
multithreading

#multithread

ing

Table of Contents

About 1

Chapter 1: Getting started with multithreading 2

Remarks 2

Examples 2

Purpose 2

Deadlocks 2

How to Avoid Deadlocks 3

Acquire Locks in Same Order 3

Race conditions 4

Hello Multithreading - Creating new threads 7

Can the same thread run twice? 7

Chapter 2: Executors 9

Syntax 9

Parameters 9

Remarks 10

Different types of ThreadPools 10

Examples 11

Defining a new ThreadPool 11

Future and Callables 12

Custom Runnables instead of Callables 13

Adding ThreadFactory to Executor 14

Chapter 3: Semaphores & Mutexes 17

Introduction 17

Remarks 17

Semaphore 17

Mutex 17

Examples 17

Mutex in Java & C++ 17

Credits 21

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: multithreading

It is an unofficial and free multithreading ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official multithreading.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/multithreading
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with
multithreading

Remarks

Multithreading is a programming technique which consists of dividing a task into separate threads
of execution. These threads run concurrently, either by being assigned to different processing
cores, or by time-slicing.

When designing a multithreaded program, the threads should be made as independent of each
other as possible, to achieve the greatest speed-up.
In practice the threads are rarely fully independent, which makes synchronisation necessary.
The maximum theoretical speed-up can be calculated using Amdahl's law.

Advantages

Speed up execution time by using the available processing resources efficiently•
Allow a process to remain responsive without the need to split lengthy calculations or
expensive I/O operations

•

Easily prioritize certain operations over others•

Disadvantages

Without careful design, hard-to-find bugs may be introduced•
Creating threads involves some overhead•

Examples

Purpose

Threads are the low level parts of a computing system which command processing occurs. It is
supported/provided by CPU/MCU hardware. There are also software methods. The purpose of
multi-threading is doing calculations in parallel to each other if possible. Thus the desired result
can be obtained in a smaller time slice.

Deadlocks

A deadlock occurs when every member of some group of two or more threads must wait for one of
the other members to do something (e.g., to release a lock) before it can proceed. Without
intervention, the threads will wait forever.

A pseudocode example of a deadlock-prone design is:

thread_1 {
 acquire(A)

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Amdahl%27s_law

 ...
 acquire(B)
 ...
 release(A, B)
}

thread_2 {
 acquire(B)
 ...
 acquire(A)
 ...
 release(A, B)
}

A deadlock can occur when thread_1 has acquired A, but not yet B, and thread_2 has acquired B, but
not A. As shown in the following diagram, both threads will wait forever.

How to Avoid Deadlocks

As a general rule of thumb, minimize the use of locks, and minimize code between lock and
unlock.

Acquire Locks in Same Order

A redesign of thread_2 solves the problem:

thread_2 {
 acquire(A)
 ...
 acquire(B)
 ...
 release(A, B)
}

Both threads acquire the resources in the same order, thus avoiding deadlocks.

This solution is known as the "Resource hierarchy solution". It was proposed by Dijkstra as a
solution to the "Dining philosophers problem".

Sometimes even if you specify strict order for lock acquisition, such static lock acquisition order
can be made dynamic at runtime.

Consider following code:

void doCriticalTask(Object A, Object B){
 acquire(A){
 acquire(B){

 }
 }
}

https://riptutorial.com/ 3

Here even if the lock acquisition order looks safe, it can cause a deadlock when thread_1
accesses this method with, say, Object_1 as parameter A and Object_2 as parameter B and
thread_2 does in opposite order i.e. Object_2 as parameter A and Object_1 as parameter B.

In such situation it is better to have some unique condition derived using both Object_1 and
Object_2 with some kind of calculation, e.g. using hashcode of both objects, so whenever different
thread enters in that method in whatever parametric order, everytime that unique condition will
derive the lock acquisition order.

e.g. Say Object has some unique key, e.g. accountNumber in case of Account object.

void doCriticalTask(Object A, Object B){
 int uniqueA = A.getAccntNumber();
 int uniqueB = B.getAccntNumber();
 if(uniqueA > uniqueB){
 acquire(B){
 acquire(A){

 }
 }
 }else {
 acquire(A){
 acquire(B){

 }
 }
 }
}

Race conditions

A data race or race condition is a problem that can occur when a multithreaded program is not
properly synchronized. If two or more threads access the same memory without synchronization,
and at least one of the accesses is a 'write' operation, a data race occurs. This leads to platform
dependent, possibly inconsistent behavior of the program. For example, the result of a calculation
could depend on the thread scheduling.

