
mockito

#mockito

Table of Contents

About 1

Chapter 1: Getting started with mockito 2

Remarks 2

Versions 2

Examples 2

Simple unit test using Mockito 2

Using Mockito annotations 3

Installation and setup 5

Installation 5

Import 6

Mock some methods on an object 6

Simple minimal Mockito Test 7

Verifying arguments with ArgumentCaptor 7

Verifying Arguments with ArgumentMatcher 8

Create objects mocked by Mockito 9

Add behaviour to mocked object 10

Check arguments passed to mock 11

Verify method calls on mocked object 11

Stubbing void methods 12

Chapter 2: Mock 13

Examples 13

Simple Mock 13

Mock with defaults 13

Mocking a class using annotations 13

"Spy" for partial mocking 15

Set private fields in mocked objects 18

Chapter 3: Mock final classes and methods 19

Introduction 19

Examples 19

How to make it 19

Chapter 4: Mocking consecutive calls to a void return method 21

Introduction 21

Remarks 21

Examples 21

Faking a transient error 21

Chapter 5: Mockito Best Practices 22

Examples 22

BDDMockito style 22

Chapter 6: Verify method calls 24

Examples 24

Simple method call verification 24

Verify order of calls 24

Verify call arguments using ArgumentCaptor 24

Credits 26

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mockito

It is an unofficial and free mockito ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official mockito.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mockito
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with mockito

Remarks

Mockito is a java Mocking framework that aims at providing the ability to write clean an readable
unit tests by using it's simple API. It differs from other mocking frameworks by leaving the expect-
run-verify pattern that most other frameworks use.

Instead it only knows one way to mock (non-final) classes and interfaces and allows to verify and
stub based on flexible argument matchers.

The current Version 1.10.19 is best obtained using maven

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.10.19</version>
</dependency>

or gradle

repositories { jcenter() }
dependencies { testCompile "org.mockito:mockito-core:1.+" }

Version 2 is still in beta.

Versions

Version Maven Central Release notes Release Date

2.1.0 mockito-core changes 2016-10-04

1.10.19 mockito-core changes 2014-12-31

Examples

Simple unit test using Mockito

The class we are going to test is:

public class Service {

 private Collaborator collaborator;

 public Service(Collaborator collaborator) {
 this.collaborator = collaborator;

https://riptutorial.com/ 2

http://search.maven.org/#artifactdetails%7Corg.mockito%7Cmockito-core%7C2.1.0%7C
https://github.com/mockito/mockito/blob/v2.1.0/doc/release-notes/official.md
http://search.maven.org/#artifactdetails%7Corg.mockito%7Cmockito-core%7C1.10.19%7C
https://github.com/mockito/mockito/blob/v1.10.19/doc/release-notes/official.md

 }

 public String performService(String input) {
 return collaborator.transformString(input);
 }
}

Its collaborator is:

public class Collaborator {

 public String transformString(String input) {
 return doStuff();
 }

 private String doStuff() {
 // This method may be full of bugs
 . . .
 return someString;
 }

}

In our test, we want to break the dependency from Collaborator and its bugs, so we are going to
mock Collaborator:

import static org.junit.Assert.*;
import static org.mockito.Mockito.*;

import org.junit.Test;

public class ServiceTest {
 @Test
 public void testPerformService() throws Exception {
 // Configure mock
 Collaborator collaboratorMock = mock(Collaborator.class);
 doReturn("output").when(collaboratorMock).transformString("input");

 // Perform the test
 Service service = new Service(collaboratorMock);
 String actual = service.performService("input");

 // Junit asserts
 String expected = "output";
 assertEquals(expected, actual);
 }
}

Using Mockito annotations

The class we are going to test is:

public class Service{

 private Collaborator collaborator;

https://riptutorial.com/ 3

 public Service(Collaborator collaborator){
 this.collaborator = collaborator;
 }

 public String performService(String input){
 return collaborator.transformString(input);
 }
}

Its collaborator is:

public class Collaborator {

 public String transformString(String input){
 return doStuff();
 }

 private String doStuff()
 {
 // This method may be full of bugs
 . . .
 return someString;
 }

}

In our test, we want to break the dependency from Collaborator and its bugs, so we are going to
mock Collaborator. Using @Mock annotation is a convenient way to create different instances of
mocks for each test:

import static org.junit.Assert.*;
import static org.mockito.Mockito.*;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.Mock;
import org.mockito.InjectMocks;
import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)
public class ServiceTest {

 @Mock
 private Collaborator collaboratorMock;

 @InjectMocks
 private Service service;

