
mongoose

#mongoose

Table of Contents

About 1

Chapter 1: Getting started with mongoose 2

Remarks 2

Versions 2

Examples 4

Installation 4

Connecting to MongoDB database: 4

Connection with options and callback 5

Chapter 2: Mongoose Middleware 6

Remarks 6

There are two types of middleware 6

Pre and Post hooks 6

Examples 6

Middleware to hash user password before saving it 6

Chapter 3: Mongoose Population 9

Syntax 9

Parameters 9

Examples 9

Simple Populate 9

Neglect a few fields 11

Populate only a few fields 11

Nested Population 12

Chapter 4: Mongoose Population 14

Syntax 14

Parameters 14

Examples 14

A simple mongoose populate example 14

Chapter 5: mongoose pre and post middleware (hooks) 16

Examples 16

Middleware 16

Chapter 6: Mongoose Queries 18

Introduction 18

Examples 18

Find One Query 18

Chapter 7: Mongoose Schemas 19

Examples 19

Basic Schema 19

Schema methods 19

Schema Statics 19

GeoObjects Schema 20

Saving Current Time and Update Time 20

Chapter 8: Mongoose Schemas 22

Examples 22

Creating a Schema 22

Credits 23

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mongoose

It is an unofficial and free mongoose ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official mongoose.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mongoose
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with mongoose

Remarks

Mongoose is a MongoDB object modeling tool designed to work in an asynchronous
environment.

Everything in Mongoose starts with a Schema. Each schema maps to a MongoDB
collection and defines the shape of the documents within that collection.

Mongoose makes it painlessly easy to work with MongoDB database.

We can easily structure our database using Schemas and Models, Automate certain things when
record is added or updated using Middlewares/Hooks and easily get the data we need by querying
our models.

Important Links

Mongoose Quickstart•
Mongoose GitHub Repository•
Mongoose Documentation•
Mongoose Plugins•

Versions

Latest release: Version 4.6.0 released on 2nd September 2016

All versions can be found at https://github.com/Automattic/mongoose/blob/master/History.md

Version Release Date

1.0.1 2011-02-02

1.1.6 2011-03-22

1.3.0 2011-04-19

1.3.1 2011-04-27

1.3.4 2011-05-17

1.4.0 2011-06-10

1.5.0 2011-06-27

1.6.0 2011-07-07

2.0.0 2011-08-24

https://riptutorial.com/ 2

http://mongoosejs.com/docs/index.html
https://github.com/Automattic/mongoose
http://mongoosejs.com/docs/guide.html
http://plugins.mongoosejs.io/
https://github.com/Automattic/mongoose/blob/master/History.md

Version Release Date

2.3.4 2011-10-18

2.5.0 2012-01-26

3.0.0 2012-08-07

3.1.2 2012-09-10

3.2.0 2012-09-27

3.5.0 2012-12-10

3.5.6 2013-02-14

3.6.0 2013-03-18

3.6.5 2013-04-15

3.8.0 2013-10-31

3.8.10 2014-05-20

3.8.15 2014-08-17

4.0.0 2015-03-25

4.0.6 2015-06-21

4.1.0 2015-07-24

4.2.0 2015-10-22

4.2.10 2015-12-08

4.3.5 2016-01-09

4.4.0 2016-02-02

4.4.4 2016-02-17

4.4.8 2016-03-18

4.4.13 2016-04-21

4.4.18 2016-05-21

4.5.0 2016-06-13

4.5.5 2016-07-18

https://riptutorial.com/ 3

Version Release Date

4.5.8 2016-08-01

4.5.9 2016-08-14

4.5.10 2016-08-23

4.6.0 2016-09-02

Examples

Installation

Installing mongoose is as easy as running the npm command

npm install mongoose --save

But make sure you have also installed MongoDB for your OS or Have access to a MongoDB
database.

Connecting to MongoDB database:

1. Import mongoose into the app:

import mongoose from 'mongoose';

2. Specify a Promise library:

mongoose.Promise = global.Promise;

3. Connect to MongoDB:

mongoose.connect('mongodb://127.0.0.1:27017/database');

/* Mongoose connection format looks something like this */
mongoose.connect('mongodb://USERNAME:PASSWORD@HOST::PORT/DATABASE_NAME');

Note:

By default mongoose connects to MongoDB at port 27017, Which is the default port used by
MongoDB.