Readers-Writers Problem:

writer_thread {
 write_to(buffer)
}

reader_thread {
 read_from(buffer)
}

A simple solution:

writer_thread {
 lock(buffer)
 write_to(buffer)
 unlock(buffer)

https://riptutorial.com/ 4

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem

}

reader_thread {
 lock(buffer)
 read_from(buffer)
 unlock(buffer)
}

This simple solution works well if there is only one reader thread, but if there is more than one, it
slows down the execution unnecessarily, because the reader threads could read simultaneously.

A solution that avoids this problem could be:

writer_thread {
 lock(reader_count)
 if(reader_count == 0) {
 write_to(buffer)
 }
 unlock(reader_count)
}

reader_thread {
 lock(reader_count)
 reader_count = reader_count + 1
 unlock(reader_count)

 read_from(buffer)

 lock(reader_count)
 reader_count = reader_count - 1
 unlock(reader_count)
}

Note that reader_count is locked throughout the whole writing operation, such that no reader can
begin reading while the writing has not finished.

Now many readers can read simultaneously, but a new problem may arise: The reader_count may
never reach 0, such that the writer thread can never write to the buffer. This is called starvation,
there are different solutions to avoid it.

Even programs that may seem correct can be problematic:

boolean_variable = false

writer_thread {
 boolean_variable = true
}

reader_thread {
 while_not(boolean_variable)
 {
 do_something()
 }
}

https://riptutorial.com/ 5

https://en.wikipedia.org/wiki/Starvation_(computer_science)

The example program might never terminate, since the reader thread might never see the update
from the writer thread. If for example the hardware uses CPU caches, the values might be cached.
And since a write or read to a normal field, does not lead to a refresh of the cache, the changed
value might never be seen by the reading thread.

C++ and Java defines in the so called memory model, what properly synchronized means: C++
Memory Model, Java Memory Model.

In Java a solution would be to declare the field as volatile:

volatile boolean boolean_field;

In C++ a solution would be to declare the field as atomic:

std::atomic<bool> data_ready(false)

A data race is a kind of race condition. But not all race conditions are data races. The following
called by more than one thread leads to a race condition but not to a data race:

class Counter {
 private volatile int count = 0;

 public void addOne() {
 i++;
 }
}

It is correctly synchronized according to the Java Memory Model specification, therefore it is not
data race. But still it leads to a race conditions, e.g. the result depends on the interleaving of the
threads.

Not all data races are bugs. An example of an so called benign race condition is the
sun.reflect.NativeMethodAccessorImpl:

class NativeMethodAccessorImpl extends MethodAccessorImpl {
 private Method method;
 private DelegatingMethodAccessorImpl parent;
 private int numInvocations;

 NativeMethodAccessorImpl(Method method) {
 this.method = method;
 }

 public Object invoke(Object obj, Object[] args)
 throws IllegalArgumentException, InvocationTargetException
 {
 if (++numInvocations > ReflectionFactory.inflationThreshold()) {
 MethodAccessorImpl acc = (MethodAccessorImpl)
 new MethodAccessorGenerator().
 generateMethod(method.getDeclaringClass(),
 method.getName(),
 method.getParameterTypes(),
 method.getReturnType(),

https://riptutorial.com/ 6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html

 method.getExceptionTypes(),
 method.getModifiers());
 parent.setDelegate(acc);
 }
 return invoke0(method, obj, args);
 }
 ...
}

Here the performance of the code is more important than the correctness of the count of
numInvocation.

Hello Multithreading - Creating new threads

This simple example shows how to start multiple threads in Java. Note that the threads are not
guaranteed to execute in order, and the execution ordering may vary for each run.

public class HelloMultithreading {

 public static void main(String[] args) {

 for (int i = 0; i < 10; i++) {
 Thread t = new Thread(new MyRunnable(i));
 t.start();
 }
 }

 public static class MyRunnable implements Runnable {

 private int mThreadId;

 public MyRunnable(int pThreadId) {
 super();
 mThreadId = pThreadId;
 }

 @Override
 public void run() {
 System.out.println("Hello multithreading: thread " + mThreadId);
 }

 }

}

Can the same thread run twice?