 @Test
 public void testPerformService() throws Exception {
 // Configure mock
 doReturn("output").when(collaboratorMock).transformString("input");

 // Perform the test
 String actual = service.performService("input");

 // Junit asserts

https://riptutorial.com/ 4

 String expected = "output";
 assertEquals(expected, actual);
 }

 @Test(expected=Exception.class)
 public void testPerformServiceShouldFail() throws Exception {
 // Configure mock
 doThrow(new Exception()).when(collaboratorMock).transformString("input");

 // Perform the test
 service.performService("input");
 }
}

Mockito will try to resolve dependency injection in the following order:

Constructor-based injection - mocks are injected into the constructor with most arguments
(if some arguments can not be found, then nulls are passed). If an object was successfully
created via constructor, then no other strategies will be applied.

1.

Setter-based injection - mocks are injected by type. If there are several properties of the
same type, then property names and mock names will be matched.

2.

Direct field injection - same as for setter-based injection.3.

Note that no failure is reported in case if any of the aforementioned strategies failed.

Please consult the latest @InjectMocks for more detailed information on this mechanism in the latest
version of Mockito.

Installation and setup

Installation

The preferred way to install Mockito is to declare a dependency on mockito-core with a build
system of choice. As of July 22nd, 2016, the latest non-beta version is 1.10.19, but 2.x is already
encouraged to be migrated to.

Maven

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.10.19</version>
 <scope>test</scope>
</dependency>

Gradle

repositories { jcenter() }
dependencies { testCompile "org.mockito:mockito-core:1.+" }

https://riptutorial.com/ 5

http://site.mockito.org/mockito/docs/current/org/mockito/InjectMocks.html
http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#0
http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#0

There is also mockito-all which contains Hamcrest and Objenesis besides Mockito itself. It is
delivered through Maven mainly for ant users, but the distribution has been discontinued in
Mockito 2.x.

Import

The most of the Mockito facilities are static methods of org.mockito.Mockito. Thus, Mockito can be
statically imported into a class in this way:

import static org.mockito.Mockito.*;

Documentation entry point is located in the javadoc of this class.

Mock some methods on an object

Just some methods of an object can be mocked using spy() of mockito.

For example, imagine that method class requires some web service to work.

public class UserManager {

 List<User> users;

 public UserManager() {
 user = new LinkedLisk<User>();
 }

 public void addUser(User user) {
 if (isValid(user)) {
 user.add(user);
 } else {
 throw new NotValidUserException();
 }
 }

 protected boolean isValid(User user) {
 //some online web service to check if user is valid
 }

 public int numberOfUsers() {
 return users.size();
 }
}

addUser method has to be tested in order to make a useful Test for UserManager. However, a
dependency is found here, isValid requires an external web service which is not contained in our
code. Then, this external dependency should be neutralized.

In this case, if you only mock isValid you will be able to test the rest of the UserManager methods.

@Test
public void testAddUser() {

https://riptutorial.com/ 6

http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html

 User user = mock(User.class);
 UserManager manager = spy(new UserManager());

 //it forces to manager.isValid to return true
 doReturn(true).when(manager).isValid(anyObject());

 manager.addUser(user);
 assertTrue(manager.numberOfUsers(), 1);
}

You can check easily the scenario where user is not valid.

@Test(expectedExceptions = NotValidUserException.class)
public void testNotValidAddUser() {
 User user = mock(User.class);
 UserManager manager = spy(new UserManager());

 //it forces to manager.isValid to return false
 doReturn(false).when(manager).isValid(anyObject());

 manager.addUser(user);
}

Simple minimal Mockito Test

This example shows a minimal Mockito test using a mocked ArrayList:

import static org.mockito.Mockito.*;
import static org.junit.Assert.*;

import java.util.ArrayList;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.mockito.Mock;
import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)
public class MockitoTest
{
 @Mock
 ArrayList<String> listMock;

 @Test
 public void testAppend() {
 // configure the mock to return "foobar" whenever "get()"
 // is called on "listMock" with an int value as parameter
 doReturn("foobar").when(listMock).get(anyInt());
 String result = listMock.get(0);

 assertEquals("foobar", result);
 }
}

Verifying arguments with ArgumentCaptor

https://riptutorial.com/ 7

To validate arguments to methods called on a mock, use the ArgumentCaptor class. This will allow
you to extract the arguments into your test method and perform assertions on them.

This example tests a method which updates the name of a user with a given ID. The method loads
the user, updates the name attribute with the given value and saves it afterwards. The test wants to
verify that the argument passed to the save method is a User object with the correct ID and name.

