
mips

#mips

Table of Contents

About 1

Chapter 1: Getting started with mips 2

Remarks 2

Examples 2

Installation or Setup 2

QtSpim for windows 2

MARS MIPS Simulator 2

Credits 13

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mips

It is an unofficial and free mips ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official mips.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

Chapter 1: Getting started with mips

Remarks

This section provides an overview of what mips is, and why a developer might want to use it.

It should also mention any large subjects within mips, and link out to the related topics. Since the
Documentation for mips is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Detailed instructions on getting mips set up or installed.

QtSpim for windows

download QtSpim from here 32.6 MB1.
install it easy installation2.
make your first assembly file (.s) or use the sample C:\Program Files
(x86)\QtSpim\helloworld.s

3.

run the program from the desktop shortcut or C:\Program Files (x86)\QtSpim\QtSpim.exe4.

there are two windows for the program the main one labeled QtSpim here you see the program
you are executing (labeled text), the memory(labeled data), the values of the registers (labeled FP
Regs for floating point and Int Regs for integer) and the control for the simulator

the other window labeled console is where you will see the output and enter the input of your
program if there are any

load the file using File -> Load File5.
you can use click run (f5) to see the end result or go step by step (p10) to see state of the
register and memory while the program executing to debug

6.

MARS MIPS Simulator

MARS MIPS simulator is an assembly language editor, assembler, simulator & debugger for the
MIPS processor, developed by Pete Sanderson and Kenneth Vollmar at Missouri State University
(src).

You get the MARS for free here. As for installing the 4.5 version, you might need the suitable Java
SDK for your system from here

Before assembling, the environment of this simulator can be simplisticly split to three segments:
the editor at the upper left where all of the code is being written, the compiler/output right beneath
the editor and the list of registers that represent the "CPU" for our program.

https://riptutorial.com/ 2

After assembling (by simply pressing F3) the environment changes, with two new segments

https://riptutorial.com/ 3

getting the position of the editor: the text segment where

i) each line of assembly code gets cleared of "pseudoinstructions" (we'll talk about those in a sec)
at the "basic" column and

ii) the machine code for each instruction at the "code" column,

and the data segment where we can have a look at a representation of the memory of a processor
with little-endian order.

https://riptutorial.com/ 4

https://riptutorial.com/ 5

After assembling, we can execute our code either all at once (F5) or step by step (F7), as well as
rewinding the execution several steps backwards to the back (F8).

https://riptutorial.com/ 6

https://riptutorial.com/ 7

Now, let's see the example code from above and explain each line:

.text

.globl main
main: #main function

li $v0, 11 #11=system code for printing a character, $v0=register that gets the system
code for printing as value
la $a0, 'a' #'a'=our example character, $a0=register that accepts the character for
printing
syscall #Call to the System to execute our instructions and print the character at
the a0 register

li $v0, 10 #11=system code for terminating, $v0=register that gets the system code for
terminating (optional, but desirable)
syscall #Call to the System to terminate the execution

MARS accepts and exports files with the .asm filetype

But the code above prints just a character, what about the good ol' "Hello World"? What about,
dunno, adding a number or something? Well, we can change what we had a bit for just that:

.data #data section
str: .asciiz "Hello world\n"
number: .word 256

.text #code section
.globl main
main:
li $v0, 4 #system call for printing strings
la $a0, str #loading our string from data section to the $a0 register
syscall

la $t0, number #loading our number from data section to the $t0 register
lw $s1, 0($t0) #loading our number as a word to another register, $s1

addi $t2, $s1, 8 #adding our number ($s1) with 8 and leaving the sum to register
$t2

sw $t2, 0($t0) #storing the sum of register $t2 as a word at the first place of
$t0

li $v0, 10 # system call for terminating the execution
syscall

Before illustrating the results through MARS, a little more explanation about these commands is
needed:

System calls are a set of services provided from the operating system. To use a system
call, a call code is needed to be put to $v0 register for the needed operation. If a system call
has arguments, those are put at the $a0-$a2 registers. Here are all the system calls.

•

li (load immediate) is a pseudo-instruction (we'll talk about that later) that instantly loads a
register with a value. la (load address) is also a pseudo-instruction that loads an address to
a register. With li $v0, 4 the $v0 register has now 4 as value, while la $a0, str loads the

•

https://riptutorial.com/ 8

string of str to the $a0 register.

A word is (as much as we are talking about MIPS) a 32 bits sequence, with bit 31 being the
Most Significant Bit and bit 0 being the Least Significant Bit.

•

lw (load word) transfers from the memory to a register, while sw (store word) transfers from a
register to the memory. With the lw $s1, 0($t0) command, we loaded to $s1 register the
value that was at the LSB of the $t0 register (thats what the 0 symbolizes here, the offset of
the word), aka 256. $t0 here has the address, while $s1 has the value. sw $t2, 0($t0) does
just the opposite job.

•

MARS uses the Little Endian, meaning that the LSB of a word is stored to the smallest byte
address of the memory.

•

MIPS uses byte addresses, so an address is apart of its previous and next by 4.•

By assembling the code from before, we can further understand how memory and registers
exchange, disabling "Hexadecimal Values" from the Data Segment:

https://riptutorial.com/ 9

or enabling "ASCII" from the Data Segment:

https://riptutorial.com/ 10

Start it like this

$ java -jar Mars4_5.jar

Create this file and save it.

https://riptutorial.com/ 11

 .text
main:
 li $s0,0x30
loop:
 move $a0,$s0 # copy from s0 to a0

 li $v0,11 # syscall with v0 = 11 will print out
 syscall # one byte from a0 to the Run I/O window

 addi $s0,$s0,3 # what happens if the constant is changed?

 li $t0,0x5d
 bne $s0,$t0,loop
 nop # delay slot filler (just in case)

stop: j stop # loop forever here
 nop # delay slot filler (just in case)

Press F3 to assembly it and then press run. Now you are started compiling and executing MIPS
code.

Read Getting started with mips online: https://riptutorial.com/mips/topic/7049/getting-started-with-
mips

https://riptutorial.com/ 12

Credits

S.
No

Chapters Contributors

1
Getting started with
mips

Community, Coursal, Dac Saunders, robert

https://riptutorial.com/ 13

	About
	Chapter 1: Getting started with mips
	Remarks
	Examples
	Installation or Setup
	QtSpim for windows
	MARS MIPS Simulator

	Credits