It was most frequent question that can a same thread can be run twice.

The answer for this is know one thread can run only once .

if you try to run the same thread twice it will execute for the first time but will give error for
second time and the error will be IllegalThreadStateException .

example:

https://riptutorial.com/ 7

public class TestThreadTwice1 extends Thread{
 public void run(){
 System.out.println("running...");
 }
 public static void main(String args[]){
 TestThreadTwice1 t1=new TestThreadTwice1();
 t1.start();
 t1.start();
 }
}

output:

running
 Exception in thread "main" java.lang.IllegalThreadStateException

Read Getting started with multithreading online:
https://riptutorial.com/multithreading/topic/1229/getting-started-with-multithreading

https://riptutorial.com/ 8

https://riptutorial.com/multithreading/topic/1229/getting-started-with-multithreading

Chapter 2: Executors

Syntax

ThreadPoolExecutor•

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit
unit, BlockingQueue<Runnable> workQueue)

•

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit
unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)

•

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit
unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory)

•

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit
unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler)

•

Executors.callable(PrivilegedAction<?> action)•

Executors.callable(PrivilegedExceptionAction<?> action)•

Executors.callable(Runnable task)•

Executors.callable(Runnable task, T result)•

Executors.defaultThreadFactory()•

Executors.newCachedThreadPool()•

Executors.newCachedThreadPool(ThreadFactory threadFactory)•

Executors.newFixedThreadPool(int nThreads)•

Executors.newFixedThreadPool(int nThreads, ThreadFactory threadFactory)•

Executors.newScheduledThreadPool(int corePoolSize)•

Executors.newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory)•

Executors.newSingleThreadExecutor()•

Executors.newSingleThreadExecutor(ThreadFactory threadFactory)•

Parameters

Parameter Detail

corePoolSize Minimum number of threads to keep in the pool.

maximumPoolSize Maximum number of threads to allow in the pool.

When number of threads is greater than the core, the noncore threads keepAliveTime

https://riptutorial.com/ 9

Parameter Detail

(excess idle threads) will wait for time defined by this parameter for new
tasks before terminating.

unit Time unit for keepAliveTime.

timeout the maximum time to wait

workQueue The type of queue that our Executor is going to use

threadFactory The factory to use when creating new threads

nThreads The number of threads in the pool

executor The underlying implementation

task the task to run

result The result to return

action The privileged action to run

callable The underlying task

Remarks

The different types of Threadpools and Queues that are explained below, have been taken from
the information and knowledge from [oracle documentation][1] and [Jakob Jenkov][2] blog where
you can learn a lot about concurrency in java.

Different types of ThreadPools

SingleThreadExecutor: Executor that uses a single worker thread operating off an unbounded
queue, and uses the provided ThreadFactory to create a new thread when needed. Unlike the
otherwise equivalent newFixedThreadPool(1, threadFactory) the returned executor is guaranteed
not to be reconfigurable to use additional threads.

FixedThreadPool: thread pool that reuses a fixed number of threads operating off a shared
unbounded queue, using the provided ThreadFactory to create new threads when needed. At any
point, at most nThreads threads will be active processing tasks. If additional tasks are submitted
when all threads are active, they will wait in the queue until a thread is available. If any thread
terminates due to a failure during execution prior to shutdown, a new one will take its place if
needed to execute subsequent tasks. The threads in the pool will exist until it is explicitly
shutdown.

CachedThreadPool: Thread pool that creates new threads as needed, but will reuse previously
constructed threads when they are available, and uses the provided ThreadFactory to create new

https://riptutorial.com/ 10

threads when needed.

SingleThreadScheduledExecutor: Single-threaded executor that can schedule commands to run
after a given delay, or to execute periodically. (Note however that if this single thread terminates
due to a failure during execution prior to shutdown, a new one will take its place if needed to
execute subsequent tasks.) Tasks are guaranteed to execute sequentially, and no more than one
task will be active at any given time. Unlike the otherwise equivalent newScheduledThreadPool(1,
threadFactory) the returned executor is guaranteed not to be reconfigurable to use additional
threads.