// This is mocked in the test
interface UserDao {
 void save(User user);
}

@RunWith(MockitoJUnitRunner.class)
public class UserServiceTest {
 @Mock
 UserDao userDao;

 @Test
 public void testSetNameForUser() {
 UserService serviceUnderTest = new UserService(userDao);

 serviceUnderTest.setNameForUser(1L, "John");

 ArgumentCaptor<User> userArgumentCaptor = ArgumentCaptor.forClass(User.class);

 verify(userDao).save(userArgumentCaptor.capture());
 User savedUser = userArgumentCaptor.getValue();
 assertTrue(savedUser.getId() == 1);
 assertTrue(savedUser.getName().equals("John"));
 }
}

Verifying Arguments with ArgumentMatcher

Mockito provides a Matcher<T> interface along with an abstract ArgumentMatcher<T> class to verify
arguments. It uses a different approach to the same use-case than the ArgumentCaptor. Additionally
the ArgumentMatcher can be used in mocking too. Both use-cases make use of the
Mockito.argThat() method that provides a reasonably readable test code.

verify(someMock).someMethod(Mockito.argThat(new ArgumentMatcher<String>() {

 @Override
 public boolean matches(Object o) {
 return o instanceof String && !((String)o).isEmpty();
 }

});

From the JavaDocs of ArgumentMatcher:

Warning: Be reasonable with using complicated argument matching, especially custom argument
matchers, as it can make the test less readable. Sometimes it's better to implement equals() for
arguments that are passed to mocks (Mockito naturally uses equals() for argument matching).

https://riptutorial.com/ 8

This can make the test cleaner.

Create objects mocked by Mockito

There are two ways to create object mocked by Mockito:

via annotation•
via mock function•

Via annotation:

With a JUnit test runner:

@RunWith(MockitoJUnitRunner.class)
public class FooTest {
 @Mock
 private Bar barMock;

 // ...
}

You can also use Mockito's JUnit @Rule, which provides the same functionality as the
MockitoJUnitRunner, but doesn't need a @RunWith test runner:

public class FooTest {
 @Rule
 public MockitoRule mockito = MockitoJUnit.rule();

 @Mock
 private Bar barMock;

 // ...
}

If you can't use @RunWith or the @Rule annotation you can also init mocks "per hand":

public class FooTest {
 @Mock
 private Bar barMock;

 @Before
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }

 // ...
}

Via mock function:

public class FooTest {
 private Bar barMock = Mockito.mock(Bar.class);

 // ...

https://riptutorial.com/ 9

}

Because of type erasure, you cannot mock a generic class as above. You must mock the base
class and explicitly cast to the right generic type:

public class FooTest {
 private Bar<String> genericBarMock = (Bar<String>) Mockito.mock(Bar.class);

 // ...
}

Add behaviour to mocked object

Mockito.when(mock.returnSomething()).thenReturn("my val");

mock.returnSomething(); // returns "my val"
mock.returnSomething(); // returns "my val" again
mock.returnSomething(); // returns "my val" again and again and again...

If you want different value on second call you can add wanted return argument to thenReturn
method:

Mockito.when(mock.returnSomething()).thenReturn("my val", "other val");

mock.returnSomething(); // returns "my val"
mock.returnSomething(); // returns "other val"
mock.returnSomething(); // returns "other val" again

If you will call method without adding behaviour to mock it will return null:

barMock.mock.returnSomethingElse(); // returns null

In case that mocked method has parameters, you should declarate values too:

Mockito.when(mock.returnSomething("param 1")).thenReturn("my val 1");
Mockito.when(mock.returnSomething("param 2")).thenReturn("my val 2");

mock.returnSomething("param 1"); // returns "my val 1"
mock.returnSomething("param 2"); // returns "my val 2"
mock.returnSomething("param 3"); // returns null

If you don't care about param value you can use Matchers.any():

Mockito.when(mock.returnSomething(Matchers.any())).thenReturn("p1");

mock.returnSomething("param 1"); // returns "p1"
mock.returnSomething("param other"); // returns "p1"

To throw exception use thenThrow method:

Mockito.when(mock.returnSomething()).thenThrow(new Exception());

https://riptutorial.com/ 10

mock.returnSomething(); // throws Exception

Check arguments passed to mock

Lets assume we have this class and we would like to test doSmth method. In this case we want to
see if parameter "val" is passed to foo. Object foo is mocked.

public class Bar {

 private final Foo foo;

 public Bar(final Foo foo) {
 this.foo = foo;
 }

 public void doSmth() {
 foo.bla("val");
 }
}

We can achieve this with ArgumentCaptor:

@Mock
private Foo fooMock;

@InjectMocks
private Bar underTest;

@Captor
private ArgumentCaptor<String> stringCaptor;

@Test
public void should_test_smth() {
 underTest.doSmth();

 Mockito.verify(fooMock).bla(stringCaptor.capture());

 assertThat(stringCaptor.getValue(), is("val"));
}

Verify method calls on mocked object

To check if a method was called on a mocked object you can use the Mockito.verify method:

Mockito.verify(someMock).bla();

In this example, we assert that the method bla was called on the someMock mock object.

