendered = function(){
 filepicker.constructWidget($("#filepickerAttachment"));
 }
 Template.yourTemplate.events({
 'change #filepickerAttachment': function (evt) {
 console.log("Event: ", evt, evt.fpfile, "Generated image url:", evt.fpfile.url);
 });
});

CollectionFS

However, if you're really serious about storage, and you want to store millions of images, you're
going to need to leverage Mongo's GridFS infrastructure, and create yourself a storage layer. For
that, you're going to need the excellent CollectionFS subsystem.

Start by adding the necessary packages.

meteor add cfs:standard-packages
meteor add cfs:filesystem

https://riptutorial.com/ 69

And adding a file upload element to your object model.

<template name="yourTemplate">
 <input class="your-upload-class" type="file">
</template>

Then add an event controller on the client.

Template.yourTemplate.events({
 'change .your-upload-class': function(event, template) {
 FS.Utility.eachFile(event, function(file) {
 var yourFile = new FS.File(file);
 yourFile.creatorId = Meteor.userId(); // add custom data
 YourFileCollection.insert(yourFile, function (err, fileObj) {
 if (!err) {
 // do callback stuff
 }
 });
 });
 }
});

And define your collections on your server:

YourFileCollection = new FS.Collection("yourFileCollection", {
 stores: [new FS.Store.FileSystem("yourFileCollection", {path: "~/meteor_uploads"})]
});
YourFileCollection.allow({
 insert: function (userId, doc) {
 return !!userId;
 },
 update: function (userId, doc) {
 return doc.creatorId == userId
 },
 download: function (userId, doc) {
 return doc.creatorId == userId
 }
});

Thanks to Raz for this excellent example. You'll want to check out the complete CollectionFS
Documentation for more details on what all CollectionFS can do.

Server Uploads

The following scripts are for uploading a file from the server filesystem into the server. Mostly for
config files and filewatchers.

//https://forums.meteor.com/t/read-file-from-the-public-folder/4910/5

// Asynchronous Method.
Meteor.startup(function () {
 console.log('starting up');

 var fs = Npm.require('fs');
 // file originally saved as public/data/taxa.csv

https://riptutorial.com/ 70

 fs.readFile(process.cwd() + '/../web.browser/app/data/taxa.csv', 'utf8', function (err,
data) {
 if (err) {
 console.log('Error: ' + err);
 return;
 }

 data = JSON.parse(data);
 console.log(data);
 });
});

// Synchronous Method.
Meteor.startup(function () {
 var fs = Npm.require('fs');
 // file originally saved as public/data/taxa.csv
 var data = fs.readFileSync(process.cwd() + '/../web.browser/app/data/taxa.csv', 'utf8');

 if (Icd10.find().count() === 0) {
 Icd10.insert({
 date: new Date(),
 data: JSON.parse(data)
 });
 }
});

Meteor.methods({
 parseCsvFile:function (){
 console.log('parseCsvFile');

 var fs = Npm.require('fs');
 // file originally saved as public/data/taxa.csv
 var data = fs.readFileSync(process.cwd() + '/../web.browser/app/data/taxa.csv', 'utf8');
 console.log('data', data);
 }
});

Read File Uploading online: https://riptutorial.com/meteor/topic/3119/file-uploading

https://riptutorial.com/ 71

https://riptutorial.com/meteor/topic/3119/file-uploading

Chapter 22: Full Installation - Mac OSX

Examples

Install Node & NPM

This quickstart is written for Mac OSX Mavericks, and is a bit more verbose than other installation
instructions. It should hopefully cover a few edge cases, such as setting your path, and configuring
NPM, which can cause an installation to go awry.

 # install node
 # as of OSX Mavericks, we need the GUI installer (?!)
 # when a good command line alternative is found, we'll post it
 http://nodejs.org/download/

 # install npm
 curl -0 -L https://npmjs.org/install.sh | sh

 # check node is installed correctly
 node --version

 # check npm is installed correctly
 npm -version

 # find your npm path
 which npm

 # make sure npm is in your path
 sudo nano ~/.profile
 export PATH=$PATH:/usr/local/bin

Meteor Installation Walkthrough

This quickstart is written for Mac OSX Mavericks, and is a bit more verbose than other installation
instructions. It should hopefully cover a few edge cases, such as setting your path, and configuring
NPM, which can cause an installation to go awry.

install meteor
 curl https://install.meteor.com | sh

 # check it's installed correctly
 meteor --version

 # install node
 # as of OSX Mavericks, we need the GUI installer (?!)
 # when a good command line alternative is found, we'll post it
 http://nodejs.org/download/

 # install npm
 curl -0 -L https://npmjs.org/install.sh | sh

 # check node is installed correctly
 node --version

https://riptutorial.com/ 72

 # check npm is installed correctly
 npm -version

 # find your npm path
 which npm

 # make sure npm is in your path
 sudo nano ~/.profile
 export PATH=$PATH:/usr/local/bin

Mongo Installation

Meteor doesn't exist in isolation, and it's common to install a number of extra tools for
development, such as Mongo, Robomongo, Atom, Linters, etc.

make sure mongo is in your local path
nano ~/.profile
 export PATH=$PATH:/usr/local/mongodb/bin

or install it to the global path
nano /etc/paths
 /usr/local/mongodb/bin

create mongo database directory
mkdir /data/
mkdir /data/db
chown -R username:admin /data

run mongodb server
mongod
ctrl-c

check that you can connect to your meteor app with stand-alone mongo
terminal-a$ meteor create helloworld
terminal-a$ cd helloworld
terminal-a$ meteor

terminal-b$ mongo -port 3001

install robomongo database admin tool
http://robomongo.org/

check you can connect to your mongo instance with robomongo
terminal-a$ meteor create helloworld
terminal-a$ cd helloworld
terminal-a$ meteor

Dock$ Robomongo > Create > localhost:3001

Other Development Tools

install node-inspector
terminal-a$ npm install -g node-inspector

start meteor
terminal-a$ cd helloworld

https://riptutorial.com/ 73

terminal-a$ NODE_OPTIONS='--debug-brk --debug' mrt run

alternatively, some people report this syntax being better
terminal-a$ sudo NODE_OPTIONS='--debug' ROOT_URL=http://helloworld.com meteor --port 80

launch node-inspector along side your running app
terminal-b$ node-inspector

go to the URL given by node-inspector and check it's running
http://localhost:8080/debug?port=5858

install jshint
npm install -g jshint

Read Full Installation - Mac OSX online: https://riptutorial.com/meteor/topic/3294/full-installation---
mac-osx

https://riptutorial.com/ 74

https://riptutorial.com/meteor/topic/3294/full-installation---mac-osx
https://riptutorial.com/meteor/topic/3294/full-installation---mac-osx

Chapter 23: Horizontal Scaling

Examples

Deploying an Application with Separated Database (MONGO_URL)

You'll need to separate out your application layer from your database layer, and that means
specifying the MONGO_URL. Which means running your app through the bundle command,
uncompressing it, setting environment variables, and then launching the project as a node app.
Here's how...

#make sure you're running the node v0.10.21 or later
npm cache clean -f
npm install -g n
sudo n 0.10.21

bundle the app
mkdir myapp
cd myapp
git clone http://github.com/myaccount/myapp
meteor bundle --directory ../deployPath
cd ../deployPath

make sure fibers is installed, as per the README
export MONGO_URL='mongodb://127.0.0.1:27017/mydatabase'
export PORT='3000'
export ROOT_URL='http://myapp.com'

run the site
node main.js

Replica Set Configuration

Then go into the mongo shell and initiate the replica set, like so:

mongo

> rs.initiate()
PRIMARY> rs.add("mongo-a")
PRIMARY> rs.add("mongo-b")
PRIMARY> rs.add("mongo-c")
PRIMARY> rs.setReadPref('secondaryPreferred')

Configuring a Replica Set to Use Oplogging

The replica set will need an oplog user to access the database.

mongo

PRIMARY> use admin
PRIMARY>

https://riptutorial.com/ 75

db.addUser({user:"oplogger",pwd:"YOUR_PASSWORD",roles:[],otherDBRoles:{local:["read"]}});
PRIMARY> show users

Oplog Upstart Script

Your upstart script will need to be modified to use multiple IP addresses of the replica set.

start on started mountall
stop on shutdown

respawn
respawn limit 99 5

script
 # our example assumes you're using a replica set and/or oplog integreation
 export MONGO_URL='mongodb://mongo-a:27017,mongo-b:27017,mongo-c:27017/meteor'

 # here we configure our OPLOG URL
 export MONGO_OPLOG_URL='mongodb://oplogger:YOUR_PASSWORD@mongo-a:27017,mongo-
b:27017,mongo-c:27017/local?authSource=admin'

 # root_url and port are the other two important environment variables to set
 export ROOT_URL='http://myapp.mydomain.com'
 export PORT='80'

 exec /usr/local/bin/node /var/www/production/main.js >> /var/log/node.log 2>&1
end script

Sharding

Oplog Tailing on Sharded Mongo

Read Horizontal Scaling online: https://riptutorial.com/meteor/topic/3706/horizontal-scaling

https://riptutorial.com/ 76

https://groups.google.com/forum/#!topic/meteor-core/G_Hgca1xi_8
https://riptutorial.com/meteor/topic/3706/horizontal-scaling

Chapter 24: Integration of 3rd Party APIs

Examples

Basic HTTP Call

Conceptually, integrate 3rd party REST APIs can be as simple as adding the http package and
making a call to the external endpoint.

meteor add http

HTTP.get('http://foo.net/api/bar/');

Create A Package For Your API Wrapper

Basic HTTP calls don't provide code-reusability, however. And they can get confused with all the
other features you're trying to implement. For those reasons, it's common to implement an API
wrapper.

Foo = {
 identify: function(input){
 return Http.get('http://foo.net/api/identify/' + input);
 },
 record_action_on_item: function(firstInput, secondInput){
 return Http.put('http://foo.net/api/record_action_on_item/' + firstInput + '&' +
secondInput);
 }
}

Meteor supports Http.get(), Http.post(), Http.put(), etc, so that's undoubtably the best way to call
your REST API. http://docs.meteor.com/#http_get

If the API is chatty and verbose, you may receive multiple packets; in which case you'll need to
reassemble them. This is a big hassle. If you think the API is returning multiple packets, you're
probably going to want to use the 'request' npm module on the server. You'll want to use a
Npm.require('request'). https://github.com/mikeal/request

Create an Atmosphere Package For Your API Wrapper

After creating an API wrapper, it's likely that you may want to create an Atmosphere package to
redistribute it and share it between applications. The files of your package will probably look
something like this.

packages/foo-api-wrapper/package.js
packages/foo-api-wrapper/readme.md
packages/foo-api-wrapper/foo.api.wrapper.js

https://riptutorial.com/ 77

http://docs.meteor.com/#http_get
https://github.com/mikeal/request

In particular, your foo-api-wrapper/package.js file will want to look something like this:

Package.describe({
 summary: "Atmosphere package that impliments the Foo API.",
 name: "myaccount:foo",
 version: '0.0.1'
});

Package.on_use(function (api) {
 api.export('Foo');
 api.addFiles('foo.api.wrapper.js', ["client","server"]);
});

And your foo-api-wrapper/foo.api.wrapper.js should contain the Foo API wrapper object.

Include the API Package in your Application

At this point, you're still building your package, so you'll need to add the package to your
application:

meteor add myaccount:foo

And eventually publish it to Atmosphere:

meteor publish myaccount:foo

Using the API Wrapper Object in your App

Now that we have all those pieces put together, you should now be able to make calls like the
following from within your app:

Foo.identify('John');
Foo.record_action_on_item('view', "HackerNews');

Obviously you'll want to adjust function names, arguments, urls, and the like, to create the proper
syntax for the API.

Read Integration of 3rd Party APIs online: https://riptutorial.com/meteor/topic/3118/integration-of-
3rd-party-apis

https://riptutorial.com/ 78

https://riptutorial.com/meteor/topic/3118/integration-of-3rd-party-apis
https://riptutorial.com/meteor/topic/3118/integration-of-3rd-party-apis

Chapter 25: Logging

Examples

Basic Server Side Logging

The first step to logging is simply to run Meteor from the shell, and you'll get the server logs in the
command console.

meteor

The next step is to pipe the contents of std_out and std_err to a logfile, like so:

meteor > my_app_log.log 2> my_app_err.log

Client Side Logging Tools

Once you have your server side logging in place, it's time to hop over to the client side. If you
haven't explored the console API, be prepared for a treat. There's actually all sorts of things that
you can do with the built in Console API that's native to every Chrome and Safari installation. So
much so, in fact, that you may find yourself not needing Winston or other logging frameworks.

The first thing you'll want to do is install client side logging and developer tools. Chrome and Safari
both ship with them, but Firefox requires the Firebug extension.

Firebug Extension

Then, you'll want to check out the Console API documentation. The following two documents are
invaluable resources for learning console logging.

Chrome Developer Tools

Firebug (Client)

Advanced Server Logging Tools

Once you have both your server-side logging running, and your client side development tools, you
can start looking at Meteor specific extensions like the Meteor Chrome DevTools Extension. This
lets you actually observe server logging in the client! Because the database is everywhere. As is
logging.

Chrome DevTools Extension (Server)

Logging error on database flap

The following example is from 0.5 - 0.7 days, and illustrates how to log an error when the

https://riptutorial.com/ 79

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developers.google.com/chrome-developer-tools/docs/console
http://getfirebug.com/logging
https://github.com/gandev-de/meteor-server-console

database hasn't populated the client side cursor yet.

Template.landingPage.postsList = function(){
 try{
 return Posts.find();
 }catch(error){
 //color code the error (red)
 console.error(error);
 }
}

Logging info on the data context in a template helper

The following uses the Chrome Logging API. If the .group() syntax is used in multiple templates, it
will graphically organize the console logs from different templates into a hierarchical tree.

You can also see how to inspect the current data context, and how to stringify data.

Template.landingPage.getId = function(){
 // using a group block to illustrate function scoping
 console.group('coolFunction');

 // inspect the current data object that landingPage is using
 console.log(this);

 // inspect a specific field of the locally scoped data object
 console.log(JSON.stringify(this._id);

 // close the function scope
 console.groupEnd();
 return this._id;
}

Logging events and user interactions

Simple example of using the Chrome Logging API.

Template.landingPage.events({
 'click .selectItemButton':function(){
 // color code and count the user interaction (blue)
 console.count('click .selectItemButton');
 }
});

Logging with log level variables

Logging can often clutter up the console, so it's common to define log levels to control what detail
of data is getting logged. A common pattern is to specify a log level variables.

var DEBUG = false;
var TRACE = false;
Template.landingPage.events({
 'click .selectItemButton':function(){

https://riptutorial.com/ 80

 TRACE && console.count('click .selectItemButton');

 Meteor.call('niftyAction', function(errorMessage, result){
 if(errorMessage){
 DEBUG && console.error(errorMessage);
 }
 });
 }
});

Disable Logging in Production

Some teams find that they want to leave console log statements in their code, but not have them
display in production. They will override the logging functions if a variable isn't set (possibly an
environment variable). Additionally, this may qualify as a security feature in some situations.

if (!DEBUG_MODE_ON) {
 console = console || {};
 console.log = function(){};

 console.log = function(){};
 console.error = function(){};
 console.count = function(){};
 console.info = function(){};
}

Winston

If you need something more powerful than the default logging options, you might want to look at a
tool like Winston. Go to Atmosphere, and simply search for one of the many Winston packages
available.

https://atmospherejs.com/?q=winston

Be warned, however - Winston is a sophisticated product, and while it exposes a lot of
functionality, it will also add a layer of complexity to your application.

Loglevel

A special mention should be made for the community developed LogLevel package. It appears to
strike a balance between being lightweight and simple to use, while working well with Meteor's
bundle pipeline and preserving line numbers and filenames.

https://atmospherejs.com/practicalmeteor/loglevel

Read Logging online: https://riptutorial.com/meteor/topic/3376/logging

https://riptutorial.com/ 81

https://atmospherejs.com/?q=winston
https://atmospherejs.com/practicalmeteor/loglevel
https://riptutorial.com/meteor/topic/3376/logging

Chapter 26: Meteor + React

Remarks

React is a JavaScript library for building user interfaces. It's open source, developed and
maintained by Facebook. Meteor has production-ready support for React.