ScheduledThreadPool: Thread pool that can schedule commands to run after a given delay, or
to execute periodically. Different types of Work Queues

Examples

Defining a new ThreadPool

A ThreadPool is an ExecutorService that executes each submitted task using one of possibly several
pooled threads, normally configured using Executors factory methods.

Here is a basic code to initialize a new ThreadPool as a singleton to use in your app:

public final class ThreadPool {

 private static final String TAG = "ThreadPool";
 private static final int CORE_POOL_SIZE = 4;
 private static final int MAX_POOL_SIZE = 8;
 private static final int KEEP_ALIVE_TIME = 10; // 10 seconds
 private final Executor mExecutor;

 private static ThreadPool sThreadPoolInstance;

 private ThreadPool() {
 mExecutor = new ThreadPoolExecutor(
 CORE_POOL_SIZE, MAX_POOL_SIZE, KEEP_ALIVE_TIME,
 TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
 }

 public void execute(Runnable runnable) {
 mExecutor.execute(runnable);
 }

 public synchronized static ThreadPool getThreadPoolInstance() {
 if (sThreadPoolInstance == null) {
 Log.i(TAG, "[getThreadManagerInstance] New Instance");
 sThreadPoolInstance = new ThreadPool();
 }
 return sThreadPoolInstance;
 }
}

You have two ways to call your runnable method, use execute() or submit(). the difference
between them is that submit() returns a Future object which allows you a way to programatically

https://riptutorial.com/ 11

cancel the running thread when the object T is returned from the Callable callback. You can read
more about Future here

Future and Callables

One of the features that we can use with Threadpools is the submit() method which allow us to
know when the thread as finish his work. We can do this thanks to the Future object, which return
us an object from the Callable that we can use to our own objetives.

Here is an example about how to use the Callable instance:

public class CallablesExample{

//Create MyCustomCallable instance
List<Future<String>> mFutureList = new ArrayList<Future<String>>();

//Create a list to save the Futures from the Callable
Callable<String> mCallable = new MyCustomCallable();

public void main(String args[]){
 //Get ExecutorService from Executors utility class, Creating a 5 threads pool.
 ExecutorService executor = Executors.newFixedThreadPool(5);

 for (int i = 0; i < 100; i++) {
 //submit Callable tasks to be executed by thread pool
 Future<String> future = executor.submit(mCallable);
 //add Future to the list, we can get return value using Future
 mFutureList.add(future);
 }
 for (Future<String> fut : mFutureList) {
 try {
 //Print the return value of Future, Notice the output delay in console
 //because Future.get() stop the thread till the task have been completed
 System.out.println(new Date() + "::" + fut.get());
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 //Shut down the service
 executor.shutdown();
}

 class MyCustomCallable implements Callable<String> {

 @Override
 public String call() throws Exception {
 Thread.sleep(1000);
 //return the thread name executing this callable task
 return Thread.currentThread().getName();
 }
}
}

As you can see, we create a Threadpool with 5 Threads, this means that we can throw 5 callables
parallel. When the threads finish, we will get and Future object from the callable, in this case the

https://riptutorial.com/ 12

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

name of the thread.

WARNING

In this example, we just use the Futures as a object inside the array to know how many threads we
are executing and print that many times a log in console with the data that we want. But, if we
want to use the method Future.get(), to return us the data that we saved before in the callable, we
will block the thread till the task is completed. Be care with this kind of calls when you want
perform this as fast as possible

Custom Runnables instead of Callables

Another good practice to check when our threads have finished without block the thread waiting to
recover the Future object from our Callable is to create our own implemetation for Runnables,
using it together with the execute() method.