•

To connect to MongoDB hosted somewhere else, use the second syntax. Enter MongoDB
username, password, host, port and database name.

•

MongoDB port is 27017 by default; use your app name as the db name.

https://riptutorial.com/ 4

Connection with options and callback

Mongoose connect has 3 parameters, uri, options, and the callback function. To use them see
sample below.

var mongoose = require('mongoose');

var uri = 'mongodb://localhost:27017/DBNAME';

var options = {
 user: 'user1',
 pass: 'pass'
}

mongoose.connect(uri, options, function(err){
 if (err) throw err;
 // if no error == connected
});

Read Getting started with mongoose online: https://riptutorial.com/mongoose/topic/1168/getting-
started-with-mongoose

https://riptutorial.com/ 5

https://riptutorial.com/mongoose/topic/1168/getting-started-with-mongoose
https://riptutorial.com/mongoose/topic/1168/getting-started-with-mongoose

Chapter 2: Mongoose Middleware

Remarks

In mongoose, Middlewares are also called as pre and post hooks.

There are two types of middleware

Both of these middleware support pre and post hooks.

Document middleware

Its supported for document functions init, validate, save and remove

1.

Query middleware

Its supported for query functions count, find, findOne, findOneAndRemove, findOneAndUpdate,
insertMany and update.

2.

Pre and Post hooks

There are two types of Pre hooks

serial

As the name suggests, Its executed in serial order i..e one after another

1.

parallel

Parallel middleware offers more fine-grained flow control and the hooked method is not
executed until done is called by all parallel middleware.

2.

Post Middleware are executed after the hooked method and all of its pre middleware have been
completed.

hooked methods are the functions supported by document middleware. init, validate, save,
remove

Examples

Middleware to hash user password before saving it

This is an example of Serial Document Middleware

In this example, We will write a middleware that will convert the plain text password into a hashed

https://riptutorial.com/ 6

password before saving it in database.

This middleware will automatically kick in when creating new user or updating existing user details.

FILENAME : User.js

// lets import mongoose first
import mongoose from 'mongoose'

// lets create a schema for the user model
const UserSchema = mongoose.Schema(
 {
 name: String,
 email: { type: String, lowercase: true, requird: true },
 password: String,
 },
);

/**
 * This is the middleware, It will be called before saving any record
 */
UserSchema.pre('save', function(next) {

 // check if password is present and is modified.
 if (this.password && this.isModified('password')) {

 // call your hashPassword method here which will return the hashed password.
 this.password = hashPassword(this.password);

 }

 // everything is done, so let's call the next callback.
 next();

});

// lets export it, so we can import it in other files.
export default mongoose.model('User', UserSchema);

Now every time we save a user, This middleware will check if password is set and is modified
(this is so we dont hash users password if its not modified.)

FILENAME : App.js

import express from 'express';
import mongoose from 'mongoose';

// lets import our User Model
import User from './User';

// connect to MongoDB
mongoose.Promise = global.Promise;
mongoose.connect('mongodb://127.0.0.1:27017/database');

https://riptutorial.com/ 7

let app = express();
/* ... express middlewares here */

app.post('/', (req, res) => {

 /*
 req.body = {
 name: 'John Doe',
 email: 'john.doe@gmail.com',
 password: '!trump'
 }
 */

 // validate the POST data

 let newUser = new User({
 name: req.body.name,
 email: req.body.email,
 password: req.body.password,
 });

 newUser.save((error, record) => {
 if (error) {
 res.json({
 message: 'error',
 description: 'some error occoured while saving the user in database.'
 });
 } else {
 res.json({
 message: 'success',
 description: 'user details successfully saved.',
 user: record
 });
 }
 });

});

let server = app.listen(3000, () => {
 console.log(`Server running at http://localhost:3000`);
 }
);

Read Mongoose Middleware online: https://riptutorial.com/mongoose/topic/6646/mongoose-
middleware

https://riptutorial.com/ 8

https://riptutorial.com/mongoose/topic/6646/mongoose-middleware
https://riptutorial.com/mongoose/topic/6646/mongoose-middleware

Chapter 3: Mongoose Population

Syntax

Model.Query.populate(path, [select], [model], [match], [options]);1.

