
mpi

#mpi

Table of Contents

About 1

Chapter 1: Getting started with mpi 2

Remarks 2

Versions 2

Examples 2

Rank and size 2

Init/Finalize 3

Hello World! 3

Return values of MPI calls 4

Chapter 2: Collectives 6

Remarks 6

Examples 6

Broadcast 6

Barrier 6

Scatter 7

Chapter 3: Compiling an MPI Program 8

Remarks 8

Examples 8

C Wrapper 8

Chapter 4: MPI Implementations 9

Remarks 9

Examples 9

Installing MPICH on Mac with Homebrew 9

Installing Open MPI on Mac with Homebrew 9

Chapter 5: Process creation and management 10

Examples 10

Spawn 10

Establishing connection between two independent applications 11

Chapter 6: Process Topologies 13

Examples 13

Graph topology creation and communication 13

Chapter 7: Running an MPI Program 15

Parameters 15

Examples 15

Execute your job 15

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mpi

It is an unofficial and free mpi ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official mpi.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mpi
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with mpi

Remarks

MPI is a standard for communication among a group of distributed (or local) processes. It includes
routines to send and receive data, communicate collectively, and other more complex tasks.

The standard provides an API for C and Fortran, but bindings to various other languages also
exist.

Versions

Version Standard Release Date

1 mpi-report-1.3-2008-05-30.pdf 1994-05-05

2.0 mpi2-report.pdf 2003-09-15

2.2 mpi22-report.pdf 2009-09-04

3.0 mpi30-report.pdf 2012-09-21

3.1 mpi31-report.pdf 2015-06-04

Examples

Rank and size

To get the size of a communicator (e.g. MPI_COMM_WORLD) and the local process' rank inside it:

int rank, size;
int res;
MPI_Comm communicator = MPI_COMM_WORLD;

res = MPI_Comm_rank (communicator, &rank);
if (res != MPI_SUCCESS)
{
 fprintf (stderr, "MPI_Comm_rank failed\n");
 exit (0);
}
res = MPI_Comm_size (communicator, &size);
if (res != MPI_SUCCESS)
{
 fprintf (stderr, "MPI_Comm_size failed\n");
 exit (0);
}

https://riptutorial.com/ 2

http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
http://www.mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Init/Finalize

Before any MPI commands can be run, the environment needs to be initialized, and finalized in the
end:

int main(int argc, char** argv)
{
 int res;
 res = MPI_Init(&argc,&argv);
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Init failed\n");
 exit (0);
 }
 ...
 res = MPI_Finalize();
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Finalize failed\n");
 exit (0);
 }
}

Hello World!

Three things are usually important when starting to learn to use MPI. First, you must initialize the
library when you are ready to use it (you also need to finalize it when you are done). Second, you
will want to know the size of your communicator (the thing you use to send messages to other
processes). Third, you will want to know your rank within that communicator (which process
number are you within that communicator).

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv) {
 int size, rank;
 int res;

 res = MPI_Init(&argc, &argv);
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Init failed\n");
 exit (0);
 }

 res = MPI_Comm_size(MPI_COMM_WORLD, &size);
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Comm_size failed\n");
 exit (0);
 }
 res = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Comm_rank failed\n");
 exit (0);

https://riptutorial.com/ 3

 }

 fprintf(stdout, "Hello World from rank %d of %d~\n", rank, size);

 res = MPI_Finalize();
 if (res != MPI_SUCCESS)
 {
 fprintf (stderr, "MPI_Finalize failed\n");
 exit (0);
 }
}

If you run this program like this:

mpiexec -n 2 ./hello

You would expect to get output like this:

Hello World from rank 0 of 2!
Hello World from rank 1 of 2!

You could also get that output backward (see http://stackoverflow.com/a/17571699/491687) for
more discussion of this:

Hello World from rank 1 of 2!
Hello World from rank 0 of 2!