You can also check if a method was called with certain parameters:

Mockito.verify(someMock).bla("param 1");

https://riptutorial.com/ 11

If you would like to check that a method was not called, you can pass an additional
VerificationMode parameter to verify:

Mockito.verify(someMock, Mockito.times(0)).bla();

This also works if you would like to check that this method was called more than once (in this case
we check that the method bla was called 23 times):

Mockito.verify(someMock, Mockito.times(23)).bla();

These are more examples for the VerificationMode parameter, providing more control over the
number of times a method should be called:

Mockito.verify(someMock, Mockito.never()).bla(); // same as Mockito.times(0)

Mockito.verify(someMock, Mockito.atLeast(3)).bla(); // min 3 calls

Mockito.verify(someMock, Mockito.atLeastOnce()).bla(); // same as Mockito.atLeast(1)

Mockito.verify(someMock, Mockito.atMost(3)).bla(); // max 3 calls

Stubbing void methods

void methods can be stubbed using the doThrow(), doAnswer(), doNothing(), doCallRealMethod()
family of methods.

Runnable mock = mock(Runnable.class);

doThrow(new UnsupportedOperationException()).when(mock).run();

mock.run(); // throws the UnsupportedOperationException

Note thatvoid methods can't be stubbed using when(..) cause the compiler don't like void methods
as argument.

Read Getting started with mockito online: https://riptutorial.com/mockito/topic/2055/getting-started-
with-mockito

https://riptutorial.com/ 12

http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#doThrow(java.lang.Throwable...)
http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#doAnswer(org.mockito.stubbing.Answer)
http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#doNothing()
http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#doCallRealMethod()
https://riptutorial.com/mockito/topic/2055/getting-started-with-mockito
https://riptutorial.com/mockito/topic/2055/getting-started-with-mockito

Chapter 2: Mock

Examples

Simple Mock

Mockito offers a one-size-fits-all mehtod to create mocks of (non-final) classes and interfaces.

Dependency mock = Mockito.mock(Dependency.class);

This creates a mock instance of Dependency regardless of whether Dependency is a interface or class.

It is then possible to stub method calls to that mock using the Mockito.when(x).thenReturn(y)
notation.

Mockito.when(mock.possiblyBuggyMethod()).thenReturn("someString");

So that calls to Dependency.possiblyBuggyMethod() simply return "someString".

There is another notation that is discouraged in most use cases as it is not typesafe.

Mockito.doReturn("someString").when(mock).possiblyBuggyMethod()

Mock with defaults

While a simple mock returns null (or defaults for primitives) to every call, it is possible to change
that behaviour.

Dependency mock = Mockito.mock(Dependency.class, new Answer() {

 @Override
 public Object answer(InvocationOnMock invocationOnMock) throws Throwable {
 return "someString";
 }
 });

or using lambdas:

Dependency mock = Mockito.mock(Dependency.class, (Answer) invocationOnMock -> "someString");

This examples return "someString" to every invocation but it is possible to define any logic in the
answer-method.

Mocking a class using annotations

Class under test:

https://riptutorial.com/ 13

public class GreetingsService { // class to be tested in isolation
 private UserService userService;

 public GreetingsService(UserService userService) {
 this.userService = userService;
 }

 public String getGreetings(int userId, LocalTime time) { // the method under test
 StringBuilder greetings = new StringBuilder();
 String timeOfDay = getTimeOfDay(time.getHour());
 greetings.append("Good ").append(timeOfDay).append(", ");
 greetings.append(userService.getFirstName(userId)) // this call will be mocked
 .append(" ")
 .append(userService.getLastName(userId)) // this call will be mocked
 .append("!");
 return greetings.toString();
 }

 private String getTimeOfDay(int hour) { // private method doesn't need to be unit tested
 if (hour >= 0 && hour < 12)
 return "Morning";
 else if (hour >= 12 && hour < 16)
 return "Afternoon";
 else if (hour >= 16 && hour < 21)
 return "Evening";
 else if (hour >= 21 && hour < 24)
 return "Night";
 else
 return null;
 }
}