Parameters

Param Details

path String - The field key to be populated

select Object, String - Field selection for the population query.

model Model - Instance of the referenced model

match Object - Populate conditions

options Object - Query options

Examples

Simple Populate

Mongoose populate is used to show data for referenced documents from other collections.

Lets say we have a Person model that has referenced documents called Address.

Person Model

var Person = mongoose.model('Person', {
 fname: String,
 mname: String,
 lname: String,
 address: {type: Schema.Types.ObjectId, ref: 'Address'}
});

Address Model

var Address = mongoose.model('Address', {
 houseNum: String,
 street: String,
 city: String,
 state: String,
 country: String
});

https://riptutorial.com/ 9

To populate Address inside Person using it's ObjectId, using let's say findOne(), use the populate()
function and add the field key address as the first parameter.

Person.findOne({_id: req.params.id})
 .populate('address') // <- use the populate() function
 .exec(function(err, person) {
 // do something.
 // variable `person` contains the final populated data
 });

Or

Person.findOne({_id: req.params.id}, function(err, person) {
 // do something
 // variable `person` contains the final populated data
})
.populate('address');

The query above should produce the document below.

Person Doc

{
 "_id":"123abc",
 "fname":"John",
 "mname":"Kennedy",
 "lname":"Doe",
 "address":"456def" // <- Address' Id
}

Address Doc

{
 "_id":"456def",
 "houseNum":"2",
 "street":"Street 2",
 "city":"City of the dead",
 "state":"AB",
 "country:"PH"
}

Populated Doc

 {
 "_id":"123abc",
 "fname":"John",
 "mname":"Kennedy",
 "lname":"Doe",
 "address":{
 "_id":"456def",
 "houseNum":"2",
 "street":"Street 2",
 "city":"City of the dead",
 "state":"AB",
 "country:"PH"

https://riptutorial.com/ 10

 }
}

Neglect a few fields

Let's say you don't want the fields houseNum and street in the address field of the final populated
doc, use the populate() as follows,

Person.findOne({_id: req.params.id})
 .populate('address', '-houseNum -street') // note the `-` symbol
 .exec(function(err, person) {
 // do something.
 // variable `person` contains the final populated data
 });

Or

Person.findOne({_id: req.params.id}, function(err, person) {
 // do something
 // variable `person` contains the final populated data
})
.populate('address', '-houseNum -street'); // note the `-` symbol

This will produce the following final populated doc,

Populated Doc

 {
 "_id":"123abc",
 "fname":"John",
 "mname":"Kennedy",
 "lname":"Doe",
 "address":{
 "_id":"456def",
 "city":"City of the dead",
 "state":"AB",
 "country:"PH"
 }
}

Populate only a few fields

If you only want the fields houseNum and street in the address field in the final populated doc, use
the populate() function as follows in the above two methods,

Person.findOne({_id: req.params.id})
 .populate('address', 'houseNum street')
 .exec(function(err, person) {
 // do something.
 // variable `person` contains the final populated data
 });

Or

https://riptutorial.com/ 11

Person.findOne({_id: req.params.id}, function(err, person) {
 // do something
 // variable `person` contains the final populated data
})
.populate('address', 'houseNum street');

This will produce the following final populated doc,

Populated Doc

 {
 "_id":"123abc",
 "fname":"John",
 "mname":"Kennedy",
 "lname":"Doe",
 "address":{
 "_id":"456def",
 "houseNum":"2",
 "street":"Street 2"
 }
}

Nested Population

Lets say you have a user schema, which contains name , contactNo, address, and friends.

var UserSchema = new mongoose.Schema({
 name : String,
 contactNo : Number,
 address : String,
 friends :[{
 type: mongoose.Schema.Types.ObjectId,
 ref : User
 }]
});

If you want to find a user, his friends and friends of friends, you need to do population on 2
levels i.e. nested Population.