Resources:

React tutorial•
Meteor + React tutorial•

Examples

Setup and "Hello World"

Add React to your project:

meteor npm install --save react react-dom react-mounter

Create the client/helloworld.jsx file to display a simple React component:

import React, { Component } from 'react';
import { mount } from 'react-mounter';

// This component only renders a paragraph containing "Hello World!"
class HelloWorld extends Component {
 render() {
 return <p>Hello World!</p>;
 }
}

// When the client application starts, display the component by mounting it to the DOM.
Meteor.startup(() => {
 mount(HelloWorld);
});

Create reactive container using createContainer

Let's say there's a collection called Todos and the autopublish package is added. Here is the basic
component.

import { createContainer } from 'meteor/react-meteor-data';
import React, { Component, PropTypes } from 'react';
import Todos from '/imports/collections/Todos';

export class List extends Component {
 render() {
 const { data } = this.props;

https://riptutorial.com/ 82

https://facebook.github.io/react/
https://github.com/facebook/react
https://facebook.github.io/react/docs/tutorial.html
https://www.meteor.com/tutorials/react/creating-an-app

 return (
 <ul className="list">
 {data.map(entry => <li {...entry} />)}

)
 }
}

List.propTypes = {
 data: PropTypes.array.isRequired
};

At the bottom, you can add a container to feed the reactive data into the component. It would look
like this.

export default createContainer(() => {
 return {
 data: Todos.find().fetch()
 };
}, List);

Displaying a MongoDB collection

This example shows how a MongoDB collection can be displayed in a React component. The
collection is continuously synchronized between server and client, and the page instantly updates
as database contents change.

To connect React components and Meteor collections, you'll need the react-meteor-data package.

$ meteor add react-meteor-data
$ meteor npm install react-addons-pure-render-mixin

A simple collection is declared in both/collections.js. Every source file in both directory is both
client-side and server-side code:

import { Mongo } from 'meteor/mongo';

// This collection will contain a list of random numbers
export const Numbers = new Mongo.Collection("numbers");

The collection needs to be published on the server. Create a simple publication in
server/publications.js:

import { Meteor } from 'meteor/meteor';
import { Numbers } from '/both/collections.js';

// This publication synchronizes the entire 'numbers' collection with every subscriber
Meteor.publish("numbers/all", function() {
 return Numbers.find();
});

Using the createComponent function we can pass reactive values (like the Numbers collection) to a

https://riptutorial.com/ 83

React component. client/shownumbers.jsx:

import React from 'react';
import { createContainer } from 'meteor/react-meteor-data';
import { Numbers } from '/both/collections.js';

// This stateless React component renders its 'numbers' props as a list
function _ShowNumbers({numbers}) {
 return <div>List of numbers:

 // note, that every react element created in this mapping requires
 // a unique key - we're using the _id auto-generated by mongodb here
 {numbers.map(x => <li key={x._id}>{x.number})}

 </div>;
}

// Creates the 'ShowNumbers' React component. Subscribes to 'numbers/all' publication,
// and passes the contents of 'Numbers' as a React property.
export const ShowNumbers = createContainer(() => {
 Meteor.subscribe('numbers/all');
 return {
 numbers: Numbers.find().fetch(),
 };
}, _ShowNumbers);

Initially the database is probably empty.

Add entries to MongoDB and watch as the page updates automatically.

$ meteor mongo
MongoDB shell version: 3.2.6
connecting to: 127.0.0.1:3001/meteor

meteor:PRIMARY> db.numbers.insert({number: 5});

https://riptutorial.com/ 84

https://i.stack.imgur.com/IbQa5.png

WriteResult({ "nInserted" : 1 })

meteor:PRIMARY> db.numbers.insert({number: 42});
WriteResult({ "nInserted" : 1 })

Read Meteor + React online: https://riptutorial.com/meteor/topic/3121/meteor-plus-react

https://riptutorial.com/ 85

https://i.stack.imgur.com/jmAvQ.png
https://riptutorial.com/meteor/topic/3121/meteor-plus-react

Chapter 27: Meteor + React + ReactRouter

Introduction

This document will show how to use ReactRouter with Meteor and React. From zero to a working
app, including roles and authentication.

I'll show each step with an example

1- Create the project

2- Add React + ReactRouter

3- Add Accounts

4- Add Roles packages

Examples

Create the project

1- First all, install https://www.meteor.com/install

2- Create a project. (--bare is to create an empty project)

meteor create --bare MyAwesomeProject

3- Create the minimal file structure (-p to create intermediate directories):

cd MyAwesomeProject

mkdir -p client server imports/api imports/ui/{components,layouts,pages}
imports/startup/{client,server}

4- Now, create an HTML file in client/main.html

<head>
 <meta charset="utf-8">
 <title>My Awesome Meteor_React_ReactRouter_Roles App</title>
</head>

<body>
 Welcome to my Meteor_React_ReactRouter_Roles app
</body>

5- Make sure it's working: (3000 is the default port, so you can actually skip the '-p 3000')

meteor run -p 3000

and opening your browser on 'localhost:3000'

https://riptutorial.com/ 86

https://www.meteor.com/install

Note:

I'm skipping some other files that you will need to create, to make things shorter. Specifically,
you will need to create some index.js files in client , imports/startup/{client,server} and server
directories.

•

You can view a full example in https://github.com/rafa-lft/Meteor_React_Base. Look for tag
Step1_CreateProject

•

Add React + ReactRouter

If necessary, change to your project directory cd MyAwesomeProject

1- Add react and react-router

meteor npm install --save react-router@3.0.0 react@15.5.4 react-dom@15.5.4

2- Edit client/main.html, and replace the content will be:

 <body>
 <div id="react-root"></div>
 </body>

Whatever the reactRouter decides to show, it will show it in the '#react-root' element

3- Create the Layouts file in imports/ui/layouts/App.jsx

import React, { Component } from 'react';
import PropTypes from 'prop-types';

class App extends Component {
 constructor(props) {
 super(props);
 }

 render() {
 return (
 <div>
 {this.props.children}
 </div>
);
 }
}

App.propTypes = {
 children: PropTypes.node
};

export default App;

4- Create the Routes file in imports/startup/client/Routes.jsx

https://riptutorial.com/ 87

https://github.com/rafa-lft/Meteor_React_Base

import ReactDOM from 'react-dom';
import React, { Component } from 'react';
import { Router, Route, IndexRoute, browserHistory } from 'react-router';

import App from '../../ui/layouts/App.jsx';

import NotFound from '../../ui/pages/NotFound.jsx';
import Index from '../../ui/pages/Index.jsx';

class Routes extends Component {
 constructor(props) {
 super(props);
 }

 render() {
 return (
 <Router history={ browserHistory }>
 <Route path="/" component={ App }>
 <IndexRoute name="index" component={ Index }/>
 <Route path="*" component={ NotFound }/>
 </Route>
 </Router>
);
 }
}

Routes.propTypes = {};

Meteor.startup(() =>{
 ReactDOM.render(
 <Routes/>,
 document.getElementById('react-root')
);
});

Note:

I'm skipping some other files that you will need to create, to make things shorter. Specifically,
check for imports/ui/pages{Index.jsx,NotFound.jsx}.

•

You can view a full example in https://github.com/rafa-lft/Meteor_React_Base. Look for tag
Step2_ReactRouter

•

Step 3- Add Accounts

If necessary, change to your project directory cd MyAwesomeProject

1- Add accounts packages: meteor add accounts-base accounts-password react-meteor-data

2- Add the routes to login and signup pages in imports/startup/Routes.jsx The render() method will
be as follows:

https://riptutorial.com/ 88

https://github.com/rafa-lft/Meteor_React_Base

 render() {
 return (
 <Router history={ browserHistory }>
 <Route path="/" component={ App }>
 <IndexRoute name="index" component={ Index }/>
 <Route name="login" path="/login" component={ Login }/>
 <Route name="signup" path="/signup" component={ Signup }/>
 <Route name="users" path="/users" component={ Users }/>
 <Route name="editUser" path="/users/:userId" component={ EditUser }/>
 <Route path="*" component={ NotFound }/>
 </Route>
 </Router>
);
 }

Note:

I'm skipping some other files that you will need, to make things shorter. Specifically, check
imports/startup/server/index.js imports/ui/layouts/{App,NavBar}.jsx and
import/ui/pages/{Login,Signup,Users,EditUser}.jsx

•

You can view a full example in https://github.com/rafa-lft/Meteor_React_Base. Look for tag
Step3_Accounts

•

Add roles

1- Add roles package (https://github.com/alanning/meteor-roles)

meteor add alanning:roles

2- Create some roles constants. In file imports/api/accounts/roles.js

const ROLES = {
 ROLE1: 'ROLE1',
 ROLE2: 'ROLE2',
 ADMIN: 'ADMIN'
};

export default ROLES;

3- I'll not show how to add/update roles on a user, just will mention that on server side, you can set
user roles by Roles.setUserRoles(user.id, roles); Check for more info in
https://github.com/alanning/meteor-roles and http://alanning.github.io/meteor-
roles/classes/Roles.html

4- Assuming you already setup all the accounts and roles files (see full example in
https://github.com/rafa-lft/Meteor_React_Base. Look for tag Step4_roles) we can now create a
method that will be in charge of allowing (or not) access to the different routes. In
imports/startup/client/Routes.jsx

https://riptutorial.com/ 89

https://github.com/rafa-lft/Meteor_React_Base
https://github.com/alanning/meteor-roles)
https://github.com/alanning/meteor-roles
http://alanning.github.io/meteor-roles/classes/Roles.html
http://alanning.github.io/meteor-roles/classes/Roles.html
https://github.com/rafa-lft/Meteor_React_Base

class Routes extends Component {
 constructor(props) {
 super(props);
 }

 authenticate(roles, nextState, replace) {
 if (!Meteor.loggingIn() && !Meteor.userId()) {
 replace({
 pathname: '/login',
 state: {nextPathname: nextState.location.pathname}
 });
 return;
 }
 if ('*' === roles) { // allow any logged user
 return;
 }
 let rolesArr = roles;
 if (!_.isArray(roles)) {
 rolesArr = [roles];
 }
 // rolesArr = _.union(rolesArr, [ROLES.ADMIN]);// so ADMIN has access to everything
 if (!Roles.userIsInRole(Meteor.userId(), rolesArr)) {
 replace({
 pathname: '/forbidden',
 state: {nextPathname: nextState.location.pathname}
 });
 }
 }

 render() {
 return (
 <Router history={ browserHistory }>
 <Route path="/" component={ App }>
 <IndexRoute name="index" component={ Index }/>
 <Route name="login" path="/login" component={ Login }/>
 <Route name="signup" path="/signup" component={ Signup }/>

 <Route name="users" path="/users" component={ Users }/>

 <Route name="editUser" path="/users/:userId" component={ EditUser }
 onEnter={_.partial(this.authenticate, ROLES.ADMIN)} />

 {/* ********************
 Below links are there to show Roles authentication usage.
 Note that you can NOT hide them by
 { Meteor.user() && Roles.userIsInRole(Meteor.user(), ROLES.ROLE1) &&
 <Route name=.....
 }
 as doing so will change the Router component on render(), and ReactRouter will
complain with:
 Warning: [react-router] You cannot change <Router routes>; it will be ignored

 Instead, you can/should hide them on the NavBar.jsx component... don't worry: if
someone tries to access
 them, they will receive the Forbidden.jsx component
 *************/ }
 <Route name="forAnyOne" path="/for_any_one" component={ ForAnyone }/>

 <Route name="forLoggedOnes" path="/for_logged_ones" component={ ForLoggedOnes }
 onEnter={_.partial(this.authenticate, '*')} />

https://riptutorial.com/ 90

 <Route name="forAnyRole" path="/for_any_role" component={ ForAnyRole }
 onEnter={_.partial(this.authenticate, _.keys(ROLES))}/>

 <Route name="forRole1or2" path="/for_role_1_or_2" component={ ForRole1or2 }
 onEnter={_.partial(this.authenticate, [ROLES.ROLE1, ROLES.ROLE2])} />

 <Route name="forRole1" path="/for_role1" component={ ForRole1 }
 onEnter={_.partial(this.authenticate, ROLES.ROLE1)}/>

 <Route name="forRole2" path="/for_role2" component={ ForRole2 }
 onEnter={_.partial(this.authenticate, ROLES.ROLE2)} />

 <Route name="forbidden" path="/forbidden" component={ Forbidden }/>

 <Route path="*" component={ NotFound }/>
 </Route>
 </Router>
);
 }
}

We added an onEnter trigger to some routes. For those routes, we are also passing which Roles
are allowed to enter. Note that the onEnter callback, receives 2 params originally. We are using
underscore's partial (http://underscorejs.org/#partial), to add another one (roles) The authenticate
method (called by onEnter) receives the roles and:

Check if the user is logged in at all. If not, redirects to '/login'.•
If roles === '*' we assume any logged in user can enter, so we allow it•
Else, we verify if the user is allowed (Roles.userIsInRole) and if not, we redirect to forbidden.•
Optionally, you can uncomment a line, so ADMIN has access to everything.•

The code has several examples of different routes that are allowed for anyone (no onEnter
callback), for any logged user, for any logged user with at least 1 role, and for specific roles.

Also note, that ReactRouter (at least on version 3), doesn't allow to modificate the routes on
Render. So you can not hide the routes within the Routes.jsx. For that reason, we redirects to
/forbidden in the authenticate method.

5- A common bug with ReactRouter and Meteor, relates to user status updates not being shown.
For example the user logged out, but we are still showing his/her name on the nav-bar. That
happens because Meteor.user() has changed, but we are not re-rendering.

That bug can be solved by calling Meteor.user() in the createContainer. Here is an example of it,
used in imports/ui/layouts/NavBar.jsx:

export default createContainer((/* {params}*/) =>{
 Meteor.user(); // so we render again in logout or if any change on our User (ie: new roles)
 const loading = !subscription.ready();
 return {subscriptions: [subscription], loading};
}, NavBar);

https://riptutorial.com/ 91

http://underscorejs.org/#partial)

Note:

I'm skipping some other files that you will need, to make things shorter. Specifically, check
imports/startup/server/index.js imports/ui/layouts/{App,NavBar}.jsx and
import/ui/pages/{Login,Signup,Users,EditUser}.jsx

•

You can view a full example in https://github.com/rafa-lft/Meteor_React_Base. Look for tag
Step4_roles

•

Read Meteor + React + ReactRouter online: https://riptutorial.com/meteor/topic/10114/meteor-
plus-react-plus-reactrouter

https://riptutorial.com/ 92

https://github.com/rafa-lft/Meteor_React_Base
https://riptutorial.com/meteor/topic/10114/meteor-plus-react-plus-reactrouter
https://riptutorial.com/meteor/topic/10114/meteor-plus-react-plus-reactrouter

Chapter 28: Meteor User Accounts

Examples

Meteor accounts package

You have a few options when it comes to logging in with Meteor. The most common method is
using accounts for Meteor.

Accounts-password

If you want users to be able to create and register on your site, you can use accounts-password.

Install the package using meteor add accounts-password.

To create a user, you need to use Accounts.createUser(options, [callback])

options has to be an object with the following properties:

username: The user's username as a string..•
email: The user's email as a string.•
password: The user's (not encrypted) password as a string.•
profile: The user's optional extra data as an object. This can be for example the user's first
and last name. profile is optional, however.

•

The callback returns 1 variable if there is an error, which is a Meteor.Error object.

You are only required to use either the username or the email, so you can create a user with
username but no email, and vice versa. You can also use both.

It returns the newly created user ID if everything went correctly.

So, you can for example use this:

// server side
var id = Accounts.createUser({
 username: "JohnDoe",
 email: "JohnDoe@gmail.com",
 password: "TheRealJohn123",
 profile: {
 firstName: "John",
 lastName: "Doe"
 }
}, function(err) {
 console.log(err.reason);
});

It will automatically log you in as well if the user was succesfully created.

https://riptutorial.com/ 93

That is the creating part. To log in you need to use Meteor.loginWithPassword(identifier, password,
[callback]) on the client side.

identifier is the username, email or userId as a string from your user. password is the (not encrypted)
password of the user.

The callback returns one variable if there is an error, which is a Meteor.Error object.

Example:

// client side
Meteor.loginWithPassword("JohnDoe", "TheRealJohn123", function(err) {
 console.log(err.reason);
});

And that is it for the basic creating of accounts and logging in.

Accessing user data

You can check on the client side if the user is logged in by calling Meteor.userId() which will return
their userId if they are logged in, and undefined if they are not logged in.

You can get some of the info from Meteor.user(). It will return undefined if the user is not logged in,
and some user data if they are. It will not give you any passwords by default, by default it will show
the userId of the user, the username and the profile object.

If you want to check if a user is logged in on a page, you can also use the currentUser helper. It will
return the contents of Meteor.user(). Example:

{{#if currentUser}}
 <h1>Hello there, {{currentUser.username}}!</h1>
{{else}}
 <h1>Please log in.</h1>
{{/if}}

Other accounts functions

There are some other functions that work for every accounts package.