Return values of MPI calls

Almost any MPI call returns an integer error code, which signifies the success of the operation. If
no error occurs, the return code is MPI_SUCCESS:

if (MPI_Some_op(...) != MPI_SUCCESS)
{
 // Process error
}

If an error occurs, MPI calls an error handler associated with the communicator, window or file
object before returning to the user code. There are two predefined error handlers (the user can
define additional error handlers):

MPI_ERRORS_ARE_FATAL - errors result in termination of the MPI program•
MPI_ERRORS_RETURN - errors result in the error code being passed back to the user•

The default error handler for communicators and windows is MPI_ERRORS_ARE_FATAL; for file objects it
is MPI_ERRORS_RETURN. The error handler for MPI_COMM_WORLD also applies to all operations that are not
specifically related to an object (e.g., MPI_Get_count). Thus, checking the return value of non-I/O
operations without setting the error handler to MPI_ERRORS_RETURN is redundant as erroneous MPI
calls will not return.

https://riptutorial.com/ 4

http://stackoverflow.com/a/17571699/491687

// The execution will not reach past the following line in case of error
int res = MPI_Comm_size(MPI_COMM_WORLD, &size);
if (res != MPI_SUCCESS)
{
 // The following code will never get executed
 fprintf(stderr, "MPI_Comm_size failed: %d\n", res);
 exit(EXIT_FAILURE);
}

To enable user error processing, one must first change the error handler of MPI_COMM_WORLD:

MPI_Comm_set_errhandler(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

int res = MPI_Comm_size(MPI_COMM_WORLD, &size);
if (res != MPI_SUCCESS)
{
 fprintf(stderr, "MPI_Comm_size failed: %d\n", res);
 exit(EXIT_FAILURE);
}

The MPI standard does not require that MPI implementations are able to recover from errors and
continue the program execution.

Read Getting started with mpi online: https://riptutorial.com/mpi/topic/1943/getting-started-with-mpi

https://riptutorial.com/ 5

https://riptutorial.com/mpi/topic/1943/getting-started-with-mpi

Chapter 2: Collectives

Remarks

Collectives operations are MPI calls designed communicate the processes pointed out by a
communicator in a single operation or to perform a synchronization among them. These are often
used to calculate one or more values based on data contributed by other processes or to distribute
or collect data from all other processes.

Note that all the processes in the communicator should invoke the same collective operations in
order, otherwise the application would block.

Examples

Broadcast

The following code broadcasts the contents in buffer among all the processes belonging to the
MPI_COMM_WORLD communicator (i.e. all the processes running in parallel) using the MPI_Bcast
operation.

int rank;
int res;

res = MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (res != MPI_SUCCESS)
{
 fprintf (stderr, "MPI_Comm_rank failed\n");
 exit (0);
}

int buffer[100];
if (rank == 0)
{
 // Process with rank id 0 should fill the buffer structure
 // with the data it wants to share.
}

res = MPI_Bcast (buffer, 100, MPI_INT, 0, MPI_COMM_WORLD);
if (res != MPI_SUCCESS)
{
 fprintf (stderr, "MPI_Bcast failed\n");
 exit (0);
}

Barrier

The MPI_Barrier operation performs a synchronization among the processes belonging to the given
communicator. That is, all the processes from a given communicator will wait within the
MPI_Barrier until all of them are inside, and at that point, they will leave the operation.

https://riptutorial.com/ 6

int res;

res = MPI_Barrier (MPI_COMM_WORLD); /* all processes will wait */
if (res != MPI_SUCCESS)
{
 fprintf (stderr, "MPI_Barrier failed\n");
 exit (0);
}

Scatter

The root process scatters the contents in sendbuf to all processes (including itself) using the
MPI_Scatter operation.

int rank;
int size;
int sendcount = 1;
int recvcount = sendcount;
int sendbuf[3];
int recvbuf;
int root = 0;

MPI_Comm_size (MPI_COMM_WORLD, &size);

if (size != 3)
{
 fprintf (stderr, "Number of processes must be 3\n");
 exit (0);
}

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0)
{
 sendbuf[0] = 3;
 sendbuf[1] = 5;
 sendbuf[2] = 7;
}

MPI_Scatter (sendbuf, sendcount, MPI_INT, &recvbuf, recvcount, MPI_INT, root, MPI_COMM_WORLD);

printf ("rank: %i, value: %i\n", rank, recvbuf);

/* Output:
 * rank: 0, value: 3
 * rank: 1, value: 5
 * rank: 2, value: 7
 */

Read Collectives online: https://riptutorial.com/mpi/topic/2602/collectives

https://riptutorial.com/ 7

https://riptutorial.com/mpi/topic/2602/collectives

Chapter 3: Compiling an MPI Program

Remarks

MPI needs to add extra libraries and include directories to your compilation line when compiling
your program. Rather than tracking all of them yourself, you can usually use one of the compiler
wrappers.

