
moq

#moq

Table of Contents

About 1

Chapter 1: Getting started with moq 2

Remarks 2

Examples 2

Installation or Setup 2

Moqs are test doubles 3

Chapter 2: Mocking Behavior 5

Syntax 5

Parameters 5

Examples 5

No-Argument method mocking 5

Mocking void methods to confirm what they return 5

Mocking protected members 5

Chapter 3: Mocking common interfaces 7

Examples 7

Mocking IEnumerable 7

Chapter 4: Mocking properties 8

Examples 8

Auto stubbing properties 8

Properties with private setters 8

Chapter 5: Validating call order 10

Examples 10

Validating call order implicitly 10

Validating call order with callbacks 10

Validating call order with MockSequence 11

Credits 13

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: moq

It is an unofficial and free moq ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official moq.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/moq
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with moq

Remarks

Moq is a mocking library for .Net. It allows interactions with dependencies to be simulated and
verified in order to facilitate unit testing.

Release notes for different version of Moq can be found here.

Examples

Installation or Setup

Select the project you want to add the reference to Moq.1.
Open Nuget for this project.2.
Select "Browse" than type "moq" at the search box.3.
Select "Moq" and than click on Install.4.

https://riptutorial.com/ 2

https://github.com/moq/moq4/blob/master/ReleaseNotes.md

Following these steps will install the Moq package and will add a reference to it in the selected pro

Using Moq;

Moqs are test doubles

Mocks are meant as test doubles, that allow interactions with the mocks to be validated, they are

// Create the mock

Whilst this example shows the steps involved in using the mock, it is important to remember that it

public class ClassToTest

It is possible to create a mock of the dependent interface:

public interface IMockTarget

To create a test that actually validates the behaviour of the GetPrefixedValue method:

// Create and configure the mock to return a known value for the property

Read Getting started with moq online:

https://riptutorial.com/ 3

http://i.stack.imgur.com/0zQUA.jpg

https://riptutorial.com/moq/topic/5717/getting-started-with-moq

https://riptutorial.com/ 4

https://riptutorial.com/moq/topic/5717/getting-started-with-moq

Chapter 2: Mocking Behavior

Syntax

mock.Setup(expression).Returns(value) //Whenever called the method in the expression will
return value

•

Parameters

Parameter Details

expression Lambda expression that specifies the method invocation.

Examples

No-Argument method mocking

interface Mockable {
 bool DoSomething();
}

var mock = new Mock<Mockable>();
mock.Setup(x => x.DoSomething()).Returns(true);

var result = mock.Object.DoSomething(); //true

Mocking void methods to confirm what they return

var logRepository = new Mock<ILogRepository>();
logRepository.Setup(x => x.Write(It.IsAny<Exception>(), It.IsAny<string>(),
It.IsAny<string>(), It.IsAny<string>(), It.IsAny<string>(), It.IsAny<string>()))
 .Verifiable();

In this case, we are using the Verifiable to ensure that it runs.

We could also use a callback here:

logRepository.Setup(x => x.Write(It.IsAny<Exception>(), It.IsAny<string>(),
It.IsAny<string>(), It.IsAny<string>(), It.IsAny<string>(), It.IsAny<string>()))
 .Callback<Exception, string, string, string, string, string>((ex, caller, user, machine,
source, message) => { Console.WriteLine(message); });

this would log the output from the method to standard output on the console (many testing
frameworks let you capture that output into their runner)

Mocking protected members

https://riptutorial.com/ 5

To mock a protected member you must first include the following at the top of your test fixture:

using Moq.Protected;

You then call Protected() on your mock, after which you can use the generic Setup<> with the
return type of your method.

var mock = new Mock<MyClass>();
mock.Protected()
 .Setup<int>("MyProtectedGetIntMethod")
 .Returns(1);

If the method returns void then use the non-generic Setup().