Behavior of this interface will be mocked:

public interface UserService {
 String getFirstName(int userId);

 String getLastName(int userId);
}

Assume actual implementation of the UserService:

public class UserServiceImpl implements UserService {
 @Override
 public String getFirstName(int userId) {
 String firstName = "";
 // some logic to get user's first name goes here
 // this could be anything like a call to another service,
 // a database query, or a web service call
 return firstName;
 }

 @Override
 public String getLastName(int userId) {
 String lastName = "";
 // some logic to get user's last name goes here
 // this could be anything like a call to another service,
 // a database query, or a web service call
 return lastName;

https://riptutorial.com/ 14

 }
}

Junit test with Mockito:

public class GreetingsServiceTest {
 @Mock
 private UserServiceImpl userService; // this class will be mocked
 @InjectMocks
 private GreetingsService greetingsService = new GreetingsService(userService);

 @Before
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void testGetGreetings_morning() throws Exception {
 // specify mocked behavior
 when(userService.getFirstName(99)).thenReturn("John");
 when(userService.getLastName(99)).thenReturn("Doe");
 // invoke method under test
 String greetings = greetingsService.getGreetings(99, LocalTime.of(0, 45));
 Assert.assertEquals("Failed to get greetings!", "Good Morning, John Doe!", greetings);
 }

 @Test
 public void testGetGreetings_afternoon() throws Exception {
 // specify mocked behavior
 when(userService.getFirstName(11)).thenReturn("Jane");
 when(userService.getLastName(11)).thenReturn("Doe");
 // invoke method under test
 String greetings = greetingsService.getGreetings(11, LocalTime.of(13, 15));
 Assert.assertEquals("Failed to get greetings!", "Good Afternoon, Jane Doe!",
greetings);
 }
}

"Spy" for partial mocking

@Spy annotation (or method) can be used to partially mock an object. This is useful when you
want to partially mock behavior of a class. E.g. Assume that you have a class that uses two
different services and and you want to mock only one of them and use the actual implementation
of the other service.

Side Note: Although philosophically I wouldn't consider this a "pure unit test" in a true sense, as
you are integrating a real class and not testing your class under test in complete isolation.
Nevertheless, this could be actually useful in the real world and I often use it when I mock the
database using some in memory database implementation so that I can use real DAOs.

Class under test:
public class GreetingsService { // class to be tested in isolation
 private UserService userService;
 private AppService appService;

https://riptutorial.com/ 15

http://static.javadoc.io/org.mockito/mockito-core/2.2.27/org/mockito/Spy.html
http://static.javadoc.io/org.mockito/mockito-core/2.2.27/org/mockito/Mockito.html#spy(T)

 public GreetingsService(UserService userService, AppService appService) {
 this.userService = userService;
 this.appService = appService;
 }

 public String getGreetings(int userId, LocalTime time) { // the method under test
 StringBuilder greetings = new StringBuilder();
 String timeOfDay = getTimeOfDay(time.getHour());
 greetings.append("Good ").append(timeOfDay).append(", ");
 greetings.append(userService.getFirstName(userId)) // this call will be mocked
 .append(" ")
 .append(userService.getLastName(userId)) // this call will be mocked
 .append("!");
 greetings.append(" Welcome to ")
 .append(appService.getAppName()) // actual method call will be made
 .append(".");
 return greetings.toString();
 }

 private String getTimeOfDay(int hour) { // private method doesn't need to be unit tested
 if (hour >= 0 && hour < 12)
 return "Morning";
 else if (hour >= 12 && hour < 16)
 return "Afternoon";
 else if (hour >= 16 && hour < 21)
 return "Evening";
 else if (hour >= 21 && hour < 24)
 return "Night";
 else
 return null;
 }
}

Behavior of this interface will be mocked:

public interface UserService {
 String getFirstName(int userId);

 String getLastName(int userId);
}

Assume actual implementation of the UserService:

public class UserServiceImpl implements UserService {
 @Override
 public String getFirstName(int userId) {
 String firstName = "";
 // some logic to get user's first name
 // this could be anything like a call to another service,
 // a database query, or a web service call
 return firstName;
 }

 @Override
 public String getLastName(int userId) {
 String lastName = "";
 // some logic to get user's last name
 // this could be anything like a call to another service,
 // a database query, or a web service call

https://riptutorial.com/ 16

 return lastName;
 }
}

Behavior of this interface won't be mocked:

public interface AppService {
 String getAppName();
}

Assume actual implementation of AppService:

public class AppServiceImpl implements AppService {
 @Override
 public String getAppName() {
 // assume you are reading this from properties file
 String appName = "The Amazing Application";
 return appName;
 }
}