You can log out using Meteor.logout()

Don’t use the default profile field

There’s a tempting existing field called profile that is added by default when a new user registers.
This field was historically intended to be used as a scratch pad for user-specific data - maybe their
image avatar, name, intro text, etc. Because of this, the profile field on every user is
automatically writable by that user from the client. It’s also automatically published to the client

https://riptutorial.com/ 94

for that particular user.

It turns out that having a field writable by default without making that super obvious might not be
the best idea. There are many stories of new Meteor developers storing fields such as isAdmin on
profile… and then a malicious user can easily set that to true whenever they want, making
themselves an admin. Even if you aren’t concerned about this, it isn’t a good idea to let malicious
users store arbitrary amounts of data in your database.

Rather than dealing with the specifics of this field, it can be helpful to just ignore its existence
entirely. You can safely do that as long as you deny all writes from the client:

// Deny all client-side updates to user documents
Meteor.users.deny({
 update() { return true; }
});

Even ignoring the security implications of profile, it isn’t a good idea to put all of your app’s custom
data onto one field. Meteor’s data transfer protocol doesn’t do deeply nested diffing of fields, so it’s
a good idea to flatten out your objects into many top-level fields on the document.

Read Meteor User Accounts online: https://riptutorial.com/meteor/topic/6219/meteor-user-
accounts

https://riptutorial.com/ 95

https://riptutorial.com/meteor/topic/6219/meteor-user-accounts
https://riptutorial.com/meteor/topic/6219/meteor-user-accounts

Chapter 29: Mobile Apps

Examples

Page Layout on Different Devices - CSS

If your application is going to run on different devices, it's going to need to render to different
ViewPorts, based on the device size. You can deal with this in two ways: with javascript rules, or
CSS media styles. If you've been using a MVC or MVVM library, such as Angular or Ember (or
Blaze, for that matter) and have only been targeting a single device or hardware platform, you may
need to rethink your MVC model as different hardware ViewPorts are introduced to your
application.

// desktop
@media only screen and (min-width: 960px) {
}

// landscape orientation
@media only screen and (min-width: 768px) {
}

// portrait orientation
@media only screen and (min-width: 480px) {
}

You'll need to figure out if you want to break the styles at 768px (portrait mode) or at 1024 pixels
(landscape). That's assuming your target mobile device is the iPad, which uses a 3:4 ratio.
Otherwise, you'll need to work out the aspect ratios of the devices you do want to target, and
figure out the threshold levels from there.

Fixed Sized Windows

If you're going to be designing layouts with fixed size screens for different mobile devices, you
may want to mirror that design when running your app on a desktop. The following method fixes
the size of the window OUTSIDE of PhoneGap, giving a fixed-sized window on the desktop.
Sometimes it's easiest to manage user's expectations and UI design by limiting options!

// create a window of a specific size
var w=window.open('','', 'width=100,height=100');
w.resizeTo(500,500);

// prevent window resize
var size = [window.width,window.height]; //public variable
$(window).resize(function(){
 window.resizeTo(size[0],size[1]);
});

Offline Caching

https://riptutorial.com/ 96

To get all of this to work, you'll probably need offline support, which means caching application
data and user data.

meteor add appcache
meteor add grounddb

Disable Scroll-Bounce

On desktop apps, you may want to disable scroll-bounce, to give your app a more native feel. You
can do this with javascript, by disabling how the browser controls the DOM:

// prevent scrolling on the whole page
// this is not meteorish; TODO: translate to meteor-centric code
document.ontouchmove = function(e) {e.preventDefault()};

// prevent scrolling on specific elements
// this is not meteorish; TODO: translate to meteor-centric code
scrollableDiv.ontouchmove = function(e) {e.stopPropagation()};

Alternatively, you can use css, and the overflow and scrolling styles.

#appBody {
 overflow: hidden;
}

#contentContainer {
 .content-scrollable {
 overflow-y: auto;
 -webkit-overflow-scrolling: touch;
 }
}

The object model needed for the above to work looks something like this:

<div id="appBody">
 <div id="contentContainer">
 <div class="content-scrollable">
 <!-- content -->
 </div>
 </div>
</div>

Multitouch & Gestures

Mobile devices generally don't have keyboards, so you'll need to add some haptic controllers to
your application. The two popular packages that people seem to be using is FastClick and
Hammer. Installation is easy.

meteor add fastclick
meteor add hammer:hammer

FastClick requires nearly no configuration, while Hammer requires a bit of work to wire up. The

https://riptutorial.com/ 97

cononical example from the Todos app looks like this:

Template.appBody.onRendered(function() {
 if (Meteor.isCordova) {
 // set up a swipe left / right handler
 this.hammer = new Hammer(this.find('#appBody'));
 this.hammer.on('swipeleft swiperight', function(event) {
 if (event.gesture.direction === 'right') {
 Session.set(MENU_KEY, true);
 } else if (event.gesture.direction === 'left') {
 Session.set(MENU_KEY, false);
 }
 });
 }
});

Create your Icons and Splash Screen Assets

Before you compile your app and run it on your device, you'll need create some icons and splash
screens, and add a mobile-config.js file to your app.

App.icons({
 // iOS
 'iphone': 'resources/icons/icon-60x60.png',
 'iphone_2x': 'resources/icons/icon-60x60@2x.png',
 'ipad': 'resources/icons/icon-72x72.png',
 'ipad_2x': 'resources/icons/icon-72x72@2x.png',

 // Android
 'android_ldpi': 'resources/icons/icon-36x36.png',
 'android_mdpi': 'resources/icons/icon-48x48.png',
 'android_hdpi': 'resources/icons/icon-72x72.png',
 'android_xhdpi': 'resources/icons/icon-96x96.png'
});

App.launchScreens({
 // iOS
 'iphone': 'resources/splash/splash-320x480.png',
 'iphone_2x': 'resources/splash/splash-320x480@2x.png',
 'iphone5': 'resources/splash/splash-320x568@2x.png',
 'ipad_portrait': 'resources/splash/splash-768x1024.png',
 'ipad_portrait_2x': 'resources/splash/splash-768x1024@2x.png',
 'ipad_landscape': 'resources/splash/splash-1024x768.png',
 'ipad_landscape_2x': 'resources/splash/splash-1024x768@2x.png',

 // Android
 'android_ldpi_portrait': 'resources/splash/splash-200x320.png',
 'android_ldpi_landscape': 'resources/splash/splash-320x200.png',
 'android_mdpi_portrait': 'resources/splash/splash-320x480.png',
 'android_mdpi_landscape': 'resources/splash/splash-480x320.png',
 'android_hdpi_portrait': 'resources/splash/splash-480x800.png',
 'android_hdpi_landscape': 'resources/splash/splash-800x480.png',
 'android_xhdpi_portrait': 'resources/splash/splash-720x1280.png',
 'android_xhdpi_landscape': 'resources/splash/splash-1280x720.png'
});

Meteor Cordova Architecture Pipeline

https://riptutorial.com/ 98

Now it's time to go through the Meteor Cordova Phonegap Integration documentation.

Since that documentation was written, XCode and Yosemite have been released, which has
caused some hiccups in installation. Here are the steps we had to go through to get Meteor
compiled to an iOS device.

Upgrade to Yosemite.•
Delete XCode (drag from Applications folder to Trashcan)•
Install XCode 6.1 from app store.•
Agree to various terms and conditions.•

5. clone and rebuild the ios-sim locally
(this step will not be needed in future releases)
git clone https://github.com/phonegap/ios-sim.git
cd ios-sim
rake build

6. make sure we can update the .meteor/packages locations
(this step will not be needed in future releases)
sudo chmod -R 777 ~/.meteor/packages

7. copy the new build into Meteor locations
(this step will not be needed in future releases)
for i in `find ~/.meteor/packages/meteor-tool/ -name ios-sim -type f`; do
 cp -R ./build/Release/ios-sim "$i"
done

8. install the ios platform to your app
cd myapp
meteor list-platforms
meteor add-platform ios
meteor list-platforms

9. and that there aren't dead processes
ps -ax
kill -9 <pid>
/Users/abigailwatson/.meteor/packages/meteor-
tool/.1.0.35.wql4jh++os.osx.x86_64+web.browser+web.cordova/meteor-tool-
os.osx.x86_64/dev_bundle/mongodb/bin/mongod
tail -f /Users/abigailwatson/Code/Medstar/dart/webapp/.meteor/local/cordova-
build/platforms/ios/cordova/console.log

10. make sure there are correct permissions on the application (important!)
sudo chmod -R 777 .meteor/local/

11. run app
meteor run ios

12. if that doesn't work, clear the directory
sudo rm -rf .meteor/local

13a. run meteor again to create the default browser build
meteor

13b. run it a second time so bootstrap and other packages get downloaded into the browser
build
ctrl-x
meteor

https://riptutorial.com/ 99

https://guide.meteor.com/mobile.html#introduction

14. then run the ios version
ctrl-x
meteor run ios

XCode should launch during the process. Select your simulator and press the 'Play' button.

IOS Development

Register your Apple Developer Account•
Register an App ID for your app•
Register the UUID of your testing devices•
Generate an iOS App Development provisioning profile

Generate a CertificateSigningRequest from KeychainAccess○

Submit CertificateSigningRequest to
https://developer.apple.com/account/ios/profile/profileCreate.action

○

Download and doubleclick the certificate to import into Keychain○

•

Go to XCode > Preferences > Accounts and register your Apple Developer Account•

IOS Device Testing

Make sure your development workstation and iPhone are connected to the same WiFi
network. Tethering, hotspots, and other ad-hoc networking won't work.

•

Run sudo meteor run ios-device•
Deploy to your device!•

Configure your Cordova project (config.xml)

Meteor reads a mobile-config.js file in the root of your app directory during build, and uses the
settings specified there to generate Cordova’s config.xml.

Project_folder
 ├── /.meteor
 └── mobile-config.js

Most configurations can be achieved with mobile-config.js (app metadata, preferences, icons and
launchscreens, as well as Cordova plugins installation parameters).

App.info({
 id: 'com.example.matt.uber',
 name: 'über',
 description: 'Get über power in one button click',
 author: 'Matt Development Group',
 email: 'contact@example.com',
 website: 'http://example.com'
});

// Set up resources such as icons and launch screens.
App.icons({
 'iphone': 'icons/icon-60.png',
 'iphone_2x': 'icons/icon-60@2x.png',

https://riptutorial.com/ 100

https://developer.apple.com/account/ios/profile/profileCreate.action

 // ... more screen sizes and platforms ...
});

App.launchScreens({
 'iphone': 'splash/Default~iphone.png',
 'iphone_2x': 'splash/Default@2x~iphone.png',
 // ... more screen sizes and platforms ...
});

// Set PhoneGap/Cordova preferences
App.setPreference('BackgroundColor', '0xff0000ff');
App.setPreference('HideKeyboardFormAccessoryBar', true);
App.setPreference('Orientation', 'default');
App.setPreference('Orientation', 'all', 'ios');

// Pass preferences for a particular PhoneGap/Cordova plugin
App.configurePlugin('com.phonegap.plugins.facebookconnect', {
 APP_ID: '1234567890',
 API_KEY: 'supersecretapikey'
});

Do not manually edit the /.meteor/local/cordova-build/config.xml file, as it will be regenerated at
every meteor run ios/android or meteor build, hence you will lose all your modifications.

Reference page: Meteor Guide > Build > Mobile > Configuring your app

Detecting the deviceready event

Of course, the best way to detect mobile is for the hardware to notify you directly. Cordova
PhoneGap exposes a 'deviceready' event, that you can add an event listener to.

 document.addEventListener('deviceready', function(){
 Session.set('deviceready', true);
 }, false);

Read Mobile Apps online: https://riptutorial.com/meteor/topic/3705/mobile-apps

https://riptutorial.com/ 101

https://guide.meteor.com/mobile.html#configuring-your-app
https://riptutorial.com/meteor/topic/3705/mobile-apps

Chapter 30: Mongo Collections

Remarks

A useful way to think about Mongo collections is in terms of Who, What, When, Where, Why, and
How. Mongo has the following optimizations for different types of data:

Where - GeoJSON
When - ObjectID timestamps
Who - Meteor Account Strings
How - JSON for decision trees

Which leaves the default document in Mongo roughly representing a 'What'.

Examples

Creating Records in a Legacy Database

You can default to the normal Mongo format by defining your collections with the idGeneration
field.

MyCollection = new Meteor.Collection('mycollection', {idGeneration : 'MONGO'});

Inserting data into a document

Many beginners to Mongo struggle with basics, such as how to insert an array, date, boolean,
session variable, and so forth into a document record. This example provides some guidance on
basic data inputs.

Todos.insert({
 text: "foo", // String
 listId: Session.get('list_id'), // String
 value: parseInt(2), // Number
 done: false, // Boolean
 createdAt: new Date(), // Dimestamp
 timestamp: (new Date()).getTime(), // Time
 tags: [] // Array
});

Getting the _id of the most recently created document

You can get it either synchronously:

var docId = Todos.insert({text: 'foo'});
console.log(docId);

https://riptutorial.com/ 102

Or asynchronously:

Todos.insert({text: 'foo'}, function(error, docId){
 console.log(docId);
});

Timeseries Data

Using MongoDB for time series data is a very well document and established use-case, with
official whitepapers and presentations. Read and watch the official documentation from MongoDB
before trying to invent your own schemas for time series data.

MongoDB for Time Series Data

In general, you'll want to create "buckets" for your timeseries data:

DailyStats.insert({
 "date" : moment().format("MM-DD-YYYY"),
 "dateIncrement" : moment().format("YYYYMMDD"),
 "dailyTotal" : 0,
 'bucketA': 0,
 'bucketB': 0,
 'bucketC': 0
 });

And then increment those buckets as data feeds into your application. This increment can be put
in a Meteor Method, a collection observer, a REST API endpoint, and various other places.

DailyStats.update({_id: doc._id}, {$inc: {bucketA: 1} });

For a more complete Meteor example, see the examples from the Clinical Meteor track:

Realtime Analytics Pipeline
Clinical Meteor - Graphs - Dailystats

Filtering with Regexes

Simple pattern for filtering subscriptions on the server, using regexes, reactive session variables,
and deps autoruns.

// create our collection
WordList = new Meteor.Collection("wordlist");

// and a default session variable to hold the value we're searching for
Session.setDefault('dictionary_search', '');

Meteor.isClient(function(){
 // we create a reactive context that will rerun items when a Session variable gets updated

 Deps.autorun(function(){
 // and create a subscription that will get re-subscribe to when Session variable gets
updated

https://riptutorial.com/ 103

http://www.mongodb.com/presentations/mongodb-time-series-data
https://github.com/awatson1978/realtime-analytics-pipeline
https://github.com/clinical-meteor/graphs-dailystats

 Meteor.subscribe('wordlist', Session.get('dictionary_search'));
 });

 Template.dictionaryIndexTemplate.events({
 'keyup #dictionarySearchInput': function(evt,tmpl){
 // we set the Session variable with the value of our input when it changes
 Session.set('dictionary_search', $('#dictionarySearchInput').val());
 },
 'click #dictionarySearchInput':function(){
 // and clear the session variable when we enter the input
 Session.set('dictionary_search', '');
 },
 });
});
Meteor.isServer(function(){
 Meteor.publish('wordlist', function (word_search) {
 // this query gets rerun whenever the client subscribes to this publication
 return WordList.find({
 // and here we do our regex search
 Word: { $regex: word_search, $options: 'i' }
 },{limit: 100});
 });
});

And the HTML that is used on the client:

<input id="dictionarySearchInput" type="text" placeholder="Filter..." value="hello"></input>

This pattern itself is pretty straight forward, but the regexes may not be. If you're not familiar with
regexes, here are some useful tutorials and links:

Regular Expression Tutorial
Regular Expression Cheat Sheet
Regular Expressions in Javascript

Geospatial Collections - Learning More

Geospatial collections generally involve storing GeoJSON in the Mongo database, streaming that
data to the client, accessing the browser's window.navigator.geolocation, loading up a Map API,
converting GeoJSON to LatLngs, and plotting on the map. Preferably all in realtime. Here are a list
of resources to get you started:

mongodb optimally stores it's data in geoJSON•
geojson.org•
window.navigator.geolocation•
HTML geolocation•
Maps API picker•
google.maps.LatLng•
Google map.data.loadGeoJson•
meteor-cordova-geolocation-background•
phonegap-googlemaps-plugin•
LatLng•

https://riptutorial.com/ 104

http://www.regular-expressions.info/tutorial.html
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://docs.mongodb.org/manual/applications/geospatial-indexes/#geo-overview-location-data
http://geojson.org/geojson-spec.html
http://www.w3schools.com/jsref/prop_nav_geolocation.asp
http://www.w3schools.com/html/html5_geolocation.asp
https://developers.google.com/maps/documentation/api-picker
https://developers.google.com/maps/documentation/javascript/examples/map-geolocation
https://developers.google.com/maps/documentation/javascript/examples/layer-data-simple
https://github.com/zeroasterisk/meteor-cordova-geolocation-background
https://github.com/wf9a5m75/phonegap-googlemaps-plugin
https://developers.google.com/maps/documentation/business/mobile/android/reference/com/google/android/m4b/maps/model/LatLng

maps.documentation•
google.maps.LatLng•
2dsphere indexes•
create a 2dsphere index•
query a 2dsphere index•
geospatial indexes and queries•

Auditing Collection Queries

The following example will log all of your collection queries to the server console in realtime.