To find friends and friends of friends:

User.find({_id : userID})
 .populate({
 path : 'friends',
 populate : { path : 'friends'}//to find friends of friends
 });

All the parameters and options of populate can be used inside nested populate too, to get the
desired result.

Similarly, you can populate more levels according to your requirement.

It is not recommended to do nested population for more than 3 levels. In case you need to do

https://riptutorial.com/ 12

nested populate for more than 3 levels, you might need to restructure your schema.

Read Mongoose Population online: https://riptutorial.com/mongoose/topic/2616/mongoose-
population

https://riptutorial.com/ 13

https://riptutorial.com/mongoose/topic/2616/mongoose-population
https://riptutorial.com/mongoose/topic/2616/mongoose-population

Chapter 4: Mongoose Population

Syntax

Query.populate(path, [select], [model], [match], [options])•

Parameters

Parameter Explanation

path
<Object, String> either the path to populate or an object specifying all
parameters

[select]
<Object, String> Field selection for the population query (can use '-id' to
include everything but the id field)

[model]
<Model> The model you wish to use for population.If not specified, populate will
look up the model by the name in the Schema's ref field.

[match] <Object> Conditions for the population

[options] <Object> Options for the population query (sort, etc)

Examples

A simple mongoose populate example

.populate() in Mongoose allows you to populate a reference you have in your current collection or
document with the information from that collection. The previous may sound confusing but I think
an example will help clear up any confusion.

The following code creates two collections, User and Post:

var mongoose = require('mongoose'),
 Schema = mongoose.Schema

var userSchema = Schema({
 name: String,
 age: Number,
 posts: [{ type: Schema.Types.ObjectId, ref: 'Post' }]
});

var PostSchema = Schema({
 user: { type: Schema.Types.ObjectId, ref: 'User' },
 title: String,
 content: String
});

https://riptutorial.com/ 14

var User = mongoose.model('User', userSchema);
var Post = mongoose.model('Post', postSchema);

If we wanted to populate all of the posts for each user when we .find({}) all of the Users, we
could do the following:

User
 .find({})
 .populate('posts')
 .exec(function(err, users) {
 if(err) console.log(err);
 //this will log all of the users with each of their posts
 else console.log(users);
 })

Read Mongoose Population online: https://riptutorial.com/mongoose/topic/6578/mongoose-
population

https://riptutorial.com/ 15

https://riptutorial.com/mongoose/topic/6578/mongoose-population
https://riptutorial.com/mongoose/topic/6578/mongoose-population

Chapter 5: mongoose pre and post
middleware (hooks)

Examples

Middleware

Middleware (also called pre and post hooks) are functions which are passed control during
execution of asynchronous functions. Middleware is specified on the schema level and is useful for
writing plugins. Mongoose 4.0 has 2 types of middleware: document middleware and query
middleware. Document middleware is supported for the following document functions.

init•
validate•
save•
remove•

Query middleware is supported for the following Model and Query functions.

count•
find•
findOne•
findOneAndRemove•
findOneAndUpdate•
update•

Both document middleware and query middleware support pre and post hooks.

Pre

There are two types of pre hooks, serial and parallel.

Serial

Serial middleware are executed one after another, when each middleware calls next.

var schema = new Schema(..);
schema.pre('save', function(next) {
 // do stuff
 next();
});

Parallel

Parallel middleware offer more fine-grained flow control.

https://riptutorial.com/ 16

var schema = new Schema(..);

// `true` means this is a parallel middleware. You **must** specify `true`
// as the second parameter if you want to use parallel middleware.
schema.pre('save', true, function(next, done) {
 // calling next kicks off the next middleware in parallel
 next();
 setTimeout(done, 100);
});

The hooked method, in this case save, will not be executed until done is called by each
middleware.