Junit test with Mockito:

public class GreetingsServiceTest {
 @Mock
 private UserServiceImpl userService; // this class will be mocked
 @Spy
 private AppServiceImpl appService; // this class WON'T be mocked
 @InjectMocks
 private GreetingsService greetingsService = new GreetingsService(userService, appService);

 @Before
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void testGetGreetings_morning() throws Exception {
 // specify mocked behavior
 when(userService.getFirstName(99)).thenReturn("John");
 when(userService.getLastName(99)).thenReturn("Doe");
 // invoke method under test
 String greetings = greetingsService.getGreetings(99, LocalTime.of(0, 45));
 Assert.assertEquals("Failed to get greetings!", "Good Morning, John Doe! Welcome to
The Amazing Application.", greetings);
 }

 @Test
 public void testGetGreetings_afternoon() throws Exception {
 // specify mocked behavior
 when(userService.getFirstName(11)).thenReturn("Jane");
 when(userService.getLastName(11)).thenReturn("Doe");
 // invoke method under test
 String greetings = greetingsService.getGreetings(11, LocalTime.of(13, 15));
 Assert.assertEquals("Failed to get greetings!", "Good Afternoon, Jane Doe! Welcome to
The Amazing Application.", greetings);
 }

https://riptutorial.com/ 17

}

Set private fields in mocked objects

In your class that is under test, you may have some private fields that are not accessible even
through constructor. In such cases you can use reflection to set such properties. This is a snippet
from such JUnit test.

@InjectMocks
private GreetingsService greetingsService = new GreetingsService(); // mocking this class

@Before
public void setUp() {
 MockitoAnnotations.initMocks(this);
 String someName = "Some Name";
 ReflectionTestUtils.setField(greetingsService, // inject into this object
 "name", // assign to this field
 someName); // object to be injected
}

I'm using Sptring's ReflectionTestUtils.setField(Object targetObject, String name, Object value)
method here to simplify, but you can use plain old Java Reflection to do the same.

Read Mock online: https://riptutorial.com/mockito/topic/4573/mock

https://riptutorial.com/ 18

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html#setField-java.lang.Class-java.lang.String-java.lang.Object-
https://riptutorial.com/mockito/topic/4573/mock

Chapter 3: Mock final classes and methods

Introduction

Since Mockito 2.x we have the ability to mock final classes and methods.

Examples

How to make it

Steps:

Add dependency to Mockito version 2.x in your gradle (at the time of writing this text the
latest version is 2.7.22):

testCompile "org.mockito:mockito-core:$versions.mockito"

1.

Create a file in test resources with name org.mockito.plugins.MockMaker: 2.

Add next line in this file:

mock-maker-inline

3.

Read Mock final classes and methods online: https://riptutorial.com/mockito/topic/9769/mock-final-

https://riptutorial.com/ 19

https://i.stack.imgur.com/MzTXL.png
https://riptutorial.com/mockito/topic/9769/mock-final-classes-and-methods

classes-and-methods

https://riptutorial.com/ 20

https://riptutorial.com/mockito/topic/9769/mock-final-classes-and-methods

Chapter 4: Mocking consecutive calls to a
void return method

Introduction

The Mockito docs have an excellent example of how to provide a sequence of answers for multiple
calls to a mock. However, they don't cover how to do that for a method that returns void, other
than noting that stubbing void methods require using the do family of methods.

Remarks

Remember, for non-void methods, the when(mock.method()).thenThrow().thenReturn() version (see
docs) is preferred because it is argument type-safe and more readable.

Examples

Faking a transient error

Imagine you're testing code that makes a call to this interface, and you want to make sure your
retry code is working.

public interface DataStore {
 void save(Data data) throws IOException;
}

You could do something like this:

public void saveChanges_Retries_WhenDataStoreCallFails() {
 DataStore dataStore = new DataStore();
 Data data = new Data();
 doThrow(IOException.class).doNothing().when(dataStore).save(data);

 dataStore.save(data);

 verify(dataStore, times(2)).save(data);
 verifyDataWasSaved();
}

Read Mocking consecutive calls to a void return method online:
https://riptutorial.com/mockito/topic/9010/mocking-consecutive-calls-to-a-void-return-method

https://riptutorial.com/ 21

https://static.javadoc.io/org.mockito/mockito-core/2.7.2/org/mockito/Mockito.html#stubbing_consecutive_calls
https://static.javadoc.io/org.mockito/mockito-core/2.7.2/org/mockito/Mockito.html#do_family_methods_stubs
https://static.javadoc.io/org.mockito/mockito-core/2.7.2/org/mockito/Mockito.html#stubbing_consecutive_calls
https://riptutorial.com/mockito/topic/9010/mocking-consecutive-calls-to-a-void-return-method

Chapter 5: Mockito Best Practices

Examples

BDDMockito style

Behavior Driven Development (BDD) testing style revolves around "given", "when" and "then"
stages in tests. However, classical Mockito uses "when" word for "given" phase, and does not
include other natural language constructions that can encompass BDD. Thus, BDDMockito aliases
were introduced in version 1.8.0 in order to facilitate behavior driven tests.