Meteor.startup(
 function () {
 var wrappedFind = Meteor.Collection.prototype.find;

 // console.log('[startup] wrapping Collection.find')

 Meteor.Collection.prototype.find = function () {
 // console.log(this._name + '.find', JSON.stringify(arguments))
 return wrappedFind.apply(this, arguments);
 }
 },

 function () {
 var wrappedUpdate = Meteor.Collection.prototype.update;

 // console.log('[startup] wrapping Collection.find')

 Meteor.Collection.prototype.update = function () {
 console.log(this._name + '.update', JSON.stringify(arguments))
 return wrappedUpdate.apply(this, arguments);
 }
 }
);

Observers & Worker Functions

If the Node event loop acts like a bicycle chain, the server-side collection observer is like a
derailleur. It's a gearing mechanism that is going to sit on the data collection as the data comes in.
It can be very performant, as all race bicycles have derailleurs. But it's also a source for breaking
the whole system. It's a high speed reactive function, which can blow up on you. Be warned.

Meteor.startup(function(){
 console.log('starting worker....');

 var dataCursor = Posts.find({viewsCount: {$exists: true}},{limit:20});

 var handle = dataCursor.observeChanges({
 added: function (id, record) {
 if(record.viewsCount > 10){
 // run some statistics
 calculateStatistics();

 // or update a value
 Posts.update({_id: id}, {$set:{

https://riptutorial.com/ 105

https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/maps/documentation/javascript/reference#LatLng
http://docs.mongodb.org/manual/core/2dsphere/
http://docs.mongodb.org/manual/tutorial/build-a-2dsphere-index/
http://docs.mongodb.org/manual/tutorial/query-a-2dsphere-index/
http://docs.mongodb.org/manual/applications/geospatial-indexes/

 popular: true
 }});

 }
 },
 removed: function () {
 console.log("Lost one.");
 }
 });
});

Note the limit of 20 is the size of the derailleur.... how many teeth it has; or, more specifically, how
many items are in the cursor as it's walking over the collection. Be careful about using the 'var'
keyword in this kind of function. Write as few objects to memory as possibly, and focus on object
reuse inside the added method. When the opslog is turned on, and this thing is going full speed,
it's a prime candidate for exposing nasty memory leaks if it's writing down objects onto the
memory heap faster than the Node garbage collector is able to clean things up.

The above solution won't scale horizontally well, because each Meteor instance will be trying to
update the same record. So, some sort of environment detection is necessary for this to scale
horizontally.

See the percolatestudios:synced-cron package for an excellent example of synchronizing service
workers across multiple machines in a cluster.
meteor-synced-cron

Read Mongo Collections online: https://riptutorial.com/meteor/topic/5120/mongo-collections

https://riptutorial.com/ 106

https://github.com/percolatestudio/meteor-synced-cron
https://riptutorial.com/meteor/topic/5120/mongo-collections

Chapter 31: Mongo Database Management

Remarks

If you're not opposed to running a Ruby utility, Genghis is a classic: http://genghisapp.com/

But for scalable production use, get yourself to MongoHQ.
http://www.mongohq.com/

Also, the Mongo Monitoring Service, from 10Gen, the makers of Mongo:
https://mms.mongodb.com/

MongoClient is written in Meteor, Completely Free, Open Source And Cross-Platform.

RoboMongo Native cross-platform MongoDB management tool

Examples

Analyzing An Inherited Database

There's two great utilities for black-box analysis of databases. First is variety.js, which will give you
a high-level overview. The second is schema.js, which will let you dig into the collections for more
detail on the individual fields. When inheriting a production Mongo database, these two utilities can
help you make sense of what's going on and how the collections and documents are structured.

variety.js

mongo test --eval "var collection = 'users'" variety.js

schema.js

mongo --shell schema.js

Connect To A Database on *.meteorapp.com

The --url flag can be tricky to use. There is a 60 second window to authenticate, and then the
username/password randomly resets. So be sure to have robomongo open and ready to configure
a new connection when you run the command.

get the MONGO_URL string for your app
meteor mongo --url $METEOR_APP_URL

Download a Database from *.meteor.com

Same thing as before, but you have to copy the info into the mongodump command. You have to

https://riptutorial.com/ 107

http://genghisapp.com/
http://www.mongohq.com/
https://mms.mongodb.com/
http://www.mongoclient.com
https://robomongo.org/
https://github.com/variety/variety
http://skratchdot.com/projects/mongodb-schema/

run the following commands rediculously fast, and it requires hand/eye coordination. Be warned!
This is a rediculously hacky! But fun! Think of it as a video game! :D

get the MONGO_URL string for your app
meteor mongo --url $METEOR_APP_URL

then quickly copy all the info into the following command
mongodump -u username -p password --port 27017 --db meteor_app_url_com --host production-db-
b1.meteor.io

Export Data from local Meteor development instance?

This command will create a /dump directory, and store each collection in a separate BSON blob
file. This is the best way to backup or transfer databases between systems.

mongodump --db meteor

Restore Data from a Dumpfile

The analog to the meteordump command is meteorrestore. You can do a partial import by selecting
the specific collection to import. Particularly useful after running a drop command.

make sure your app is running
meteor

then import your data
mongorestore --port 3001 --db meteor /path/to/dump

a partial import after running > db.comments.drop()
mongorestore --port 3001 --db meteor /path/to/dump -c comments.bson

Export a Collection to JSON

Run meteor, open another terminal window, and run the following command.

mongoexport --db meteor --collection foo --port 3001 --out foo.json

Import a JSON File into Meteor

Importing into a default Meteor instance is fairly easy. Note that you can add a --jsonArray option if
your json file is exported as an array from another system.

mongoimport --db meteor --port 3001 --collection foo --file foo.json

Copying Data Between Staging and Local Databases

Mongo supports database-to-database copying, which is useful if you have large databases on a
staging database that you want to copy into a local development instance.

https://riptutorial.com/ 108

// run mongod so we can create a staging database
// note that this is a separate instance from the meteor mongo and minimongo instances
mongod

// import the json data into a staging database
// jsonArray is a useful command, particularly if you're migrating from SQL
mongoimport -d staging -c assets < data.json --jsonArray

// navigate to your application
cd myappdir

// run meteor and initiate it's database
meteor

// connect to the meteor mongodb
meteor mongo --port 3002

// copy collections from staging database into meteor database
db.copyDatabase('staging', 'meteor', 'localhost');

Compact a Mongo Database on an Ubuntu Box

Preallocation. Mongo sets aside disk-space in empty containers, so when the time comes to write
something to disk, it doesn't have to shuffle bits out of the way first. It does so by a doubling
algorithm, always doubling the amount of disk space preallocated until it reaches 2GB; and then
each prealloc file from thereon is 2GB. Once data is preallocated, it doesn't unallocate unless you
specifically tell it to. So observable MongoDB space usage tends to go up automatically, but not
down.

Some research on the Mongo preallocation...
reducing-mongodb-database-file-size
mongo-prealloc-files-taking-up-room

// compact the database from within the Mongo shell
db.runCommand({ compact : 'mycollectionname' })

// repair the database from the command line
mongod --config /usr/local/etc/mongod.conf --repair --repairpath /Volumes/X/mongo_repair --
nojournal

// or dump and re-import from the command line
mongodump -d databasename
echo 'db.dropDatabase()' | mongo databasename
mongorestore dump/databasename

Reset a Replica Set

Delete the local database files. Just exit the Mongo shell, navigate to the /dbpath (wherever you
set it up), and delete the files within that directory.

Connect Remotely to a Mongo Instance on *.meteor.com

Did you know about the --url flag? Very handy.

https://riptutorial.com/ 109

http://stackoverflow.com/questions/2966687/reducing-mongodb-database-file-size
http://stackoverflow.com/questions/9473850/mongo-prealloc-files-taking-up-room

meteor mongo --url YOURSITE.meteor.com

Accessing Mongo Log Files on a Local Meteor Instance

They're not easily accessible. If you run the 'meteor bundle' command, you can generate a tar.gz
file, and then run your app manually. Doing that, you should be able to access the mongo logs...
probably in the .meteor/db directory. If you really need to access mongodb log files, set up a
regular mongodb instance, and then connect Meteor to an external mongo instance, by setting the
MONGO_URL environment variable:

MONGO_URL='mongodb://user:password@host:port/databasename'

Once that's done, you should be able to access logs in the usual places...

/var/log/mongodb/server1.log

Rotate Log Files on an Ubuntu Box

Gotta rotate those log files, or they'll eventually eat up all of your disk space. Start with some
research...
mongodb-log-file-growth
rotate-log-files

Log files can be viewed with the following command...

ls /var/log/mongodb/

But to set up log-file rotation, you'll need to do the following...

// put the following in the /etc/logrotate.d/mongod file
/var/log/mongo/*.log {
 daily
 rotate 30
 compress
 dateext
 missingok
 notifempty
 sharedscripts
 copytruncate
 postrotate
 /bin/kill -SIGUSR1 `cat /var/lib/mongo/mongod.lock 2> /dev/null` 2> /dev/null || true
 endscript
}

// to manually initiate a log file rotation, run from the Mongo shell
use admin
db.runCommand({ logRotate : 1 })

Read Mongo Database Management online: https://riptutorial.com/meteor/topic/3707/mongo-
database-management

https://riptutorial.com/ 110

http://stackoverflow.com/questions/5004626/mongodb-log-file-growth
http://docs.mongodb.org/manual/tutorial/rotate-log-files/
https://riptutorial.com/meteor/topic/3707/mongo-database-management
https://riptutorial.com/meteor/topic/3707/mongo-database-management

Chapter 32: Mongo Schema Migrations

Remarks

It's often necessary to run maintenance scripts on your database. Fields get renamed; data
structures get changed; features that you used to support get removed; services get migrated. The
list of reasons why you might want to change your schema is pretty limitless. So, the 'why' is pretty
self explanatory.

The 'how' is a little more unfamiliar. For those people accustomed to SQL functions, the above
database scripts will look strange. But notice how they're all in javascript, and how they're using
the same API as we use throughout Meteor, on both the server and client. We have a consistent
API through our database, server, and client.

Run the schema migration commands from the meteor mongo shell:

run meteor
meteor

access the database shell in a second terminal window
meteor mongo

Examples

Add Version Field To All Records in a Collection

db.posts.find().forEach(function(doc){
 db.posts.update({_id: doc._id}, {$set:{'version':'v1.0'}}, false, true);
});

Remove Array From All Records In A Collection

db.posts.find().forEach(function(doc){
 if(doc.arrayOfObjects){
 // the false, true at the end refers to $upsert, and $multi, respectively
 db.accounts.update({_id: doc._id}, {$unset: {'arrayOfObjects': "" }}, false, true);
 }
});

Rename Collection

db.originalName.renameCollection("newName");

Find Field Containing Specific String

With the power of regex comes great responsibility....

https://riptutorial.com/ 111

db.posts.find({'text': /.*foo.*|.*bar.*/i})

Create New Field From Old

db.posts.find().forEach(function(doc){
 if(doc.oldField){
 db.posts.update({_id: doc._id}, {$set:{'newField':doc.oldField}}, false, true);
 }
});

Pull Objects Out of an Array and Place in a New Field

db.posts.find().forEach(function(doc){
 if(doc.commenters){
 var firstCommenter = db.users.findOne({'_id': doc.commenters[0]._id });
 db.clients.update({_id: doc._id}, {$set:{'firstPost': firstCommenter }}, false, true);

 var firstCommenter = db.users.findOne({'_id': doc.commenters[doc.commenters.length -
1]._id });
 db.clients.update({_id: doc._id}, {$set:{'lastPost': object._id }}, false, true);
 }
});

Blob Record From One Collection Into Another Collection (ie. Remove Join &
Flatten)

db.posts.find().forEach(function(doc){
 if(doc.commentsBlobId){
 var commentsBlob = db.comments.findOne({'_id': commentsBlobId });
 db.posts.update({_id: doc._id}, {$set:{'comments': commentsBlob }}, false, true);
 }
});

Make Sure Field Exists

db.posts.find().forEach(function(doc){
 if(!doc.foo){
 db.posts.update({_id: doc._id}, {$set:{'foo':''}}, false, true);
 }
});

Make Sure Field has Specific Value

db.posts.find().forEach(function(doc){
 if(!doc.foo){
 db.posts.update({_id: doc._id}, {$set:{'foo':'bar'}}, false, true);
 }
});

Remove Record if Specific Field is Specific Value

https://riptutorial.com/ 112

db.posts.find().forEach(function(doc){
 if(doc.foo === 'bar'){
 db.posts.remove({_id: doc._id});
 }
});

Change Specific Value of Field to New Value

db.posts.find().forEach(function(doc){
 if(doc.foo === 'bar'){
 db.posts.update({_id: doc._id}, {$set:{'foo':'squee'}}, false, true);
 }
});

Unset Specific Field to Null

db.posts.find().forEach(function(doc){
 if(doc.oldfield){
 // the false, true at the end refers to $upsert, and $multi, respectively
 db.accounts.update({_id: doc._id}, {$unset: {'oldfield': "" }}, false, true);
 }
});

Convert ObjectId to String

db.posts.find().forEach(function(doc){
 db.accounts.update({_id: doc._id}, {$set: {'_id': doc._id.str }}, false, true);
});

Convert Field Values from Numbers to Strings

var newvalue = "";
db.posts.find().forEach(function(doc){
 if(doc.foo){
 newvalue = '"' + doc.foo + '"';
 db.accounts.update({_id: doc._id}, {$set: {'doc.foo': newvalue}});
 }
});

Convert Field Values from Strings to Numbers

var newvalue = null;
db.posts.find().forEach(function(doc){
 if(doc.foo){
 newvalue = '"' + doc.foo + '"';
 db.accounts.update({_id: doc._id}, {$set: {'doc.foo': newvalue}});
 }
});

Create a Timestamp from an ObjectID in the _id Field

https://riptutorial.com/ 113

db.posts.find().forEach(function(doc){
 if(doc._id){
 db.posts.update({_id: doc._id}, {$set:{ timestamp: new
Date(parseInt(doc._id.str.slice(0,8), 16) *1000) }}, false, true);
 }
});

Create an ObjectID from a Date Object

var timestamp = Math.floor(new Date(1974, 6, 25).getTime() / 1000);
var hex = ('00000000' + timestamp.toString(16)).substr(-8); // zero padding
var objectId = new ObjectId(hex + new ObjectId().str.substring(8));

Find All the Records that Have Items in an Array

What we're doing here is referencing the array index using dot notation

db.posts.find({"tags.0": {$exists: true }})

Read Mongo Schema Migrations online: https://riptutorial.com/meteor/topic/3708/mongo-schema-
migrations

https://riptutorial.com/ 114

https://riptutorial.com/meteor/topic/3708/mongo-schema-migrations
https://riptutorial.com/meteor/topic/3708/mongo-schema-migrations

Chapter 33: MongoDB

Introduction

MongoDB is a free and open-source cross-platform document orient database program. Unlike
classic SQL databases, MongoDB uses BSON (like JSON) to store data. Meteor was designed to
use MongoDB for database storage and this topic explains how to implement MongoDB storage
into Meteor applications.

Examples

Export a Remote Mongo DB, Import Into a Local Meteor Mongo DB

Helpful when you want to grab a copy of a production database to play around with locally.

mongodump --host some-mongo-host.com:1234 -d DATABASE_NAME -u DATABASE_USER -p
DATABASE_PASSWORD This will create a local dump directory; within that directory you'll see a
directory with your DATABASE_NAME.

1.

With your local meteor app running, from within the dump directory, run: mongorestore --db
meteor --drop -h localhost --port 3001 DATABASE_NAME

2.