Examples

C Wrapper

mpicc -o my_prog my_prog.c

Read Compiling an MPI Program online: https://riptutorial.com/mpi/topic/3650/compiling-an-mpi-
program

https://riptutorial.com/ 8

https://riptutorial.com/mpi/topic/3650/compiling-an-mpi-program
https://riptutorial.com/mpi/topic/3650/compiling-an-mpi-program

Chapter 4: MPI Implementations

Remarks

MPI is a standard, not a programming library. There are many implementations of the standard.
The most common open source ones are MPICH and Open MPI. There are many derivatives of
these two libraries that are either open source or commercial (or both).

It's important to know which implementation you have because the way you compile or run your
program might change subtly.

Examples

Installing MPICH on Mac with Homebrew

brew install mpich

Installing Open MPI on Mac with Homebrew

brew install open-mpi

Read MPI Implementations online: https://riptutorial.com/mpi/topic/2870/mpi-implementations

https://riptutorial.com/ 9

https://riptutorial.com/mpi/topic/2870/mpi-implementations

Chapter 5: Process creation and management

Examples

Spawn

Master process spawns two worker processes and scatters sendbuf to workers.

master.c

#include "mpi.h"

int main(int argc, char *argv[])
{
 int n_spawns = 2;
 MPI_Comm intercomm;

 MPI_Init(&argc, &argv);

 MPI_Comm_spawn("worker_program", MPI_ARGV_NULL, n_spawns, MPI_INFO_NULL, 0, MPI_COMM_SELF,
&intercomm, MPI_ERRCODES_IGNORE);

 int sendbuf[2] = {3, 5};
 int recvbuf; // redundant for master.

 MPI_Scatter(sendbuf, 1, MPI_INT, &recvbuf, 1, MPI_INT, MPI_ROOT, intercomm);

 MPI_Finalize();
 return 0;
}

worker.c

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 MPI_Comm intercomm;
 MPI_Comm_get_parent(&intercomm);

 int sendbuf[2]; // redundant for worker.
 int recvbuf;

 MPI_Scatter(sendbuf, 1, MPI_INT, &recvbuf, 1, MPI_INT, 0, intercomm);
 printf("recvbuf = %d\n", recvbuf);

 MPI_Finalize();
 return 0;
}

Execution

https://riptutorial.com/ 10

mpicc master.c -o master_program
mpicc worker.c -o worker_program
mpirun -n 1 master_program

Establishing connection between two independent applications

Master process spawns server and client applications with a single process for each application.
Server opens a port and client connects to that port. Then client sends data to server with MPI_Send
to verify that the connection is established.

master.c

#include "mpi.h"

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 MPI_Comm intercomm;
 // Spawn two applications with a single process for each application.
 // Server must be spawned before client otherwise the client will complain at
MPI_Lookup_name().
 MPI_Comm_spawn("server", MPI_ARGV_NULL, 1, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm,
MPI_ERRCODES_IGNORE);
 MPI_Comm_spawn("client", MPI_ARGV_NULL, 1, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm,
MPI_ERRCODES_IGNORE);

 MPI_Finalize();
 return 0;
}

server.c

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 // Open port.
 char port_name[MPI_MAX_PORT_NAME];
 MPI_Open_port(MPI_INFO_NULL, port_name);

 // Publish port name and accept client.
 MPI_Comm client;
 MPI_Publish_name("name", MPI_INFO_NULL, port_name);
 MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD, &client);

 // Receive data from client.
 int recvbuf;
 MPI_Recv(&recvbuf, 1, MPI_INT, 0, 0, client, MPI_STATUS_IGNORE);
 printf("recvbuf = %d\n", recvbuf);

 MPI_Unpublish_name("name", MPI_INFO_NULL, port_name);

 MPI_Finalize();

https://riptutorial.com/ 11

 return 0;
}

client.c

#include "mpi.h"

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 // Look up for server's port name.
 char port_name[MPI_MAX_PORT_NAME];
 MPI_Lookup_name("name", MPI_INFO_NULL, port_name);

 // Connect to server.
 MPI_Comm server;
 MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &server);

 // Send data to server.
 int sendbuf = 3;
 MPI_Send(&sendbuf, 1, MPI_INT, 0, 0, server);

 MPI_Finalize();
 return 0;
}

Command line

mpicc master.c -o master_program
mpicc server.c -o server
mpicc client.c -o client
mpirun -n 1 master_program

Read Process creation and management online: https://riptutorial.com/mpi/topic/9416/process-
creation-and-management

https://riptutorial.com/ 12

https://riptutorial.com/mpi/topic/9416/process-creation-and-management
https://riptutorial.com/mpi/topic/9416/process-creation-and-management

Chapter 6: Process Topologies

Examples

Graph topology creation and communication

Creates a graph topology in a distributed manner so that each node defines its neighbors. Each
node communicates its rank among neighbors with MPI_Neighbor_allgather.