The most common situation is to stub returns of a method. In the following example,
getStudent(String) method of the mocked StudentRepository will return new Student(givenName,
givenScore) if invoked with an argument that is equal to givenName.

import static org.mockito.BDDMockito.*;

public class ScoreServiceTest {

 private StudentRepository studentRepository = mock(StudentRepository.class);

 private ScoreService objectUnderTest = new ScoreService(studentRepository);

 @Test
 public void shouldCalculateAndReturnScore() throws Exception {
 //given
 String givenName = "Johnny";
 int givenScore = 10;
 given(studentRepository.getStudent(givenName))
 .willReturn(new Student(givenName, givenScore));

 //when
 String actualScore = objectUnderTest.calculateStudentScore(givenName);

 //then
 assertEquals(givenScore, actualScore);
 }
}

Sometimes it is desired to check if exception thrown from dependency is correctly handled or
rethrown in a method under test. Such behavior can be stubbed in "given" phase in this way:

willThrow(new RuntimeException())).given(mock).getData();

Sometimes it is desired to set up some side effects that a stubbed method should introduce.
Especially it can come in handy when:

the stubbed method is a method that is supposed to change the internal state of a passed
object

•

the stubbed method is a void method•

https://riptutorial.com/ 22

http://site.mockito.org/mockito/docs/current/org/mockito/BDDMockito.html

Such behavior can be stubbed in "given" phase with an "Answer":

willAnswer(invocation ->
this.prepareData(invocation.getArguments()[0])).given(mock).processData();

When it is desired to verify interactions with a mock, it can be done in "then" phase with should()
or should(VerificationMode)(only since 1.10.5) methods:

then(mock).should().getData(); // verifies that getData() was called once
then(mock).should(times(2)).processData(); // verifies that processData() was called twice

When it is desired to verify that there were no more interactions with a mock besides already
verified, it can be done in "then" phase with shouldHaveNoMoreInteractions() (since 2.0.0):

then(mock).shouldHaveNoMoreInteractions(); // analogue of verifyNoMoreInteractions(mock) in
classical Mockito

When it is desired to verify that there were absolutely no interactions with a mock, it can be done
in "then" phase with shouldHaveNoMoreInteractions() (since 2.0.0):

then(mock).shouldHaveZeroInteractions(); // analogue of verifyZeroInteractions(mock) in
classical Mockito

When it is desired to check if methods were invoked in order it can be done in "then" phase with
should(InOrder) (since 1.10.5) and should(InOrder, VerificationMode) (since 2.0.0):

InOrder inOrder = inOrder(mock);

// test body here

then(mock).should(inOrder).getData(); // the first invocation on the mock should be getData()
invocation
then(mock).should(inOrder, times(2)).processData(); // the second and third invocations on the
mock should be processData() invocations

Read Mockito Best Practices online: https://riptutorial.com/mockito/topic/4651/mockito-best-
practices

https://riptutorial.com/ 23

http://site.mockito.org/mockito/docs/current/org/mockito/Mockito.html#in_order_verification
https://riptutorial.com/mockito/topic/4651/mockito-best-practices
https://riptutorial.com/mockito/topic/4651/mockito-best-practices

Chapter 6: Verify method calls

Examples

Simple method call verification

One can verify whether a method was called on a mock by using Mockito.verify().

Original mock = Mockito.mock(Original.class);
String param1 = "Expected param value";
int param2 = 100; // Expected param value

//Do something with mock

//Verify if mock was used properly
Mockito.verify(mock).method();
Mockito.verify(mock).methodWithParameters(param1, param2);

Verify order of calls

In some cases it may not suffice to know whether more that one methods were called. The calling
order of methods is also important. In such case you may use InOrder class of Mockito to verify the
order of methods.

SomeClass mock1 = Mockito.mock(SomeClass.class);
otherClass mock2 = Mockito.mock(OtherClass.class);

// Do something with mocks

InOrder order = Mockito.inOrder(mock1, mock2)
order.verify(mock2).firstMethod();
order.verify(mock1).otherMethod(withParam);
order.verify(mock2).secondMethod(withParam1, withParam2);

The InOrder.verify() works same as Mockito.verify() all other aspects.