Get the Mongo URL of Your Local Meteor Mongo DB

While your Meteor app is running locally:

meteor mongo --url

Connect Your Local Meteor App to an Alternative Mongo DB

Set the MONGO_URL environment variable before starting your local Meteor app.

Linux/MacOS Example:

MONGO_URL="mongodb://some-mongo-host.com:1234/mydatabase" meteor

or

export MONGO_URL="mongodb://some-mongo-host.com:1234/mydatabase"
meteor

Windows Example

Note: don't use "

https://riptutorial.com/ 115

set MONGO_URL=mongodb://some-mongo-host.com:1234/mydatabase
meteor

NPM

//package.json

"scripts": {
 "start": "MONGO_URL=mongodb://some-mongo-host.com:1234/mydatabase meteor"
}

$ npm start

Running Meteor without MongoDB

Set MONGO_URL to any arbitrary value except for a database URL and ensure no collections are
defined in your Meteor project (including collections defined by Meteor packages) to run Meteor
without MongoDB.

Note that without MongoDB, server/client methods alongside any packages related to Meteor's
user-account system will be undefined. Ex: Meteor.userId()

Linux/Mac:

MONGO_URL="none" meteor

or

export MONGO_URL="none"
meteor

Windows:

set MONGO_URL=none
meteor

Getting Started

You can start the mongo shell by running the following command inside your Meteor project:

meteor mongo

Please note: Starting the server-side database console only works while Meteor is running the
application locally.

After that, you can list all collections by executing the following command via the mongo shell:

show collections

https://riptutorial.com/ 116

You can also run basic MongoDB operations, like querying, inserting, updating and deleting
documents.

Query Documents

Documents can be queried by using the find() method, e.g.:

db.collection.find({name: 'Matthias Eckhart'});

This will list all documents that have the name attribute set to Matthias Eckhart.

Inserting Documents

If you want to insert documents in a collection, run:

db.collection.insert({name: 'Matthias Eckhart'});

Updating Documents

In case you want to update documents, use the update() method, for instance:

db.collection.update({name: 'Matthias Eckhart'}, {$set: {name: 'John Doe'}});

Executing this command will update a single document by setting the value John Doe for the field
name (initially the value was Matthias Eckhart).

If you want to update all documents that match a specific criteria, set the multi parameter to true,
for example:

db.collection.update({name: 'Matthias Eckhart'}, {$set: {name: 'John Doe'}}, {multi: true});

Now, all documents in the collection that had initially the name attribute set to Matthias Eckhart have
been updated to John Doe.

Deleting Documents

Documents can be easily removed by using the remove() method, for example:

db.collection.remove({name: 'Matthias Eckhart'});

This will remove all documents that match the value specified in the name field.

https://riptutorial.com/ 117

Read MongoDB online: https://riptutorial.com/meteor/topic/1874/mongodb

https://riptutorial.com/ 118

https://riptutorial.com/meteor/topic/1874/mongodb

Chapter 34: MongoDB Aggregation

Remarks

Server Aggregation

Average Aggregation Queries in Meteor

is it possible to package a 'real' mongodb library for use on the *server* side only in meteor 0.6

Client Aggregation (Minimongo)

https://github.com/utunga/pocketmeteor/tree/master/packages/mongowrapper

Examples

Server Aggregation

Andrew Mao's solution. Average Aggregation Queries in Meteor

Meteor.publish("someAggregation", function (args) {
 var sub = this;
 // This works for Meteor 0.6.5
 var db = MongoInternals.defaultRemoteCollectionDriver().mongo.db;

 // Your arguments to Mongo's aggregation. Make these however you want.
 var pipeline = [
 { $match: doSomethingWith(args) },
 { $group: {
 _id: whatWeAreGroupingWith(args),
 count: { $sum: 1 }
 }}
];

 db.collection("server_collection_name").aggregate(
 pipeline,
 // Need to wrap the callback so it gets called in a Fiber.
 Meteor.bindEnvironment(
 function(err, result) {
 // Add each of the results to the subscription.
 _.each(result, function(e) {
 // Generate a random disposable id for aggregated documents
 sub.added("client_collection_name", Random.id(), {
 key: e._id.somethingOfInterest,
 count: e.count
 });
 });
 sub.ready();
 },
 function(error) {
 Meteor._debug("Error doing aggregation: " + error);
 }
)

https://riptutorial.com/ 119

http://stackoverflow.com/questions/18520567/average-aggregation-queries-in-meteor
http://stackoverflow.com/questions/15833488/is-it-possible-to-package-a-real-mongodb-library-for-use-on-the-server-side
https://github.com/utunga/pocketmeteor/tree/master/packages/mongowrapper
http://stackoverflow.com/questions/18520567/average-aggregation-queries-in-meteor

);
});

Aggregation in a Server Method

Another way of doing aggregations is by using the Mongo.Collection#rawCollection()

This can only be run on the Server.

Here is an example you can use in Meteor 1.3 and higher:

Meteor.methods({
 'aggregateUsers'(someId) {
 const collection = MyCollection.rawCollection()
 const aggregate = Meteor.wrapAsync(collection.aggregate, collection)

 const match = { age: { $gte: 25 } }
 const group = { _id:'$age', totalUsers: { $sum: 1 } }

 const results = aggregate([
 { $match: match },
 { $group: group }
])

 return results
 }
})

Read MongoDB Aggregation online: https://riptutorial.com/meteor/topic/4199/mongodb-
aggregation

https://riptutorial.com/ 120

https://riptutorial.com/meteor/topic/4199/mongodb-aggregation
https://riptutorial.com/meteor/topic/4199/mongodb-aggregation

Chapter 35: Nightwatch - Configuration &
Setup

Remarks

Nightwatch has been providing Acceptance and End-to-End testing for Meteor apps since v0.5
days, and has managed migrations from PHP to Spark to Blaze and to React; and all major
Continuous Integration platforms. For additional help, please see:

Nightwatch API Documentation
Nightwatch.js Google Group

Examples

Configuration

The main reason that Nightwatch is so powerful, is because of it's excellent configuration file.
Unlike most other testing frameworks, Nightwatch is fully configurable and customizable to
different environments and technology stacks.

.meteor/nightwatch.json

The following configuration file is for Meteor v1.3 and later, and supports two environments... a
default environment which launches the chromedriver browser, and a phantom environment which
runs the tests in a headless environment.

{
 "nightwatch": {
 "version": "0.9.8"
 },
 "src_folders": [
 "./tests/nightwatch/walkthroughs"
],
 "custom_commands_path": [
 "./tests/nightwatch/commands"
],
 "custom_assertions_path": [
 "./tests/nightwatch/assertions"
],
 "output_folder": "./tests/nightwatch/reports",
 "page_objects_path": "./tests/nightwatch/pages",
 "globals_path": "./tests/nightwatch/globals.json",
 "selenium": {
 "start_process": true,
 "server_path": "./node_modules/starrynight/node_modules/selenium-server-standalone-
jar/jar/selenium-server-standalone-2.45.0.jar",
 "log_path": "tests/nightwatch/logs",
 "host": "127.0.0.1",
 "port": 4444,

https://riptutorial.com/ 121

http://nightwatchjs.org/
https://groups.google.com/forum/#!forum/nightwatchjs

 "cli_args": {
 "webdriver.chrome.driver":
"./node_modules/starrynight/node_modules/chromedriver/bin/chromedriver"
 }
 },
 "test_settings": {
 "default": {
 "launch_url": "http://localhost:5000",
 "selenium_host": "127.0.0.1",
 "selenium_port": 4444,
 "pathname": "/wd/hub",
 "silent": true,
 "disable_colors": false,
 "firefox_profile": false,
 "ie_driver": "",
 "screenshots": {
 "enabled": false,
 "path": "./tests/nightwatch/screenshots"
 },
 "desiredCapabilities": {
 "browserName": "chrome",
 "javascriptEnabled": true,
 "acceptSslCerts": true,
 "loggingPrefs": {
 "browser": "ALL"
 }
 },
 "exclude": "./tests/nightwatch/unittests/*",
 "persist_globals": true,
 "detailed_output": false
 },
 "phantom": {
 "desiredCapabilities": {
 "browserName": "phantomjs",
 "javascriptEnabled": true,
 "databaseEnabled": false,
 "locationContextEnabled": false,
 "applicationCacheEnabled": false,
 "browserConnectionEnabled": false,
 "webStorageEnabled": false,
 "acceptSslCerts": true,
 "rotatable": false,
 "nativeEvents": false,
 "phantomjs.binary.path": "./node_modules/starrynight/node_modules/phantomjs-
prebuilt/bin/phantomjs"
 }
 },
 "unittests": {
 "selenium": {
 "start_process": false,
 "start_session": false
 },
 "filter": "./tests/nightwatch/unittests/*",
 "exclude": ""
 }
 }
}

Installation & Usage

https://riptutorial.com/ 122

To get Nightwatch working, you'll need a local copy of selenium which is a command-and-control
server which manages automated browser instances. You'll also need a web browser which
selenium can control, such as chromedriver or phantomjs.

Add the following devDependencies to your package.json:

{
 "devDependencies": {
 "nightwatch": "0.9.8",
 "selenium-server-standalone-jar": "2.45.0",
 "chromedriver": "2.19.0",
 "phantomjs-prebuilt": "2.1.12"
 }
}

Then install all the depndencies.

cd myapp
meteor npm install

You should then be able to run Nightwatch with the following commands:

nightwatch -c .meteor/nightwatch.json
nightwatch -c .meteor/nightwatch.json --env phantom

If you haven't written any tests, or set up your folder structure yet, you may get some errors.

Setting up launch scripts

In the root of your application should be a package.json file, where you can define scripts and
devDependencies.

{
 "name": "myapp",
 "version": "1.0.0",
 "scripts": {
 "start": "meteor --settings settings-development.json",
 "nightwatch": "nightwatch -c .meteor/nightwatch.json",
 "phantom": "nightwatch -c .meteor/nightwatch.json --env phantom",
 }
}

You will then be able to launch nightwatch with the following commands:

meteor npm run-script nightwatch
meteor npm run-script phantom

In this example, it would almost be easier to simply run nightwatch -c .meteor/nightwatch.json.
However, with more complex commands, with complex environment variables, options, and
settings, this becomes a very useful way to specify devops scripts for a team.

https://riptutorial.com/ 123

Folder Structure

A basic Nightwatch installation for Meteor will have the following directories and files installed.

/myapp
/myapp/.meteor/nightwatch.json
/client/main.html
/client/main.js
/client/main.css
/tests
/tests/nightwatch
/tests/nightwatch/assertions
/tests/nightwatch/commands
/tests/nightwatch/data
/tests/nightwatch/logs
/tests/nightwatch/pages
/tests/nightwatch/reports
/tests/nightwatch/screenshots
/tests/nightwatch/walkthroughs
/tests/nightwatch/walkthroughs/critical_path.js
/tests/nightwatch/globals.json

Data Driven Testing

Nightwatch accepts a second globals.json configuration file which injects data into the test runner
itself, very similar to how Meteor.settings makes data from the command line available throughout
the app.

globals.json

{
 "default" : {
 "url" : "http://localhost:3000",
 "user": {
 "name": "Jane Doe",
 "username" : "janedoe",
 "password" : "janedoe123",
 "email" : "janedoe@test.org",
 "userId": null
 }
 },
 "circle" : {
 "url" : "http://localhost:3000",
 "user": {
 "name": "Jane Doe",
 "username" : "janedoe",
 "password" : "janedoe123",
 "email" : "janedoe@test.org"
 "userId": null
 }
 },
 "galaxy" : {
 "url" : "http://myapp.meteorapp.com",
 "user": {
 "name": "Jane Doe",
 "username" : "janedoe",
 "password" : "janedoe123",

https://riptutorial.com/ 124

 "email" : "janedoe@test.org"
 "userId": null
 }
 }
}

You can then write your tests that aren't hardcoded with specific users, passwords, search inputs,
etc.

module.exports = {
 "Login App" : function (client) {
 client
 .url(client.globals.url)
 .login(client.globals.user.email, client.globals.user.password)
 .end();
 }
};

Read Nightwatch - Configuration & Setup online:
https://riptutorial.com/meteor/topic/5901/nightwatch---configuration---setup

https://riptutorial.com/ 125

https://riptutorial.com/meteor/topic/5901/nightwatch---configuration---setup

Chapter 36: Node/NPM

Examples

Meteor Tested/Supported Node Version

To determine the latest tested/supported version of Node that can be used with your installed
version of Meteor, dump the node version directly from the build tool's bundled node instance.

meteor node -v

Read Node/NPM online: https://riptutorial.com/meteor/topic/4599/node-npm

https://riptutorial.com/ 126

https://riptutorial.com/meteor/topic/4599/node-npm

Chapter 37: Offline Apps

Remarks

Further Appcache Research

http://www.html5rocks.com/en/tutorials/indexeddb/todo/
http://grinninggecko.com/2011/04/22/increasing-chromes-offline-application-cache-storage-limit/
http://www.html5rocks.com/en/tutorials/offline/quota-research/
https://developers.google.com/chrome/apps/docs/developers_guide?csw=1#installing
https://developers.google.com/chrome/apps/docs/developers_guide?csw=1#manifest

Examples

Meteor.status()

The first thing to do when taking your Meteor app offline is to create some visual indication of
whether the local client app is connected to the server or not. There are lots of ways to do this, but
the simplest way is to probably do something like this:

Template.registerHelper('getOnlineStatus', function(){
 return Meteor.status().status;
});

Template.registerHelper('getOnlineColor', function(){
 if(Meteor.status().status === "connected"){
 return "green";
 }else{
 return "orange";
 }
});

 <div id="onlineStatus" class="{{getOnlineColor}}">
 {{getOnlineStatus}}
 </div>

.green{
 color: green;
}
.orange{
 color: orange;
}

Enable Appcache

One of the easier steps is adding the appcache. Appcache will allow your application content to
load even when there is no internet access. You won't be able to get any data from your mongo
servers, but the static content and assets will be available offline.

https://riptutorial.com/ 127

http://www.html5rocks.com/en/tutorials/indexeddb/todo/
http://grinninggecko.com/2011/04/22/increasing-chromes-offline-application-cache-storage-limit/
http://www.html5rocks.com/en/tutorials/offline/quota-research/
https://developers.google.com/chrome/apps/docs/developers_guide?csw=1#installing
https://developers.google.com/chrome/apps/docs/developers_guide?csw=1#manifest

meteor add appcache

Enable GroundDB

Finally, we want to get some of our dynamic data to be stored offline.

meteor add ground:db

Lists = new Meteor.Collection("lists");
GroundDB(Lists);

Todos = new Meteor.Collection("todos")
GroundDB(Todos);

Things to Be Careful Of

The appcache will cause some confusion in your development workflow, because it hides
Meteor's auto-updating features. When you turn off the server component of your app, the
client portion in your browser will continue working. This is a good thing! But, you don't get
the immediate feedback that your app has been turned off, or that there have been updates.

•

Try using Chrome's Incognito Mode when developing your app, because it doesn't use
appcache.

•

GroundDB doesn't work particularly well with IronRouter.•

Read Offline Apps online: https://riptutorial.com/meteor/topic/3375/offline-apps

https://riptutorial.com/ 128

https://riptutorial.com/meteor/topic/3375/offline-apps

Chapter 38: Performance Tuning

Remarks

It should be noted that Meteor is simply Javascript and Node.js. Yes, it's a very specific
implementation of those two technologies, and has it's own unique ecosystem, and leverages
isomorphic APIs and a JSON datastore to achieve some truly amazing results. But, at the end of
the day, Meteor is a web technology, and it's written in Javascript. So all of your typical javascript
performance techniques still apply. Start there.

25 Javascript Performance Techniques
Performance Optimizations for High Speed Javascript
Optimizing JavaScript Code
Performance Tips for JavaScript in V8
10 Javascript Performance Boosting Tip
Write Efficient JavaScript
Improving the Performance of your Meteor JS projects

Examples

Designing and Deploying Production Ready Software

Remember, all the best practices of typical web architecture still apply. For an excellent overview
on the subject, please refer to Michael Nygard's excellent book Release It! Design and Deploy
Production-Ready Software. Writing your app in Meteor doesn't absolve you of auditing third party
libraries, writing circuit breakers, wrapping calls in timeouts, monitoring your resource pools, and
all the rest. If you want your application to perform well, you need to make sure you're using
stability patterns, and avoiding anti-patterns.