#include <mpi.h>
#include <stdio.h>

#define nnode 4

int main()
{
 MPI_Init(NULL, NULL);

 int rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 int source = rank;
 int degree;
 int dest[nnode];
 int weight[nnode] = {1, 1, 1, 1};
 int recv[nnode] = {-1, -1, -1, -1};
 int send = rank;

 // set dest and degree.
 if (rank == 0)
 {
 dest[0] = 1;
 dest[1] = 3;
 degree = 2;
 }
 else if(rank == 1)
 {
 dest[0] = 0;
 degree = 1;
 }
 else if(rank == 2)
 {
 dest[0] = 3;

https://riptutorial.com/ 13

https://i.stack.imgur.com/YRGBh.png

 dest[1] = 0;
 dest[2] = 1;
 degree = 3;
 }
 else if(rank == 3)
 {
 dest[0] = 0;
 dest[1] = 2;
 dest[2] = 1;
 degree = 3;
 }

 // create graph.
 MPI_Comm graph;
 MPI_Dist_graph_create(MPI_COMM_WORLD, 1, &source, °ree, dest, weight, MPI_INFO_NULL, 1,
&graph);

 // send and gather rank to/from neighbors.
 MPI_Neighbor_allgather(&send, 1, MPI_INT, recv, 1, MPI_INT, graph);

 printf("Rank: %i, recv[0] = %i, recv[1] = %i, recv[2] = %i, recv[3] = %i\n", rank,
recv[0], recv[1], recv[2], recv[3]);

 MPI_Finalize();
 return 0;
}

Read Process Topologies online: https://riptutorial.com/mpi/topic/9423/process-topologies

https://riptutorial.com/ 14

https://riptutorial.com/mpi/topic/9423/process-topologies

Chapter 7: Running an MPI Program

Parameters

Parameter Details

-n <num_procs> The number of MPI processes to start up for the job

Examples

Execute your job

The simplest way to run your job is to use mpiexec or mpirun (they are usually the same thing and
aliases of each other).

mpiexec -n 2 ./my_prog

Read Running an MPI Program online: https://riptutorial.com/mpi/topic/2877/running-an-mpi-
program

https://riptutorial.com/ 15

https://riptutorial.com/mpi/topic/2877/running-an-mpi-program
https://riptutorial.com/mpi/topic/2877/running-an-mpi-program

Credits

S.
No

Chapters Contributors

1
Getting started with
mpi

Community, foxcub, Harald, haraldkl, Hristo Iliev, Wesley Bland

2 Collectives foxcub, Harald, Shibli, Wesley Bland

3
Compiling an MPI
Program

Harald, Wesley Bland

4 MPI Implementations Wesley Bland

5
Process creation and
management

Shibli

6 Process Topologies Shibli

7
Running an MPI
Program

Wesley Bland

https://riptutorial.com/ 16

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/44738/foxcub
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/577108/haraldkl
https://riptutorial.com/contributor/1374437/hristo-iliev
https://riptutorial.com/contributor/491687/wesley-bland
https://riptutorial.com/contributor/44738/foxcub
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/1128551/shibli
https://riptutorial.com/contributor/491687/wesley-bland
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/491687/wesley-bland
https://riptutorial.com/contributor/491687/wesley-bland
https://riptutorial.com/contributor/1128551/shibli
https://riptutorial.com/contributor/1128551/shibli
https://riptutorial.com/contributor/491687/wesley-bland

	About
	Chapter 1: Getting started with mpi
	Remarks
	Versions
	Examples
	Rank and size
	Init/Finalize
	Hello World!
	Return values of MPI calls

	Chapter 2: Collectives
	Remarks
	Examples
	Broadcast
	Barrier
	Scatter

	Chapter 3: Compiling an MPI Program
	Remarks
	Examples
	C Wrapper

	Chapter 4: MPI Implementations
	Remarks
	Examples
	Installing MPICH on Mac with Homebrew
	Installing Open MPI on Mac with Homebrew

	Chapter 5: Process creation and management
	Examples
	Spawn
	Establishing connection between two independent applications

	Chapter 6: Process Topologies
	Examples
	Graph topology creation and communication

	Chapter 7: Running an MPI Program
	Parameters
	Examples
	Execute your job

	Credits