Verify call arguments using ArgumentCaptor

ArgumentCaptor will to receive the actual invocation arguments that has been passed to method.

ArgumentCaptor<Foo> captor = ArgumentCaptor.forClass(Foo.class);
verify(mockObj).doSomethind(captor.capture());
Foo invocationArg = captor.getValue();
//do any assertions on invocationArg

For cases of multiple invocations of mocked method to receive all invocation arguments

List<Foo> invocationArgs = captor.getAllValues();

https://riptutorial.com/ 24

The same approach is used for capturing varargs.

Also there is possibility to create ArgumentCaptor using @Captor annotation:

@Captor
private ArgumentCaptor<Foo> captor;

Read Verify method calls online: https://riptutorial.com/mockito/topic/4858/verify-method-calls

https://riptutorial.com/ 25

https://riptutorial.com/mockito/topic/4858/verify-method-calls

Credits

S.
No

Chapters Contributors

1
Getting started with
mockito

Abubakkar, Brice, cantido, Chriss, codebox, Community,
Constantine, Eugen Martynov, fiskeben, gandreadis, J.
Schneider, Kevin Welker, kiuby_88, Lorenzo Murrocu, Mark
Rotteveel, Matsemann, nhouser9, Nicktar, Squidward, thug-
gamer, Tim van der Lippe, Walery Strauch

2 Mock Nicktar, RamenChef, Suraj Bajaj

3
Mock final classes
and methods

Eugen Martynov

4
Mocking consecutive
calls to a void return
method

Cameron Stone

5
Mockito Best
Practices

Constantine

6 Verify method calls Abdullah, Sergii Bishyr

https://riptutorial.com/ 26

https://riptutorial.com/contributor/1151456/abubakkar
https://riptutorial.com/contributor/48136/brice
https://riptutorial.com/contributor/1858676/cantido
https://riptutorial.com/contributor/932656/chriss
https://riptutorial.com/contributor/138256/codebox
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2267100/constantine
https://riptutorial.com/contributor/981715/eugen-martynov
https://riptutorial.com/contributor/85010/fiskeben
https://riptutorial.com/contributor/6171547/gandreadis
https://riptutorial.com/contributor/6036708/j--schneider
https://riptutorial.com/contributor/6036708/j--schneider
https://riptutorial.com/contributor/433348/kevin-welker
https://riptutorial.com/contributor/2598606/kiuby-88
https://riptutorial.com/contributor/4646633/lorenzo-murrocu
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/466862/mark-rotteveel
https://riptutorial.com/contributor/923847/matsemann
https://riptutorial.com/contributor/6147506/nhouser9
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/2997740/thug-gamer
https://riptutorial.com/contributor/2997740/thug-gamer
https://riptutorial.com/contributor/2761676/tim-van-der-lippe
https://riptutorial.com/contributor/906523/walery-strauch
https://riptutorial.com/contributor/682559/nicktar
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1581147/suraj-bajaj
https://riptutorial.com/contributor/981715/eugen-martynov
https://riptutorial.com/contributor/642311/cameron-stone
https://riptutorial.com/contributor/2267100/constantine
https://riptutorial.com/contributor/4094366/abdullah
https://riptutorial.com/contributor/5604676/sergii-bishyr

	About
	Chapter 1: Getting started with mockito
	Remarks
	Versions
	Examples
	Simple unit test using Mockito
	Using Mockito annotations
	Installation and setup

	Installation
	Import
	Mock some methods on an object
	Simple minimal Mockito Test
	Verifying arguments with ArgumentCaptor
	Verifying Arguments with ArgumentMatcher
	Create objects mocked by Mockito
	Add behaviour to mocked object
	Check arguments passed to mock
	Verify method calls on mocked object
	Stubbing void methods

	Chapter 2: Mock
	Examples
	Simple Mock
	Mock with defaults
	Mocking a class using annotations
	"Spy" for partial mocking
	Set private fields in mocked objects

	Chapter 3: Mock final classes and methods
	Introduction
	Examples
	How to make it

	Chapter 4: Mocking consecutive calls to a void return method
	Introduction
	Remarks
	Examples
	Faking a transient error

	Chapter 5: Mockito Best Practices
	Examples
	BDDMockito style

	Chapter 6: Verify method calls
	Examples
	Simple method call verification
	Verify order of calls
	Verify call arguments using ArgumentCaptor

	Credits