Stability Patterns

Timeouts•
Circuit Breakers•
Bulkheads•
Handshaking•
Stability Anti-Patterns•

Integration Points

Third Party Libraries•
Scaling Effects•
Unbalanced Capabilities•
Capacity Anti-Patterns•

Resource Pool Contention

https://riptutorial.com/ 129

http://desalasworks.com/article/javascript-performance-techniques/
http://www.webreference.com/programming/javascript/jkm3/index.html
https://developers.google.com/speed/articles/optimizing-javascript
http://www.html5rocks.com/en/tutorials/speed/v8/
http://jonraasch.com/blog/10-javascript-performance-boosting-tips-from-nicholas-zakas
http://oreilly.com/server-administration/excerpts/even-faster-websites/writing-efficient-javascript.html
http://projectricochet.com/blog/meteor-js-performance#.U-lvxo1dWnD
http://rads.stackoverflow.com/amzn/click/0978739213
http://rads.stackoverflow.com/amzn/click/0978739213

AJAX Overkill•
Overstaying Sessions•
Excessive White Space•
Data Eutropification•

If these concepts are unfamiliar and don't seem like second-nature to you, it means that you
haven't brought bigger production systems online. Buy a copy of the book. It will be time and
money well spent.

Read Performance Tuning online: https://riptutorial.com/meteor/topic/3363/performance-tuning

https://riptutorial.com/ 130

https://riptutorial.com/meteor/topic/3363/performance-tuning

Chapter 39: Publishing A Release Track

Remarks

Publishing a Release Track is actually pretty simple if you understand a) that the publish-release
command requires a .json file as a parameter, and b) what that file looks like. That's definitely the
biggest hurdle in getting started, because it's pretty much not documented anywhere.

Just keep in mind that every package in the release has to be published and on Atmosphere. The
.meteor/versions file of an app is a particularly good place for finding all the necessary packages
and versions that should go into the release.

After that, it's a matter of figuring out what you're willing to support, what you want to include, etc.
Here is a partial Venn Diagram of what the Clinical Release is currently working on; and should
give you a general idea of how we're going about the decision making process of what gets
included.

For more discussion, see the topic on the Meteor Forums:
https://forums.meteor.com/t/custom-meteor-release/13736/6

Examples

Basic Usage

The idea is that a distro maintainer wants to run something like the following command:

meteor publish-release clinical.meteor.rc6.json

Which will then allow users of the distro to run this:

meteor run --release clinical:METEOR@1.1.3-rc6

Release Manifest

A release manifest is similar to an NPM package.json file, in that it's primary concern is specify a
list of Atmosphere packages, and providing a bit of metadata about that list of packages. The
basic format looks like this:

{
 "track":"distroname:METEOR",
 "version":"x.y.z",
 "recommended": false,
 "tool": "distroname:meteor-tool@x.y.z",
 "description": "Description of the Distro",
 "packages": {
 "accounts-base":"1.2.0",
 "accounts-password":"1.1.1",

https://riptutorial.com/ 131

https://forums.meteor.com/t/custom-meteor-release/13736/6

 ...
 }
}

Customizing the Meteor Tool

If you need to extend the meteor tool or the command line, you'll need to create and publish your
own meteor-tool package. Ronen's documentation is the best out there for this process:

http://practicalmeteor.com/using-meteor-publish-release-to-extend-the-meteor-command-line-
tool/1

It's easy to get a meteor helloworld command working, but after that, I felt it was easier to just
create a separate node app to test out commands. Which is how StarryNight came about. It's
something of a staging ground and scratchpad for commands before trying to put them into a
version of the meteor-tool.

Extracting a Release Manifest from .meteor/versions

StarryNight contains a small utility that parses an application's .meteor/versions file, and converts it
into a Release Manifest.

npm install -g starrynight
cd myapp
starrynight generate-release-json

If you don't wish to use StarryNight, simply copy the contents of your .meteor/versions file into the
packages field of your manifest file. Be sure to convert to JSON syntax and add colons and quotes.

Displaying the Release Manifest for a Specific Release

meteor show --ejson METEOR@1.2.1

Publishing a Release From Checkout

meteor publish-release --from-checkout

Fetching the Latest Commits for Each Package in a Release

When building a custom release track, it's common to keep packages in the /packages directory as
git submodules. The following command allows you to fetch all of the latest commits for the
submodules in your /packages directory at the same time.

git submodule foreach git pull origin master

Read Publishing A Release Track online: https://riptutorial.com/meteor/topic/4201/publishing-a-
release-track

https://riptutorial.com/ 132

http://practicalmeteor.com/using-meteor-publish-release-to-extend-the-meteor-command-line-tool/1
http://practicalmeteor.com/using-meteor-publish-release-to-extend-the-meteor-command-line-tool/1
https://riptutorial.com/meteor/topic/4201/publishing-a-release-track
https://riptutorial.com/meteor/topic/4201/publishing-a-release-track

Chapter 40: Publishing Data

Remarks

Within Meteor's data subsystem, a server publication and its corresponding client subscriptions
are the main mechanisms of reactive, live data transport where the underlying data is constantly
synchronized between the server and the client.

Examples

Basic Subscription and Publication

First, remove autopublish. autopublish automatically publishes the entire database to the client-
side, and so the effects of publications and subscriptions cannot be seen.

To remove autopublish:

$ meteor remove autopublish

Then you can create publications. Below is a full example.

import { Mongo } from 'meteor/mongo';
import { Meteor } from 'meteor/meteor';

const Todos = new Mongo.Collection('todos');

const TODOS = [
 { title: 'Create documentation' },
 { title: 'Submit to Stack Overflow' }
];

if (Meteor.isServer) {
 Meteor.startup(function () {
 TODOS.forEach(todo => {
 Todos.upsert(
 { title: todo.title },
 { $setOnInsert: todo }
);
 });
 });

 // first parameter is a name.
 Meteor.publish('todos', function () {
 return Todos.find();
 });
}

if (Meteor.isClient) {
 // subscribe by name to the publication.
 Meteor.startup(function () {
 Meteor.subscribe('todos');
 })

https://riptutorial.com/ 133

}

Global publications

A global publication does not possess a name and does not require a subscription from the
connected client and therefore it is available to the connected client as soon as the client connects
to the server.

To achieve this, one simply names the publication as null like so

Meteor.publish(null, function() {
 return SomeCollection.find();
})

Named publications

A named publication is one that possesses a name and needs to be explicitly subscribed to from
the client.

Consider this server side code:

Meteor.publish('somePublication', function() {
 return SomeCollection.find()
})

The client needs to request it by:

Meteor.subscribe('somePublication')

Template scoped subscriptions

Meteor's default templating system Spacebars and its underlying rendering subsystem Blaze
integrate seemlessly with publication lifecycle methods such that a simple piece of template code
can subscribe to its own data, stop and clean up its own traces during the template tear down.

In order to tap into this, one needs to subscribe on the template instance, rather than the Meteor
symbol like so:

First set up the template

<template name="myTemplate">
 We will use some data from a publication here
</template>

Then tap into the corresponding lifecycle callback

Template.myTemplate.onCreated(function() {
 const templateInstance = this;
 templateInstance.subscribe('somePublication')

https://riptutorial.com/ 134

})

Now when this template gets destroyed, the publication will also be stopped automatically.

Note: The data that is subscribed to will be available to all templates.

Publish into an ephemeral client-side named collection.

For if you have to fine-tune what is published.

import { Mongo } from 'meteor/mongo';
import { Meteor } from 'meteor/meteor';
import { Random } from 'meteor/random';

if (Meteor.isClient) {
 // established this collection on the client only.
 // a name is required (first parameter) and this is not persisted on the server.
 const Messages = new Mongo.Collection('messages');
 Meteor.startup(function () {
 Meteor.subscribe('messages');
 Messages.find().observe({
 added: function (message) {
 console.log('Received a new message at ' + message.timestamp);
 }
 });
 })
}

if (Meteor.isServer) {
 // this will add a new message every 5 seconds.
 Meteor.publish('messages', function () {
 const interval = Meteor.setInterval(() => {
 this.added('messages', Random.id(), {
 message: '5 seconds have passed',
 timestamp: new Date()
 })
 }, 5000);
 this.added('messages', Random.id(), {
 message: 'First message',
 timestamp: new Date()
 });
 this.onStop(() => Meteor.clearInterval(interval));
 });
}

Creating and responding to an error on a publication.

On the server, you can create a publication like this. this.userId is the id of the user who is
currently logged in. If no user is logged in, you might want to throw an error and respond to it.

import Secrets from '/imports/collections/Secrets';

Meteor.publish('protected_data', function () {
 if (!this.userId) {
 this.error(new Meteor.Error(403, "Not Logged In."));
 this.ready();

https://riptutorial.com/ 135

 } else {
 return Secrets.find();
 }
});

On the client, you can respond with the following.

Meteor.subscribe('protected_data', {
 onError(err) {
 if (err.error === 403) {
 alert("Looks like you're not logged in");
 }
 },
});

File /imports/collections/Secrets creates reference to the secrets collection as below:

const Secrets = new Mongo.Collection('secrets');

Reactively re-subscribing to a publication

A template autorun may be used to (re)subscribe to a publication. It establishes a reactive context
which is re-executed whenever any reactive data it depends on changes. In addition, an autorun
always runs once (the first time it is executed).

Template autoruns are normally put in an onCreated method.

Template.myTemplate.onCreated(function() {
 this.parameter = new ReactiveVar();
 this.autorun(() => {
 this.subscribe('myPublication', this.parameter.get());
 });
});

This will run once (the first time) and set up a subscription. It will then re-run whenever the
parameter reactive variable changes.

Wait in the Blaze view while published data is being fetched

Template JS code

Template.templateName.onCreated(function(){
 this.subscribe('subsription1');
 this.subscribe('subscription2');
});

Template HTML code

<template name="templateName">
 {{#if Template.subscriptionsReady }}
 //your actual view with data. it can be plain HTML or another template

https://riptutorial.com/ 136

 {{else}}
 //you can use any loader or a simple header
 <h2> Please wait ... </h2>
 {{/if}}
</template>

Validating User Account On Publish

Sometimes it's a good idea to further secure your publishes by requiring a user login. Here is how
you achieve this via Meteor.

import { Recipes } from '../imports/api/recipes.js';
import { Meteor } from 'meteor/meteor';

Meteor.publish('recipes', function() {
 if(this.userId) {
 return Recipe.find({});
 } else {
 this.ready(); // or: return [];
 }
});

Publish multiple cursors

Multiple database cursors can be published from the same publication method by returning an
array of cursors.

The "children" cursors will be treated as joins and will not be reactive.

Meteor.publish('USER_THREAD', function(postId) {
 let userId = this.userId;

 let comments = Comments.find({ userId, postId });
 let replies = Replies.find({ userId, postId });

 return [comments, replies];
});

Simulate delay in publications

In real world, connection and server delays could occur, to simulate delays in development
environment Meteor._sleepForMs(ms); could be used

Meteor.publish('USER_DATA', function() {
 Meteor._sleepForMs(3000); // Simulate 3 seconds delay
 return Meteor.users.find({});
});

Merging Publications

Publications can be merged on the client, resulting in differently shaped documents within a single

https://riptutorial.com/ 137

cursor. The following example represents how a user directory might publish a minimal amount of
public data for users of an app, and provide a more detailed profile for the logged in user.

// client/subscriptions.js
Meteor.subscribe('usersDirectory');
Meteor.subscribe('userProfile', Meteor.userId());

// server/publications.js
// Publish users directory and user profile

Meteor.publish("usersDirectory", function (userId) {
 return Meteor.users.find({}, {fields: {
 '_id': true,
 'username': true,
 'emails': true,
 'emails[0].address': true,

 // available to everybody
 'profile': true,
 'profile.name': true,
 'profile.avatar': true,
 'profile.role': true
 }});
});
Meteor.publish('userProfile', function (userId) {
 return Meteor.users.find({_id: this.userId}, {fields: {
 '_id': true,
 'username': true,
 'emails': true,
 'emails[0].address': true,

 'profile': true,
 'profile.name': true,
 'profile.avatar': true,
 'profile.role': true,

 // privately accessible items, only availble to the user logged in
 'profile.visibility': true,
 'profile.socialsecurity': true,
 'profile.age': true,
 'profile.dateofbirth': true,
 'profile.zip': true,
 'profile.workphone': true,
 'profile.homephone': true,
 'profile.mobilephone': true,
 'profile.applicantType': true
 }});
});

Read Publishing Data online: https://riptutorial.com/meteor/topic/1323/publishing-data

https://riptutorial.com/ 138

https://riptutorial.com/meteor/topic/1323/publishing-data

Chapter 41: Reactive (Vars & Dictionaries)

Examples

Reactive Query

Example code :

In main.html

<template name="test">
 <input type="checkbox" id="checkbox1" name="name" value="data">Check Me
 {{showData}}
</template>

In Main.js

 var check_status='';
 //Reactive Var Initialization
 Template.main.onCreated(function (){
 check_status=new ReactiveVar({});

 });

 Template.main.helpers({
 showData : function(){
 return Collection.find(check_status.get());
 }
 });

 Template.main.events({
 "change #checkbox1" : function(){
 check_status.set({field: 'data'});
 }
 });

Explanation:

When we initialize the reactive var check_status we set the value equal to {}. In the helper, at the
time of rendering, the same data is passed to the query Collection.find(check_status.get()) which
is as good as show all data.

As soon as you click on the checkbox, the event described in the Template.main.events is triggered
which sets the value of check_status to {field: data}. Since, this is a reactive var, the showData
template is re run and this time the query is Collection.find({field: data}), so only fields, where
field matched 'data' is returned.

You will need to add the reactive var package(meteor add reactive-var) before using this
commands.

Read Reactive (Vars & Dictionaries) online: https://riptutorial.com/meteor/topic/6535/reactive--

https://riptutorial.com/ 139

https://riptutorial.com/meteor/topic/6535/reactive--vars---dictionaries-

vars---dictionaries-

https://riptutorial.com/ 140

https://riptutorial.com/meteor/topic/6535/reactive--vars---dictionaries-

Chapter 42: Replica Sets and Sharding

Remarks

For those not familiar, a Replica Set is defined as a redundant configuration of three servers. A
Sharded Database is defined as a horizintally scalled database, where each Shard is defined as a
Replica Set. Therefore, a sharded Mongo cluster involves a minimum of 11 servers for a 2 shard
cluster, and increases by three servers for each additional shard. So, a sharded cluster always
has 11, 14, 17, 20, 23, etc server instances. That is, there's 2 shards of 3 servers each, 3 more
config controllers, and 2 routers. 11 servers total for a 2 shard cluster.

Examples

Replica Set Quickstart

Build yourself three servers using whatever physical or virtual hardware you wish. (This tutorial
assumes you're using Ubuntu as your operating system.) Then repeat the following instructions
three times... once for each server.

add the names of each server to the host file of each server
sudo nano /etc/hosts
 10.123.10.101 mongo-a
 10.123.10.102 mongo-b
 10.123.10.103 mongo-c

install mongodb on the server
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee
/etc/apt/sources.list.d/mongodb.list
sudo apt-get update
sudo apt-get install mongodb-10gen

create the /data/ directories
sudo mkdir /data
sudo mkdir /data/logs
sudo mkdir /data/db

make sure the mongodb user and group have access to our custom directories
sudo chown -R mongodb:mongodb /data

edit the mongo upstart file in /etc/init/mongodb.conf
sudo nano /etc/init/mongodb.conf
 start on started mountall
 stop on shutdown
 respawn
 respawn limit 99 5
 setuid mongodb
 setgid mongodb
 script
 exec /usr/bin/mongod --config /etc/mongodb.conf >> /data/logs/mongo-a.log 2>&1
 end script

https://riptutorial.com/ 141

edit mongodb configuration file
sudo nano /etc/mongodb.conf
 dbpath=/data/db
 logpath=/data/logs/mongod.log
 logappend=true
 port=27017
 noauth=true
 replSet=meteor
 fork=true

add a mongo log-rotation file
sudo nano /etc/logrotate.d/mongod
 /data/logs/*.log {
 daily
 rotate 30
 compress
 dateext
 missingok
 notifempty
 sharedscripts
 copytruncate
 postrotate
 /bin/kill -SIGUSR1 `cat /data/db/mongod.lock 2> /dev/null` 2> /dev/null || true
 endscript
 }

make sure mongod service is started and running
sudo service mongodb start
sudo reboot

Replica Set Configuration

Then go into the mongo shell and initiate the replica set, like so:

meteor mongo

 > rs.initiate()
 PRIMARY> rs.add("mongo-a")
 PRIMARY> rs.add("mongo-b")
 PRIMARY> rs.add("mongo-c")
 PRIMARY> rs.setReadPref('secondaryPreferred')

Read Replica Sets and Sharding online: https://riptutorial.com/meteor/topic/4332/replica-sets-and-
sharding

https://riptutorial.com/ 142

https://riptutorial.com/meteor/topic/4332/replica-sets-and-sharding
https://riptutorial.com/meteor/topic/4332/replica-sets-and-sharding

Chapter 43: Retrieving data from a
Meteor.call

Examples

The basics of Meteor.call

Meteor.call(name, [arg1, arg2...], [asyncCallback])

(1) name String
(2) Name of method to invoke
(3) arg1, arg2... EJSON-able Object [Optional]
(4) asyncCallback Function [Optional]

On one hand, you can do : (via Session variable, or via ReactiveVar)

 var syncCall = Meteor.call("mymethod") // Sync call

It mean if you do something like this, server side you will do :

 Meteor.methods({
 mymethod: function() {
 let asyncToSync = Meteor.wrapAsync(asynchronousCall);
 // do something with the result;
 return asyncToSync;
 }
 });

On the other hand, sometimes you will want to keep it via the result of the callback ?