Post middleware

post middleware are executed after the hooked method and all of its pre middleware have
completed. post middleware do not directly receive flow control, e.g. no next or done callbacks are
passed to it. post hooks are a way to register traditional event listeners for these methods.

schema.post('init', function(doc) {
 console.log('%s has been initialized from the db', doc._id);
});
schema.post('validate', function(doc) {
 console.log('%s has been validated (but not saved yet)', doc._id);
});
schema.post('save', function(doc) {
 console.log('%s has been saved', doc._id);
});
schema.post('remove', function(doc) {
 console.log('%s has been removed', doc._id);
});

Read mongoose pre and post middleware (hooks) online:
https://riptutorial.com/mongoose/topic/4131/mongoose-pre-and-post-middleware--hooks-

https://riptutorial.com/ 17

https://riptutorial.com/mongoose/topic/4131/mongoose-pre-and-post-middleware--hooks-

Chapter 6: Mongoose Queries

Introduction

Mongoose is a Node.JS driver for MongoDB. It provides certain benefits over the default
MongoDB driver, such as adding types to Schemas. One difference is that some Mongoose
queries may differ from their MongoDB equivalents.

Examples

Find One Query

Import a Mongoose Model (See topic "Mongoose Schemas")

var User = require("../models/user-schema.js")

The findOne method will return the first entry in the database that matches the first parameter. The
parameter should be an object where the key is the field to look for and the value is the value to be
matched. This can use MongoDB query syntax, such as the dot (.) operator to search subfields.

User.findOne({"name": "Fernando"}, function(err, result){
 if(err) throw err; //There was an error with the database.
 if(!result) console.log("No one is named Fernando."); //The query found no results.
 else {
 console.log(result.name); //Prints "Fernando"
 }
}

Read Mongoose Queries online: https://riptutorial.com/mongoose/topic/9349/mongoose-queries

https://riptutorial.com/ 18

https://riptutorial.com/mongoose/topic/9349/mongoose-queries

Chapter 7: Mongoose Schemas

Examples

Basic Schema

A basic User Schema:

var mongoose = require('mongoose');

var userSchema = new mongoose.Schema({
 name: String,
 password: String,
 age: Number,
 created: {type: Date, default: Date.now}
});

var User = mongoose.model('User', userSchema);

Schema Types.

Schema methods

Methods can be set on Schemas to help doing things related to that schema(s), and keeping them
well organized.

userSchema.methods.normalize = function() {
 this.name = this.name.toLowerCase();
};

Example usage:

erik = new User({
 'name': 'Erik',
 'password': 'pass'
});
erik.normalize();
erik.save();

Schema Statics

Schema Statics are methods that can be invoked directly by a Model (unlike Schema Methods,
which need to be invoked by an instance of a Mongoose document). You assign a Static to a
schema by adding the function to the schema's statics object.

One example use case is for constructing custom queries:

userSchema.statics.findByName = function(name, callback) {

https://riptutorial.com/ 19

http://mongoosejs.com/docs/api.html#schema_Schema.Types

 return this.model.find({ name: name }, callback);
}

var User = mongoose.model('User', userSchema)

User.findByName('Kobe', function(err, documents) {
 console.log(documents)
})

GeoObjects Schema

A generic schema useful to work with geo-objects like points, linestrings and polygons. Both
Mongoose and MongoDB support Geojson.

Example of usage in Node/Express:

var mongoose = require('mongoose');
var Schema = mongoose.Schema;

// Creates a GeoObject Schema.
var myGeo= new Schema({
 name: { type: String },
 geo : {
 type : {
 type: String,
 enum: ['Point', 'LineString', 'Polygon']
 },
 coordinates : Array
 }
});

//2dsphere index on geo field to work with geoSpatial queries
myGeo.index({geo : '2dsphere'});
module.exports = mongoose.model('myGeo', myGeo);

Saving Current Time and Update Time

This kind of schema will be useful if you want to keep trace of your items by insertion time or
update time.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;

// Creates a User Schema.
var user = new Schema({
 name: { type: String },
 age : { type: Integer},
 sex : { type: String },
 created_at: {type: Date, default: Date.now},
 updated_at: {type: Date, default: Date.now}
});

// Sets the created_at parameter equal to the current time
user.pre('save', function(next){
 now = new Date();
 this.updated_at = now;

https://riptutorial.com/ 20

 if(!this.created_at) {
 this.created_at = now
 }
 next();
});

module.exports = mongoose.model('user', user);