In the next example, I show a custom class which implements Runnable with a internal callback,
with allow us to know when the runnables are finished and use it later in our ThreadPool:

public class CallbackTask implements Runnable {
 private final Runnable mTask;
 private final RunnableCallback mCallback;

 public CallbackTask(Runnable task, RunnableCallback runnableCallback) {
 this.mTask = task;
 this.mCallback = runnableCallback;
 }

 public void run() {
 long startRunnable = System.currentTimeMillis();
 mTask.run();
 mCallback.onRunnableComplete(startRunnable);
 }

 public interface RunnableCallback {
 void onRunnableComplete(long runnableStartTime);
 }
}

And here is our ThreadExecutor Implementation:

public class ThreadExecutorExample implements ThreadExecutor {

 private static String TAG = "ThreadExecutorExample";
 public static final int THREADPOOL_SIZE = 4;
 private long mSubmittedTasks;
 private long mCompletedTasks;
 private long mNotCompletedTasks;

 private ThreadPoolExecutor mThreadPoolExecutor;

 public ThreadExecutorExample() {
 Log.i(TAG, "[ThreadExecutorImpl] Initializing ThreadExecutorImpl");
 Log.i(TAG, "[ThreadExecutorImpl] current cores: " +
Runtime.getRuntime().availableProcessors());

https://riptutorial.com/ 13

 this.mThreadPoolExecutor =
 (ThreadPoolExecutor) Executors.newFixedThreadPool(THREADPOOL_SIZE);

 }

 @Override
 public void execute(Runnable runnable) {
 try {
 if (runnable == null) {
 Log.e(TAG, "[execute] Runnable to execute cannot be null");
 return;
 }
 Log.i(TAG, "[execute] Executing new Thread");

 this.mThreadPoolExecutor.execute(new CallbackTask(runnable, new
CallbackTask.RunnableCallback() {

 @Override
 public void onRunnableComplete(long RunnableStartTime) {
 mSubmittedTasks = mThreadPoolExecutor.getTaskCount();
 mCompletedTasks = mThreadPoolExecutor.getCompletedTaskCount();
 mNotCompletedTasks = mSubmittedTasks - mCompletedTasks; // approximate

 Log.i(TAG, "[execute] [onRunnableComplete] Runnable complete in " +
(System.currentTimeMillis() - RunnableStartTime) + "ms");
 Log.i(TAG, "[execute] [onRunnableComplete] Current threads working " +
mNotCompletedTasks);
 }
 }));
 }
 catch (Exception e) {
 e.printStackTrace();
 Log.e(TAG, "[execute] Error, shutDown the Executor");
 this.mThreadPoolExecutor.shutdown();
 }
 }
}

 /**
 * Executor thread abstraction created to change the execution context from any thread from
out ThreadExecutor.
 */
interface ThreadExecutor extends Executor {

 void execute(Runnable runnable);

}

I did this example to check speed of my threads in milliseconds when they are executed, without
use Future. You can take this example and add it to your app to control the concurrent task
working, and the completed/finished ones. Checking in all moment, the time that you needed to
execute that threads.

Adding ThreadFactory to Executor

We use ExecutorService to assign threads from the internal thread pool or create them on-
demand to perform tasks. Each ExecutorService has an ThreadFactory, but The ExecutorService

https://riptutorial.com/ 14

will use always a default one if we don't set a custom one. Why we should do this?

To set a more descriptive thread name. Default ThreadFactory gives thread names in the
form of pool-m-thread-n, such as pool-1-thread-1, pool-2-thread-1, pool-3-thread-1, etc. If
you are trying to debug or monitoring something, it's hard to know what are that threads
doing

•

Set a custom Daemon status, the default ThreadFactory produces non-daemon results.•

Set priority to our threads, the default ThreadFactory set a medium priority to all their
threads.

•

You can specify UncaughtExceptionHandler for our thread using setUncaughtExceptionHandler()
on thread object. This gets called back when Thread's run method throws uncaught
exception.

•

Here is a easy implementation of a ThreadFactory over a ThreadPool.

public class ThreadExecutorExample implements ThreadExecutor {
private static String TAG = "ThreadExecutorExample";
private static final int INITIAL_POOL_SIZE = 3;
private static final int MAX_POOL_SIZE = 5;

// Sets the amount of time an idle thread waits before terminating
private static final int KEEP_ALIVE_TIME = 10;