Client side :

Meteor.call("mymethod", argumentObjectorString, function (error, result) {
 if (error) Session.set("result", error);
 else Session.set("result",result);
}
Session.get("result") -> will contain the result or the error;

//Session variable come with a tracker that trigger whenever a new value is set to the session
variable. \ same behavior using ReactiveVar

Server side

Meteor.methods({
 mymethod: function(ObjectorString) {
 if (true) {
 return true;
 } else {

https://riptutorial.com/ 143

 throw new Meteor.Error("TitleOfError", "ReasonAndMessageOfError"); // This will
and up in the error parameter of the Meteor.call
 }
 }
});

The purpose here is to show that Meteor propose various way to communicate between the Client
and the Server.

Using Session variable

Server side

Meteor.methods({
 getData() {
 return 'Hello, world!';
 }
});

Client side

<template name="someData">
 {{#if someData}}
 <p>{{someData}}</p>
 {{else}}
 <p>Loading...</p>
 {{/if}}
</template>

Template.someData.onCreated(function() {
 Meteor.call('getData', function(err, res) {
 Session.set('someData', res);
 });
});

Template.someData.helpers({
 someData: function() {
 return Session.get('someData');
 }
});

Using ReactiveVar

Server side

Meteor.methods({
 getData() {
 return 'Hello, world!';
 }
});

https://riptutorial.com/ 144

Client side

<template name="someData">
 {{#if someData}}
 <p>{{someData}}</p>
 {{else}}
 <p>Loading...</p>
 {{/if}}
</template>

Template.someData.onCreated(function() {

 this.someData = new ReactiveVar();

 Meteor.call('getData', (err, res) => {
 this.someData.set(res);
 });
});

Template.someData.helpers({
 someData: function() {
 return Template.instance().someData.get();
 }
});

reactive-var package required. To add it run meteor add reactive-var.

Read Retrieving data from a Meteor.call online: https://riptutorial.com/meteor/topic/3068/retrieving-
data-from-a-meteor-call

https://riptutorial.com/ 145

https://riptutorial.com/meteor/topic/3068/retrieving-data-from-a-meteor-call
https://riptutorial.com/meteor/topic/3068/retrieving-data-from-a-meteor-call

Chapter 44: Routing

Examples

Routing with Iron Router

Install Iron Router

From the terminal:

meteor add iron:router

Basic configuration

Router.configure({
 //Any template in your routes will render to the {{> yield}} you put inside your layout
template
 layoutTemplate: 'layout',
 loadingTemplate: 'loading'
});

Render without data

//this is equal to home page
Router.route('/', function (){
 this.render('home')
});

Router.route('/some-route', function () {
 this.render('template-name');
});

Render with data and parameters

Router.route('/items/:_id', function () {
 this.render('itemPage', {
 data: function() {
 return Items.findOne({_id: this.params._id})
 }
 });
});

Render to a secondary yield

Router.route('/one-route/route', function() {
 //template 'oneTemplate' has {{> yield 'secondary'}} in HTML
 this.render('oneTemplate');

 //this yields to the secondary place
 this.render('anotherTemplate', {
 to: 'secondary'

https://riptutorial.com/ 146

https://github.com/iron-meteor/iron-router

 });

 //note that you can write a route for '/one-route'
 //then another for '/one-route/route' which will function exactly like above.
});

Subscribe and wait for data before rendering template

Router.route('/waiting-first', {
 waitOn: function() {
 //subscribes to a publication
 //shows loading template until subscription is ready
 return Meteor.subscribe('somePublication')
 },

 action: function() {
 //render like above examples
 }
});

Subscribe to multiple publications and wait for data before rendering template

Router.route('/waiting-first', {
 waitOn: function() {
 //subscribes to a publication
 //shows loading template until subscription is ready
 return [Meteor.subscribe('somePublication1'),Meteor.subscribe('somePublication2')];
 },

 action: function() {
 //render like above examples
 }
});

Guide for Iron Router: http://iron-meteor.github.io/iron-router/

With FlowRouter

FlowRouter is more modular compared to Iron Router.

Install FlowRouter

meteor add kadira:flow-router

Rendering a template

In particular, you must manually add a layout rendering package to link with your rendering
engine:

Blaze Layout for Blaze: meteor add kadira:blaze-layout•

https://riptutorial.com/ 147

http://iron-meteor.github.io/iron-router/
https://github.com/kadirahq/flow-router
https://github.com/kadirahq/blaze-layout

React Layout for React: meteor add kadira:react-layout•

Then you can render through dynamic templating (in the case of Blaze):

<template name="mainLayout">
 {{> Template.dynamic template=area}}
</template>

FlowRouter.route('/blog/:postId', {
 action: function (params) {
 BlazeLayout.render("mainLayout", {
 area: "blog"
 });
 }
});

Rendering a template with parameters and/or
query

The parameters are specified on the route, like with Iron Router:

FlowRouter.route("/blog/:catId/:postId", {
 name: "blogPostRoute",
 action: function (params) {
 //...
 }
})

But the parameters are not passed as data context to the child template. Instead, the child
template must read them:

// url: /blog/travel/france?showcomments=yes
var catId = FlowRouter.getParam("catId"); // returns "travel"
var postId = FlowRouter.getParam("postId"); // returns "france"

var color = FlowRouter.getQueryParam("showcomments"); // returns "yes"

Read Routing online: https://riptutorial.com/meteor/topic/5119/routing

https://riptutorial.com/ 148

https://github.com/kadirahq/meteor-react-layout
https://riptutorial.com/meteor/topic/5119/routing

Chapter 45: Use Private Meteor Packages on
Codeship

Remarks

Note that we did not discuss how to use & develop your local packages. There are several ways, I
suggest to use the PACKAGE_DIRS environment variable described by David Weldon on his website.

Examples

Install MGP

We make use of Dispatches great Meteor Github Packages (mgp) package:

npm install --save mgp

Then, add the following command to your package.json scripts:

"mgp": "mgp"

Create a file named git-packages.json in your project root. Add a config for every (private) Meteor
Github package that your project depends on:

{
 "my:yet-another-private-package": {
 "git": "git@github.com:my/private-packages.git",
 "branch": "dev"
 }
}

More information about how to configure your private packages can be found on the projects
Github repo.

Configure Codeship to Install Private Github Packages

Append the following command to the Codeship setup commands:

meteor npm run mgp

Now, we need to give Codeship access to these private repositories. There is a Codeship
documentation article describing this process in detail but here are the steps that you have to take
for Github:

Create a new Github account. A so called Machine user.•
Remove the deploy key from your repo under test. Here: •

https://riptutorial.com/ 149

https://dweldon.silvrback.com/local-packages
https://github.com/DispatchMe/mgp
https://github.com/DispatchMe/mgp
https://github.com/DispatchMe/mgp
https://documentation.codeship.com/faq/access-to-other-repositories-fails-during-build/
https://documentation.codeship.com/faq/access-to-other-repositories-fails-during-build/
https://developer.github.com/guides/managing-deploy-keys/#machine-users

https://github.com/YOUR_USERNAME/REPO_UNDER_TEST/settings/keys
Grab the SSH public key from your codeship projects settings. Somewhere here:
https://codeship.com/projects/PROJECT_NUMBER/configure

•

Add this SSH public key to your machine user's SSH keys: https://github.com/settings/keys•
Give this machine user access to all your referenced repositories•

It should be similar for BitBucket and others.

Read Use Private Meteor Packages on Codeship online:
https://riptutorial.com/meteor/topic/6742/use-private-meteor-packages-on-codeship

https://riptutorial.com/ 150

https://github.com/YOUR_USERNAME/REPO_UNDER_TEST/settings/keys
https://codeship.com/projects/PROJECT_NUMBER/configure
https://github.com/settings/keys
https://riptutorial.com/meteor/topic/6742/use-private-meteor-packages-on-codeship

Chapter 46: Using Meteor with a Proxy Server

Examples

Using the `HTTP[S]_PROXY` env var

This page describes how to use the Meteor command-line tool (for example, when downloading
packages, deploying your app, etc) behind a proxy server.

Like a lot of other command-line software, the Meteor tool reads the proxy configuration from the
HTTP_PROXY and HTTPS_PROXY environment variables (the lower case variants work, too). Examples of
running Meteor behind a proxy:

on Linux or Mac OS X•

export HTTP_PROXY=http://user:password@1.2.3.4:5678
export HTTPS_PROXY=http://user:password@1.2.3.4:5678
meteor update

on Windows•

SET HTTP_PROXY=http://user:password@1.2.3.4:5678
SET HTTPS_PROXY=http://user:password@1.2.3.4:5678
meteor update

Setting Up a Proxy Tier

Deploy Meteor App to Ubuntu with Nginx Proxy•

How to Create an SSL Certificate on Nginx for Ubuntu 14•

How to Deploy a Meteor JS App on Ubuntu with Nginx•

How to Install an SSL Certificate from a Commercial Certificate Authority•

NameCheap SSL Certificates•

Read Using Meteor with a Proxy Server online: https://riptutorial.com/meteor/topic/517/using-
meteor-with-a-proxy-server

https://riptutorial.com/ 151

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-meteor-js-application-on-ubuntu-14-04-with-nginx
https://www.digitalocean.com/community/tutorials/how-to-create-an-ssl-certificate-on-nginx-for-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-deploy-a-meteor-js-application-on-ubuntu-14-04-with-nginx
https://www.digitalocean.com/community/tutorials/how-to-install-an-ssl-certificate-from-a-commercial-certificate-authority
https://www.namecheap.com/security/ssl-certificates/
https://riptutorial.com/meteor/topic/517/using-meteor-with-a-proxy-server
https://riptutorial.com/meteor/topic/517/using-meteor-with-a-proxy-server

Chapter 47: Using Polymer with Meteor

Examples

Using differential:vulcanize

In the root of your project, make sure Bower is installed (npm install -g bower) and run bower init.
This will create a bower.json file in your project's directory.

Create a new file called .bowerrc to your root directory. It should contain the following:

{
 "directory": "public/bower_components"
}

This lets Bower know that it should save components in the bower_components folder in your app's
public directory.

Now add the Polymer components you wish to use with your app.

In your app's root directory bower-install each component you want to use.

bower install --save PolymerElements/paper-button#^1.0.0 PolymerElements/paper-checkbox#^1.0.0

Add Vulcanize to your project

Meteor add differential:vulcanize

Create a new file called config.vulcanize in the root of your project. It should contain the following:

{
 "polyfill": "/bower_components/webcomponentsjs/webcomponents.min.js",
 "useShadowDom": true, // optional, defaults to shady dom (polymer default)
 "imports": [
 "/bower_components/paper-button/paper-button.html",
 "/bower_components/paper-checkbox/paper-checkbox.html"
]
}

"imports" should list each component you will use in your app.

You can now use components you have imported in your Blaze templates just as you would any
other element:

<template name="example">
 <div>
 this is a material design button: <paper-button></paper-button>
 this is a material design checkbox: <paper-checkbox></paper-checkbox>
 </div>

https://riptutorial.com/ 152

https://github.com/Differential/meteor-vulcanize

</template>

Read Using Polymer with Meteor online: https://riptutorial.com/meteor/topic/4598/using-polymer-
with-meteor

https://riptutorial.com/ 153

https://riptutorial.com/meteor/topic/4598/using-polymer-with-meteor
https://riptutorial.com/meteor/topic/4598/using-polymer-with-meteor

Chapter 48: Wrapping asynchronous
methods into a Fiber for synchronous
execution.

Syntax

Meteor.wrapAsync(func, [context])1.

Parameters

Parameters Details

func: Function
An asynchronous/synchronous function to be wrapped in a Fiber that
takes a callback w/ parameters (error, result).

context: Any
(optional)

A data context in which the function gets executed upon.

Remarks

An asynchronously wrapped function may still be ran asynchronously if a callback with parameters
(error, result) => {} is given as a parameter to the wrapped function.

The incorporation of Meteor.wrapAsync allows for code ridden with callbacks to be simplified given
that callbacks can now be neglected in compensation for making the call block its present Fiber.

To understand how Fibers work, read here: https://www.npmjs.com/package/fibers.

Examples

Synchronously executing asynchronous NPM methods w/ callbacks.

This example wraps the asynchronous method oauth2.client.getToken(callback) from the package
NPM package simple-oauth2into a Fiber so that the method may be called synchronously.

const oauth2 = require('simple-oauth2')(credentials);

const credentials = {
 clientID: '#####',
 clientSecret: '#####',
 site: "API Endpoint Here."
};

https://riptutorial.com/ 154

https://www.npmjs.com/package/fibers

Meteor.startup(() => {
 let token = Meteor.wrapAsync(oauth2.client.getToken)({});
 if (token) {
 let headers = {
 'Content-Type': "application/json",
 'Authorization': `Bearer ${token.access_token}`
 }

 // Make use of requested OAuth2 Token Here (Meteor HTTP.get).
 }
});

Read Wrapping asynchronous methods into a Fiber for synchronous execution. online:
https://riptutorial.com/meteor/topic/2530/wrapping-asynchronous-methods-into-a-fiber-for-
synchronous-execution-

https://riptutorial.com/ 155

https://riptutorial.com/meteor/topic/2530/wrapping-asynchronous-methods-into-a-fiber-for-synchronous-execution-
https://riptutorial.com/meteor/topic/2530/wrapping-asynchronous-methods-into-a-fiber-for-synchronous-execution-

Credits

S.
No

Chapters Contributors

1
Getting started with
meteor

Ankit, Christian Fritz, Community, Gal Dreiman, ghybs, grahan,
hwillson, João Rodrigues, levon, Matthias Eckhart, mav,
mertyildiran, Ray, reoh, robfallows, Tom Coleman, Zoltan Olah

2
Acceptance Testing
(with Nightwatch)

AbigailW

3
Accessing Meteor
build machines from
Windows

Tom Coleman

4 Assets Matthias Eckhart

5 Background tasks Filipe Névola

6
Basic Codeship
Setup for Automated
Testing

schmidsi

7
Beginner guide to
Installing Meteor 1.4
on AWS EC2

AGdev

8 Blaze Templating
Dan Cramer, distalx, ghybs, jordanwillis, khem poudel,
RamenChef, robfallows, Thomas Gerot

9
Blaze User Interface
Recipes (Bootstrap;
No jQuery)

AbigailW, Anis D

10

Continuous
Deployment to
Galaxy from
Codeship

schmidsi

11

Continuous
Integration & Device
Clouds (with
Nightwatch)

4444, AbigailW

12 Debugging AbigailW, distalx

https://riptutorial.com/ 156

https://riptutorial.com/contributor/3712344/ankit
https://riptutorial.com/contributor/1087119/christian-fritz
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/4454752/grahan
https://riptutorial.com/contributor/6621877/hwillson
https://riptutorial.com/contributor/8108633/joao-rodrigues
https://riptutorial.com/contributor/3742690/levon
https://riptutorial.com/contributor/5107545/matthias-eckhart
https://riptutorial.com/contributor/366364/mav
https://riptutorial.com/contributor/2104879/mertyildiran
https://riptutorial.com/contributor/4887159/ray
https://riptutorial.com/contributor/2509364/reoh
https://riptutorial.com/contributor/3771200/robfallows
https://riptutorial.com/contributor/670639/tom-coleman
https://riptutorial.com/contributor/6015268/zoltan-olah
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/670639/tom-coleman
https://riptutorial.com/contributor/5107545/matthias-eckhart
https://riptutorial.com/contributor/3002187/filipe-nevola
https://riptutorial.com/contributor/589095/schmidsi
https://riptutorial.com/contributor/5479224/agdev
https://riptutorial.com/contributor/3274/dan-cramer
https://riptutorial.com/contributor/5204481/distalx
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/7581592/jordanwillis
https://riptutorial.com/contributor/5053555/khem-poudel
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3771200/robfallows
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3175494/anis-d
https://riptutorial.com/contributor/589095/schmidsi
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/5204481/distalx