Read Mongoose Schemas online: https://riptutorial.com/mongoose/topic/2592/mongoose-
schemas

https://riptutorial.com/ 21

https://riptutorial.com/mongoose/topic/2592/mongoose-schemas
https://riptutorial.com/mongoose/topic/2592/mongoose-schemas

Chapter 8: Mongoose Schemas

Examples

Creating a Schema

var mongoose = require('mongoose');

//assume Player and Board schemas are already made
var Player = mongoose.model('Player');
var Board = mongoose.model('Board');

//Each key in the schema is associated with schema type (ie. String, Number, Date, etc)
var gameSchema = new mongoose.Schema({
 name: String,
 players: [{
 type: mongoose.Schema.Types.ObjectId,
 ref: 'Player'
 }],
 host: {
 type: mongoose.Schema.Types.ObjectId,
 ref: 'Player'
 },
 board: {
 type: mongoose.Schema.Types.ObjectId,
 ref: 'Board'
 },
 active: {
 type: Boolean,
 default: true
 },
 state: {
 type: String,
 enum: ['decision', 'run', 'waiting'],
 default: 'waiting'
 },
 numFlags: {
 type: Number,
 enum: [1,2,3,4]
 },
 isWon: {
 type: Boolean,
 default: false
 }
});

mongoose.model('Game', gameSchema);

Read Mongoose Schemas online: https://riptutorial.com/mongoose/topic/6622/mongoose-
schemas

https://riptutorial.com/ 22

https://riptutorial.com/mongoose/topic/6622/mongoose-schemas
https://riptutorial.com/mongoose/topic/6622/mongoose-schemas

Credits

S.
No

Chapters Contributors

1
Getting started with
mongoose

4444, CENT1PEDE, Community, Delapouite, dublicator, jisoo,
Random User, zurfyx

2
Mongoose
Middleware

Delapouite, Random User

3
Mongoose
Population

CENT1PEDE, Chinni, Medet Tleukabiluly, Ravi Shankar

4
mongoose pre and
post middleware
(hooks)

Naeem Shaikh

5 Mongoose Queries Gibryon Bhojraj

6 Mongoose Schemas AndreaM16, Ian, zurfyx

https://riptutorial.com/ 23

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2889614/cent1pede
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/232943/delapouite
https://riptutorial.com/contributor/414789/dublicator
https://riptutorial.com/contributor/6377969/jisoo
https://riptutorial.com/contributor/414002/random-user
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/232943/delapouite
https://riptutorial.com/contributor/414002/random-user
https://riptutorial.com/contributor/2889614/cent1pede
https://riptutorial.com/contributor/3476748/chinni
https://riptutorial.com/contributor/2308005/medet-tleukabiluly
https://riptutorial.com/contributor/5084000/ravi-shankar
https://riptutorial.com/contributor/3556874/naeem-shaikh
https://riptutorial.com/contributor/4752397/gibryon-bhojraj
https://riptutorial.com/contributor/4684539/andream16
https://riptutorial.com/contributor/6347688/ian
https://riptutorial.com/contributor/2013580/zurfyx

	About
	Chapter 1: Getting started with mongoose
	Remarks
	Versions
	Examples
	Installation

	Connecting to MongoDB database:
	Connection with options and callback

	Chapter 2: Mongoose Middleware
	Remarks
	There are two types of middleware
	Pre and Post hooks
	Examples
	Middleware to hash user password before saving it

	Chapter 3: Mongoose Population
	Syntax
	Parameters
	Examples
	Simple Populate
	Neglect a few fields
	Populate only a few fields
	Nested Population

	Chapter 4: Mongoose Population
	Syntax
	Parameters
	Examples
	A simple mongoose populate example

	Chapter 5: mongoose pre and post middleware (hooks)
	Examples
	Middleware

	Chapter 6: Mongoose Queries
	Introduction
	Examples
	Find One Query

	Chapter 7: Mongoose Schemas
	Examples
	Basic Schema
	Schema methods
	Schema Statics
	GeoObjects Schema
	Saving Current Time and Update Time

	Chapter 8: Mongoose Schemas
	Examples
	Creating a Schema

	Credits