// Sets the Time Unit to seconds
private static final TimeUnit KEEP_ALIVE_TIME_UNIT = TimeUnit.SECONDS;

private final BlockingQueue<Runnable> workQueue;

private final ThreadPoolExecutor threadPoolExecutor;

private final ThreadFactory threadFactory;
private ThreadPoolExecutor mThreadPoolExecutor;

public ThreadExecutorExample() {
 this.workQueue = new LinkedBlockingQueue<>();
 this.threadFactory = new CustomThreadFactory();
 this.threadPoolExecutor = new ThreadPoolExecutor(INITIAL_POOL_SIZE, MAX_POOL_SIZE,
 KEEP_ALIVE_TIME, KEEP_ALIVE_TIME_UNIT, this.workQueue, this.threadFactory);
}

public void execute(Runnable runnable) {
 if (runnable == null) {
 return;
 }
 this.threadPoolExecutor.execute(runnable);
}

private static class CustomThreadFactory implements ThreadFactory {
 private static final String THREAD_NAME = "thread_";
 private int counter = 0;

 @Override public Thread newThread(Runnable runnable) {
 return new Thread(runnable, THREAD_NAME + counter++);
 }

https://riptutorial.com/ 15

}
}

/**
 * Executor thread abstraction created to change the execution context from any thread from
out ThreadExecutor.
 */
interface ThreadExecutor extends Executor {

 void execute(Runnable runnable);

}

This example just modify the name of the Thread with a counter, but we can modify it as long as
we want.

Read Executors online: https://riptutorial.com/multithreading/topic/6710/executors

https://riptutorial.com/ 16

https://riptutorial.com/multithreading/topic/6710/executors

Chapter 3: Semaphores & Mutexes

Introduction

Semaphores & Mutexes are concurrency controls used to synchronize multiple thread access to
shared resources.

Remarks

Semaphore

Here's a brilliant explanation from this Stackoverflow question:

Think of semaphores as bouncers at a nightclub. There are a dedicated number of
people that are allowed in the club at once. If the club is full no one is allowed to enter,
but as soon as one person leaves another person might enter.

It's simply a way to limit the number of consumers for a specific resource. For example,
to limit the number of simultaneous calls to a database in an application.

Mutex

A mutex is a semaphore of 1 (i.e. only one thread at a time). Using the nightclub metaphor, think
of a mutex in terms of a bathroom stall in the nightclub. Only one occupant allowed at a time.

Examples

Mutex in Java & C++

Although Java doesn't have a Mutex class, you can mimic a Mutex with the use of a Semaphore of
1. The following example executes two threads with and without locking. Without locking, the
program spits out a somewhat random order of output characters ($ or #). With locking, the
program spits out nice, orderly character sets of either ##### or $$$$$, but never a mix of # & $.

import java.util.concurrent.Semaphore;
import java.util.concurrent.ThreadLocalRandom;

public class MutexTest {
 static Semaphore semaphore = new Semaphore(1);

 static class MyThread extends Thread {
 boolean lock;
 char c = ' ';

https://riptutorial.com/ 17

https://stackoverflow.com/questions/34519/what-is-a-semaphore

 MyThread(boolean lock, char c) {
 this.lock = lock;
 this.c = c;
 }

 public void run() {
 try {
 // Generate a random number between 0 & 50
 // The random nbr is used to simulate the "unplanned"
 // execution of the concurrent code
 int randomNbr = ThreadLocalRandom.current().nextInt(0, 50 + 1);

 for (int j=0; j<10; ++j) {
 if(lock) semaphore.acquire();
 try {
 for (int i=0; i<5; ++i) {
 System.out.print(c);
 Thread.sleep(randomNbr);
 }
 } finally {
 if(lock) semaphore.release();
 }
 System.out.print('|');
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public static void main(String[] args) throws Exception {
 System.out.println("Without Locking:");
 MyThread th1 = new MyThread(false, '$');
 th1.start();
 MyThread th2 = new MyThread(false, '#');
 th2.start();

 th1.join();
 th2.join();

 System.out.println('\n');

 System.out.println("With Locking:");
 MyThread th3 = new MyThread(true, '$');
 th3.start();
 MyThread th4 = new MyThread(true, '#');
 th4.start();

 th3.join();
 th4.join();

 System.out.println('\n');
 }
}

Run javac MutexTest.java; java MutexTest, and you will get something like this:

Without Locking:
#$$$$$|$$$$$|$$#$$$|$$$$$|$$$$#$|$$$$$|$$$$$|$#$$$$|$$$$$|$$$#$$||#####|#####|#####|#####|#####|#####|#####|#####|#####|

https://riptutorial.com/ 18

With Locking:
$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|

Here's the same example in C++:

#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex
#include <random> // std::random_device

class MutextTest {
 private:
 static std::mutex mtx; // mutex for critical section

 public:
 static void run(bool lock, char c) {
 // Generate a random number between 0 & 50
 // The random nbr is used to simulate the "unplanned"
 // execution of the concurrent code
 std::uniform_int_distribution<int> dist(0, 50);
 std::random_device rd;
 int randomNbr = dist(rd);
 //std::cout << randomNbr << '\n';

 for(int j=0; j<10; ++j) {
 if(lock) mtx.lock();
 for (int i=0; i<5; ++i) {
 std::cout << c << std::flush;
 std::this_thread::sleep_for(std::chrono::milliseconds(randomNbr));
 }
 std::cout << '|';
 if(lock) mtx.unlock();
 }
 }
};

std::mutex MutextTest::mtx;

int main()
{
 std::cout << "Without Locking:\n";
 std::thread th1 (MutextTest::run, false, '$');
 std::thread th2 (MutextTest::run, false, '#');

 th1.join();
 th2.join();

 std::cout << "\n\n";

 std::cout << "With Locking:\n";
 std::thread th3 (MutextTest::run, true, '$');
 std::thread th4 (MutextTest::run, true, '#');

 th3.join();
 th4.join();

 std::cout << '\n';

 return 0;
}

https://riptutorial.com/ 19

Run g++ --std=c++11 MutexTest.cpp; ./a.out, and you will get something like this:

Without Locking:
$#$#$#$#$#|$|#$#$#$#$#|$$|#$#$#$#|$#$|#$#$#$#|$$#$|#$#$#|$#$#$|#$#$#|$#$$#$|#$#|$#$#$#$|#$#|$#$#$#$$|#|$#$#$#$#$|#|####|

With Locking:
$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|$$$$$|#####|

Read Semaphores & Mutexes online:
https://riptutorial.com/multithreading/topic/10861/semaphores---mutexes

https://riptutorial.com/ 20

https://riptutorial.com/multithreading/topic/10861/semaphores---mutexes

Credits

S.
No

Chapters Contributors

1
Getting started with
multithreading

alain, Amit Gujarathi, Boo Radley, Community, Gul Md Ershad,
james large, Jim, John Odom, Mert Gülsoy, RamenChef,
Thomas Krieger, vvtx, Zim-Zam O'Pootertoot

2 Executors Francisco Durdin Garcia, Guillermo Orellana Ruiz, vvtx

3
Semaphores &
Mutexes

John DiFini

https://riptutorial.com/ 21

https://riptutorial.com/contributor/3435400/alain
https://riptutorial.com/contributor/6477936/amit-gujarathi
https://riptutorial.com/contributor/1525953/boo-radley
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3540865/gul-md-ershad
https://riptutorial.com/contributor/801894/james-large
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/2843157/john-odom
https://riptutorial.com/contributor/745049/mert-gulsoy
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2779079/thomas-krieger
https://riptutorial.com/contributor/5638612/vvtx
https://riptutorial.com/contributor/1827903/zim-zam-o-pootertoot
https://riptutorial.com/contributor/5631145/francisco-durdin-garcia
https://riptutorial.com/contributor/1322722/guillermo-orellana-ruiz
https://riptutorial.com/contributor/5638612/vvtx
https://riptutorial.com/contributor/6230654/john-difini

	About
	Chapter 1: Getting started with multithreading
	Remarks
	Examples
	Purpose
	Deadlocks

	How to Avoid Deadlocks
	Acquire Locks in Same Order
	Race conditions
	Hello Multithreading - Creating new threads
	Can the same thread run twice?

	Chapter 2: Executors
	Syntax
	Parameters
	Remarks
	Different types of ThreadPools
	Examples
	Defining a new ThreadPool
	Future and Callables
	Custom Runnables instead of Callables
	Adding ThreadFactory to Executor

	Chapter 3: Semaphores & Mutexes
	Introduction
	Remarks

	Semaphore
	Mutex
	Examples
	Mutex in Java & C++

	Credits