13
Deployment with
Upstart

AbigailW, ghybs

14 Development Tools AbigailW, Ankit, Ankit Balyan, Fermuch, Ilya Lyamkin

15 Directory Structure
AbigailW, anomepani, ghybs, Michael Balmes, Nick Carson,
Phe0nix, reoh, Thomas Gerot

16
Electrify - Compiling
Meteor as a Locally
Installable App

AbigailW, JuanGesino, Nick Bull, RamenChef

17
Environment
Detection

AbigailW, ghybs

18
Environment
Variables

AbigailW, hcvst

19
ES2015 modules
(Import & Export)

reoh

20 ESLint saimeunt

21 File Uploading AbigailW

22
Full Installation - Mac
OSX

AbigailW, RamenChef

23 Horizontal Scaling AbigailW

24
Integration of 3rd
Party APIs

AbigailW

25 Logging AbigailW

26 Meteor + React
AbigailW, aedm, corvid, ghybs, RamenChef, Teagan Atwater,
zliw

27
Meteor + React +
ReactRouter

rafahoro

28
Meteor User
Accounts

Barry Michael Doyle, KrisVos130

29 Mobile Apps AbigailW, Anis D, Antti Haapala, ghybs

30 Mongo Collections AbigailW

31
Mongo Database
Management

AbigailW, distalx, RamenChef, TechplexEngineer

https://riptutorial.com/ 157

https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3712344/ankit
https://riptutorial.com/contributor/3218618/ankit-balyan
https://riptutorial.com/contributor/1151683/fermuch
https://riptutorial.com/contributor/5688541/ilya-lyamkin
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/2000410/anomepani
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/1472469/michael-balmes
https://riptutorial.com/contributor/8172375/nick-carson
https://riptutorial.com/contributor/3535608/phe0nix
https://riptutorial.com/contributor/2509364/reoh
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3342311/juangesino
https://riptutorial.com/contributor/2483271/nick-bull
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/149268/hcvst
https://riptutorial.com/contributor/2509364/reoh
https://riptutorial.com/contributor/2530970/saimeunt
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/1043137/aedm
https://riptutorial.com/contributor/1150599/corvid
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5103231/teagan-atwater
https://riptutorial.com/contributor/3787580/zliw
https://riptutorial.com/contributor/2084731/rafahoro
https://riptutorial.com/contributor/2111515/barry-michael-doyle
https://riptutorial.com/contributor/4670703/krisvos130
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3175494/anis-d
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/5204481/distalx
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/429544/techplexengineer

32
Mongo Schema
Migrations

AbigailW

33 MongoDB
distalx, Dranithix, hwillson, Matthias Eckhart, robfallows,
Thomas Gerot

34
MongoDB
Aggregation

AbigailW, levon

35
Nightwatch -
Configuration &
Setup

AbigailW

36 Node/NPM hwillson

37 Offline Apps AbigailW

38 Performance Tuning AbigailW, RamenChef, reoh

39
Publishing A
Release Track

AbigailW

40 Publishing Data

Abdelrahman Elkady, AbigailW, Chris Pena, corvid, Dair,
dangsonbk, Eliezer Steinbock, Faysal Ahmed, ghybs, j6m8,
Maciek, RamenChef, Ramil Muratov, robfallows, Serkan
Durusoy

41
Reactive (Vars &
Dictionaries)

Ankit

42
Replica Sets and
Sharding

AbigailW, Anis D

43
Retrieving data from
a Meteor.call

Ramil Muratov, Rolljee, Sacha

44 Routing Ankit, ghybs, Luna, Michael Balmes

45
Use Private Meteor
Packages on
Codeship

schmidsi

46
Using Meteor with a
Proxy Server

AbigailW, Serkan Durusoy, Tom Coleman

47
Using Polymer with
Meteor

Thaum Rystra

Wrapping
asynchronous

48 Dranithix

https://riptutorial.com/ 158

https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/5204481/distalx
https://riptutorial.com/contributor/4589486/dranithix
https://riptutorial.com/contributor/6621877/hwillson
https://riptutorial.com/contributor/5107545/matthias-eckhart
https://riptutorial.com/contributor/3771200/robfallows
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3742690/levon
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/6621877/hwillson
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2509364/reoh
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3357910/abdelrahman-elkady
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/2903590/chris-pena
https://riptutorial.com/contributor/1150599/corvid
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/2964364/dangsonbk
https://riptutorial.com/contributor/2602771/eliezer-steinbock
https://riptutorial.com/contributor/1652667/faysal-ahmed
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/979255/j6m8
https://riptutorial.com/contributor/3129410/maciek
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1904974/ramil-muratov
https://riptutorial.com/contributor/3771200/robfallows
https://riptutorial.com/contributor/1064151/serkan-durusoy
https://riptutorial.com/contributor/1064151/serkan-durusoy
https://riptutorial.com/contributor/3712344/ankit
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/3175494/anis-d
https://riptutorial.com/contributor/1904974/ramil-muratov
https://riptutorial.com/contributor/5595500/rolljee
https://riptutorial.com/contributor/649299/sacha
https://riptutorial.com/contributor/3712344/ankit
https://riptutorial.com/contributor/5108796/ghybs
https://riptutorial.com/contributor/3669687/luna
https://riptutorial.com/contributor/1472469/michael-balmes
https://riptutorial.com/contributor/589095/schmidsi
https://riptutorial.com/contributor/941599/abigailw
https://riptutorial.com/contributor/1064151/serkan-durusoy
https://riptutorial.com/contributor/670639/tom-coleman
https://riptutorial.com/contributor/3828685/thaum-rystra
https://riptutorial.com/contributor/4589486/dranithix

methods into a Fiber
for synchronous
execution.

https://riptutorial.com/ 159

	About
	Chapter 1: Getting started with meteor
	Remarks
	Versions
	Examples
	Getting Started

	Install Meteor
	On OS X and Linux
	On Windows

	Create your app
	Run it
	Sample apps
	Managing Packages
	Understanding build progress
	Linux/OSX Example
	Windows Example
	Checking the Version of the Meteor Tool & Meteor Projects

	Meteor Tool
	Meteor Projects
	Meteor Website
	Updating Meteor Projects & Installed Packages
	Build Mobile Apps

	Chapter 2: Acceptance Testing (with Nightwatch)
	Remarks
	Examples
	App Surface Area
	Custom Commands
	Inspecting Meteor Objects on the Client
	Forms & Input Types
	Components & Page Objects

	Chapter 3: Accessing Meteor build machines from Windows
	Remarks
	Examples
	Using PuTTY (Advanced)
	Using Cygwin (Unix tools on Windows)

	Chapter 4: Assets
	Examples
	Accessing Assets on the Server

	Text files
	Binary files
	Chapter 5: Background tasks
	Remarks
	Examples
	Simple cron

	Chapter 6: Basic Codeship Setup for Automated Testing
	Examples
	Setup Codeship
	Prepare the Project

	Chapter 7: Beginner guide to Installing Meteor 1.4 on AWS EC2
	Examples
	Signup for AWS Service

	Chapter 8: Blaze Templating
	Introduction
	Examples
	Populate a template from a method call
	Data context of a template
	Template Helpers

	Chapter 9: Blaze User Interface Recipes (Bootstrap; No jQuery)
	Remarks
	Examples
	Drop Down Menu
	Navbars
	Modals
	Tagging
	Alerts and Errors
	Tabbed Workflow

	Chapter 10: Continuous Deployment to Galaxy from Codeship
	Remarks
	Examples
	Setup

	Chapter 11: Continuous Integration & Device Clouds (with Nightwatch)
	Remarks
	Examples
	Travis
	Circle
	SauceLabs
	BrowserStack

	Chapter 12: Debugging
	Examples
	Browser Debuggers
	Add Debugger Breakpoints to your App
	Server Side Debugging with Node Inspector
	Server Side Debugging with npm debug
	Meteor Shell
	Other Debugging Utilities

	Chapter 13: Deployment with Upstart
	Examples
	Upstart Service
	Copying Files To Your Server Then Build
	Bundle Then Copy To Server
	Writing Your Upstart Script
	Upstart Script For Replica Sets
	Running Your Upstart Script
	Setting up a Server to Host Multiple Meteor Apps

	Chapter 14: Development Tools
	Examples
	Integrated Development Environments
	Database Tools
	Remote Collaboration Utilities for Distributed Developers
	REST Clients
	Debuggers
	Mobile Coding on iOS

	Chapter 15: Directory Structure
	Introduction
	Remarks
	Examples
	Classic Directory Structures
	Package-Only Directory Structure
	Imports/Modules Directory Structure
	Mixed-Mode Directory Structure
	Directory load order

	Chapter 16: Electrify - Compiling Meteor as a Locally Installable App
	Examples
	Installing Electrify for a Meteor application
	Using Electrify on a Meteor Application

	Chapter 17: Environment Detection
	Examples
	Advanced Environment Configurations
	Specifying app parameters with METEOR_SETTINGS
	Environment Detection on the Server
	Client Environment Detection using Meteor Methods
	Client Environment Detection using NODE_ENV

	Chapter 18: Environment Variables
	Parameters
	Examples
	Using Environment Variables with Meteor
	Setting Meteor SMTP server

	Chapter 19: ES2015 modules (Import & Export)
	Remarks
	Examples
	Importing in app modules
	Importing in Meteor packages
	Exporting variables from app modules
	Exporting symbols from Meteor packages

	Chapter 20: ESLint
	Examples
	Adding eslint to your Meteor project
	Using an npm script to lint your code

	Chapter 21: File Uploading
	Remarks
	Examples
	Server/Client
	Dropzone (with iron:router)
	Filepicker.io
	CollectionFS
	Server Uploads

	Chapter 22: Full Installation - Mac OSX
	Examples
	Install Node & NPM
	Meteor Installation Walkthrough
	Mongo Installation
	Other Development Tools

	Chapter 23: Horizontal Scaling
	Examples
	Deploying an Application with Separated Database (MONGO_URL)
	Replica Set Configuration
	Configuring a Replica Set to Use Oplogging
	Oplog Upstart Script
	Sharding

	Chapter 24: Integration of 3rd Party APIs
	Examples
	Basic HTTP Call
	Create A Package For Your API Wrapper
	Create an Atmosphere Package For Your API Wrapper
	Include the API Package in your Application
	Using the API Wrapper Object in your App

	Chapter 25: Logging
	Examples
	Basic Server Side Logging
	Client Side Logging Tools
	Advanced Server Logging Tools
	Logging error on database flap
	Logging info on the data context in a template helper
	Logging events and user interactions
	Logging with log level variables
	Disable Logging in Production
	Winston
	Loglevel

	Chapter 26: Meteor + React
	Remarks
	Examples
	Setup and "Hello World"
	Create reactive container using createContainer
	Displaying a MongoDB collection

	Chapter 27: Meteor + React + ReactRouter
	Introduction
	Examples
	Create the project

	Note:
	Add React + ReactRouter

	Note:
	Step 3- Add Accounts

	Note:
	Add roles

	Note:
	Chapter 28: Meteor User Accounts
	Examples
	Meteor accounts package

	Accounts-password
	Accessing user data
	Other accounts functions
	Don’t use the default profile field

	Chapter 29: Mobile Apps
	Examples
	Page Layout on Different Devices - CSS
	Fixed Sized Windows
	Offline Caching
	Disable Scroll-Bounce
	Multitouch & Gestures
	Create your Icons and Splash Screen Assets
	Meteor Cordova Architecture Pipeline
	IOS Development
	IOS Device Testing
	Configure your Cordova project (config.xml)
	Detecting the deviceready event

	Chapter 30: Mongo Collections
	Remarks
	Examples
	Creating Records in a Legacy Database
	Inserting data into a document
	Getting the _id of the most recently created document
	Timeseries Data
	Filtering with Regexes
	Geospatial Collections - Learning More
	Auditing Collection Queries
	Observers & Worker Functions

	Chapter 31: Mongo Database Management
	Remarks
	Examples
	Analyzing An Inherited Database
	Connect To A Database on *.meteorapp.com
	Download a Database from *.meteor.com
	Export Data from local Meteor development instance?
	Restore Data from a Dumpfile
	Export a Collection to JSON
	Import a JSON File into Meteor
	Copying Data Between Staging and Local Databases
	Compact a Mongo Database on an Ubuntu Box
	Reset a Replica Set
	Connect Remotely to a Mongo Instance on *.meteor.com
	Accessing Mongo Log Files on a Local Meteor Instance
	Rotate Log Files on an Ubuntu Box

	Chapter 32: Mongo Schema Migrations
	Remarks
	Examples
	Add Version Field To All Records in a Collection
	Remove Array From All Records In A Collection
	Rename Collection
	Find Field Containing Specific String
	Create New Field From Old
	Pull Objects Out of an Array and Place in a New Field
	Blob Record From One Collection Into Another Collection (ie. Remove Join & Flatten)
	Make Sure Field Exists
	Make Sure Field has Specific Value
	Remove Record if Specific Field is Specific Value
	Change Specific Value of Field to New Value
	Unset Specific Field to Null
	Convert ObjectId to String
	Convert Field Values from Numbers to Strings
	Convert Field Values from Strings to Numbers
	Create a Timestamp from an ObjectID in the _id Field
	Create an ObjectID from a Date Object
	Find All the Records that Have Items in an Array

	Chapter 33: MongoDB
	Introduction
	Examples
	Export a Remote Mongo DB, Import Into a Local Meteor Mongo DB
	Get the Mongo URL of Your Local Meteor Mongo DB
	Connect Your Local Meteor App to an Alternative Mongo DB

	Linux/MacOS Example:
	Windows Example
	NPM
	Running Meteor without MongoDB
	Getting Started

	Query Documents
	Inserting Documents
	Updating Documents
	Deleting Documents
	Chapter 34: MongoDB Aggregation
	Remarks
	Examples
	Server Aggregation
	Aggregation in a Server Method

	Chapter 35: Nightwatch - Configuration & Setup
	Remarks
	Examples
	Configuration
	Installation & Usage
	Setting up launch scripts
	Folder Structure
	Data Driven Testing

	Chapter 36: Node/NPM
	Examples
	Meteor Tested/Supported Node Version

	Chapter 37: Offline Apps
	Remarks
	Examples
	Meteor.status()
	Enable Appcache
	Enable GroundDB
	Things to Be Careful Of

	Chapter 38: Performance Tuning
	Remarks
	Examples
	Designing and Deploying Production Ready Software

	Chapter 39: Publishing A Release Track
	Remarks
	Examples
	Basic Usage
	Release Manifest
	Customizing the Meteor Tool
	Extracting a Release Manifest from .meteor/versions
	Displaying the Release Manifest for a Specific Release
	Publishing a Release From Checkout
	Fetching the Latest Commits for Each Package in a Release

	Chapter 40: Publishing Data
	Remarks
	Examples
	Basic Subscription and Publication
	Global publications
	Named publications
	Template scoped subscriptions
	Publish into an ephemeral client-side named collection.
	Creating and responding to an error on a publication.
	Reactively re-subscribing to a publication
	Wait in the Blaze view while published data is being fetched
	Validating User Account On Publish
	Publish multiple cursors
	Simulate delay in publications
	Merging Publications

	Chapter 41: Reactive (Vars & Dictionaries)
	Examples
	Reactive Query

	Chapter 42: Replica Sets and Sharding
	Remarks
	Examples
	Replica Set Quickstart
	Replica Set Configuration

	Chapter 43: Retrieving data from a Meteor.call
	Examples
	The basics of Meteor.call
	Using Session variable

	Server side
	Client side
	Using ReactiveVar

	Server side
	Client side

	Chapter 44: Routing
	Examples
	Routing with Iron Router
	With FlowRouter

	Install FlowRouter
	Rendering a template
	Rendering a template with parameters and/or query
	Chapter 45: Use Private Meteor Packages on Codeship
	Remarks
	Examples
	Install MGP
	Configure Codeship to Install Private Github Packages

	Chapter 46: Using Meteor with a Proxy Server
	Examples
	Using the `HTTP[S]_PROXY` env var
	Setting Up a Proxy Tier

	Chapter 47: Using Polymer with Meteor
	Examples
	Using differential:vulcanize

	Chapter 48: Wrapping asynchronous methods into a Fiber for synchronous execution.
	Syntax
	Parameters
	Remarks
	Examples
	Synchronously executing asynchronous NPM methods w/ callbacks.

	Credits