Read Mocking Behavior online: https://riptutorial.com/moq/topic/8156/mocking-behavior

https://riptutorial.com/ 6

https://riptutorial.com/moq/topic/8156/mocking-behavior

Chapter 3: Mocking common interfaces

Examples

Mocking IEnumerable

Mocking an interface that inherits from IEnumerable to return canned data is quite straightforward.
Assuming the following classes:

public class DataClass
{
 public int Id { get; set; }
}

public interface IEnumerableClass : IEnumerable<DataClass>
{
}

The following approach can be taken. First, create a list containing the information that needs to
be returned by the mock:

IList<DataClass> list = new List<DataClass>();
for (int i = 0; i < 10; i++)
{
 list.Add(new DataClass { Id = 20 + i });
}

Then create a mock of the IEnumerable class and setup its GetEnumerator method to return the list's
enumerator instead:

var mock = new Mock<IEnumerableClass>();
mock.Setup(x => x.GetEnumerator()).Returns(list.GetEnumerator());

This can be validated as follows:

int expected = 20;
foreach (var i in mock.Object)
{
 Assert.AreEqual(expected++, i.Id);
}

Read Mocking common interfaces online: https://riptutorial.com/moq/topic/6776/mocking-common-
interfaces

https://riptutorial.com/ 7

https://riptutorial.com/moq/topic/6776/mocking-common-interfaces
https://riptutorial.com/moq/topic/6776/mocking-common-interfaces

Chapter 4: Mocking properties

Examples

Auto stubbing properties

Sometimes you want to mock a class or an interface and have its properties behave as if they
were simple getters and setters. As this is a common requirement, Moq provides a short cut
method to setup all properties of a mock to store and retrieve values:

// SetupAllProperties tells mock to implement setter/getter funcationality
var userMock = new Mock<IUser>().SetupAllProperties();

// Invoke the code to test
SetPropertiesOfUser(userMock.Object);

// Validate properties have been set
Assert.AreEqual(5, userMock.Object.Id);
Assert.AreEqual("SomeName", userMock.Object.Name);

For completeness, the code being tested is below

void SetPropertiesOfUser(IUser user)
{
 user.Id = 5;
 user.Name = "SomeName";
}

Properties with private setters

Sometimes you want to create a mock of a class that has a private setter:

public class MockTarget
{
 public virtual string PropertyToMock { get; private set; }
}

Or an interface that only defines a getter:

public interface MockTarget
{
 string PropertyToMock { get; }
}

In both cases, you can ignore the setter and simply Setup the property getter to return a desired
value:

var mock = new Mock<MockTarget>();
mock.SetupGet(x => x.PropertyToMock).Returns("ExpectedValue");

https://riptutorial.com/ 8

Assert.AreEqual("ExpectedValue", mock.Object.PropertyToMock);

Read Mocking properties online: https://riptutorial.com/moq/topic/6774/mocking-properties

https://riptutorial.com/ 9

https://riptutorial.com/moq/topic/6774/mocking-properties

Chapter 5: Validating call order

Examples

Validating call order implicitly

Where a method to be tested uses information from one call to pass on to subsequent calls, one
approach that can be used to ensure the methods are called in the expected order is to setup the
expectations to reflect this flow of data.

Given the method to test:

public void MethodToTest()
{
 var str = _utility.GetInitialValue();

 str = _utility.PrefixString(str);
 str = _utility.ReverseString(str);

 _target.DoStuff(str);
}

Expectations can be set to pass data from GetInitialValue through PrefixString and ReverseString
to DoStuff, where the information is verified. If any of the methods are called out of order, the end
data will be wrong and the test will fail.

// Create mocks
var utilityMock = new Mock<IUtility>();
var targetMock = new Mock<ITarget>();

// Setup expectations, note that the returns value from one call matches the expected
// parameter for the next call in the sequence of calls we're interested in.
utilityMock.Setup(x => x.GetInitialValue()).Returns("string");
utilityMock.Setup(x => x.PrefixString("string")).Returns("Prefix:string");
utilityMock.Setup(x => x.ReverseString("Prefix:string")).Returns("gnirts:xiferP");

string expectedFinalInput = "gnirts:xiferP";

// Invoke the method to test
var sut = new SystemUnderTest(utilityMock.Object, targetMock.Object);
sut.MethodToTest();

// Validate that the final call was passed the expected value.
targetMock.Verify(x => x.DoStuff(expectedFinalInput));

Validating call order with callbacks

When you can't / don't want to use Strict Mocks, you can't use MockSequence to validate call order.
An alternate approach is to use callbacks to validate that the Setup expectations are being invoked
in the expected order. Given the following method to test:

https://riptutorial.com/ 10

public void MethodToTest()
{
 _utility.Operation1("1111");
 _utility.Operation3("3333");
 _utility.Operation2("2222");
}

It can be tested as follows:

// Create the mock (doesn't have to be in strict mode)
var utilityMock = new Mock<IUtility>();

// Create a variable to track the current call number
int callOrder = 1;

// Setup each call in the sequence to be tested. Note that the callback validates that
// that callOrder has the expected value, then increments it in preparation for the next
// call.
utilityMock.Setup(x => x.Operation1(It.IsAny<string>()))
 .Callback(() => Assert.AreEqual(1, callOrder++, "Method called out of order"));
utilityMock.Setup(x => x.Operation2(It.IsAny<string>()))
 .Callback(() => Assert.AreEqual(2, callOrder++, "Method called out of order"));
utilityMock.Setup(x => x.Operation3(It.IsAny<string>()))
 .Callback(() => Assert.AreEqual(3, callOrder++, "Method called out of order"));

// Invoke the method to be tested
var sut = new SystemUnderTest(utilityMock.Object);
sut.MethodToTest();

// Validate any parameters that are important, note these Verifications can occur in any
// order.
utilityMock.Verify(x => x.Operation2("2222"));
utilityMock.Verify(x => x.Operation1("1111"));
utilityMock.Verify(x => x.Operation3("3333"));

Validating call order with MockSequence

Moq provides support for validating call order using MockSequence, however it only works when
using Strict mocks. So, Given the following method to test:

public void MethodToTest()
{
 _utility.Operation1("1111");
 _utility.Operation2("2222");
 _utility.Operation3("3333");
}

It can be tested as follows:

// Create the mock, not MockBehavior.Strict tells the mock how to behave
var utilityMock = new Mock<IUtility>(MockBehavior.Strict);

// Create the MockSequence to validate the call order
var sequence = new MockSequence();

https://riptutorial.com/ 11

// Create the expectations, notice that the Setup is called via InSequence
utilityMock.InSequence(sequence).Setup(x => x.Operation1(It.IsAny<string>()));
utilityMock.InSequence(sequence).Setup(x => x.Operation2(It.IsAny<string>()));
utilityMock.InSequence(sequence).Setup(x => x.Operation3(It.IsAny<string>()));

// Run the method to be tested
var sut = new SystemUnderTest(utilityMock.Object);
sut.MethodToTest();

// Verify any parameters that are cared about to the operation being orchestrated.
// Note that the Verify calls can be in any order
utilityMock.Verify(x => x.Operation2("2222"));
utilityMock.Verify(x => x.Operation1("1111"));
utilityMock.Verify(x => x.Operation3("3333"));

The above example uses It.IsAny<string> when setting up the expectations. These could have
used relevant strings ("1111", "2222", "3333") if more exact matches were required.

The error reported when calls are made out of sequence can be a bit misleading.

invocation failed with mock behavior Strict. All invocations on the mock must have a
corresponding setup.

This is because, each Setup expectation is treated as if it doesn't exist until the previous
expectation in the sequence has been satisfied.

Read Validating call order online: https://riptutorial.com/moq/topic/6775/validating-call-order

https://riptutorial.com/ 12

https://riptutorial.com/moq/topic/6775/validating-call-order

Credits

S.
No

Chapters Contributors

1
Getting started with
moq

Community, forsvarir, meJustAndrew, Old Fox

2 Mocking Behavior J. Pichardo, jcolebrand, Owen Pauling

3
Mocking common
interfaces

forsvarir

4 Mocking properties forsvarir, Owen Pauling

5 Validating call order forsvarir

https://riptutorial.com/ 13

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/4332059/old-fox
https://riptutorial.com/contributor/4952551/j--pichardo
https://riptutorial.com/contributor/109749/jcolebrand
https://riptutorial.com/contributor/1688439/owen-pauling
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/1688439/owen-pauling
https://riptutorial.com/contributor/592182/forsvarir

	About
	Chapter 1: Getting started with moq
	Remarks
	Examples
	Installation or Setup
	Moqs are test doubles

	Chapter 2: Mocking Behavior
	Syntax
	Parameters
	Examples
	No-Argument method mocking
	Mocking void methods to confirm what they return
	Mocking protected members

	Chapter 3: Mocking common interfaces
	Examples
	Mocking IEnumerable

	Chapter 4: Mocking properties
	Examples
	Auto stubbing properties
	Properties with private setters

	Chapter 5: Validating call order
	Examples
	Validating call order implicitly
	Validating call order with callbacks
	Validating call order with MockSequence

	Credits

